1
|
Chen J, Wang S, Ding Y, Xu D, Zheng S. Radiotherapy-induced alterations in tumor microenvironment: metabolism and immunity. Front Cell Dev Biol 2025; 13:1568634. [PMID: 40356601 PMCID: PMC12066526 DOI: 10.3389/fcell.2025.1568634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Tumor metabolism plays a pivotal role in shaping immune responses within the tumor microenvironment influencing tumor progression, immune evasion, and the efficacy of cancer therapies. Radiotherapy has been shown to impact both tumor metabolism and immune modulation, often inducing immune activation through damage-associated molecular patterns and the STING pathway. In this study, we analyse the particular characteristics of the tumour metabolic microenvironment and its effect on the immune microenvironment. We also review the changes in the metabolic and immune microenvironment that are induced by radiotherapy, with a focus on metabolic sensitisation to the effects of radiotherapy. Our aim is to contribute to the development of research ideas in the field of radiotherapy metabolic-immunological studies.
Collapse
Affiliation(s)
- Jinpeng Chen
- Department of General Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
- Southeast University Medical School, Nanjing, Jiangsu, China
| | - Sheng Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Yue Ding
- Department of General Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
- Southeast University Medical School, Nanjing, Jiangsu, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiya Zheng
- Southeast University Medical School, Nanjing, Jiangsu, China
- Department of Oncology, Southeast University, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Llibre A, Kucuk S, Gope A, Certo M, Mauro C. Lactate: A key regulator of the immune response. Immunity 2025; 58:535-554. [PMID: 40073846 DOI: 10.1016/j.immuni.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
Lactate, the end product of both anaerobic and aerobic glycolysis in proliferating and growing cells-with the latter process known as the Warburg effect-is historically considered a mere waste product of cell and tissue metabolism. However, research over the past ten years has unveiled multifaceted functions of lactate that critically shape and impact cellular biology. Beyond serving as a fuel source, lactate is now known to influence gene expression through histone modification and to function as a signaling molecule that impacts a wide range of cellular activities. These properties have been particularly studied in the context of both adaptive and innate immune responses. Here, we review the diverse roles of lactate in the regulation of the immune system during homeostasis and disease pathogenesis (including cancer, infection, cardiovascular diseases, and autoimmunity). Furthermore, we describe recently proposed therapeutic interventions for manipulating lactate metabolism in human diseases.
Collapse
Affiliation(s)
- Alba Llibre
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Salih Kucuk
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Atrayee Gope
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Michelangelo Certo
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Tan H, Cai M, Wang J, Yu T, Xia H, Zhao H, Zhang X. Harnessing Macrophages in Cancer Therapy: from Immune Modulators to Therapeutic Targets. Int J Biol Sci 2025; 21:2235-2257. [PMID: 40083710 PMCID: PMC11900799 DOI: 10.7150/ijbs.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
Macrophages, as the predominant phagocytes, play an essential role in pathogens defense and tissue homeostasis maintenance. In the context of cancer, tumor-associated macrophages (TAMs) have evolved into cunning actors involved in angiogenesis, cancer cell proliferation and metastasis, as well as the construction of immunosuppressive microenvironment. Once properly activated, macrophages can kill tumor cells directly through phagocytosis or attack tumor cells indirectly by stimulating innate and adaptive immunity. Thus, the prospect of targeting TAMs has sparked significant interest and emerged as a promising strategy in immunotherapy. In this review, we summarize the diverse roles and underlying mechanisms of TAMs in cancer development and immunity and highlight the TAM-based therapeutic strategies such as inhibiting macrophage recruitment, inhibiting the differentiation reprogramming of TAMs, blocking phagocytotic checkpoints, inducing trained macrophages, as well as the potential of engineered CAR-armed macrophages in cancer therapy.
Collapse
Affiliation(s)
- Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province, China
- General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Meihe Cai
- Department of Traditional Chinese Medicine, Zhushan Renmin Hospital, Zhushan, 442200, China
| | | | - Tao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huanbin Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Present: Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoyu Zhang
- Department of Gastrointestinal Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
4
|
Sisalli MJ, D'Apolito E, Cuomo O, Lombardi G, Tufano M, Annunziato L, Scorziello A. The E3-ligase Siah2 activates mitochondrial quality control in neurons to maintain energy metabolism during ischemic brain tolerance. Cell Death Dis 2025; 16:52. [PMID: 39875361 PMCID: PMC11775118 DOI: 10.1038/s41419-025-07339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia. It has been demonstrated that hypoxia-induced Seven in absentia Homolog 2 (Siah2) E3-ligase activation influences mitochondrial dynamics promoting the degradation of mitochondrial proteins. Therefore, in the present study, we investigated the role of Siah2 in the IPC-induced neuroprotection in in vitro and in vivo models of IPC. To this aim, cortical neurons were exposed to 30-min oxygen and glucose deprivation (OGD, sublethal insult) followed by 3 h OGD plus reoxygenation (lethal insult). Our results revealed that the mitochondrial depolarization induced by hypoxia activates Siah2 at the mitochondrial level and increases LC3-II protein expression, a marker of mitophagy, an effect counteracted by the reoxygenation phase. By contrast, hypoxia reduced the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a marker of mitochondrial biogenesis, whereas its expression was increased after reoxygenation thus improving mitochondrial membrane potential, mitochondrial calcium content, and mitochondrial morphology, hence leading to neuroprotection in IPC. Furthermore, Siah2 silencing confirmed these results. Collectively, these findings indicate that the balance between mitophagy and mitochondrial biogenesis, due to the activation of the Siah2-E3-ligase, might play a role in IPC-induced neuroprotection.
Collapse
Affiliation(s)
- Maria Josè Sisalli
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Elena D'Apolito
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Giovanna Lombardi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Michele Tufano
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Naples, Italy
| | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
5
|
Zhao L, Zou X, Deng J, Sun B, Li Y, Zhao L, Zhao H, Zhang X, Yuan X, Zhao X, Zou F. hnRNPH1 maintains mitochondrial homeostasis by establishing NRF1/DRP1 retrograde signaling under mitochondrial stress. Cell Death Differ 2025; 32:118-133. [PMID: 38898233 PMCID: PMC11742414 DOI: 10.1038/s41418-024-01331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
Mitochondrial homeostasis is coordinated through communication between mitochondria and the nucleus. In response to stress, mitochondria generate retrograde signals to protect against their dysfunction by activating the expression of nuclear genes involved in metabolic reprogramming. However, the mediators associated with mitochondria-to-nucleus communication pathways remain to be clarified. Here, we identified that hnRNPH1 functions as a pivotal mediator of mitochondrial retrograde signaling to maintain mitochondrial homeostasis. hnRNPH1 accumulates in the nucleus following mitochondrial stress in a 5'-adenosine monophosphate-activated protein kinase (AMPK)-dependent manner. Accordingly, hnRNPH1 interacts with the transcription factor NRF1 and binds to the DRP1 promoter, enhancing the transcription of DRP1. Furthermore, in the cytoplasm, hnRNPH1 directly interacts with DRP1 and enhances DRP1 Ser616 phosphorylation, thereby increasing DRP1 translocation to mitochondrial outer membranes and triggering mitochondrial fission. Collectively, our findings reveal a novel role for hnRNPH1 in the mitochondrial-nuclear communication pathway to maintain mitochondrial homeostasis under stress and suggest that it may be a potential target for mitochondrial dysfunction diseases.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaotian Zou
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiaqiang Deng
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Bin Sun
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Li Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Hong Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiao Zhang
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xieyong Yuan
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xudong Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Fangdong Zou
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Wang H, Li Q, Tang Q, Shi G, Wu G, Mao X, Wu C, Zhang L, Liu J, Li J, Li B. Role and therapeutic potential of E3s in the tumor microenvironment of hepatocellular carcinoma. Front Immunol 2024; 15:1483721. [PMID: 39544935 PMCID: PMC11560419 DOI: 10.3389/fimmu.2024.1483721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a high-incidence, poor-prognosis malignancy worldwide, requiring new strategies for treatment. Ubiquitination, especially ubiquitination through E3 ubiquitin ligases, plays an indispensable role in the development and progression of HCC. E3 ubiquitin ligases are crucial enzymes in ubiquitination, controlling the degradation of specific substrate proteins and influencing various cellular functions, such as tumor cell proliferation, apoptosis, migration, and immune evasion. In this review, we systematically summarize the mechanisms of E3 ubiquitin ligases in HCC, with a focus on the significance of RING, HECT, and RBR types in HCC progression. The review also looks at the potential for targeting E3 ligases to modulate the tumor microenvironment (TME) and increase immunotherapy efficacy. Future studies will optimize HCC treatment by formulating specific inhibitors or approaches that will be based on gene therapy targeting E3 ligases in order to overcome resistance issues with present treatments and create optimism in the journey of treatment for HCC patients.
