1
|
Connah L, Bataveljić D, Bondžić AM, De Henestrosa LCF, Korenić A, Bondžić BP, Andjus P, Angelovski G. Cell Labeling with Responsive MRI Contrast Agents is Enabled through Solid-Phase Synthesis. Bioconjug Chem 2025. [PMID: 40336216 DOI: 10.1021/acs.bioconjchem.5c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Bioresponsive or smart contrast agents (SCAs) for magnetic resonance imaging (MRI) can facilitate functional molecular imaging of numerous biological processes. These are MRI probes that alter the MRI signal along with the concentration changes of different biomarkers in their microenvironment, thus enabling the assessment of tissue physiology with high spatiotemporal resolution. One of the common shortcomings of SCA is their structural and functional insufficiency for accumulation in the targeted region, i.e., most frequently internalization into the cells to study the intracellular processes. Here, we report a strategy to prepare a multifunctional SCA that can be successfully incorporated into the cell membrane and internalized. We used the solid-phase synthesis methodology to obtain a trimeric SCA responsive to calcium ions, which bears a hydrophobic tetradecanoyl group to facilitate interaction with primary rat astrocytes. The developed MRI probe maintained high activity, exhibiting high calcium-triggered longitudinal and transverse relaxivity changes. Concurrently, it showed the ability to label the cell membranes and internalize into the astroglial cells while not causing cytotoxicity or affecting the electrophysiology of the cells.
Collapse
Affiliation(s)
- Liam Connah
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Danijela Bataveljić
- Institute for Physiology and Biochemistry "Jean Giaja," Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra M Bondžić
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Andrej Korenić
- Institute for Physiology and Biochemistry "Jean Giaja," Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojan P Bondžić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Pavle Andjus
- Institute for Physiology and Biochemistry "Jean Giaja," Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai 201602, P. R. China
| |
Collapse
|
2
|
Zhang C, Nan B, Xu J, Yang T, Xu L, Lu C, Zhang XB, Rao J, Song G. Magnetic-susceptibility-dependent ratiometric probes for enhancing quantitative MRI. Nat Biomed Eng 2025; 9:671-685. [PMID: 39613926 DOI: 10.1038/s41551-024-01286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/15/2024] [Indexed: 12/01/2024]
Abstract
In magnetic resonance imaging (MRI), quantitative measurements of analytes are hindered by difficulties in distinguishing the MRI signals of activation of the probe by the analyte from those of the accumulation of the intact probe. Here we show that imaging sensitivity and quantitation can be enhanced by ratiometric MRI probes with a high relaxivity-ratio change (more than 2.5-fold at 7 T) via magnetic-susceptibility-dependent magnetic resonance tuning. Specifically, polymeric probes that incorporate paramagnetic Mn-porphyrin and superparamagnetic iron oxide nanoparticles inducing opposite changes in the longitudinal and transverse magnetic relaxivities responded to analyte concentration independently of probe concentration. In mice, the probes allowed for quantitative real-time dynamic imaging of H2O2, H2S or pH in subcutaneous tumours, in livers with drug-induced injury and in orthotropic gliomas. The ratiometric MRI probes may be advantageously used to obtain molecular insight into pathological processes and to circumvent interference from dynamic changes in probe concentration within the body while providing anatomical information.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Bin Nan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Juntao Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Tengxiang Yang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Chang Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
3
|
Li Z, Chen P, Qu A, Sun M, Xu L, Xu C, Hu S, Kuang H. Opportunities and Challenges for Nanomaterials as Vaccine Adjuvants. SMALL METHODS 2025:e2402059. [PMID: 40277301 DOI: 10.1002/smtd.202402059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Adjuvants, as a critical component of vaccines, are capable of eliciting more robust and sustained immune responses. Nanomaterials have shown unique advantages and broad application prospects in adjuvant development due to their high adjustability and distinctive physicochemical properties. This review focuses on nanoadjuvants and their immunological mechanisms. First, various types of adjuvants are introduced with an emphasis on metal and metal oxide nanoparticles, coordination polymers, liposomes, polymer nanoparticles, and other inorganic nanoparticles that can serve as vaccine adjuvants. Second, this review describes the current status of the clinical applications of nanoadjuvants. Next, the mechanisms of action for nanoadjuvants have been thoroughly elucidated, including the depot effect, NLRP3 inflammasome activation, targeting C-type lectin receptors, activation of toll-like receptors, and activation of the cGAS-STING signaling pathway. Finally, the challenges and opportunities associated with the development of nanoadjuvants have also been addressed.
Collapse
Affiliation(s)
- Zongda Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Panpan Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shudong Hu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
4
|
Janić N, Zhukouskaya H, Černoch P, Pánek J, Svoboda J, Hajná M, Řezníčková A, Tomšík E, Hrubý M. BAPTA-based potentiometric polymer sensor: towards sensing inflammations and infections. J Mater Chem B 2025; 13:4157-4165. [PMID: 40047457 DOI: 10.1039/d4tb02586e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Potentiometric ion sensors represent a significant subgroup of electrochemical sensors. In this study, we have developed a potentiometric sensor using an electrically conductive copolymer of 2,2'-bithiophene (BT) and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) for the selective detection of Ca2+ ions in extracellular interstitial fluids. The integration of BAPTA with its highly selective calcium chelating properties into a polymer matrix via electrochemical polymerization results in a sensitive conductive polymer layer that effectively detects the presence of calcium ions. This sensor aims at the early detection of inflammation or infection around implants because local calcium concentration is strongly elevated in interstitial fluid in such pathologies. The potentiometric study proves the incorporation of BAPTA into the polymer matrix was successful and its potential decreased upon calcium binding demonstrating the Nernstian behavior with a slope of approximately 20 ± 0.3 mV per decade in the concentration range from 0.1 mM to 1 mM. Moreover, the selectivity coefficient of -0.4 was measured by SSM and calculated from the Nicolsky-Eisenmann equation, which indicates selectivity towards Ca2+ ions with respect to Mg2+ ions.
Collapse
Affiliation(s)
- Nikol Janić
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Hanna Zhukouskaya
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Peter Černoch
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
| | - Jiří Pánek
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
| | - Jan Svoboda
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
| | - Milena Hajná
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
| | - Alena Řezníčková
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Elena Tomšík
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
| | - Martin Hrubý
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
| |
Collapse
|
5
|
Qiu C, Xia F, Tu Q, Tang H, Liu Y, Liu H, Wang C, Yao H, Zhong L, Fu Y, Guo P, Chen W, Zhou X, Zou L, Gan L, Yan J, Hou Y, Zhang J, Pang H, Meng Y, Shi Q, Han G, Wang X, Wang J. Multimodal lung cancer theranostics via manganese phosphate/quercetin particle. Mol Cancer 2025; 24:43. [PMID: 39905491 PMCID: PMC11796208 DOI: 10.1186/s12943-025-02242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
The diagnosis and treatment of non-small cell lung cancer in clinical settings face serious challenges, particularly due to the lack of integration between the two processes, which limit real-time adjustments in treatment plans based on the patient's condition and drive-up treatment costs. Here, we present a multifunctional pH-sensitive core-shell nanoparticle containing quercetin (QCT), termed AHA@MnP/QCT NPs, designed for the simultaneous diagnosis and treatment of non-small cell lung cancer. Mechanistic studies indicated that QCT and Mn2+ exhibited excellent peroxidase-like (POD-like) activity, catalysing the conversion of endogenous hydrogen peroxide into highly toxic hydroxyl radicals through a Fenton-like reaction, depleting glutathione (GSH), promoting reactive oxygen species (ROS) generation in mitochondria and endoplasmic reticulum, and inducing ferroptosis. Additionally, Mn2+ could activate the cGAS-STING signalling pathway and promote the maturation of dendritic cells and infiltration of activated T cells, thus inducing tumor immunogenic cell death (ICD). Furthermore, it exhibited effective T2-weighted MRI enhancement for tumor imaging, making them valuable for clinical diagnosis. In vitro and in vivo experiments demonstrated that AHA@MnP/QCT NPs enabled non-invasive imaging and tumor treatment, which presented a one-stone-for-two-birds strategy for combining tumor diagnosis and treatment, with broad potential for clinical application in non-small cell lung cancer therapy.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingchao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yinan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongda Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - HaiLu Yao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linying Zhong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanfeng Fu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengbo Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weiqi Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xinyu Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Zou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Licheng Gan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiawei Yan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yichong Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Jigang Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
6
|
Yue P, Nagendraraj T, Wang G, Jin Z, Angelovski G. The role of responsive MRI probes in the past and the future of molecular imaging. Chem Sci 2024; 15:20122-20154. [PMID: 39611034 PMCID: PMC11600131 DOI: 10.1039/d4sc04849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Magnetic resonance imaging (MRI) has become an indispensable tool in biomedical research and clinical radiology today. It enables the tracking of physiological changes noninvasively and allows imaging of specific biological processes at the molecular or cellular level. To this end, bioresponsive MRI probes can greatly contribute to improving the specificity of MRI, as well as significantly expanding the scope of its application. A large number of these sensor probes has been reported in the past two decades. Importantly, their development was done hand in hand with the ongoing advances in MRI, including emerging methodologies such as chemical exchange saturation transfer (CEST) or hyperpolarised MRI. Consequently, several approaches on successfully using these probes in functional imaging studies have been reported recently, giving new momentum to the field of molecular imaging, also the chemistry of MRI probes. This Perspective summarizes the major strategies in the development of bioresponsive MRI probes, highlights the major research directions within an individual group of probes (T 1- and T 2-weighted, CEST, fluorinated, hyperpolarised) and discusses the practical aspects that should be considered in designing the MRI sensors, up to their intended application in vivo.