Collapse
Affiliation(s)
- Hailin Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiang Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qinqin Tang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Gang Shi
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guo Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xingbo Mao
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Changkang Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lixin Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
8
|
Zhang H, Li S, Wang D, Liu S, Xiao T, Gu W, Yang H, Wang H, Yang M, Chen P. Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment. Biomark Res 2024; 12:96. [PMID: 39227970 PMCID: PMC11373140 DOI: 10.1186/s40364-024-00646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Tumor cells possess complex immune evasion mechanisms to evade immune system attacks, primarily through metabolic reprogramming, which significantly alters the tumor microenvironment (TME) to modulate immune cell functions. When a tumor is sufficiently immunogenic, it can activate cytotoxic T-cells to target and destroy it. However, tumors adapt by manipulating their metabolic pathways, particularly glucose, amino acid, and lipid metabolism, to create an immunosuppressive TME that promotes immune escape. These metabolic alterations impact the function and differentiation of non-tumor cells within the TME, such as inhibiting effector T-cell activity while expanding regulatory T-cells and myeloid-derived suppressor cells. Additionally, these changes lead to an imbalance in cytokine and chemokine secretion, further enhancing the immunosuppressive landscape. Emerging research is increasingly focusing on the regulatory roles of non-tumor cells within the TME, evaluating how their reprogrammed glucose, amino acid, and lipid metabolism influence their functional changes and ultimately aid in tumor immune evasion. Despite our incomplete understanding of the intricate metabolic interactions between tumor and non-tumor cells, the connection between these elements presents significant challenges for cancer immunotherapy. This review highlights the impact of altered glucose, amino acid, and lipid metabolism in the TME on the metabolism and function of non-tumor cells, providing new insights that could facilitate the development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Haixia Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shizhen Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyang Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
9
|
Jing LP, Li M, Xia XY, Zheng X, Chen JY, He J, Zhuang XW. SIAH2 is specifically expressed during cervical carcinogenesis, and closely relates to the abnormal proliferation of cervical epithelial cells. Heliyon 2024; 10:e31487. [PMID: 38828323 PMCID: PMC11140618 DOI: 10.1016/j.heliyon.2024.e31487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Background Cervical cancer is one of the most common malignancies in women worldwide. As a RING type ubiquitin ligase, SIAH2 has been reported to promote the progression of a variety of tumors by interacting with and targeting multiple chaperones and substrates. The aim of this study was to further identify the role and the related molecular mechanisms involved of SIAH2 in cervical carcinogenesis. Methods and results Cellular assays in vitro showed that knockdown of SIAH2 inhibited the proliferation, migration and invasion of human cervical cancer cells C33A and SiHa, induced apoptosis, and increased the sensitivity to cisplatin treatment. Knockdown of SIAH2 also inhibited the epithelial-mesenchymal transition and activation of the Akt/mTOR signaling pathway in cervical cancer cells, which were detected by Western blot. Mechanistically, SIAH2, as a ubiquitin ligase, induced the ubiquitination degradation of GSK3β degradation by using coIP. The results of complementation experiments further demonstrated that GSK3β overexpression rescued the increase of cell proliferation and invasion caused by SIAH2 overexpression. Specific expression of SIAH2 appeared in precancerous and cervical cancer tissues compared to inflammatory cervical lesions tissues using immunohistochemical staining. The more SIAH2 was expressed as the degree of cancer progressed. SIAH2 was significantly highly expressed in cervical cancer tissues (44/55, 80 %) compared with precancerous tissues (18/69, 26.1 %). Moreover, the expression level of SIAH2 in cervical cancer tissues was significantly correlated with the degree of cancer differentiation, and cervical cancer tissues with higher SIAH2 expression levels were less differentiated. Conclusion Targeting SIAH2 may be beneficial to the treatment of cervical cancer.
Collapse
Affiliation(s)
- Li-ping Jing
- Clinical Laboratory Department, Liaoning Cancer Hospital & Institute, 110042, Shenyang, Liaoning, China
| | - Meng Li
- Department of Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, Shandong, China
| | - Xi-yan Xia
- Department of Immunology Teaching and Research, Jinan Vocational College of Nursing, 250102, Jinan, Shandong, China
| | - Xin Zheng
- Department of Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, Shandong, China
| | - Jia-yu Chen
- Department of Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, Shandong, China
| | - Jing He
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014, Jinan, Shandong, China
| | - Xue-wei Zhuang
- Department of Laboratory, Shandong Provincial Third Hospital, Shandong University, 250031, Jinan, Shandong, China
| |
Collapse
|
10
|
Yao X, Zhang L, Sun S, Fu A, Ge Y. Progress of research on the relationship between efferocytosis and tumor. Front Oncol 2024; 14:1361327. [PMID: 38655133 PMCID: PMC11035832 DOI: 10.3389/fonc.2024.1361327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Tumors are genetic changes that develop in an organism as a result of many internal and external causes. They affect the biological behavior of cells, cause them to grow independently, and give rise to new, perpetually proliferating organisms. Recent research has supported the critical function of tumor-associated macrophages in the development, progression, and metastasis of tumors through efferocytosis. Yet, there is still much to learn about the mechanisms behind their contribution to tumor pathological processes. As a result, it's critical to actively investigate how cytosolic processes contribute to the growth of tumors and to create novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Yanlei Ge
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
11
|
Zhu S, Cheng Q, Zou M, Li C, Tang Y, Xia L, Jiang Y, Gong Z, Tang Z, Tang Y, Luo H, Peng N, Wang X, Dong X. Combining bulk and scRNA-seq to explore the molecular mechanisms governing the distinct efferocytosis activities of a macrophage subpopulation in PDAC. J Cell Mol Med 2024; 28:e18266. [PMID: 38501838 PMCID: PMC10949604 DOI: 10.1111/jcmm.18266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a very aggressive tumour, is currently the third leading cause of cancer-related deaths. Unfortunately, many patients face the issue of inoperability at the diagnostic phase leading to a quite dismal prognosis. The onset of metastatic processes has a crucial role in the elevated mortality rates linked to PDAC. Individuals with metastatic advances receive only palliative therapy and have a grim prognosis. It is essential to carefully analyse the intricacies of the metastatic process to enhance the prognosis for individuals with PDAC. Malignancy development is greatly impacted by the process of macrophage efferocytosis. Our current knowledge about the complete range of macrophage efferocytosis activities in PDAC and their intricate interactions with tumour cells is still restricted. This work aims to resolve communication gaps and pinpoint the essential transcription factor that is vital in the immunological response of macrophage populations. We analysed eight PDAC tissue samples sourced from the gene expression omnibus. We utilized several software packages such as Seurat, DoubletFinder, Harmony, Pi, GSVA, CellChat and Monocle from R software together with pySCENIC from Python, to analyse the single-cell RNA sequencing (scRNA-seq) data collected from the PDAC samples. This study involved the analysis of a comprehensive sample of 22,124 cells, which were classified into distinct cell types. These cell types encompassed endothelial and epithelial cells, PDAC cells, as well as various immune cells, including CD4+ T cells, CD8+ T cells, NK cells, B cells, plasma cells, mast cells, monocytes, DC cells and different subtypes of macrophages, namely C0 macrophage TGM2+, C1 macrophage PFN1+, C2 macrophage GAS6+ and C3 macrophage APOC3+. The differentiation between tumour cells and epithelial cells was achieved by the implementation of CopyKat analysis, resulting in the detection and categorization of 1941 PDAC cells. The amplification/deletion patterns observed in PDAC cells on many chromosomes differ significantly from those observed in epithelial cells. The study of Pseudotime Trajectories demonstrated that the C0 macrophage subtype expressing TGM2+ had the lowest level of differentiation. Additionally, the examination of gene set scores related to efferocytosis suggested that this subtype displayed higher activity during the efferocytosis process compared to other subtypes. The most active transcription factors for each macrophage subtype were identified as BACH1, NFE2, TEAD4 and ARID3A. In conclusion, the examination of human PDAC tissue samples using immunofluorescence analysis demonstrated the co-localization of CD68 and CD11b within regions exhibiting the presence of keratin (KRT) and alpha-smooth muscle actin (α-SMA). This observation implies a spatial association between macrophages, fibroblasts, and epithelial cells. There is variation in the expression of efferocytosis-associated genes between C0 macrophage TGM2+ and other macrophage cell types. This observation implies that the diversity of macrophage cells might potentially influence the metastatic advancement of PDAC. Moreover, the central transcription factor of different macrophage subtypes offers a promising opportunity for targeted immunotherapy in the treatment of PDAC.
Collapse
Affiliation(s)
- Shaoliang Zhu
- Department of Hepatobiliary, Pancreas and Spleen SurgeryThe People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical SciencesNanningChina
| | - Quan Cheng
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mengjie Zou
- Department of NephrologyThe People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical SciencesNanningChina
| | - Chunxing Li
- Department of Operating RoomThe People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical SciencesNanningChina
| | - Yi Tang
- Department of Hepatobiliary, Pancreas and Spleen SurgeryThe People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical SciencesNanningChina
| | - Longjie Xia
- Department of Cosmetology and Plastic Surgery CenterThe People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical SciencesNanningChina
| | - Yanming Jiang
- Department of GynecologyThe People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical SciencesNanningChina
| | - Zheng Gong
- Department of AnesthesiologyThe People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical SciencesNanningChina
| | - Zhenyong Tang
- Department of Hepatobiliary, Pancreas and Spleen SurgeryThe People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical SciencesNanningChina
| | - Yuntian Tang
- Department of Hepatobiliary, Pancreas and Spleen SurgeryThe People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical SciencesNanningChina
| | - Honglin Luo
- Institute of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical SciencesNanningChina
| | - Ningfu Peng
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningChina
| | - Xiaojing Wang
- Department of Rheumatology and Immunology, Tongren Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaofeng Dong
- Department of Hepatobiliary, Pancreas and Spleen SurgeryThe People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical SciencesNanningChina
| |
Collapse
|
12
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Xiao Y, Liu R, Li N, Li Y, Huang X. Role of the ubiquitin-proteasome system on macrophages in the tumor microenvironment. J Cell Physiol 2024; 239:e31180. [PMID: 38219045 DOI: 10.1002/jcp.31180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment, and their different polarization states play multiple roles in tumors by secreting cytokines, chemokines, and so on, which are closely related to tumor development. In addition, the enrichment of TAMs is often associated with poor prognosis of tumors. Thus, targeting TAMs is a potential tumor treatment strategy, in which therapeutic approaches such as reducing TAMs numbers, remodeling TAMs phenotypes, and altering their functions are being extensively investigated. Meanwhile, the ubiquitin-proteasome system (UPS), an important mechanism of protein hydrolysis in eukaryotic cells, participates in cellular processes by regulating the activity and stability of key proteins. Interestingly, UPS plays a dual role in the process of tumor development, and its role in TAMs deserve to be investigated in depth. This review builds on this foundation to further explore the multiple roles of UPS on TAMs and identifies a promising approach to treat tumors by targeting TAMs with UPS.
Collapse
Affiliation(s)
- Yue Xiao
- First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Ruiqian Liu
- School of Future Technology, Nanchang University, Nanchang, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Liu K, Li W, Xiao Y, Lei M, Zhang M, Min J. Molecular mechanism of specific DNA sequence recognition by NRF1. Nucleic Acids Res 2024; 52:953-966. [PMID: 38055835 PMCID: PMC10810270 DOI: 10.1093/nar/gkad1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Nuclear respiratory factor 1 (NRF1) regulates the expression of genes that are vital for mitochondrial biogenesis, respiration, and various other cellular processes. While NRF1 has been reported to bind specifically to GC-rich promoters as a homodimer, the precise molecular mechanism governing its recognition of target gene promoters has remained elusive. To unravel the recognition mechanism, we have determined the crystal structure of the NRF1 homodimer bound to an ATGCGCATGCGCAT dsDNA. In this complex, NRF1 utilizes a flexible linker to connect its dimerization domain (DD) and DNA binding domain (DBD). This configuration allows one NRF1 monomer to adopt a U-turn conformation, facilitating the homodimer to specifically bind to the two TGCGC motifs in the GCGCATGCGC consensus sequence from opposite directions. Strikingly, while the NRF1 DBD alone could also bind to the half-site (TGCGC) DNA of the consensus sequence, the cooperativity between DD and DBD is essential for the binding of the intact GCGCATGCGC sequence and the transcriptional activity of NRF1. Taken together, our results elucidate the molecular mechanism by which NRF1 recognizes specific DNA sequences in the promoters to regulate gene expression.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Weifang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yuqing Xiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ming Lei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ming Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
15
|
Shu F, Shi Y, Shan X, Zha W, Fan R, Xue W. SIAH2-Mediated Degradation of ACSL4 Inhibits the Anti-Tumor Activity of CD8+ T Cells in Hepatocellular Carcinoma. Crit Rev Eukaryot Gene Expr 2024; 34:1-13. [PMID: 38842200 DOI: 10.1615/critreveukaryotgeneexpr.2024051981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
SIAH2 function as an oncogene in various cancer. However, the roles of SIAH2 in hepatocellular carcinoma (HCC) are still unknown. This study aimed to investigate the roles of SIAH2 in HCC. Immunohistochemistry was used determine SIAH2 and ACSL4 expression in clinical samples. RT-qPCR was used to determine mRNA expression. Western blot assay was applied for determining protein expression. Ubiquitination assay was conducted for determining ubiquitination of ACSL4. Xenograft experiment was applied for determining tumor growth. Flow cytometry was applied to determine the functions of CD4+ and CD8+ T cells. SIAH2 expression was overexpressed in HCC tumors. High levels of SIAH2 predicted poor outcomes. However, SIAH2 knockdown promoted the proliferation of CD8+ T cells as well as promoted the ferroptosis of tumor cells, inhibiting tumor growth in HCC. ACSL4 is required for CD8+ T cell-mediated ferroptosis of HCC cells. However, SIAH2 induced ubiquitination of ACSL4 and inhibited its expression. SIAH2 specific inhibitor menadione promoted the immune checkpoint blockade. Taken together, SIAH2-mediated inactivation of CD8+ T cells inhibits the ferroptosis of HCC via mediating ubiquitination of ACSL4. Therefore, targeting SIAH2 may be a promising strategy for HCC.
Collapse
Affiliation(s)
- Fangzheng Shu
- Medical College of Nantong University, Nantong, 226007, Jiangsu, China; Department of General Surgery, Dafeng People's Hospital, Yancheng, 224100, Jiangsu, China
| | - Yuhua Shi
- Department of General Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, No. 75, Juchang Road, Yancheng, 224000, Jiangsu, China
| | - Xiangxiang Shan
- Department of Geriatric Medicine, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, No. 166, Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Wenzhang Zha
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, No. 166, Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Rengen Fan
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, No. 166, Yulong West Road, Yancheng, 224000, Jiangsu, China
| | | |
Collapse
|
16
|
Hu P, Zhou P, Sun T, Liu D, Yin J, Liu L. Therapeutic protein PAK restrains the progression of triple negative breast cancer through degrading SREBP-1 mRNA. Breast Cancer Res 2023; 25:151. [PMID: 38082285 PMCID: PMC10714641 DOI: 10.1186/s13058-023-01749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most challenging subtype of breast cancer. Studies have implicated an upregulation of lipid synthesis pathways in the initiation and progression of TNBC. Targeting lipid synthesis pathways may be a promising therapeutic strategy for TNBC. Our previous study developed a therapeutic protein PAK with passive targeting and inhibiting tumor proliferation. In this study, we further substantiate the efficacy of PAK in TNBC. Transcriptome sequencing analysis revealed PAK-mediated downregulation of genes involved in fatty acid synthesis, including key genes like SREBP-1, FASN, and SCD1. RNA immunoprecipitation experiments demonstrated a significant binding affinity of PAK to SREBP-1 mRNA, facilitating its degradation process. Both in vitro and in vivo models, PAK hampered TNBC progression by downregulating lipid synthesis pathways. In conclusion, this study emphasizes that PAK inhibits the progression of TNBC by binding to and degrading SREBP-1 mRNA, revealing a new strategy for regulating lipid synthesis in the intervention of TNBC and its therapeutic significance.
Collapse
Affiliation(s)
- Pan Hu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Peiyi Zhou
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Tieyun Sun
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
17
|
Zhang M, Wang Z, Yang G, Han L, Wang X. NFE2L1 restrains ferroptosis by transcriptionally regulating HJURP and participates in the progress of oral squamous cell carcinoma. J Bioenerg Biomembr 2023; 55:467-478. [PMID: 37848756 DOI: 10.1007/s10863-023-09987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy with increasing mortality and high recurrence. In this work, we aim to explore the functional role of NFE2 like bZIP transcription factor 1 (NFE2L1) in OSCC progression. Based on databases analysis, we found that NFE2L1 was overexpressed in OSCC tumor tissues, and elevated NFE2L1 level induced poor prognosis of OSCC patients. Our results showed that NFE2L1 is upregulated in OSCC cells and overexpression of NFE2L1 promotes cell proliferation, and reduces the sensitivity of OSCC cells to erastin-induced ferroptosis. NFE2L1 upregulation decreased the levels of Fe2+, lipid reactive oxygen species and content of malondialdehyde, and increased the level of the key negative regulator of ferroptosis, GPX4 and SLC7A11. In NFE2L1 suppressed cells, these trends were reversed. Further results of dual luciferase reporter and chromatin immunoprecipitation assays confirmed that NFE2L1 could bind to the promoter of Holliday junction recognition protein (HJURP) to increase the transcriptional activity of HJURP, thus upregulating its expression. Inhibition of HJURP attenuated the proliferation and ferroptosis inhibition in NFE2L1 upregulated cells. In vivo tumorigenicity assay further proved that NFE2L1 promotes OSCC tumor growth. In summary, NFE2L1 restrains ferroptosis by transcriptionally regulating HJURP and participates in the progress of OSCC. Thus, NFE2L1 plays a key role in OSCC development and may be a promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Meixia Zhang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
- Department of Stomatology, The First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Zhonghou Wang
- Department of Stomatology, The First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Guang Yang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
- Department of Oral & Maxillofacial Surgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, P. R. China
| | - Linfu Han
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Xiaofeng Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China.
| |
Collapse
|
18
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
19
|
Zhao T, Zhang J, Lei H, Meng Y, Cheng H, Zhao Y, Geng G, Mu C, Chen L, Liu Q, Luo Q, Zhang C, Long Y, Su J, Wang Y, Li Z, Sun J, Chen G, Li Y, Liao X, Shang Y, Hu G, Chen Q, Zhu Y. NRF1-mediated mitochondrial biogenesis antagonizes innate antiviral immunity. EMBO J 2023; 42:e113258. [PMID: 37409632 PMCID: PMC10425878 DOI: 10.15252/embj.2022113258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Mitochondrial biogenesis is the process of generating new mitochondria to maintain cellular homeostasis. Here, we report that viruses exploit mitochondrial biogenesis to antagonize innate antiviral immunity. We found that nuclear respiratory factor-1 (NRF1), a vital transcriptional factor involved in nuclear-mitochondrial interactions, is essential for RNA (VSV) or DNA (HSV-1) virus-induced mitochondrial biogenesis. NRF1 deficiency resulted in enhanced innate immunity, a diminished viral load, and morbidity in mice. Mechanistically, the inhibition of NRF1-mediated mitochondrial biogenesis aggravated virus-induced mitochondrial damage, promoted the release of mitochondrial DNA (mtDNA), increased the production of mitochondrial reactive oxygen species (mtROS), and activated the innate immune response. Notably, virus-activated kinase TBK1 phosphorylated NRF1 at Ser318 and thereby triggered the inactivation of the NRF1-TFAM axis during HSV-1 infection. A knock-in (KI) strategy that mimicked TBK1-NRF1 signaling revealed that interrupting the TBK1-NRF1 connection ablated mtDNA release and thereby attenuated the HSV-1-induced innate antiviral response. Our study reveals a previously unidentified antiviral mechanism that utilizes a NRF1-mediated negative feedback loop to modulate mitochondrial biogenesis and antagonize innate immune response.
Collapse
Affiliation(s)
- Tian Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hong Lei
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yuanyuan Meng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongcheng Cheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yanping Zhao
- School of Statistics and Data Science, LPMC and KLMDASRNankai UniversityTianjinChina
| | - Guangfeng Geng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chenglong Mu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Linbo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qiangqiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qian Luo
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chuanmei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yijia Long
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jingyi Su
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yinhao Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Zhuoya Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaxing Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yanjun Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Xudong Liao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASRNankai UniversityTianjinChina
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
20
|
Ye F, Liang Y, Wang Y, Le Yang R, Luo D, Li Y, Jin Y, Han D, Chen B, Zhao W, Wang L, Chen X, Ma T, Kong X, Yang Q. Cancer-associated fibroblasts facilitate breast cancer progression through exosomal circTBPL1-mediated intercellular communication. Cell Death Dis 2023; 14:471. [PMID: 37495592 PMCID: PMC10372047 DOI: 10.1038/s41419-023-05986-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer is the major common malignancy worldwide among women. Previous studies reported that cancer-associated fibroblasts (CAFs) showed pivotal roles in regulating tumor progression via exosome-mediated cellular communication. However, the detailed mechanism underlying the exosomal circRNA from CAFs in breast cancer progression remains ambiguous. Here, exosomal circRNA profiling of breast cancer-derived CAFs and normal fibroblasts (NFs) was detected by high-throughput sequencing, and upregulated circTBPL1 expression was identified in CAF exosomes. The exosomal circTBPL1 from CAFs could be transferred to breast cancer cells and promoted cell proliferation, migration, and invasion. Consistently, circTBPL1 knockdown in CAFs attenuated their tumor-promoting ability. Further exploration identified miR-653-5p as an inhibitory target of circTBPL1, and ectopic expression of miR-653-5p could partially reverse the malignant phenotypes induced by circTBPL1 overexpression in breast cancer. Additionally, TPBG was selected as a downstream target gene, and circTBPL1 could protect TPBG from miR-653-5p-mediated degradation, leading to enhanced breast cancer progression. Significantly, the accelerated tumor progression triggered by exosomal circTBPL1 from CAFs was confirmed in xenograft models. Taken together, these results revealed that exosomal circTBPL1 derived from CAFs contributed to cancer progression via miR-653-5p/TPBG pathway, indicating the potential of exosomal circTBPL1 as a biomarker and novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Fangzhou Ye
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yajie Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Robert Le Yang
- Shandong Experimental High School, 250001, Jinan, Shandong, P. R. China
| | - Dan Luo
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yuhan Jin
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Tingting Ma
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Xiaoli Kong
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China.