Collapse
Affiliation(s)
- Ping Yue
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Thavasilingam Nagendraraj
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Ziyi Jin
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| |
Collapse
|
7
|
Lee L, Tirukoti ND, Subramani B, Goren E, Diskin-Posner Y, Allouche-Arnon H, Bar-Shir A. A Reactive and Specific Sensor for Activity-Based 19F-MRI Sensing of Zn 2. ACS Sens 2024; 9:5770-5775. [PMID: 39445901 PMCID: PMC11590105 DOI: 10.1021/acssensors.4c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The rapid fluctuations of metal ion levels in biological systems are faster than the time needed to map fluorinated sensors designed for the 19F-MRI of cations. An attractive modular solution might come from the activity-based sensing approach. Here, we propose a highly reactive but still ultimately specific synthetic fluorinated sensor for 19F-MRI mapping of labile Zn2+. The sensor comprises a dipicolylamine scaffold for Zn2+ recognition conjugated to a fluorophenyl acetate entity. Upon binding to Zn2+, the synthetic sensor is readily hydrolyzed, and the frequency of its 19F-functional group in 19F-NMR is shifted by 12 ppm, allowing the display of the Zn2+ distribution as an artificial MRI-colored map highlighting its specificity compared to other metal ions. The irreversible Zn2+-induced hydrolysis results in a "turn-on" 19F-MRI, potentially detecting the cation even upon a transient elevation of its levels. We envision that additional metal-ion sensors can be developed based on the principles demonstrated in this work, expanding the molecular toolbox currently used for 19F-MRI.
Collapse
Affiliation(s)
- Lucia
M. Lee
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Nishanth D. Tirukoti
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Calico
Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Balamurugan Subramani
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elad Goren
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Hyla Allouche-Arnon
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Sheng CQ, Wu SS, Cheng YK, Wu Y, Li YM. Comprehensive review of indicators and techniques for optical mapping of intracellular calcium ions. Cereb Cortex 2024; 34:bhae346. [PMID: 39191664 DOI: 10.1093/cercor/bhae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Calcium ions (Ca2+) play crucial roles in almost every cellular process, making the detection of changes in intracellular Ca2+ essential to understanding cell function. The fluorescence indicator method has garnered widespread application due to its exceptional sensitivity, rapid analysis, cost-effectiveness, and user-friendly nature. It has successfully delineated the spatial and temporal dynamics of Ca2+ signaling across diverse cell types. However, it is vital to understand that different indicators have varying levels of accuracy, sensitivity, and stability, making choosing the right inspection method crucial. As optical detection technologies advance, they continually broaden the horizons of scientific inquiry. This primer offers a systematic synthesis of the current fluorescence indicators and optical imaging modalities utilized for the detection of intracellular Ca2+. It elucidates their practical applications and inherent limitations, serving as an essential reference for researchers seeking to identify the most suitable detection methodologies for their calcium-centric investigations.
Collapse
Affiliation(s)
- Chu-Qiao Sheng
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun, Jilin 130012, China
| | - Shuang-Shuang Wu
- Department of Pediatric Hematology, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yong-Kang Cheng
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yao Wu
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yu-Mei Li
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
9
|
Yue R, Li Z, Liu H, Wang Y, Li Y, Yin R, Yin B, Qian H, Kang H, Zhang X, Song G. Imaging-guided companion diagnostics in radiotherapy by monitoring APE1 activity with afterglow and MRI imaging. Nat Commun 2024; 15:6349. [PMID: 39068156 PMCID: PMC11283504 DOI: 10.1038/s41467-024-50688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Companion diagnostics using biomarkers have gained prominence in guiding radiotherapy. However, biopsy-based techniques fail to account for real-time variations in target response and tumor heterogeneity. Herein, we design an activated afterglow/MRI probe as a companion diagnostics tool for dynamically assessing biomarker apurinic/apyrimidinic endonuclease 1(APE1) during radiotherapy in vivo. We employ ultrabright afterglow nanoparticles and ultrasmall FeMnOx nanoparticles as dual contrast agents, significantly broadening signal change range and enhancing the sensitivity of APE1 imaging (limit of detection: 0.0092 U/mL in afterglow imaging and 0.16 U/mL in MRI). We devise longitudinally and transversely subtraction-enhanced imaging (L&T-SEI) strategy to markedly enhance MRI contrast and signal-to-noise ratio between tumor and normal tissue of living female mice. The combined afterglow and MRI facilitate both anatomical and functional imaging of APE1 activity. This probe enables correlation of afterglow and MRI signals with APE1 expression, radiation dosage, intratumor ROS, and DNA damage, enabling early prediction of radiotherapy outcomes (as early as 3 h), significantly preceding tumor size reduction (6 days). By monitoring APE1 levels, this probe allows for early and sensitive detection of liver organ injury, outperforming histopathological analysis. Furthermore, MRI evaluates APE1 expression in radiation-induced abscopal effects provides insights into underlying mechanisms, and supports the development of treatment protocols.
Collapse
Affiliation(s)
- Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, PR China
| | - Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Yuhang Li
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, PR China
| | - Rui Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, Seoul, South Korea
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China.
- Shenzhen Research Institute, Hunan University, Shenzhen, China.
| |
Collapse
|
10
|
Xu Y, Chen J, Zhang Y, Zhang P. Recent Progress in Peptide-Based Molecular Probes for Disease Bioimaging. Biomacromolecules 2024; 25:2222-2242. [PMID: 38437161 DOI: 10.1021/acs.biomac.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Recent strides in molecular pathology have unveiled distinctive alterations at the molecular level throughout the onset and progression of diseases. Enhancing the in vivo visualization of these biomarkers is crucial for advancing disease classification, staging, and treatment strategies. Peptide-based molecular probes (PMPs) have emerged as versatile tools due to their exceptional ability to discern these molecular changes with unparalleled specificity and precision. In this Perspective, we first summarize the methodologies for crafting innovative functional peptides, emphasizing recent advancements in both peptide library technologies and computer-assisted peptide design approaches. Furthermore, we offer an overview of the latest advances in PMPs within the realm of biological imaging, showcasing their varied applications in diagnostic and therapeutic modalities. We also briefly address current challenges and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Ying Xu
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Junfan Chen
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Pengcheng Zhang
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Vareberg AD, Bok I, Eizadi J, Ren X, Hai A. Inference of network connectivity from temporally binned spike trains. J Neurosci Methods 2024; 404:110073. [PMID: 38309313 PMCID: PMC10949361 DOI: 10.1016/j.jneumeth.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Processing neural activity to reconstruct network connectivity is a central focus of neuroscience, yet the spatiotemporal requisites of biological nervous systems are challenging for current neuronal sensing modalities. Consequently, methods that leverage limited data to successfully infer synaptic connections, predict activity at single unit resolution, and decipher their effect on whole systems, can uncover critical information about neural processing. Despite the emergence of powerful methods for inferring connectivity, network reconstruction based on temporally subsampled data remains insufficiently unexplored. NEW METHOD We infer synaptic weights by processing firing rates within variable time bins for a heterogeneous feed-forward network of excitatory, inhibitory, and unconnected units. We assess classification and optimize model parameters for postsynaptic spike train reconstruction. We test our method on a physiological network of leaky integrate-and-fire neurons displaying bursting patterns and assess prediction of postsynaptic activity from microelectrode array data. RESULTS Results reveal parameters for improved prediction and performance and suggest that lower resolution data and limited access to neurons can be preferred. COMPARISON WITH EXISTING METHOD(S) Recent computational methods demonstrate highly improved reconstruction of connectivity from networks of parallel spike trains by considering spike lag, time-varying firing rates, and other underlying dynamics. However, these methods insufficiently explore temporal subsampling representative of novel data types. CONCLUSIONS We provide a framework for reverse engineering neural networks from data with limited temporal quality, describing optimal parameters for each bin size, which can be further improved using non-linear methods and applied to more complicated readouts and connectivity distributions in multiple brain circuits.