- Research Institute of Breast Cancer, Shandong University, 250012, Jinan, Shandong, P. R. China.
| |
Collapse
|
21
|
Han D, Wang L, Jiang S, Yang Q. The ubiquitin-proteasome system in breast cancer. Trends Mol Med 2023:S1471-4914(23)00096-5. [PMID: 37328395 DOI: 10.1016/j.molmed.2023.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Ubiquitin-proteasome system (UPS) is a selective proteolytic system that is associated with the expression or function of target proteins and participates in various physiological and pathological processes of breast cancer. Inhibitors targeting the 26S proteasome in combination with other drugs have shown promising therapeutic effects in the clinical treatment of breast cancer. Moreover, several inhibitors/stimulators targeting other UPS components are also effective in preclinical studies, but have not yet been applied in the clinical treatment of breast cancer. Therefore, it is vital to comprehensively understand the functions of ubiquitination in breast cancer and to identify potential tumor promoters or tumor suppressors among UPS family members, with the aim of developing more effective and specific inhibitors/stimulators targeting specific components of this system.
Collapse
Affiliation(s)
- Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shan Jiang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Research Institute of Breast Cancer, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
22
|
Li XM, Zhao ZY, Yu X, Xia QD, Zhou P, Wang SG, Wu HL, Hu J. Exploiting E3 ubiquitin ligases to reeducate the tumor microenvironment for cancer therapy. Exp Hematol Oncol 2023; 12:34. [PMID: 36998063 DOI: 10.1186/s40164-023-00394-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
AbstractTumor development relies on a complex and aberrant tissue environment in which cancer cells receive the necessary nutrients for growth, survive through immune escape, and acquire mesenchymal properties that mediate invasion and metastasis. Stromal cells and soluble mediators in the tumor microenvironment (TME) exhibit characteristic anti-inflammatory and protumorigenic activities. Ubiquitination, which is an essential and reversible posttranscriptional modification, plays a vital role in modulating the stability, activity and localization of modified proteins through an enzymatic cascade. This review was motivated by accumulating evidence that a series of E3 ligases and deubiquitinases (DUBs) finely target multiple signaling pathways, transcription factors and key enzymes to govern the functions of almost all components of the TME. In this review, we systematically summarize the key substrate proteins involved in the formation of the TME and the E3 ligases and DUBs that recognize these proteins. In addition, several promising techniques for targeted protein degradation by hijacking the intracellular E3 ubiquitin-ligase machinery are introduced.
Collapse
|
23
|
Xu Z, Wu Y, Yang M, Wei H, Pu J. CBX2-mediated suppression of SIAH2 triggers WNK1 accumulations to promote glycolysis in hepatocellular carcinoma. Exp Cell Res 2023; 426:113513. [PMID: 36780970 DOI: 10.1016/j.yexcr.2023.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Previous studies have highlighted the poor prognosis of liver cancer, and treatment effects are overall limited. We aimed to confirm the biological roles of SIAH2 in liver cancer and provide potential therapeutic targets. Differential analysis was conducted based on public datasets and found that SIAH2 expressed lowly in HCC samples relative to normal tissues, which was demonstrated in tumor samples via immunohistochemistry (IHC). Besides, SIAH2 overexpression could significantly suppress HCC proliferation. SIAH2 deficiency induced cell proliferation, migration and self-renewal abilities in vitro and in vivo. Mechanistically, SIAH2 could interact with WNK1, and trigger the ubiquitination and degradation of WNK1 proteins. In addition, low SIAH2 depended on elevated WNK1 proteins to drive HCC malignant features, including proliferation, migration and stemness. Meanwhile, we further found that CBX2 could regulate SIAH2 expressions. CBX2 cooperated with EZH2 to mediate the H3K27me3 enrichment on the promoter region of SIAH2 to suppress its transcriptional levels. High CBX2/EZH2 levels in HCC correlated with poor prognosis of patients. Gene set enrichment analysis (GSEA) further implicated that WNK1 correlates tightly with glycolytic process in HCC samples. WNK1 overexpression was found to notably enhance glycolytic activity, whereas WNK1 deficiency could significantly suppress the HCC glycolysis activity. Lastly, the subcutaneous tumor model further demonstrated that targeting WNK1 was effective to inhibit the in vivo tumor growth of SIAH2low HCC. Collectively, down-regulated SIAH2 expressions induced by CBX2/EZH2 could drive progression and glycolysis via accumulating WNK1 proteins, indicating that CBX2/SIAH2/WNK1 axis is a potential prognostic biomarker and therapeutic vulnerability for human HCC.
Collapse
Affiliation(s)
- Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, China
| | - Yinghong Wu
- Graduate College of Youjiang Medical University for Nationalities, 533000, China
| | - Meng Yang
- Graduate College of Youjiang Medical University for Nationalities, 533000, China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalitie, 533000, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, China.
| |
Collapse
|
24
|
Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e203. [PMID: 36703877 PMCID: PMC9870816 DOI: 10.1002/mco2.203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a persistent physiological feature of many different solid tumors and a key driver of malignancy, and in recent years, it has been recognized as an important target for cancer therapy. Hypoxia occurs in the majority of solid tumors due to a poor vascular oxygen supply that is not sufficient to meet the needs of rapidly proliferating cancer cells. A hypoxic tumor microenvironment (TME) can reduce the effectiveness of other tumor therapies, such as radiotherapy, chemotherapy, and immunotherapy. In this review, we discuss the critical role of hypoxia in tumor development, including tumor metabolism, tumor immunity, and tumor angiogenesis. The treatment methods for hypoxic TME are summarized, including hypoxia-targeted therapy and improving oxygenation by alleviating tumor hypoxia itself. Hyperoxia therapy can be used to improve tissue oxygen partial pressure and relieve tumor hypoxia. We focus on the underlying mechanisms of hyperoxia and their impact on current cancer therapies and discuss the prospects of hyperoxia therapy in cancer treatment.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Kua Liu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Qinyu He
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Xiaosong Gu
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| |
Collapse
|
25
|
Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, Zheng Q, Chen C, Sun S. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol 2023; 12:3. [PMID: 36624542 PMCID: PMC9830930 DOI: 10.1186/s40164-022-00363-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Breast cancer heterogeneity determines cancer progression, treatment effects, and prognosis. However, the precise mechanism for this heterogeneity remains unknown owing to its complexity. Here, we summarize the origins of breast cancer heterogeneity and its influence on disease progression, recurrence, and therapeutic resistance. We review the possible mechanisms of heterogeneity and the research methods used to analyze it. We also highlight the importance of cell interactions for the origins of breast cancer heterogeneity, which can be further categorized into cooperative and competitive interactions. Finally, we provide new insights into precise individual treatments based on heterogeneity.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ling Zhan
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Lan Luo
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
26
|
Rinaldi L, Senatore E, Iannucci R, Chiuso F, Feliciello A. Control of Mitochondrial Activity by the Ubiquitin Code in Health and Cancer. Cells 2023; 12:234. [PMID: 36672167 PMCID: PMC9856579 DOI: 10.3390/cells12020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cellular homeostasis is tightly connected to the broad variety of mitochondrial functions. To stay healthy, cells need a constant supply of nutrients, energy production and antioxidants defenses, undergoing programmed death when a serious, irreversible damage occurs. The key element of a functional integration of all these processes is the correct crosstalk between cell signaling and mitochondrial activities. Once this crosstalk is interrupted, the cell is not able to communicate its needs to mitochondria, resulting in oxidative stress and development of pathological conditions. Conversely, dysfunctional mitochondria may affect cell viability, even in the presence of nutrients supply and energy production, indicating the existence of feed-back control mechanisms between mitochondria and other cellular compartments. The ubiquitin proteasome system (UPS) is a multi-step biochemical pathway that, through the conjugation of ubiquitin moieties to specific protein substrates, controls cellular proteostasis and signaling, removing damaged or aged proteins that might otherwise accumulate and affect cell viability. In response to specific needs or changed extracellular microenvironment, the UPS modulates the turnover of mitochondrial proteins, thus influencing the organelle shape, dynamics and function. Alterations of the dynamic and reciprocal regulation between mitochondria and UPS underpin genetic and proliferative disorders. This review focuses on the mitochondrial metabolism and activities supervised by UPS and examines how deregulation of this control mechanism results in proliferative disorders and cancer.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, 80131 Naples, Italy
| |
Collapse
|
27
|
Liu Q, Luo Q, Feng J, Zhao Y, Ma B, Cheng H, Zhao T, Lei H, Mu C, Chen L, Meng Y, Zhang J, Long Y, Su J, Chen G, Li Y, Hu G, Liao X, Chen Q, Zhu Y. Hypoxia-induced proteasomal degradation of DBC1 by SIAH2 in breast cancer progression. eLife 2022; 11:81247. [PMID: 35913115 PMCID: PMC9377797 DOI: 10.7554/elife.81247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
DBC1 has been characterized as a key regulator of physiological and pathophysiological activities, such as DNA damage, senescence, and tumorigenesis. However, the mechanism by which the functional stability of DBC1 is regulated has yet to be elucidated. Here, we report that the ubiquitination-mediated degradation of DBC1 is regulated by the E3 ubiquitin ligase SIAH2 and deubiquitinase OTUD5 under hypoxic stress. Mechanistically, hypoxia promoted DBC1 to interact with SIAH2 but not OTUD5, resulting in the ubiquitination and subsequent degradation of DBC1 through the ubiquitin–proteasome pathway. SIAH2 knockout inhibited tumor cell proliferation and migration, which could be rescued by double knockout of SIAH2/CCAR2. Human tissue microarray analysis further revealed that the SIAH2/DBC1 axis was responsible for tumor progression under hypoxic stress. These findings define a key role of the hypoxia-mediated SIAH2-DBC1 pathway in the progression of human breast cancer and provide novel insights into the metastatic mechanism of breast cancer.
Collapse
Affiliation(s)
- Qiangqiang Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qian Luo
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jianyu Feng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yanping Zhao
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Biao Ma
- College of Life Sciences, Nankai University, Tianjin, China
| | | | - Tian Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hong Lei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chenglong Mu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Linbo Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanyuan Meng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jiaojiao Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yijia Long
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jingyi Su
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yanjun Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gang Hu
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Xudong Liao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yushan Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
28
|
Zhang X, Meng T, Cui S, Liu D, Pang Q, Wang P. Roles of ubiquitination in the crosstalk between tumors and the tumor microenvironment (Review). Int J Oncol 2022; 61:84. [PMID: 35616129 PMCID: PMC9170352 DOI: 10.3892/ijo.2022.5374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 11/06/2022] Open
Abstract
The interaction between a tumor and the tumor microenvironment (TME) plays a key role in tumorigenesis and tumor progression. Ubiquitination, a crucial post-translational modification for regulating protein degradation and turnover, plays a role in regulating the crosstalk between a tumor and the TME. Thus, identifying the roles of ubiquitination in the process may assist researchers to investigate the mechanisms underlying tumorigenesis and tumor progression. In the present review article, new insights into the substrates for ubiquitination that are involved in the regulation of hypoxic environments, angiogenesis, chronic inflammation-mediated tumor formation, and the function of cancer-associated fibroblasts and infiltrating immune cells (tumor-associated macrophages, T-cells, myeloid-derived suppressor cells, dendritic cells, and natural killer cells) are summarized. In addition, the potential targets of the ubiquitination proteasome system within the TME for cancer therapy and their therapeutic effects are reviewed and discussed.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Dongwu Liu
- Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Qiuxiang Pang
- Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| |
Collapse
|
29
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Mammalian development demands precision. Millions of molecules must be properly located in temporal order, and their function regulated, to orchestrate important steps in cell cycle progression, apoptosis, migration and differentiation, to shape developing embryos. Ubiquitin and its associated enzymes act as cellular guardians to ensure precise spatio-temporal control of key molecules during each of these important cellular processes. Loss of precision results in numerous examples of embryological disorders or even cancer. This Review discusses the crucial roles of E3 ubiquitin ligases during key steps of early mammalian development and their roles in human disease, and considers how new methods to manipulate and exploit the ubiquitin regulatory machinery - for example, the development of molecular glues and PROTACs - might facilitate clinical therapy.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Zhuoyao Chen
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Guo J, Ye F, Xie W, Zhang X, Zeng R, Sheng W, Mi Y, Sheng X. The HOXC-AS2/miR-876-5p/HKDC1 axis regulates endometrial cancer progression in a high glucose-related tumor microenvironment. Cancer Sci 2022; 113:2297-2310. [PMID: 35485648 PMCID: PMC9277262 DOI: 10.1111/cas.15384] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
The tumor microenvironment (TME) is related to chronic inflammation and is currently identified as a risk factor for the occurrence and development of endometrial cancer (EC). Pyroptosis is a new proinflammatory form of programmed cell death that plays a critical role in the progression of multiple diseases. However, the important role of pyroptosis in high‐glucose (HG)‐related EC and the underlying molecular mechanisms remain elusive. In the present study, transcriptome high‐throughput sequencing revealed significantly higher hexokinase domain‐containing 1 (HKDC1) expression in EC patients with diabetes than in EC patients with normal glucose. Mechanistically, HKDC1 regulates HG‐induced cell pyroptosis by modulating the production of reactive oxygen species and pyroptosis‐induced cytokine release in EC. In addition, HKDC1 regulates TME formation by enhancing glycolysis, promoting a metabolic advantage in lactate‐rich environments to further accelerate EC progression. Subsequently, miR‐876‐5p was predicted to target the HKDC1 mRNA, and HOXC‐AS2 was identified to potentially inhibit the miR‐876‐5p/HKDC1 axis in regulating cell pyroptosis in HG‐related EC. Collectively, we elucidated the regulatory role of the HOXC‐AS2/miR‐876‐5p/HKDC1 signal transduction axis in EC cell pyroptosis at the molecular level, which may provide an effective therapeutic target for patients with diabetes who are diagnosed with EC.
Collapse
Affiliation(s)
- Jing Guo
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Feng Ye
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Wenli Xie
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Xinxin Zhang
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, 250033, China
| | - Ru Zeng
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Wang Sheng
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Yanjun Mi
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Xiugui Sheng
- Cancer Hospital of Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, Guangdong, 518116, China
| |
Collapse
|
31
|
Wang D, Wan B, Zhang X, Sun P, Lu S, Liu C, Zhu L. Nuclear respiratory factor 1 promotes the growth of liver hepatocellular carcinoma cells via E2F1 transcriptional activation. BMC Gastroenterol 2022; 22:198. [PMID: 35448958 PMCID: PMC9027447 DOI: 10.1186/s12876-022-02260-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recent studies have shown that functional mitochondria are essential for cancer cells. Nuclear respiratory factor 1 (NRF1) is a transcription factor that activates mitochondrial biogenesis and the expression of the respiratory chain, but little is known about its role and underlying mechanism in liver hepatocellular carcinoma (LIHC). Methods NRF1 expression was analyzed via public databases and 24 paired LIHC samples. Clinical-pathological information and follow-up data were collected from 165 patients with LIHC or online datasets. Furthermore, cellular proliferation and the cell cycle were analyzed by MTT, Clone-forming assay and flow cytometric analyses. NRF1 target genes were analyzed by Chromatin immunoprecipitation sequencing (ChIP-Seq). PCR and WB analysis was performed to detect the expression of related genes. ChIP and luciferase activity assays were used to identify NRF1 binding sites. Results Our results showed that NRF1 expression was upregulated in LIHC compared to normal tissues. NRF1 expression was associated with tumour size and poor prognosis in patients. Knockdown of NRF1 repressed cell proliferation and overexpression of NRF1 accelerated the G1/S phase transition. Additionally, data from ChIP-seq pointed out that some NRF1 target genes are involved in the cell cycle. Our findings indicated that NRF1 directly binds to the E2F1 promoter as a transcription factor and regulates its gene expression. Conclusion Therefore, this study revealed that NRF1 promotes cancer cell growth via the indirect transcriptional activation of E2F1 and is a potential biomarker in LIHC. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02260-7.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Special Environmental Medicine, Nantong University, 9 Se Yuan Road, Nantong, 226019, Jiangsu, China
| | - Baolan Wan
- Institute of Special Environmental Medicine, Nantong University, 9 Se Yuan Road, Nantong, 226019, Jiangsu, China
| | - Xiaojing Zhang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Pingping Sun
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shu Lu
- Department of Intensive Care Unit, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chenxu Liu
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, 9 Se Yuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
32
|
Feng S, Xia T, Ge Y, Zhang K, Ji X, Luo S, Shen Y. Computed Tomography Imaging-Based Radiogenomics Analysis Reveals Hypoxia Patterns and Immunological Characteristics in Ovarian Cancer. Front Immunol 2022; 13:868067. [PMID: 35418998 PMCID: PMC8995567 DOI: 10.3389/fimmu.2022.868067] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose The hypoxic microenvironment is involved in the tumorigenesis of ovarian cancer (OC). Therefore, we aim to develop a non-invasive radiogenomics approach to identify a hypoxia pattern with potential application in patient prognostication. Methods Specific hypoxia-related genes (sHRGs) were identified based on RNA-seq of OC cell lines cultured with different oxygen conditions. Meanwhile, multiple hypoxia-related subtypes were identified by unsupervised consensus analysis and LASSO-Cox regression analysis. Subsequently, diversified bioinformatics algorithms were used to explore the immune microenvironment, prognosis, biological pathway alteration, and drug sensitivity among different subtypes. Finally, optimal radiogenomics biomarkers for predicting the risk status of patients were developed by machine learning algorithms. Results One hundred forty sHRGs and three types of hypoxia-related subtypes were identified. Among them, hypoxia-cluster-B, gene-cluster-B, and high-risk subtypes had poor survival outcomes. The subtypes were closely related to each other, and hypoxia-cluster-B and gene-cluster-B had higher hypoxia risk scores. Notably, the low-risk subtype had an active immune microenvironment and may benefit from immunotherapy. Finally, a four-feature radiogenomics model was constructed to reveal hypoxia risk status, and the model achieved area under the curve (AUC) values of 0.900 and 0.703 for the training and testing cohorts, respectively. Conclusion As a non-invasive approach, computed tomography-based radiogenomics biomarkers may enable the pretreatment prediction of the hypoxia pattern, prognosis, therapeutic effect, and immune microenvironment in patients with OC.
Collapse
Affiliation(s)
- Songwei Feng
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tianyi Xia
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yu Ge
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ke Zhang
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuan Ji
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shanhui Luo
- Department of Gynaecology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yang Shen
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
33
|
Wei J, Hu M, Du H. Improving Cancer Immunotherapy: Exploring and Targeting Metabolism in Hypoxia Microenvironment. Front Immunol 2022; 13:845923. [PMID: 35281061 PMCID: PMC8907427 DOI: 10.3389/fimmu.2022.845923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Although immunotherapy has achieved good results in various cancer types, a large proportion of patients are limited from the benefits. Hypoxia and metabolic reprogramming are the common and critical factors that impact immunotherapy response. Here, we present current research on the metabolism reprogramming induced by hypoxia on antitumor immunity and discuss the recent progression among preclinical and clinical trials exploring the therapeutic effects combining targeting hypoxia and metabolism with immunotherapy. By evaluating the little clinical translation of the combined therapy, we provide insight into "understanding and regulating cellular metabolic plasticity under the current tumor microenvironment (TME)," which is essential to explore the strategy for boosting immune responses by targeting the metabolism of tumor cells leading to harsh TMEs. Therefore, we highlight the potential value of advanced single-cell technology in revealing the metabolic heterogeneity and corresponding phenotype of each cell subtype in the current hypoxic lesion from the clinical patients, which can uncover potential metabolic targets and therapeutic windows to enhance immunotherapy.
Collapse
Affiliation(s)
| | | | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
34
|
Xiao M, He J, Yin L, Chen X, Zu X, Shen Y. Tumor-Associated Macrophages: Critical Players in Drug Resistance of Breast Cancer. Front Immunol 2022; 12:799428. [PMID: 34992609 PMCID: PMC8724912 DOI: 10.3389/fimmu.2021.799428] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Drug resistance is one of the most critical challenges in breast cancer (BC) treatment. The occurrence and development of drug resistance are closely related to the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), the most important immune cells in TIME, are essential for drug resistance in BC treatment. In this article, we summarize the effects of TAMs on the resistance of various drugs in endocrine therapy, chemotherapy, targeted therapy, and immunotherapy, and their underlying mechanisms. Based on the current overview of the key role of TAMs in drug resistance, we discuss the potential possibility for targeting TAMs to reduce drug resistance in BC treatment, By inhibiting the recruitment of TAMs, depleting the number of TAMs, regulating the polarization of TAMs and enhancing the phagocytosis of TAMs. Evidences in our review support it is important to develop novel therapeutic strategies to target TAMs in BC to overcome the treatment of resistance.