Collapse
Affiliation(s)
- Adam D Vareberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Ilhan Bok
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Jenna Eizadi
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Xiaoxuan Ren
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States.
| |
Collapse
|
12
|
Lumata JL, Hagge LM, Gaspar MA, Trashi I, Ehrman RN, Koirala S, Chiev AC, Wijesundara YH, Darwin CB, Pena S, Wen X, Wansapura J, Nielsen SO, Kovacs Z, Lumata LL, Gassensmith JJ. TEMPO-conjugated tobacco mosaic virus as a magnetic resonance imaging contrast agent for detection of superoxide production in the inflamed liver. J Mater Chem B 2024; 12:3273-3281. [PMID: 38469725 DOI: 10.1039/d3tb02765a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Superoxide, an anionic dioxygen molecule, plays a crucial role in redox regulation within the body but is implicated in various pathological conditions when produced excessively. Efforts to develop superoxide detection strategies have led to the exploration of organic-based contrast agents for magnetic resonance imaging (MRI). This study compares the effectiveness of two such agents, nTMV-TEMPO and kTMV-TEMPO, for detecting superoxide in a mouse liver model with lipopolysaccharide (LPS)-induced inflammation. The study demonstrates that kTMV-TEMPO, with a strategically positioned lysine residue for TEMPO attachment, outperforms nTMV-TEMPO as an MRI contrast agent. The enhanced sensitivity of kTMV-TEMPO is attributed to its more exposed TEMPO attachment site, facilitating stronger interactions with water protons and superoxide radicals. EPR kinetics experiments confirm kTMV-TEMPO's faster oxidation and reduction rates, making it a promising sensor for superoxide in inflamed liver tissue. In vivo experiments using healthy and LPS-induced inflamed mice reveal that reduced kTMV-TEMPO remains MRI-inactive in healthy mice but becomes MRI-active in inflamed livers. The contrast enhancement in inflamed livers is substantial, validating the potential of kTMV-TEMPO for detecting superoxide in vivo. This research underscores the importance of optimizing contrast agents for in vivo imaging applications. The enhanced sensitivity and biocompatibility of kTMV-TEMPO make it a promising candidate for further studies in the realm of medical imaging, particularly in the context of monitoring oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jenica L Lumata
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Laurel M Hagge
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Miguel A Gaspar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Shailendra Koirala
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Alyssa C Chiev
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Cary B Darwin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Salvador Pena
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Xiaodong Wen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Janaka Wansapura
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Lloyd L Lumata
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
- Department of Physics, The University of Texas at Dallas, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
- Department of Bioengineering, The University of Texas at Dallas, USA
| |
Collapse
|
13
|
Liang Z, Xiao L, Wang Q, Zhang B, Mo W, Xie S, Liu X, Chen Y, Yang S, Du H, Wang P, Li F, Ling D. Ligand-Mediated Magnetism-Conversion Nanoprobes for Activatable Ultra-High Field Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2024; 63:e202318948. [PMID: 38212253 DOI: 10.1002/anie.202318948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Ultra-high field (UHF) magnetic resonance imaging (MRI) has emerged as a focal point of interest in the field of cancer diagnosis. Despite the ability of current paramagnetic or superparamagnetic smart MRI contrast agents to selectively enhance tumor signals in low-field MRI, their effectiveness at UHF remains inadequate due to inherent magnetism. Here, we report a ligand-mediated magnetism-conversion nanoprobe (MCNP) composed of 3-mercaptopropionic acid ligand-coated silver-gadolinium bimetallic nanoparticles. The MCNP exhibits a pH-dependent magnetism conversion from ferromagnetism to diamagnetism, facilitating tunable nanomagnetism for pH-activatable UHF MRI. Under neutral pH, the thiolate (-S- ) ligands lead to short τ'm and increased magnetization of the MCNPs. Conversely, in the acidic tumor microenvironment, the thiolate ligands are protonated and transform into thiol (-SH) ligands, resulting in prolonged τ'm and decreased magnetization of the MCNP, thereby enhancing longitudinal relaxivity (r1) values at UHF MRI. Notably, under a 9 T MRI field, the pH-sensitive changes in Ag-S binding affinity of the MCNP lead to a remarkable (>10-fold) r1 increase in an acidic medium (pH 5.0). In vivo studies demonstrate the capability of MCNPs to amplify MRI signal of hepatic tumors, suggesting their potential as a next-generation UHF-tailored smart MRI contrast agent.
Collapse
Affiliation(s)
- Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Wenkui Mo
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xun Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Du
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengzhan Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| |
Collapse
|
14
|
Jin Z, Lakshmanan A, Zhang R, Tran TA, Rabut C, Dutka P, Duan M, Hurt RC, Malounda D, Yao Y, Shapiro MG. Ultrasonic reporters of calcium for deep tissue imaging of cellular signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566364. [PMID: 37986929 PMCID: PMC10659314 DOI: 10.1101/2023.11.09.566364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Calcium imaging has enabled major biological discoveries. However, the scattering of light by tissue limits the use of standard fluorescent calcium indicators in living animals. To address this limitation, we introduce the first genetically encoded ultrasonic reporter of calcium (URoC). Based on a unique class of air-filled protein nanostructures called gas vesicles, we engineered URoC to produce elevated nonlinear ultrasound signal upon binding to calcium ions. With URoC expressed in mammalian cells, we demonstrate noninvasive ultrasound imaging of calcium signaling in vivo during drug-induced receptor activation. URoC brings the depth and resolution advantages of ultrasound to the in vivo imaging of dynamic cellular function and paves the way for acoustic biosensing of a broader variety of biological signals.
Collapse
|
15
|
Thiabaud GD, Schwalm M, Sen S, Barandov A, Simon J, Harvey P, Spanoudaki V, Müller P, Sessler JL, Jasanoff A. Texaphyrin-Based Calcium Sensor for Multimodal Imaging. ACS Sens 2023; 8:3855-3861. [PMID: 37812688 PMCID: PMC11000421 DOI: 10.1021/acssensors.3c01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The ability to monitor intracellular calcium concentrations using fluorescent probes has led to important insights into biological signaling processes at the cellular level. An important challenge is to relate such measurements to broader patterns of signaling across fields of view that are inaccessible to optical techniques. To meet this need, we synthesized molecular probes that couple calcium-binding moieties to lanthanide texaphyrins, resulting in complexes endowed with a diverse complement of magnetic and photophysical properties. We show that the probes permit intracellular calcium levels to be assessed by fluorescence, photoacoustic, and magnetic resonance imaging modalities and that they are detectable by multimodal imaging in brain tissue. This work thus establishes a route for monitoring signaling processes over a range of spatial and temporal scales.
Collapse
Affiliation(s)
- Grégory D. Thiabaud
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | - Miriam Schwalm
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | - Sajal Sen
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | - Ali Barandov
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | | | | | - Virginia Spanoudaki
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | - Peter Müller
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | - Jonathan L. Sessler
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | - Alan Jasanoff
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| |
Collapse
|
16
|
Bok I, Vareberg A, Gokhale Y, Bhatt S, Masterson E, Phillips J, Zhu T, Ren X, Hai A. Wireless agents for brain recording and stimulation modalities. Bioelectron Med 2023; 9:20. [PMID: 37726851 PMCID: PMC10510192 DOI: 10.1186/s42234-023-00122-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/19/2023] [Indexed: 09/21/2023] Open
Abstract
New sensors and modulators that interact wirelessly with medical modalities unlock uncharted avenues for in situ brain recording and stimulation. Ongoing miniaturization, material refinement, and sensitization to specific neurophysiological and neurochemical processes are spurring new capabilities that begin to transcend the constraints of traditional bulky and invasive wired probes. Here we survey current state-of-the-art agents across diverse realms of operation and evaluate possibilities depending on size, delivery, specificity and spatiotemporal resolution. We begin by describing implantable and injectable micro- and nano-scale electronic devices operating at or below the radio frequency (RF) regime with simple near field transmission, and continue with more sophisticated devices, nanoparticles and biochemical molecular conjugates acting as dynamic contrast agents in magnetic resonance imaging (MRI), ultrasound (US) transduction and other functional tomographic modalities. We assess the ability of some of these technologies to deliver stimulation and neuromodulation with emerging probes and materials that provide minimally invasive magnetic, electrical, thermal and optogenetic stimulation. These methodologies are transforming the repertoire of readily available technologies paired with compatible imaging systems and hold promise toward broadening the expanse of neurological and neuroscientific diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ilhan Bok
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Adam Vareberg
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Yash Gokhale
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Suyash Bhatt
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Emily Masterson
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Jack Phillips
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
| | - Tianxiang Zhu
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Xiaoxuan Ren
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
| | - Aviad Hai
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA.
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA.
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA.
| |
Collapse
|
17
|
Miller MR, Lee YF, Kastanenka KV. Calcium sensor Yellow Cameleon 3.6 as a tool to support the calcium hypothesis of Alzheimer's disease. Alzheimers Dement 2023; 19:4196-4203. [PMID: 37154246 PMCID: PMC10524576 DOI: 10.1002/alz.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease with increasing relevance as dementia cases rise. The etiology of AD is widely debated. The Calcium Hypothesis of Alzheimer's disease and brain aging states that the dysfunction of calcium signaling is the final common pathway leading to neurodegeneration. When the Calcium Hypothesis was originally coined, the technology did not exist to test it, but with the advent of Yellow Cameleon 3.6 (YC3.6) we are able to test its validity. METHODS Here we review use of YC3.6 in studying Alzheimer's disease using mouse models and discuss whether these studies support or refute the Calcium Hypothesis. RESULTS YC3.6 studies showed that amyloidosis preceded dysfunction in neuronal calcium signaling and changes in synapse structure. This evidence supports the Calcium Hypothesis. DISCUSSION In vivo YC3.6 studies point to calcium signaling as a promising therapeutic target; however, additional work is necessary to translate these findings to humans.