Collapse
Affiliation(s)
- Maoyu Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiguan Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
35
|
Li K, Li J, Ye M, Jin X. The role of Siah2 in tumorigenesis and cancer therapy. Gene 2022; 809:146028. [PMID: 34687788 DOI: 10.1016/j.gene.2021.146028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Seven in absentia homolog 2 (Siah2), an RING E3 ubiquitin ligases, has been characterized to play the vital role in tumorigenesis and cancer progression. Numerous studies have determined that Siah2 promotes tumorigenesis in a variety of human malignancies such as prostate, lung, gastric, and liver cancers. However, several studies revealed that Siah2 exhibited tumor suppressor function by promoting the proteasome-mediated degradation of several oncoproteins, suggesting that Siah2 could exert its biological function according to different stages of tumor development. Moreover, Siah2 is subject to complex regulation, especially the phosphorylation of Siah2 by a variety of protein kinases to regulate its stability and activity. In this review, we describe the structure and regulation of Siah2 in human cancer. Moreover, we highlight the critical role of Siah2 in tumorigenesis. Furthermore, we note that the potential clinical applications of targeting Siah2 in cancer therapy.
Collapse
Affiliation(s)
- Kailang Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
36
|
Degboé Y, Poupot R, Poupot M. Repolarization of Unbalanced Macrophages: Unmet Medical Need in Chronic Inflammation and Cancer. Int J Mol Sci 2022; 23:1496. [PMID: 35163420 PMCID: PMC8835955 DOI: 10.3390/ijms23031496] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Monocytes and their tissue counterpart macrophages (MP) constitute the front line of the immune system. Indeed, they are able to rapidly and efficiently detect both external and internal danger signals, thereby activating the immune system to eradicate the disturbing biological, chemical, or physical agents. They are also in charge of the control of the immune response and account for the repair of the damaged tissues, eventually restoring tissue homeostasis. The balance between these dual activities must be thoroughly controlled in space and time. Any sustained unbalanced response of MP leads to pathological disorders, such as chronic inflammation, or favors cancer development and progression. In this review, we take advantage of our expertise in chronic inflammation, especially in rheumatoid arthritis, and in cancer, to highlight the pivotal role of MP in the physiopathology of these disorders and to emphasize the repolarization of unbalanced MP as a promising therapeutic strategy to control these diseases.
Collapse
Affiliation(s)
- Yannick Degboé
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France;
- Département de Rhumatologie, CHU Toulouse, 31029 Toulouse, France
| | - Rémy Poupot
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France;
| | - Mary Poupot
- Centre de Recherche en Cancérologie de Toulouse, Université Toulouse, INSERM, UPS, 31037 Toulouse, France;
| |
Collapse
|
37
|
Choubey V, Zeb A, Kaasik A. Molecular Mechanisms and Regulation of Mammalian Mitophagy. Cells 2021; 11:38. [PMID: 35011599 PMCID: PMC8750762 DOI: 10.3390/cells11010038] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria in the cell are the center for energy production, essential biomolecule synthesis, and cell fate determination. Moreover, the mitochondrial functional versatility enables cells to adapt to the changes in cellular environment and various stresses. In the process of discharging its cellular duties, mitochondria face multiple types of challenges, such as oxidative stress, protein-related challenges (import, folding, and degradation) and mitochondrial DNA damage. They mitigate all these challenges with robust quality control mechanisms which include antioxidant defenses, proteostasis systems (chaperones and proteases) and mitochondrial biogenesis. Failure of these quality control mechanisms leaves mitochondria as terminally damaged, which then have to be promptly cleared from the cells before they become a threat to cell survival. Such damaged mitochondria are degraded by a selective form of autophagy called mitophagy. Rigorous research in the field has identified multiple types of mitophagy processes based on targeting signals on damaged or superfluous mitochondria. In this review, we provide an in-depth overview of mammalian mitophagy and its importance in human health and diseases. We also attempted to highlight the future area of investigation in the field of mitophagy.
Collapse
Affiliation(s)
- Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (A.Z.); (A.K.)
| | | | | |
Collapse
|
38
|
Derivation of a Novel CIHI in Patients with Lung Adenocarcinoma for Estimating Tumor Microenvironment and Clinical Prognosis. DISEASE MARKERS 2021; 2021:4495489. [PMID: 34853621 PMCID: PMC8629668 DOI: 10.1155/2021/4495489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
An interaction between hypoxia and immunity has been confirmed in tumor tissue. However, there is no combined biomarker for diagnosis on this basis. Therefore, we developed a scoring formula based on markers of hypoxia and immunity. Firstly, the hypoxia-immune formula of lung adenocarcinoma (LUAD) was derived using LASSO-Cox regression in three cohorts from public database, and the corresponding score was calculated for each patient. The formula is as follows: combined hypoxia and immune index (CIHI) = LDHA expression × 0.2252 + GAPDH expression × 0.0727 + ANGPTL4 expression × 0.0724 + VEGFC expression × 0.1911 + DKK1 expression × 0.1355 + ADM expression × 0.0588 + BTK expression × −0.1659. Meanwhile, patients were divided into groups according to high and low CIHI, and expression profiles of hypoxia markers and immune markers were analyzed in different groups. CIHI was used to confirm that patients with high CIHI represented a state of hypoxiahigh-immunitylow, which had worse overall survival. We also discussed the evaluation value in the immune microenvironment and clinical application of CIHI. In conclusion, this study developed and validated a hypoxia-immune formula that can guide hypoxia modifier treatment and immunotherapy in LUAD.
Collapse
|
39
|
Ye M, Li L, Liu D, Wang Q, Zhang Y, Zhang J. Identification and validation of a novel zinc finger protein-related gene-based prognostic model for breast cancer. PeerJ 2021; 9:e12276. [PMID: 34721975 PMCID: PMC8530103 DOI: 10.7717/peerj.12276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background Breast invasive carcinoma (BRCA) is a commonly occurring malignant tumor. Zinc finger proteins (ZNFs) constitute the largest transcription factor family in the human genome and play a mechanistic role in many cancers' development. The prognostic value of ZNFs has yet to be approached systematically for BRCA. Methods We analyzed the data of a training set from The Cancer Genome Atlas (TCGA) database and two validation cohort from GSE20685 and METABRIC datasets, composed of 3,231 BRCA patients. After screening the differentially expressed ZNFs, univariate Cox regression, LASSO, and multiple Cox regression analysis were performed to construct a risk-based predictive model. ESTIMATE algorithm, single-sample gene set enrichment analysis (ssGSEA), and gene set enrichment analyses (GSEA) were utilized to assess the potential relations among the tumor immune microenvironment and ZNFs in BRCA. Results In this study, we profiled ZNF expression in TCGA based BRCA cohort and developed a novel prognostic model based on 14 genes with ZNF relations. This model was composed of high and low-score groups for BRCA classification. Based upon Kaplan-Meier survival curves, risk-status-based prognosis illustrated significant differences. We integrated the 14 ZNF-gene signature with patient clinicopathological data for nomogram construction with accurate 1-, 3-, and 5-overall survival predictive capabilities. We then accessed the Genomics of Drug Sensitivity in Cancer database for therapeutic drug response prediction of signature-defined BRCA patient groupings for our selected TCGA population. The signature also predicts sensitivity to chemotherapeutic and molecular-targeted agents in high- and low-risk patients afflicted with BRCA. Functional analysis suggested JAK STAT, VEGF, MAPK, NOTCH TOLL-like receptor, NOD-like receptor signaling pathways, apoptosis, and cancer-based pathways could be key for ZNF-related BRCA development. Interestingly, based on the results of ESTIMATE, ssGSEA, and GSEA analysis, we elucidated that our ZNF-gene signature had pivotal regulatory effects on the tumor immune microenvironment for BRCA. Conclusion Our findings shed light on the potential contribution of ZNFs to the pathogenesis of BRCA and may inform clinical practice to guide individualized treatment.
Collapse
Affiliation(s)
- Min Ye
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Liang Li
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Donghua Liu
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Qiuming Wang
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Yunuo Zhang
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Jinfeng Zhang
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| |
Collapse
|
40
|
Tajbakhsh A, Gheibi Hayat SM, Movahedpour A, Savardashtaki A, Loveless R, Barreto GE, Teng Y, Sahebkar A. The complex roles of efferocytosis in cancer development, metastasis, and treatment. Biomed Pharmacother 2021; 140:111776. [PMID: 34062411 DOI: 10.1016/j.biopha.2021.111776] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
When tumor cells are killed by targeted therapy, radiotherapy, or chemotherapy, they trigger their primary tumor by releasing pro-inflammatory cytokines. Microenvironmental interactions can also promote tumor heterogeneity and development. In this line, several immune cells within the tumor microenvironment, including macrophages, dendritic cells, regulatory T-cells, and CD8+ and CD4+ T cells, are involved in the clearance of apoptotic tumor cells through a process called efferocytosis. Although the efficiency of apoptotic tumor cell efferocytosis is positive under physiological conditions, there are controversies regarding its usefulness in treatment-induced apoptotic tumor cells (ATCs). Efferocytosis can show the limitation of cytotoxic treatments, such as chemotherapy and radiotherapy. Since cytotoxic treatments lead to extensive cell mortality, efferocytosis, and macrophage polarization toward an M2 phenotype, the immune response may get involved in tumor recurrence and metastasis. Tumor cells can use the anti-inflammatory effect of apoptotic tumor cell efferocytosis to induce an immunosuppressive condition that is tumor-tolerant. Since M2 polarization and efferocytosis are tumor-promoting processes, the receptors on macrophages act as potential targets for cancer therapy. Moreover, researchers have shown that efferocytosis-related molecules/pathways are potential targets for cancer therapy. These include phosphatidylserine and calreticulin, Tyro3, Axl, and Mer tyrosine kinase (MerTK), receptors of tyrosine kinase, indoleamine-2,3-dioxygenase 1, annexin V, CD47, TGF-β, IL-10, and macrophage phenotype switch are combined with conventional therapy, which can be more effective in cancer treatment. Thus, we set out to investigate the advantages and disadvantages of efferocytosis in treatment-induced apoptotic tumor cells.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Xu D, Li C. Regulation of the SIAH2-HIF-1 Axis by Protein Kinases and Its Implication in Cancer Therapy. Front Cell Dev Biol 2021; 9:646687. [PMID: 33842469 PMCID: PMC8027324 DOI: 10.3389/fcell.2021.646687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
The cellular response to hypoxia is a key biological process that facilitates adaptation of cells to oxygen deprivation (hypoxia). This process is critical for cancer cells to adapt to the hypoxic tumor microenvironment resulting from rapid tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor and a master regulator of the cellular response to hypoxia. The activity of HIF-1 is dictated primarily by its alpha subunit (HIF-1α), whose level and/or activity are largely regulated by an oxygen-dependent and ubiquitin/proteasome-mediated process. Prolyl hydroxylases (PHDs) and the E3 ubiquitin ligase Von Hippel-Lindau factor (VHL) catalyze hydroxylation and subsequent ubiquitin-dependent degradation of HIF-1α by the proteasome. Seven in Absentia Homolog 2 (SIAH2), a RING finger-containing E3 ubiquitin ligase, stabilizes HIF-1α by targeting PHDs for ubiquitin-mediated degradation by the proteasome. This SIAH2-HIF-1 signaling axis is important for maintaining the level of HIF-1α under both normoxic and hypoxic conditions. A number of protein kinases have been shown to phosphorylate SIAH2, thereby regulating its stability, activity, or substrate binding. In this review, we will discuss the regulation of the SIAH2-HIF-1 axis via phosphorylation of SIAH2 by these kinases and the potential implication of this regulation in cancer biology and cancer therapy.