Collapse
Affiliation(s)
- Morgan R. Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ksenia V. Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
18
|
Subasinghe SAAS, Ortiz C, Romero J, Ward C, Sertage A, Kurenbekova L, Yustein J, Pautler R, Allen M. Toward quantification of hypoxia using fluorinated Eu II/III-containing ratiometric probes. Proc Natl Acad Sci U S A 2023; 120:e2220891120. [PMID: 37018203 PMCID: PMC10104500 DOI: 10.1073/pnas.2220891120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 04/06/2023] Open
Abstract
Hypoxia is a prognostic biomarker of rapidly growing cancers, where the extent of hypoxia is an indication of tumor progression and prognosis; therefore, hypoxia is also used for staging while performing chemo- and radiotherapeutics for cancer. Contrast-enhanced MRI using EuII-based contrast agents is a noninvasive method that can be used to map hypoxic tumors, but quantification of hypoxia using these agents is challenging due to the dependence of signal on the concentration of both oxygen and EuII. Here, we report a ratiometric method to eliminate concentration dependence of contrast enhancement of hypoxia using fluorinated EuII/III-containing probes. We studied three different EuII/III couples of complexes containing 4, 12, or 24 fluorine atoms to balance fluorine signal-to-noise ratio with aqueous solubility. The ratio between the longitudinal relaxation time (T1) and 19F signal of solutions containing different ratios of EuII- and EuIII-containing complexes was plotted against the percentage of EuII-containing complexes in solution. We denote the slope of the resulting curves as hypoxia indices because they can be used to quantify signal enhancement from Eu, that is related to oxygen concentration, without knowledge of the absolute concentration of Eu. This mapping of hypoxia was demonstrated in vivo in an orthotopic syngeneic tumor model. Our studies significantly contribute toward improving the ability to radiographically map and quantify hypoxia in real time, which is critical to the study of cancer and a wide range of diseases.
Collapse
Affiliation(s)
| | - Caitlyn J. Ortiz
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX77030
| | - Jonathan Romero
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX77030
| | | | | | - Lyazat Kurenbekova
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA30322
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX77030
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, Detroit, MI48202
| |
Collapse
|
19
|
Yang H, Qian Z, Liu C, Tie C, Cai A, Wang J, Xing Y, Xia J, Li X. A versatile genetic-encoded reporter for magnetic resonance imaging. Heliyon 2023; 9:e14054. [PMID: 36915487 PMCID: PMC10006841 DOI: 10.1016/j.heliyon.2023.e14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
It has been a long-cherished wish in biomedicine research to have an imaging tool to visualize gene expression, with good spatiotemporal resolution, in rodent and primate animals noninvasively and longitudinally. To this purpose, we here present a novel genetic encoded magnetic resonance imaging reporter, i.e., GEM reporter, for noninvasive visualization of cell-specific gene expression. The GEM reporter was developed through codon modification of a bacteria-originated manganese (Mn) binding protein, allowing the sequestration of endogenous Mn in local tissues. When expressed in bacteria, plant and animals, GEM reporter can robustly produce high image contrast in T1-weighted MRI without additional substrates or contrast agents. Importantly, GEM reporter can be tracked inherently by MRI in specific cells and tissues. These findings support GEM reporter as a versatile marker for deciphering gene expression spatiotemporally in living subjects.
Collapse
Affiliation(s)
- Haiyang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengjiang Qian
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chunhua Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Changjun Tie
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,Peng Cheng Laboratory, Shenzhen, China
| | - Aoling Cai
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, Hubei Province, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, Hubei Province, China
| | - Yao Xing
- Shanghai United Imaging Healthcare Co., Ltd., China
| | - Jun Xia
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 SunGang Road West, Shenzhen 518035, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
20
|
Roth BJ. Can MRI Be Used as a Sensor to Record Neural Activity? SENSORS (BASEL, SWITZERLAND) 2023; 23:1337. [PMID: 36772381 PMCID: PMC9918955 DOI: 10.3390/s23031337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Magnetic resonance provides exquisite anatomical images and functional MRI monitors physiological activity by recording blood oxygenation. This review attempts to answer the following question: Can MRI be used as a sensor to directly record neural behavior? It considers MRI sensing of electrical activity in the heart and in peripheral nerves before turning to the central topic: recording of brain activity. The primary hypothesis is that bioelectric current produced by a nerve or muscle creates a magnetic field that influences the magnetic resonance signal, although other mechanisms for detection are also considered. Recent studies have provided evidence that using MRI to sense neural activity is possible under ideal conditions. Whether it can be used routinely to provide functional information about brain processes in people remains an open question. The review concludes with a survey of artificial intelligence techniques that have been applied to functional MRI and may be appropriate for MRI sensing of neural activity.
Collapse
Affiliation(s)
- Bradley J Roth
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
21
|
Reactivity of a nitrosyl ruthenium complex and its potential impact on the fate of DNA - An in vitro investigation. J Inorg Biochem 2023; 238:112052. [PMID: 36334365 DOI: 10.1016/j.jinorgbio.2022.112052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The role of metal complexes on facing DNA has been a topic of major interest. However, metallonitrosyl compounds have been poorly investigated regarding their reactivities and interaction with DNA. A nitrosyl compound, cis-[Ru(bpy)2(SO3)(NO)](PF6)(A), showed a variety of promising biological activities catching our attention. Here, we carried out a series of studies involving the interaction and damage of DNA mediated by the metal complex A and its final product after NO release, cis-[Ru(bpy)2(SO3)(H2O](B). The fate of DNA with these metal complexes was investigated upon light or chemical stimuli using electrophoresis, electronic absorption spectroscopy, circular dichroism, size-exclusion resin, mass spectrometry, electron spin resonance (ESR) and viscometry. Since many biological disorders involve the production of oxidizing species, it is important to evaluate the reactivity of these compounds under such conditions as well. Indeed, the metal complex B exhibited important reactivity with H2O2 enabling DNA degradation, with detection of an unusual oxygenated intermediate. ESR spectroscopy detected mainly the DMPO-OOH adduct, which only emerges if H2O2 and O2 are present together. This result indicated HOO• as a key radical likely involved in DNA damage as supported by agarose gel electrophoresis. Notably, the nitrosyl ruthenium complex did not show evidence of direct DNA damage. However, its aqua product should be carefully considered as potentially harmful to DNA deserving further in vivo studies to better address any genotoxicity.
Collapse
|
22
|
Liu Z, Zhu Y, Zhang L, Jiang W, Liu Y, Tang Q, Cai X, Li J, Wang L, Tao C, Yin X, Li X, Hou S, Jiang D, Liu K, Zhou X, Zhang H, Liu M, Fan C, Tian Y. Structural and functional imaging of brains. Sci China Chem 2022; 66:324-366. [PMID: 36536633 PMCID: PMC9753096 DOI: 10.1007/s11426-022-1408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 12/23/2022]
Abstract
Analyzing the complex structures and functions of brain is the key issue to understanding the physiological and pathological processes. Although neuronal morphology and local distribution of neurons/blood vessels in the brain have been known, the subcellular structures of cells remain challenging, especially in the live brain. In addition, the complicated brain functions involve numerous functional molecules, but the concentrations, distributions and interactions of these molecules in the brain are still poorly understood. In this review, frontier techniques available for multiscale structure imaging from organelles to the whole brain are first overviewed, including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), serial-section electron microscopy (ssEM), light microscopy (LM) and synchrotron-based X-ray microscopy (XRM). Specially, XRM for three-dimensional (3D) imaging of large-scale brain tissue with high resolution and fast imaging speed is highlighted. Additionally, the development of elegant methods for acquisition of brain functions from electrical/chemical signals in the brain is outlined. In particular, the new electrophysiology technologies for neural recordings at the single-neuron level and in the brain are also summarized. We also focus on the construction of electrochemical probes based on dual-recognition strategy and surface/interface chemistry for determination of chemical species in the brain with high selectivity and long-term stability, as well as electrochemophysiological microarray for simultaneously recording of electrochemical and electrophysiological signals in the brain. Moreover, the recent development of brain MRI probes with high contrast-to-noise ratio (CNR) and sensitivity based on hyperpolarized techniques and multi-nuclear chemistry is introduced. Furthermore, multiple optical probes and instruments, especially the optophysiological Raman probes and fiber Raman photometry, for imaging and biosensing in live brain are emphasized. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Ying Zhu
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Liming Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Qiaowei Tang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiaoqing Cai
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiang Li
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Lihua Wang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Changlu Tao
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | | | - Xiaowei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055 China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
23
|
Daksh S, Kaul A, Deep S, Datta A. Current advancement in the development of manganese complexes as magnetic resonance imaging probes. J Inorg Biochem 2022; 237:112018. [PMID: 36244313 DOI: 10.1016/j.jinorgbio.2022.112018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Emerging non-invasive molecular imaging modalities can detect a pathophysiological state at the molecular level before any anatomic changes are observed. Magnetic resonance imaging (MRI) is preferred over other nuclear imaging techniques owing to its radiation-free approach. Conventionally, most MRI contrast agents employed predominantly involve lanthanide metal: Gadolinium (Gd) until the discovery of associated severe nephrogenic toxicity issues. This limitation led a way to the development of manganese-based contrast agents which offer similar positive contrast enhancement capability. A vast quantity of experimental data has been accumulated over the last decade to define the physicochemical characteristics of manganese chelates with various ligand scaffolds. One can now observe how the ligand configurations, rigidity, and donor-acceptor characteristics impact the stability of the complex. This review covers the current trends in the development of manganese-based MRI contrast agents, the mechanisms they are based on and design considerations for newer manganese-based contrast agents with higher diagnostic strength along with better safety profiles.
Collapse
Affiliation(s)
- Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India
| | - Ankur Kaul
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India.
| |
Collapse
|
24
|
Toi PT, Jang HJ, Min K, Kim SP, Lee SK, Lee J, Kwag J, Park JY. In vivo direct imaging of neuronal activity at high temporospatial resolution. Science 2022; 378:160-168. [PMID: 36227975 DOI: 10.1126/science.abh4340] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There has been a long-standing demand for noninvasive neuroimaging methods that can detect neuronal activity at both high temporal and high spatial resolution. We present a two-dimensional fast line-scan approach that enables direct imaging of neuronal activity with millisecond precision while retaining the high spatial resolution of magnetic resonance imaging (MRI). This approach was demonstrated through in vivo mouse brain imaging at 9.4 tesla during electrical whisker-pad stimulation. In vivo spike recording and optogenetics confirmed the high correlation of the observed MRI signal with neural activity. It also captured the sequential and laminar-specific propagation of neuronal activity along the thalamocortical pathway. This high-resolution, direct imaging of neuronal activity will open up new avenues in brain science by providing a deeper understanding of the brain's functional organization, including the temporospatial dynamics of neural networks.
Collapse
Affiliation(s)
- Phan Tan Toi
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jae Jang
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
- Division of Computer Engineering, Baekseok University, Cheonan 31065, Republic of Korea
| | - Kyeongseon Min
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seung-Kyun Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeehyun Kwag
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jang-Yeon Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
25
|
Barandov A, Ghosh S, Jasanoff A. Probing nitric oxide signaling using molecular MRI. Free Radic Biol Med 2022; 191:241-248. [PMID: 36084790 PMCID: PMC10204116 DOI: 10.1016/j.freeradbiomed.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.
Collapse
Affiliation(s)
- Ali Barandov
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Souparno Ghosh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
| |
Collapse
|
26
|
Tirukoti ND, Avram L, Mashiach R, Allouche-Arnon H, Bar-Shir A. Self-assembly of an MRI responsive agent under physiological conditions provides an extended time window for in vivo imaging. Chem Commun (Camb) 2022; 58:11410-11413. [PMID: 36129103 DOI: 10.1039/d2cc03126d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An MRI-responsive agent that spontaneously self-assembles to a large supramolecular structure under physiological conditions was designed. The obtained assembly provides an extended time window for in vivo studies, as demonstrated for a fluorine-19 probe constructed to sense Zn2+ with 19F-iCEST MRI, in the future.
Collapse
Affiliation(s)
- Nishanth D Tirukoti
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Reut Mashiach
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Hyla Allouche-Arnon
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
27
|
Ning Y, Zhou IY, Rotile NJ, Pantazopoulos P, Wang H, Barrett SC, Sojoodi M, Tanabe KK, Caravan P. Dual Hydrazine-Equipped Turn-On Manganese-Based Probes for Magnetic Resonance Imaging of Liver Fibrogenesis. J Am Chem Soc 2022; 144:16553-16558. [PMID: 35998740 PMCID: PMC10083724 DOI: 10.1021/jacs.2c06231] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver fibrogenesis is accompanied by upregulation of lysyl oxidase enzymes, which catalyze oxidation of lysine ε-amino groups on the extracellular matrix proteins to form the aldehyde containing amino acid allysine (LysAld). Here, we describe the design and synthesis of novel manganese-based MRI probes with high signal amplification for imaging liver fibrogenesis. Rational design of a series of stable hydrazine-equipped manganese MRI probes gives Mn-2CHyd with the highest affinity and turn-on relaxivity (4-fold) upon reaction with LysAld. A dynamic PET-MRI study using [52Mn]Mn-2CHyd showed low liver uptake of the probe in healthy mice. The ability of the probe to detect liver fibrogenesis was then demonstrated in vivo in CCl4-injured mice. This study enables further development and application of manganese-based hydrazine-equipped probes for imaging liver fibrogenesis.
Collapse
Affiliation(s)
- Yingying Ning
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Pamela Pantazopoulos
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Stephen Cole Barrett
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
28
|
Yun J, Baldini M, Chowdhury R, Mukherjee A. Designing Protein-Based Probes for Sensing Biological Analytes with Magnetic Resonance Imaging. ANALYSIS & SENSING 2022; 2:e202200019. [PMID: 37409177 PMCID: PMC10321474 DOI: 10.1002/anse.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Genetically encoded sensors provide unique advantages for monitoring biological analytes with molecular and cellular-level specificity. While sensors derived from fluorescent proteins represent staple tools in biological imaging, these probes are limited to optically accessible preparations owing to physical curbs on light penetration. In contrast to optical methods, magnetic resonance imaging (MRI) may be used to noninvasively look inside intact organisms at any arbitrary depth and over large fields of view. These capabilities have spurred the development of innovative methods to connect MRI readouts with biological targets using protein-based probes that are in principle genetically encodable. Here, we highlight the state-of-the-art in MRI-based biomolecular sensors, focusing on their physical mechanisms, quantitative characteristics, and biological applications. We also describe how innovations in reporter gene technology are creating new opportunities to engineer MRI sensors that are sensitive to dilute biological targets.
Collapse
Affiliation(s)
- Jason Yun
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Michelle Baldini
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Rochishnu Chowdhury
- Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for BioEngineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
29
|
Xue SS, Pan Y, Pan W, Liu S, Li N, Tang B. Bioimaging agents based on redox-active transition metal complexes. Chem Sci 2022; 13:9468-9484. [PMID: 36091899 PMCID: PMC9400682 DOI: 10.1039/d2sc02587f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Detecting the fluctuation and distribution of various bioactive species in biological systems is of great importance in determining diseases at their early stages. Metal complex-based probes have attracted considerable attention in bioimaging applications owing to their unique advantages, such as high luminescence, good photostability, large Stokes shifts, low toxicity, and good biocompatibility. In this review, we summarized the development of redox-active transition metal complex-based probes in recent five years with the metal ions of iron, manganese, and copper, which play essential roles in life and can avoid the introduction of exogenous metals into biological systems. The designing principles that afford these complexes with optical or magnetic resonance (MR) imaging properties are elucidated. The applications of the complexes for bioimaging applications of different bioactive species are demonstrated. The current challenges and potential future directions of these probes for applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yingbo Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Shujie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
30
|
Nyström NN, Liu H, Martinez FM, Zhang XA, Scholl TJ, Ronald JA. Gadolinium-free Magnetic Resonance Imaging of the Liver via an Oatp1-Targeted Manganese(III) Porphyrin. J Med Chem 2022; 65:9846-9857. [PMID: 35852350 DOI: 10.1021/acs.jmedchem.2c00500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Controversy surrounding gadolinium-based contrast agents (GBCAs) has rendered their continued utility highly contentious, but the liver-specific GBCA Gd(III) ethoxybenzyl-diethylene triamine pentaacetic acid (Gd(III)-EOB-DTPA) remains in use because it provides unique diagnostic information that could not be obtained by any other means. To address the need for an alternate liver-specific MRI probe, we synthesized Mn(III) 20-(4-ethoxyphenyl) porphyrin-5,10,15-tricarboxylate (Mn(III)TriCP-PhOEt), which exhibited significantly higher r1 relaxivity than Gd(III)-EOB-DTPA in vitro, while also targeting hepatocyte-specific organic anion-transporting polypeptide 1 (Oatp1) channels as a marker of viability. In mice, Mn(III)TriCP-PhOEt resulted in significant and specific increases in liver signal intensity on T1-weighted images and significant decreases in liver T1 time relative to pre-contrast measurements. Our findings suggest that Mn(III)TriCP-PhOEt operates as a specific and sensitive MR probe for Oatp1-targeted imaging in vivo.