Collapse
Affiliation(s)
- Dazhong Xu
- Department of Pathology, Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Cen Li
- Department of Pathology, Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
42
|
Udayaraja GK, Arnold Emerson I. Network-based gene deletion analysis identifies candidate genes and molecular mechanism involved in clear cell renal cell carcinoma. J Genet 2021. [DOI: 10.1007/s12041-021-01260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Dixit P, Kokate SB, Poirah I, Chakraborty D, Smoot DT, Ashktorab H, Rout N, Singh SP, Bhattacharyya A. Helicobacter pylori-induced gastric cancer is orchestrated by MRCKβ-mediated Siah2 phosphorylation. J Biomed Sci 2021; 28:12. [PMID: 33536006 PMCID: PMC7856738 DOI: 10.1186/s12929-021-00710-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Helicobacter pylori-mediated gastric carcinogenesis is initiated by a plethora of signaling events in the infected gastric epithelial cells (GECs). The E3 ubiquitin ligase seven in absentia homolog 2 (Siah2) is induced in GECs in response to H. pylori infection. Posttranslational modifications of Siah2 orchestrate its function as well as stability. The aim of this study was to evaluate Siah2 phosphorylation status under the influence of H. pylori infection and its impact in gastric cancer progression. METHODS H. pylori-infected various GECs, gastric tissues from H. pylori-infected GC patients and H. felis-infected C57BL/6 mice were evaluated for Siah2 phosphorylation by western blotting or immunofluorescence microscopy. Coimmunoprecipitation assay followed by mass spectrometry were performed to identify the kinases interacting with Siah2. Phosphorylation sites of Siah2 were identified by using various plasmid constructs generated by site-directed mutagenesis. Proteasome inhibitor MG132 was used to investigate proteasome degradation events. The importance of Siah2 phosphorylation on tumorigenicity of infected cells were detected by using phosphorylation-null mutant and wild type Siah2 stably-transfected cells followed by clonogenicity assay, cell proliferation assay, anchorage-independent growth and transwell invasion assay. RESULTS Siah2 was phosphorylated in H. pylori-infected GECs as well as in metastatic GC tissues at residues serine6 (Ser6) and threonine279 (Thr279). Phosphorylation of Siah2 was mediated by MRCKβ, a Ser/Thr protein kinase. MRCKβ was consistently expressed in uninfected GECs and noncancer gastric tissues but its level decreased in infected GECs as well as in metastatic tissues which had enhanced Siah2 expression. Infected murine gastric tissues showed similar results. MRCKβ could phosphorylate Siah2 but itself got ubiquitinated from this interaction leading to the proteasomal degradation of MRCKβ and use of proteasomal inhibitor MG132 could rescue MRCKβ from Siah2-mediated degradation. Ser6 and Thr279 phosphorylated-Siah2 was more stable and tumorigenic than its non-phosphorylated counterpart as revealed by the proliferation, invasion, migration abilities and anchorage-independent growth of stable-transfected cells. CONCLUSIONS Increased level of Ser6 and Thr279-phosphorylated-Siah2 and downregulated MRCKβ were prominent histological characteristics of Helicobacter-infected gastric epithelium and metastatic human GC. MRCKβ-dependent Siah2 phosphorylation stabilized Siah2 which promoted anchorage-independent survival and proliferative potential of GECs. Phospho-null mutants of Siah2 (S6A and T279A) showed abated tumorigenicity.
Collapse
Affiliation(s)
- Pragyesh Dixit
- grid.419643.d0000 0004 1764 227XSchool of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, P.O. Bhimpur-Padanpur, Via Jatni, Khurda, 752050 Odisha India
| | - Shrikant B. Kokate
- grid.419643.d0000 0004 1764 227XSchool of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, P.O. Bhimpur-Padanpur, Via Jatni, Khurda, 752050 Odisha India ,grid.7737.40000 0004 0410 2071Present Address: Institute of Biotechnology, University of Helsinki, P.O. Box 56, 0014 Helsinki, Finland
| | - Indrajit Poirah
- grid.419643.d0000 0004 1764 227XSchool of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, P.O. Bhimpur-Padanpur, Via Jatni, Khurda, 752050 Odisha India
| | - Debashish Chakraborty
- grid.419643.d0000 0004 1764 227XSchool of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, P.O. Bhimpur-Padanpur, Via Jatni, Khurda, 752050 Odisha India
| | - Duane T. Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208 USA
| | - Hassan Ashktorab
- grid.257127.40000 0001 0547 4545Department of Medicine, Howard University, Washington, DC 20060 USA
| | - Niranjan Rout
- Department of Pathology, Acharya Harihar Post Graduate Institute of Cancer, Cuttack, 753007 Odisha India
| | - Shivaram P. Singh
- grid.415328.90000 0004 1767 2428Department of Gastroenterology, SCB Medical College, Cuttack, 753007 Odisha India
| | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, P.O. Bhimpur-Padanpur, Via Jatni, Khurda, 752050, Odisha, India.
| |
Collapse
|
44
|
Targeting the Ubiquitin Signaling Cascade in Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 2021; 22:ijms22020791. [PMID: 33466790 PMCID: PMC7830467 DOI: 10.3390/ijms22020791] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor microenvironments are composed of a myriad of elements, both cellular (immune cells, cancer-associated fibroblasts, mesenchymal stem cells, etc.) and non-cellular (extracellular matrix, cytokines, growth factors, etc.), which collectively provide a permissive environment enabling tumor progression. In this review, we focused on the regulation of tumor microenvironment through ubiquitination. Ubiquitination is a reversible protein post-translational modification that regulates various key biological processes, whereby ubiquitin is attached to substrates through a catalytic cascade coordinated by multiple enzymes, including E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes and E3 ubiquitin ligases. In contrast, ubiquitin can be removed by deubiquitinases in the process of deubiquitination. Here, we discuss the roles of E3 ligases and deubiquitinases as modulators of both cellular and non-cellular components in tumor microenvironment, providing potential therapeutic targets for cancer therapy. Finally, we introduced several emerging technologies that can be utilized to develop effective therapeutic agents for targeting tumor microenvironment.
Collapse
|
45
|
Gao L, Li J, He J, Liang L, He Z, Yue C, Jin X, Luo G, Zhou Y. CD90 affects the biological behavior and energy metabolism level of gastric cancer cells by targeting the PI3K/AKT/HIF-1α signaling pathway. Oncol Lett 2021; 21:191. [PMID: 33574930 DOI: 10.3892/ol.2021.12451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
CD90, also known as Thy-1 cell surface antigen, is located on human chromosome 11q23.3, and encodes a glycosylphosphatidylinositol-linked cell surface glycoprotein. CD90 serves a key role in malignancy by regulating cell proliferation, metastasis and angiogenesis. Gastric cancer is one of the most common types of malignancy. Patients with advanced gastric cancer have a poor prognosis. CD90 plays a key role in the occurrence and progression of gastric cancer. However, the molecular mechanism of CD90 in gastric cancer is currently unclear. In order to identify the molecular mechanism by which CD90 affects the biological behavior and energy metabolism of gastric cancer cells, the present study used Cell Counting Kit-8 assays, lactate concentration determination and ATP content determination. The results demonstrated that CD90 promotes proliferation and inhibits senescence in gastric cancer cells. In addition, CD90 enhanced the invasion and migration abilities of AGS gastric cancer cells. Overexpression of CD90 resulted in the accumulation of intracellular lactic acid in AGS cells. CD90 upregulated lactate dehydrogenase levels and increased the NADPH/NADP+ ratio in AGS cells. CD90 overexpression decreased the ATP concentration in AGS cells. PI3K, PDK1, phosphorylated-AKT-Ser473, HIF-1α, MDM2 and SIRT1 levels were upregulated in CD90-overexpressing AGS cells, compared with AGS cells transfected with the empty vector. In contrast, PTEN, p53, SIRT2, SIRT3 and SIRT6 were downregulated. The results indicate that CD90 affects the biological behavior and levels of energy metabolism of gastric cancer cells by targeting the PI3K/AKT/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Lu Gao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jun Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Junyu He
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Lin Liang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhengxi He
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chunxue Yue
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xi Jin
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
46
|
Jin Y, Meng Q, Zhang B, Xie C, Chen X, Tian B, Wang J, Shih TC, Zhang Y, Cao J, Yang Y, Chen S, Guan X, Chen X, Hong A. Cancer-associated fibroblasts-derived exosomal miR-3656 promotes the development and progression of esophageal squamous cell carcinoma via the ACAP2/PI3K-AKT signaling pathway. Int J Biol Sci 2021; 17:3689-3701. [PMID: 34671193 PMCID: PMC8495391 DOI: 10.7150/ijbs.62571] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common gastrointestinal tumors, accounting for almost half a million deaths per year. Cancer-associated fibroblasts (CAFs) are the major constituent of the tumor microenvironment (TME) and dramatically impact ESCC progression. Recent evidence suggests that exosomes derived from CAFs are able to transmit regulating signals and promote ESCC development. In this study, we compared different the component ratios of miRNAs in exosomes secreted by CAFs in tumors and with those from normal fibroblasts (NFs) in precancerous tissues. The mRNA level of hsa-miR-3656 was significantly upregulated in the former exosomes. Subsequently, by comparing tumor cell development in vitro and in vivo, we found that the proliferation, migration and invasion capabilities of ESCC cells were significantly improved when miR-3656 was present. Further target gene analysis confirmed ACAP2 was a target gene regulated by miR-3656 and exhibited a negative regulatory effect on tumor proliferation. Additionally, the downregulation of ACAP2 triggered by exosomal-derived miR-3656 further promotes the activation of the PI3K/AKT and β-catenin signaling pathways and ultimately improves the growth of ESCC cells both in vitro and in xenograft models. These results may represent a potential therapeutic target for ESCC and provide a new basis for clinical treatment plans.