Collapse
Affiliation(s)
- Nivin N Nyström
- Department of Medical Biophysics, University of Western Ontario, London N6A 3K7, Ontario, Canada
- Imaging Research Laboratories, Robarts Research Institute, Western University, London N6A 3K7, Ontario, Canada
| | - Hanlin Liu
- Department of Chemistry, University of Toronto, Toronto M5S 1A4, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto, Toronto M5S 1A4, Ontario, Canada
| | - Francisco M Martinez
- Imaging Research Laboratories, Robarts Research Institute, Western University, London N6A 3K7, Ontario, Canada
| | - Xiao-An Zhang
- Department of Chemistry, University of Toronto, Toronto M5S 1A4, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto, Toronto M5S 1A4, Ontario, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, University of Western Ontario, London N6A 3K7, Ontario, Canada
- Imaging Research Laboratories, Robarts Research Institute, Western University, London N6A 3K7, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto M5G 0A3, Ontario, Canada
| | - John A Ronald
- Department of Medical Biophysics, University of Western Ontario, London N6A 3K7, Ontario, Canada
- Imaging Research Laboratories, Robarts Research Institute, Western University, London N6A 3K7, Ontario, Canada
- Lawson Health Research Institute, London N6C 2R5, Ontario, Canada
| |
Collapse
|
31
|
Phillips J, Glodowski M, Gokhale Y, Dwyer M, Ashtiani A, Hai A. Enhanced magnetic transduction of neuronal activity by nanofabricated inductors quantified via finite element analysis. J Neural Eng 2022; 19:10.1088/1741-2552/ac7907. [PMID: 35705065 PMCID: PMC9400688 DOI: 10.1088/1741-2552/ac7907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
Objective.Methods for the detection of neural signals involve a compromise between invasiveness, spatiotemporal resolution, and the number of neurons or brain regions recorded. Electrode-based probes provide excellent response but usually require transcranial wiring and capture activity from limited neuronal populations. Noninvasive methods such as electroencephalography and magnetoencephalography offer fast readouts of field potentials or biomagnetic signals, respectively, but have spatial constraints that prohibit recording from single neurons. A cell-sized device that enhances neurogenic magnetic fields can be used as anin situsensor for magnetic-based modalities and increase the ability to detect diverse signals across multiple brain regions.Approach.We designed and modeled a device capable of forming a tight electromagnetic junction with single neurons, thereby transducing changes in cellular potential to magnetic field perturbations by driving current through a nanofabricated inductor element.Main results.We present detailed quantification of the device performance using realistic finite element simulations with signals and geometries acquired from patch-clamped neuronsin vitroand demonstrate the capability of the device to produce magnetic signals readable via existing modalities. We compare the magnetic output of the device to intrinsic neuronal magnetic fields (NMFs) and show that the transduced magnetic field intensity from a single neuron is more than three-fold higher at its peak (1.62 nT vs 0.51 nT). Importantly, we report on a large spatial enhancement of the transduced magnetic field output within a typical voxel (40 × 40 × 10µm) over 250 times higher than the intrinsic NMF strength (0.64 nT vs 2.5 pT). We use this framework to perform optimizations of device performance based on nanofabrication constraints and material choices.Significance.Our quantifications institute a foundation for synthesizing and applying electromagnetic sensors for detecting brain activity and can serve as a general method for quantifying recording devices at the single cell level.
Collapse
Affiliation(s)
- Jack Phillips
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison
| | | | - Yash Gokhale
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Matt Dwyer
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical and Computer Engineering, University of Wisconsin–Madison
| | - Alireza Ashtiani
- Department of Biomedical Engineering, University of Wisconsin–Madison
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin–Madison
- Department of Electrical and Computer Engineering, University of Wisconsin–Madison
- Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison
| |
Collapse
|
32
|
Wang T, Zhang X, Xu Y, Xu Y, Zhang Y, Zhang K. Emerging nanobiotechnology-encoded relaxation tuning establishes new MRI modes to localize, monitor and predict diseases. J Mater Chem B 2022; 10:7361-7383. [PMID: 35770674 DOI: 10.1039/d2tb00600f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most important techniques in the diagnosis of many diseases including cancers, where contrast agents (CAs) are usually necessary to improve its precision and sensitivity. Previous MRI CAs are confined to the signal-to-noise ratio (SNR) elevation of lesions for precisely localizing lesions. As nanobiotechnology advances, some new MRI CAs or nanobiotechnology-enabled MRI modes have been established to vary the longitudinal or transverse relaxation of CAs, which are harnessed to detect lesion targets, monitor disease evolution, predict or evaluate curative effect, etc. These distinct cases provide unexpected insights into the correlation of the design principles of these nanobiotechnologies and corresponding MRI CAs with their potential applications. In this review, first, we briefly present the principles, classifications and applications of conventional MRI CAs, and then elucidate the recent advances in relaxation tuning via the development of various nanobiotechnologies with emphasis on the design strategies of nanobiotechnology and the corresponding MRI CAs to target the tumor microenvironment (TME) and biological targets or activities in tumors or other diseases. In addition, we exemplified the advantages of these strategies in disease theranostics and explored their potential application fields. Finally, we analyzed the present limitations, potential solutions and future development direction of MRI after its combination with nanobiotechnology.
Collapse
Affiliation(s)
- Taixia Wang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Xueni Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yuan Xu
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yingchun Xu
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yifeng Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Kun Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| |
Collapse
|
33
|
Bok I, Haber I, Qu X, Hai A. In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles. Sci Rep 2022; 12:8386. [PMID: 35589877 PMCID: PMC9120189 DOI: 10.1038/s41598-022-12303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Magnetoelectric materials hold untapped potential to revolutionize biomedical technologies. Sensing of biophysical processes in the brain is a particularly attractive application, with the prospect of using magnetoelectric nanoparticles (MENPs) as injectable agents for rapid brain-wide modulation and recording. Recent studies have demonstrated wireless brain stimulation in vivo using MENPs synthesized from cobalt ferrite (CFO) cores coated with piezoelectric barium titanate (BTO) shells. CFO-BTO core-shell MENPs have a relatively high magnetoelectric coefficient and have been proposed for direct magnetic particle imaging (MPI) of brain electrophysiology. However, the feasibility of acquiring such readouts has not been demonstrated or methodically quantified. Here we present the results of implementing a strain-based finite element magnetoelectric model of CFO-BTO core-shell MENPs and apply the model to quantify magnetization in response to neural electric fields. We use the model to determine optimal MENPs-mediated electrophysiological readouts both at the single neuron level and for MENPs diffusing in bulk neural tissue for in vivo scenarios. Our results lay the groundwork for MENP recording of electrophysiological signals and provide a broad analytical infrastructure to validate MENPs for biomedical applications.
Collapse
Affiliation(s)
- Ilhan Bok
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Ido Haber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiaofei Qu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA.
| |
Collapse
|
34
|
Jiang G, Fan D, Tian J, Xiang Z, Fang Q. Self-Confirming Magnetosomes for Tumor-Targeted T 1 /T 2 Dual-Mode MRI and MRI-Guided Photothermal Therapy. Adv Healthc Mater 2022; 11:e2200841. [PMID: 35579102 DOI: 10.1002/adhm.202200841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 12/29/2022]
Abstract
Nanomaterials as T1 /T2 dual-mode magnetic resonance imaging (MRI) contrast agents have great potential in improving the accuracy of tumor diagnosis. Applications of such materials, however, are limited by the complicated chemical synthesis process and potential biosafety issues. In this study, the biosynthesis of manganese (Mn)-doped magnetosomes (MagMn) that not only can be used in T1 /T2 dual-mode MR imaging with self-confirmation for tumor detection, but also improve the photothermal conversion efficiency for MRI-guided photothermal therapy (PTT) is reported. The MagMn nanoparticles (NPs) are naturally produced through the biomineralization of magnetotactic bacteria by doping Mn into the ferromagnetic iron oxide crystals. In vitro and in vivo studies demonstrated that targeting peptides functionalized MagMn enhanced both T1 and T2 MRI signals in tumor tissue and significantly inhibited tumor growth by the further MRI-guided PTT. It is envisioned that the biosynthesized multifunctional MagMn nanoplatform may serve as a potential theranostic agent for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Gexuan Jiang
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Di Fan
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jiesheng Tian
- State Key Laboratories for Agro‐biotechnology and College of Biological Sciences China Agricultural University Beijing 100193 P. R. China
| | - Zhichu Xiang
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education) College of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Sino‐Danish Center for Education and Research Beijing 101408 China
| |
Collapse
|
35
|
Botár R, Molnár E, Garda Z, Madarasi E, Trencsényi G, Kiss J, Kálmán FK, Tircsó G. Synthesis and characterization of a stable and inert MnII-based ZnII responsive MRI probe for molecular imaging of glucose stimulated zinc secretion (GSZS). Inorg Chem Front 2022. [DOI: 10.1039/d1qi00501d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A ZnII responsive MnII-based MRI contrast agent, [Mn(PC2A-DPA)], has been synthesized, investigated and applied in imaging studies. It shows high stability and excellent inertness and can be used to visualize glucose triggered ZnII release by MRI.
Collapse
Affiliation(s)
- Richárd Botár
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
- Doctoral School of Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Enikő Molnár
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Zoltán Garda
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Enikő Madarasi
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
- Doctoral School of Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - György Trencsényi
- Department of Medical Imaging, Division of Nuclear Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - János Kiss
- Department of Medical Imaging, Division of Nuclear Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Ferenc K. Kálmán
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| |
Collapse
|
36
|
Zhou J, Wu H, Zhang X, Xia G, Gong X, Yue D, Fan Y, Wang B, Wang G, Li Y, Pan J. Deep learning models for image and data processes of intracellular calcium ions. Cell Signal 2021; 91:110225. [PMID: 34954391 DOI: 10.1016/j.cellsig.2021.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
Intracellular calcium ion (Ca2+) in cytoplasm as an intracellular second messenger is involved in almost all important cellular activities of organisms. Generally its concentration ([Ca2+]i) is tested by live imaging followed image and data processes, in which much tedious and subjective manual work is involved. Here we show a computational approach of Deep Calcium following the principles of deep learning to predict the cytoplasmic Ca2+ ranges and calcium peaks in calcium curve of objective cells. To validate Deep Calcium, chondrocytes, bone marrow stromal cells (BMSCs) and osteoblastic like cells (MC3T3-E1) from both the tissue and cell samples as well as from spontaneous and mechanical stimulated calcium response patterns are used. The good performance comparing with other relative machine learning models, as well as consistency biological results with human experts are demonstrated. Deep Calcium provides references for other image and data processes of intracellular range determination and curve peak identification.