Collapse
Affiliation(s)
- Yuan Jin
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Qilin Meng
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Chen Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Xue Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Baoqing Tian
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Jiakang Wang
- Cancer Center of Guangzhou Medical University, Guangzhou 510090, P. R. China
| | - Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Yiqi Yang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
| | - Size Chen
- Oncology Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, P. R. China
- Guangdong Provincial Engineering Research Center for Precise Therapy of Esophageal Cancer, Guangzhou 510080, P. R. China
| | - Xinyuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, P. R. China
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
- ✉ Corresponding author: Dr. An Hong and Dr. Xiaojia Chen. (AH) , (XC)
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, P. R. China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, P. R. China
- Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Guangzhou 510632, P. R. China
- ✉ Corresponding author: Dr. An Hong and Dr. Xiaojia Chen. (AH) , (XC)
| |
Collapse
|
47
|
Augé H, Notarantonio AB, Morizot R, Quinquenel A, Fornecker LM, Hergalant S, Feugier P, Broséus J. Microenvironment Remodeling and Subsequent Clinical Implications in Diffuse Large B-Cell Histologic Variant of Richter Syndrome. Front Immunol 2020; 11:594841. [PMID: 33381116 PMCID: PMC7767850 DOI: 10.3389/fimmu.2020.594841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction Richter Syndrome (RS) is defined as the development of an aggressive lymphoma in the context of Chronic Lymphocytic Leukemia (CLL), with a Diffuse Large B-Cell Lymphoma (DLBCL) histology in 95% cases. RS genomic landscape shares only a few features with de novo DLBCLs and is marked by a wide spectrum of cytogenetic abnormalities. Little is known about RS microenvironment. Therapeutic options and efficacy are limited, leading to a 12 months median overall survival. The new targeted treatments usually effective in CLL fail to obtain long-term remissions in RS. Methods We reviewed available PubMed literature about RS genomics, PD-1/PD-L1 (Programmed Death 1/Programmed Death Ligand 1) pathway triggering and subsequent new therapeutic options. Results Data from about 207 patients from four landmark papers were compiled to build an overview of RS genomic lesions and point mutations. A number of these abnormalities may be involved in tumor microenvironment reshaping. T lymphocyte exhaustion through PD-L1 overexpression by tumor cells and subsequent PD-1/PD-L1 pathway triggering is frequently reported in solid cancers. This immune checkpoint inhibitor is also described in B lymphoid malignancies, particularly CLL: PD-1 expression is reported in a subset of prolymphocytes from the CLL lymph node proliferation centers. However, there is only few data about PD-1/PD-L1 pathway in RS. In RS, PD-1 expression is a hallmark of recently described « Regulatory B-cells », which interact with tumor microenvironment by producing inhibiting cytokines such as TGF-β and IL-10, impairing T lymphocytes anti-tumoral function. Based upon the discovery of high PD-1 expression on tumoral B lymphocyte from RS, immune checkpoint blockade therapies such as anti-PD-1 antibodies have been tested on small RS cohorts and provided heterogeneous but encouraging results. Conclusion RS genetic landscape and immune evasion mechanisms are being progressively unraveled. New protocols using targeted treatments such as checkpoint inhibitors as single agents or in combination with immunochemotherapy are currently being evaluated.
Collapse
Affiliation(s)
- Hélène Augé
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risque Environnementaux (N-GERE), Université de Lorraine, Nancy, France.,Université de Lorraine, CHRU-Nancy, service d'hématologie clinique, pôle spécialités médicales, Nancy, France
| | - Anne-Béatrice Notarantonio
- Université de Lorraine, CHRU-Nancy, service d'hématologie clinique, pôle spécialités médicales, Nancy, France.,UMR7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMOPA), CNRS, Université de Lorraine, Nancy, France
| | - Romain Morizot
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risque Environnementaux (N-GERE), Université de Lorraine, Nancy, France.,Université de Lorraine, CHRU-Nancy, service d'hématologie clinique, pôle spécialités médicales, Nancy, France
| | - Anne Quinquenel
- Département d'hématologie, Université de Reims Champagne-Ardenne, Reims, France.,Département d'hématologie clinique, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Luc-Matthieu Fornecker
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, Strasbourg, France.,Département d'hématologie clinique, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Sébastien Hergalant
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risque Environnementaux (N-GERE), Université de Lorraine, Nancy, France
| | - Pierre Feugier
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risque Environnementaux (N-GERE), Université de Lorraine, Nancy, France.,Université de Lorraine, CHRU-Nancy, service d'hématologie clinique, pôle spécialités médicales, Nancy, France
| | - Julien Broséus
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risque Environnementaux (N-GERE), Université de Lorraine, Nancy, France.,Université de Lorraine, CHRU-Nancy, service d'hématologie biologique, pôle laboratoires, Nancy, France
| |
Collapse
|
48
|
Zheng S, Zou Y, Liang J, Xiao W, Yang A, Meng T, Lu S, Luo Z, Xie X. Identification and validation of a combined hypoxia and immune index for triple-negative breast cancer. Mol Oncol 2020; 14:2814-2833. [PMID: 32521117 PMCID: PMC7607163 DOI: 10.1002/1878-0261.12747] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
The interaction between hypoxia and immune status has been confirmed in various cancer settings, and corresponding treatments have been investigated. However, reliable biomarkers are needed for individual treatment, so we sought to develop a novel scoring system based on hypoxia and immune status. Prognostic hypoxia-immune status-related signatures of patients with triple-negative breast cancer (TNBC) were identified in The Cancer Genome Atlas (TCGA) (N = 158), Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (N = 297), and GSE58812 (N = 107). LASSO Cox regression was used for model construction. Hypoxia and immune status expression profiles were analyzed, and infiltrating immune cells were compared. Quantitative real-time PCR (qRT-PCR) was used for validation in the Sun Yat-sen University Cancer Center (SYSUCC) cohort, and immunofluorescence was applied for the detection of hypoxia and immune markers in cancer tissues. Ten cross-cohort prognostic hypoxia-immune signatures were included to construct the comprehensive index of hypoxia and immune (CIHI) in the METABRIC cohort. Two subgroups of patients with distinct hypoxia-immune status conditions were identified using CIHI: hypoxiahigh /immunelow and hypoxialow /immunehigh , with a significantly better overall survival (OS) rate in the latter (P < 0.01). The prognostic value of CIHI was further validated in the TCGA, GSE58812, and SYSUCC cohorts (P < 0.01). Hypoxia-immune signatures were significantly differentially expressed between the two groups, and more active immune responses were observed in the hypoxialow /immunehigh group. Cytotoxic lymphocytes were inversely correlated with CIHI in silico. Differentially expressed CA-IX and stromal PD-L1 were detected between subgroups of the SYSUCC cohort. A hypoxia-immune-based cross-cohort classifier for predicting prognosis was developed and validated, which may guide hypoxia modifier treatment and immunotherapy for TNBC.
Collapse
Affiliation(s)
- Shaoquan Zheng
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangdongChina
| | - Yutian Zou
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangdongChina
| | - Jie‐ying Liang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangdongChina
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Weikai Xiao
- Department of Breast CancerCancer CenterGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Anli Yang
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangdongChina
| | - Tiebao Meng
- Department of RadiologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shilin Lu
- Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Zhongbing Luo
- Department of Breast SurgeryFirst Affiliated Hospital of Gannan Medical CollegeGanzhou CityChina
| | - Xiaoming Xie
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangdongChina
| |
Collapse
|
49
|
de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest 2020; 130:5074-5087. [PMID: 32870818 PMCID: PMC7524491 DOI: 10.1172/jci137552] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) and the HIF-dependent cancer hallmarks angiogenesis and metabolic rewiring are well-established drivers of breast cancer aggressiveness, therapy resistance, and poor prognosis. Targeting of HIF and its downstream targets in angiogenesis and metabolism has been unsuccessful so far in the breast cancer clinical setting, with major unresolved challenges residing in target selection, development of robust biomarkers for response prediction, and understanding and harnessing of escape mechanisms. This Review discusses the pathophysiological role of HIFs, angiogenesis, and metabolism in breast cancer and the challenges of targeting these features in patients with breast cancer. Rational therapeutic combinations, especially with immunotherapy and endocrine therapy, seem most promising in the clinical exploitation of the intricate interplay of HIFs, angiogenesis, and metabolism in breast cancer cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Ellen C. de Heer
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Mathilde Jalving
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Tao S, Chen Q, Lin C, Dong H. Linc00514 promotes breast cancer metastasis and M2 polarization of tumor-associated macrophages via Jagged1-mediated notch signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:191. [PMID: 32943090 PMCID: PMC7500027 DOI: 10.1186/s13046-020-01676-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) and tumor cells are important components of the tumor microenvironment. M2 polarization of TAMs, which is a major actor in breast cancer malignancy and metastasis, can be induced by breast cancer cells. However, the potential mechanisms of the interaction between breast cancer cells and TAMs remain unclear. METHODS The candidate breast cancer-associated long non-coding RNAs (lncRNAs) were analyzed using the GEO database. Functional assays, including MTT assay, Transwell assay, and EdU labeling detection, were performed to investigate the oncogenic role of linc00514 in breast cancer progression. The co-culture and ELISA assays were used to assess the role of linc00514 in macrophage recruitment and M2 polarization. RNA immunoprecipitation, RNA pull-down, and luciferase reporter assays were applied to determine the mechanism of linc00514 in breast cancer metastasis. Mouse xenograft models, mouse pulmonary metastatic models, and mouse primary tumor models were used to assess the role of linc00514 in M2 macrophage polarization and breast cancer tumorigenicity. RESULTS Linc00514 was highly expressed in clinical breast cancer tissues and breast cancer cell lines. Overexpression of linc00514 promoted the proliferation and invasion of breast cancer cells and increased xenograft tumor volumes and pulmonary metastatic nodules. Overexpression of linc00514 also increased the percentage of macrophages expressing M2 markers CD206 and CD163. Mechanistically, linc00514 promoted Jagged1 expression in a transcriptional manner by increasing the phosphorylation of a transcription factor STAT3. Subsequently, Jagged1-mediated Notch signaling pathway promoted IL-4 and IL-6 secretions in breast cancer cells and ultimately inducing M2 polarization of macrophages. CONCLUSION Linc00514 plays an important role in regulating breast cancer tumorigenicity and M2 macrophage polarization via Jagged1-mediated Notch signaling pathway.
Collapse
Affiliation(s)
- Sifeng Tao
- Department of Breast Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, People's Republic of China.
| | - Qiang Chen
- Department of Breast Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, People's Republic of China
| | - Chen Lin
- Department of Breast Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, People's Republic of China
| | - Haiying Dong
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310009, China
| |
Collapse
|