Collapse
Affiliation(s)
- Jin Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huan Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xusen Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Guoqing Xia
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiaoyuan Gong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Dangyang Yue
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yijuan Fan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bin Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yong Li
- College of Economics and Business Administration, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China.
| |
Collapse
|
37
|
Single-nanometer iron oxide nanoparticles as tissue-permeable MRI contrast agents. Proc Natl Acad Sci U S A 2021; 118:2102340118. [PMID: 34654743 DOI: 10.1073/pnas.2102340118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Magnetic nanoparticles are robust contrast agents for MRI and often produce particularly strong signal changes per particle. Leveraging these effects to probe cellular- and molecular-level phenomena in tissue can, however, be hindered by the large sizes of typical nanoparticle contrast agents. To address this limitation, we introduce single-nanometer iron oxide (SNIO) particles that exhibit superparamagnetic properties in conjunction with hydrodynamic diameters comparable to small, highly diffusible imaging agents. These particles efficiently brighten the signal in T 1-weighted MRI, producing per-molecule longitudinal relaxation enhancements over 10 times greater than conventional gadolinium-based contrast agents. We show that SNIOs permeate biological tissue effectively following injection into brain parenchyma or cerebrospinal fluid. We also demonstrate that SNIOs readily enter the brain following ultrasound-induced blood-brain barrier disruption, emulating the performance of a gadolinium agent and providing a basis for future biomedical applications. These results thus demonstrate a platform for MRI probe development that combines advantages of small-molecule imaging agents with the potency of nanoscale materials.
Collapse
|
38
|
Csomos A, Kontra B, Jancsó A, Galbács G, Deme R, Kele Z, Rózsa BJ, Kovács E, Mucsi Z. A Comprehensive Study of the Ca
2+
Ion Binding of Fluorescently Labelled BAPTA Analogues. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Attila Csomos
- Department of Chemistry Femtonics Ltd. 1094 Budapest Hungary
| | - Bence Kontra
- Department of Chemistry Femtonics Ltd. 1094 Budapest Hungary
| | - Attila Jancsó
- Department of Inorganic and Analytical Chemistry University of Szeged Szeged 6720 Hungary
| | - Gábor Galbács
- Department of Inorganic and Analytical Chemistry University of Szeged Szeged 6720 Hungary
| | - Ruth Deme
- Department of Organic Chemistry Semmelweis University Budapest H-1092 Hungary
| | - Zoltán Kele
- Institute of Medical Chemistry, University of Szeged Szeged H-6720 Hungary
| | - Balázs József Rózsa
- Two-Photon Measurement Technology Research Group The Faculty of Information Technology Pázmány Péter Catholic University Budapest 1083 Hungary
- Laboratory of 3D Functional Imaging of Neuronal Networks and Dendritic Integration Institute of Experimental Medicine Budapest 1083 Hungary
| | - Ervin Kovács
- Department of Chemistry Femtonics Ltd. 1094 Budapest Hungary
- Polymer Chemistry Research Group Research Centre for Natural Sciences Budapest 1117 Hungary
| | - Zoltán Mucsi
- Department of Chemistry Femtonics Ltd. 1094 Budapest Hungary
- Faculty of Materials Science and Engineering University of Miskolc Miskolc 3515 Hungary
| |
Collapse
|
39
|
Ozbakir HF, Miller ADC, Fishman KB, Martins AF, Kippin TE, Mukherjee A. A Protein-Based Biosensor for Detecting Calcium by Magnetic Resonance Imaging. ACS Sens 2021; 6:3163-3169. [PMID: 34420291 DOI: 10.1021/acssensors.1c01085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium-responsive contrast agents for magnetic resonance imaging (MRI) offer a promising approach for noninvasive brain-wide monitoring of neural activity at any arbitrary depth. Current examples of MRI-based calcium probes involve synthetic molecules and nanoparticles, which cannot be used to examine calcium signaling in a genetically encoded form. Here, we describe a new MRI sensor for calcium, based entirely on a naturally occurring calcium-binding protein known as calprotectin. Calcium-binding causes calprotectin to sequester manganese ions, thereby limiting Mn2+ enhanced paramagnetic relaxation of nearby water molecules. We demonstrate that this mechanism allows calprotectin to alter T1 and T2 based MRI signals in response to biologically relevant calcium concentrations. The resulting response amplitude, i.e., change in relaxation time, is comparable to existing MRI-based calcium sensors as well as other reported protein-based MRI sensors. As a preliminary demonstration of its biological applicability, we used calprotectin to detect calcium in a lysed hippocampal cell preparation as well as in intact Chinese hamster ovary cells treated with a calcium ionophore. Calprotectin thus represents a promising path toward noninvasive imaging of calcium signaling by combining the molecular and cellular specificity of genetically encodable tools with the ability of MRI to image through scattering tissue of any size and depth.
Collapse
|
40
|
Tirukoti ND, Avram L, Haris T, Lerner B, Diskin-Posner Y, Allouche-Arnon H, Bar-Shir A. Fast Ion-Chelate Dissociation Rate for In Vivo MRI of Labile Zinc with Frequency-Specific Encodability. J Am Chem Soc 2021; 143:11751-11758. [PMID: 34297566 PMCID: PMC8397314 DOI: 10.1021/jacs.1c05376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Fast ion-chelate
dissociation rates and weak ion-chelate affinities
are desired kinetic and thermodynamic features for imaging probes
to allow reversible binding and to prevent deviation from basal ionic
levels. Nevertheless, such properties often result in poor readouts
upon ion binding, frequently result in low ion specificity, and do
not allow the detection of a wide range of concentrations. Herein,
we show the design, synthesis, characterization, and implementation
of a Zn2+-probe developed for MRI that possesses reversible
Zn2+-binding properties with a rapid dissociation rate
(koff = 845 ± 35 s–1) for the detection of a wide range of biologically relevant concentrations.
Benefiting from the implementation of chemical exchange saturation
transfer (CEST), which is here applied in the 19F-MRI framework
in an approach termed ion CEST (iCEST), we demonstrate the ability
to map labile Zn2+ with spectrally resolved specificity
and with no interference from competitive cations. Relying on fast koff rates for enhanced signal amplification,
the use of iCEST allowed the designed fluorinated chelate to experience
weak Zn2+-binding affinity (Kd at the mM range), but without compromising high cationic specificity,
which is demonstrated here for mapping the distribution of labile
Zn2+ in the hippocampal tissue of a live mouse. This strategy
for accelerating ion-chelate koff rates
for the enhancement of MRI signal amplifications without affecting
ion specificity could open new avenues for the design of additional
probes for other metal ions beyond zinc.
Collapse
Affiliation(s)
- Nishanth D Tirukoti
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Talia Haris
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Lerner
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hyla Allouche-Arnon
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
41
|
Wang X, Guo S, Li Z, Luo Q, Dai Y, Zhang H, Ye Y, Gong Q, Luo K. Amphiphilic branched polymer-nitroxides conjugate as a nanoscale agent for potential magnetic resonance imaging of multiple objects in vivo. J Nanobiotechnology 2021; 19:205. [PMID: 34243760 PMCID: PMC8272293 DOI: 10.1186/s12951-021-00951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In order to address the potential toxicity of metal-based magnetic resonance imaging (MRI) contrast agents (CAs), a concept of non-metallic MRI CAs has emerged. Currently, paramagnetic nitroxides (such as (2,2,5,5-tetramethylpyrrolidine-1-oxyl, PROXYL), (2,2,6,6-tetramethylpiperidine-1-oxide, TEMPO), etc.) are being extensively studied because their good stability and imaging mechanism are similar to metal-based contrast agents (such as Gd3+ chelate-based clinical CAs). However, a lower relaxivity and rapid in vivo metabolism of nitroxides remain to be addressed. Previous studies have demonstrated that the construction of macromolecular nitroxides contrast agents (mORCAs) is a promising solution through macromolecularization of nitroxides (i.e., use of large molecules to carry nitroxides). Macromolecular effects not only increase the stability of nitroxides by limiting their exposure to reductive substances in the body, but also improve the overall 1H water relaxation by increasing the concentration of nitroxides and slowing the molecular rotation speed. RESULTS Branched pDHPMA-mPEG-Ppa-PROXYL with a high molecular weight (MW = 160 kDa) and a nitroxides content (0.059 mmol/g) can form a nanoscale (~ 28 nm) self-assembled aggregate in a water environment and hydrophobic PROXYL can be protected by a hydrophilic outer layer to obtain strong reduction resistance in vivo. Compared with a small molecular CA (3-Carboxy-PROXYL (3-CP)), Branched pDHPMA-mPEG-Ppa-PROXYL displays three prominent features: (1) its longitudinal relaxivity (0.50 mM- 1 s- 1) is about three times that of 3-CP (0.17 mM- 1 s- 1); (2) the blood retention time of nitroxides is significantly increased from a few minutes of 3-CP to 6 h; (3) it provides long-term and significant enhancement in MR imaging of the tumor, liver, kidney and cardiovascular system (heart and aortaventralis), and this is the first report on nitroxides-based MRI CAs for imaging the cardiovascular system. CONCLUSIONS As a safe and efficient candidate metal-free magnetic resonance contrast agent, Branched pDHPMA-mPEG-Ppa-PROXYL is expected to be used not only in imaging the tumor, liver and kidney, but also the cardiovascular system, which expands the application scope of these CAs.
Collapse
Affiliation(s)
- Xiaoming Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences (UCAS), No. 104 Pipashan Main Street, Yuzhong District, 400014, Chongqing, China
| | - Shiwei Guo
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Sichuan Province, 646000, Luzhou, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, People's Republic of China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yan Dai
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Sichuan Province, 646000, Luzhou, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, People's Republic of China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute Claremont, 91711, Claremont, CA, USA
| | - Yun Ye
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Sichuan Province, 646000, Luzhou, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, 610041, Chengdu, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, 610041, Chengdu, China.
| |
Collapse
|
42
|
Miller ADC, Ozbakir HF, Mukherjee A. Calcium-responsive contrast agents for functional magnetic resonance imaging. ACTA ACUST UNITED AC 2021; 2:021301. [PMID: 34085055 DOI: 10.1063/5.0041394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Calcium ions represent one of the key second messengers accompanying neural activity and synaptic signaling. Accordingly, dynamic imaging of calcium fluctuations in living organisms represents a cornerstone technology for discovering neural mechanisms that underlie memory, determine behavior, and modulate emotional states as well as how these mechanisms are perturbed by neurological disease and brain injury. While optical technologies are well established for high resolution imaging of calcium dynamics, physical limits on light penetration hinder their application for whole-brain imaging in intact vertebrates. Unlike optics, magnetic resonance imaging (MRI) enables noninvasive large-scale imaging across vertebrates of all sizes. This has motivated the development of several sensors that leverage innovative physicochemical mechanisms to sensitize MRI contrast to intracellular and extracellular changes in calcium. Here, we review the current state-of-the-art in MRI-based calcium sensors, focusing on fundamental aspects of sensor performance, in vivo applications, and challenges related to sensitivity. We also highlight how innovations at the intersection of reporter gene technology and gene delivery open potential opportunities for mapping calcium activity in genetically targeted cells, complementing the benefits of small molecule probes and nanoparticle sensors.
Collapse
Affiliation(s)
- Austin D C Miller
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
| | - Harun F Ozbakir
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
43
|
Bonnet CS, Tóth É. Metal-based environment-sensitive MRI contrast agents. Curr Opin Chem Biol 2021; 61:154-169. [PMID: 33706246 DOI: 10.1016/j.cbpa.2021.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/07/2021] [Accepted: 01/31/2021] [Indexed: 12/30/2022]
Abstract
Interactions of paramagnetic metal complexes with their biological environment can modulate their magnetic resonance imaging (MRI) contrast-enhancing properties in different ways, and this has been widely exploited to create responsive probes that can provide biochemical information. We survey progress in two rapidly growing areas: the MRI detection of biologically important metal ions, such as calcium, zinc, and copper, and the use of transition metal complexes as smart MRI agents. In both fields, new imaging technologies, which take advantage of other nuclei (19F) and/or paramagnetic contact shift effects, emerge beyond classical, relaxation-based applications. Most importantly, in vivo imaging is gaining ground, and the promise of molecular MRI is becoming reality, at least for preclinical research.
Collapse
Affiliation(s)
- Célia S Bonnet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, Orléans, 45071, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, Orléans, 45071, France.
| |
Collapse
|
44
|
Li ES, Saha MS. Optimizing Calcium Detection Methods in Animal Systems: A Sandbox for Synthetic Biology. Biomolecules 2021; 11:343. [PMID: 33668387 PMCID: PMC7996158 DOI: 10.3390/biom11030343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Since the 1970s, the emergence and expansion of novel methods for calcium ion (Ca2+) detection have found diverse applications in vitro and in vivo across a series of model animal systems. Matched with advances in fluorescence imaging techniques, the improvements in the functional range and stability of various calcium indicators have significantly enhanced more accurate study of intracellular Ca2+ dynamics and its effects on cell signaling, growth, differentiation, and regulation. Nonetheless, the current limitations broadly presented by organic calcium dyes, genetically encoded calcium indicators, and calcium-responsive nanoparticles suggest a potential path toward more rapid optimization by taking advantage of a synthetic biology approach. This engineering-oriented discipline applies principles of modularity and standardization to redesign and interrogate endogenous biological systems. This review will elucidate how novel synthetic biology technologies constructed for eukaryotic systems can offer a promising toolkit for interfacing with calcium signaling and overcoming barriers in order to accelerate the process of Ca2+ detection optimization.
Collapse
Affiliation(s)
| | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA;
| |
Collapse
|
45
|
On‐demand field shaping for enhanced magnetic resonance imaging using an ultrathin reconfigurable metasurface. VIEW 2021. [DOI: 10.1002/viw.20200099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
46
|
Gwynne L, Williams GT, Yan K, Gardiner JE, Hilton KLF, Patenall BL, Hiscock JR, Maillard J, He X, James TD, Sedgwick AC, Jenkins ATA. The Evaluation of Ester Functionalised TCF‐Based Fluorescent Probes for the Detection of Bacterial Species. Isr J Chem 2021. [DOI: 10.1002/ijch.202000105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lauren Gwynne
- Department of Chemistry University of Bath BA2 7AY Bath UK
| | - George T. Williams
- Department of Chemistry University of Bath BA2 7AY Bath UK
- School of Physical Sciences University of Kent CT2 7NH Canterbury UK
| | - Kai‐Cheng Yan
- Department of Chemistry University of Bath BA2 7AY Bath UK
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | | | - Kira L. F. Hilton
- School of Physical Sciences University of Kent CT2 7NH Canterbury UK
| | | | | | - Jean‐Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences Cardiff University CF10 3NB Cardiff UK
| | - Xiao‐Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Tony D. James
- Department of Chemistry University of Bath BA2 7AY Bath UK
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 P. R. China
| | - Adam C. Sedgwick
- Department of Chemistry The University of Texas at Austin 105 East 24th Street A5300 Austin, Texas 78712–1224 USA
| | | |
Collapse
|
47
|
Nicolson F, Kircher MF. Theranostics: Agents for Diagnosis and Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
48
|
Human gastric carcinoma cells targeting peptide-functionalized iron oxide nanoparticles delivery for magnetic resonance imaging. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Xiao B, Zhou X, Xu H, Zhang W, Xu X, Tian F, Qian Y, Yu F, Pu C, Hu H, Zhou Z, Liu X, Patra HK, Slater N, Tang J, Gao J, Shen Y. On/off switchable epicatechin-based ultra-sensitive MRI-visible nanotheranostics - see it and treat it. Biomater Sci 2020; 8:5210-5218. [PMID: 32844846 DOI: 10.1039/d0bm00842g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nanotechnology has a remarkable impact on the preclinical development of future medicines. However, the complicated preparation and systemic toxicity to living systems prevent them from translation to clinical applications. In the present report, we developed a polyepicatechin-based on/off switchable ultra-sensitive magnetic resonance imaging (MRI) visible theranostic nanoparticle (PEMN) for image-guided photothermal therapy (PTT) using our strategy of integrating polymerization and biomineralization into the protein template. We have exploited natural polyphenols as the near infra-red (NIR) switchable photothermal source and MnO2 for the MRI-guided theranostics. PEMN demonstrates excellent MRI contrast ability with a longitudinal relaxivity value up to 30.01 mM-1 s-1. PEMN has shown great tumor inhibition on orthotopic breast tumors and the treatment could be made switchable with an on/off interchangeable mode as needed. PEMN was found to be excretable mainly through the kidneys, avoiding potential systemic toxicity. Thus, PEMN could be extremely useful for developing on-demand therapeutics via'see it and treat it' means with distinguished MRI capability and on/off switchable photothermal properties.
Collapse
Affiliation(s)
- Bing Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Multifunctional aggregation-based fluorescent probe for visualizing intracellular calcium dynamic fluctuations. Anal Bioanal Chem 2020; 412:7187-7194. [PMID: 32767015 DOI: 10.1007/s00216-020-02851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Calcium ion (Ca2+) is an indispensable second messenger in living organisms. The impaired Ca2+ handling can induce many diseases. In this paper, we developed a simple and effective method to encapsulate a coumarin-based Ca2+ probe ((E)-2-hydroxy-N'-((7-hydroxy-2-oxo-2H-chromen-8-yl)methylene)-2-phenylacetohydrazide, CPM) into nanoparticles (NPs), and CPM NPs with blue fluorescence were obtained, whose maximum excitation and maximum emission wavelengths were characterized at 365 nm and 450 nm, respectively. The CPM NPs show significant fluorescence enhancement toward Ca2+ over other metal ions, with a limit of determination (LOD) of 0.04 μM. To optimize the optical property of the NPs, CPM and curcumin, which were introduced as the Förster resonance energy transfer (FRET) donor and acceptor, respectively, were co-encapsulated, and bright green CPM@Cur NPs with large stokes shift and narrow emission band width were constructed. Due to their low cytotoxicity and excellent stability, CPM NPs and CPM@Cur NPs were further successfully used to discriminate the primary aortic smooth muscle cells isolated from mice with abnormal Ca2+ homeostasis from their littermate controls. It is worth noting that CPM@Cur NPs exhibit stronger fluorescence signal and diminished background interference, which make them have great potential in the Ca2+ monitoring during biological processes. This strategy opens a new way to synthesize NPs with high brightness and has a potential application prospect in composite sensing and intracellular imaging. CPM@Cur NPs are developed and applied in biological sensing and intracellular Ca2+ imaging, as well as discriminating the cells with abnormal calcium homeostasis.
Collapse
|