1
|
Akter M, Lyu X, Lu J, Wang X, Phonesavanh T, Wang H, Yu H, Kang J. Role of noncanonical histone H2A variant, H2A.Z, to maintain proper centromeric transcription and chromosome segregation. J Biol Chem 2025; 301:108464. [PMID: 40157539 PMCID: PMC12051535 DOI: 10.1016/j.jbc.2025.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025] Open
Abstract
The genome stability of eukaryotic cells is ensured by proper regulation of histones and their variants. H2A.Z, a conserved and essential histone H2A variant, plays a crucial role in this process by regulating various chromatin-related processes such as gene expression, heterochromatin formation, DNA damage repair, and chromosome segregation. It has two isoforms, H2A.Z1 and H2A.Z2, also known as H2AFZ and H2AFV, respectively, which perform both redundant and nonredundant roles in maintaining genome stability. In this study, we investigated the isoform-specific mitotic functions of H2A.Z in HeLa cells. Our studies revealed that the depletion of H2AFV or H2AFZ did not alter the overall cell cycle profile. However, H2AFV depletion significantly increased the formation of micronuclei, indicating defects in chromosome segregation. Additionally, H2AFV depletion led to the accumulation of DNA damage at various nuclear loci including centromeres. Interestingly, we discovered that H2AFV depletion significantly increased centromeric transcription, which may interfere with proper centromere function. Furthermore, we discovered that a mitotic kinase, Aurora B, binds to both H2AFV and H2AFZ, but preferentially to H2AFV. Inhibition of Aurora B activity by hesperadin disrupted proper centromeric transcription but not significantly centromeric localization of H2A.Z. Collectively, these data demonstrated that the H2A.Z isoforms play distinctive regulatory roles in maintaining proper centromeric transcription and DNA repair, ensuring accurate chromosome segregation.
Collapse
Affiliation(s)
- Mahmuda Akter
- Arts and Science, New York University at Shanghai, Shanghai, China
| | - Xiaoai Lyu
- Arts and Science, New York University at Shanghai, Shanghai, China
| | - Jiaxing Lu
- Arts and Science, New York University at Shanghai, Shanghai, China
| | - Xiao Wang
- Arts and Science, New York University at Shanghai, Shanghai, China
| | | | - Hao Wang
- Arts and Science, New York University at Shanghai, Shanghai, China
| | - Hongtao Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Jungseog Kang
- Arts and Science, New York University at Shanghai, Shanghai, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China.
| |
Collapse
|
2
|
Yang L, Li X, Shi C, Zhao B. Prmt5 is essential for intestinal stem cell maintenance and homeostasis. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:5. [PMID: 39907873 PMCID: PMC11799473 DOI: 10.1186/s13619-024-00216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 02/06/2025]
Abstract
Intestinal homeostasis relies on the continuous renewal of intestinal stem cells (ISCs), which could be epigenetically regulated. While protein arginine methyltransferase 5 (Prmt5) is known to play a key role in multiple organs as an epigenetic modifier, its specific function in maintaining intestinal homeostasis remains to be elucidated. Here, we show that Prmt5 is highly expressed in mouse crypts. The deletion of Prmt5 results in ISCs deficiency, ectopic localization of Paneth cells, and spontaneous colitis. Mechanistically, Prmt5 sustains a high level of H3K27ac accumulation by inhibiting Hdac9 expression in the intestinal epithelium, and maintains the stemness of ISCs in a cell-autonomous manner. Notably, inhibition of histone deacetylases can rescue both self-renewal and differentiation capacities of Prmt5-depleted ISCs. These findings highlight Prmt5 as a critical regulator in intestinal epithelium development and tissue homeostasis.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Xuewen Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Chenyi Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2025; 26:82-104. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
4
|
Diegmüller F, Leers J, Hake SB. The "Ins and Outs and What-Abouts" of H2A.Z: A tribute to C. David Allis. J Biol Chem 2025; 301:108154. [PMID: 39761855 PMCID: PMC11808731 DOI: 10.1016/j.jbc.2025.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.Z, a nucleosome component he was the first to discover as hv1 in Tetrahymena. We summarize the latest findings from the past 5 years regarding the mammalian H2A.Z histone, focusing on its deposition and eviction mechanisms, its roles in transcriptional regulation, DNA damage repair, chromatin structure organization, and embryonic development, as well as how its deregulation or mutation(s) of its histone chaperones contribute to disease development. As Dave liked to say 'Every amino acid matters'; the discovery and characterization of functionally different H2A.Z's isoforms, which vary only in three amino acids, prove him-once again-right.
Collapse
Affiliation(s)
- Felix Diegmüller
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Jörg Leers
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
5
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
6
|
Li X, Zhu G, Zhao B. Chromatin remodeling in tissue stem cell fate determination. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:18. [PMID: 39348027 PMCID: PMC11442411 DOI: 10.1186/s13619-024-00203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Tissue stem cells (TSCs), which reside in specialized tissues, constitute the major cell sources for tissue homeostasis and regeneration, and the contribution of transcriptional or epigenetic regulation of distinct biological processes in TSCs has been discussed in the past few decades. Meanwhile, ATP-dependent chromatin remodelers use the energy from ATP hydrolysis to remodel nucleosomes, thereby affecting chromatin dynamics and the regulation of gene expression programs in each cell type. However, the role of chromatin remodelers in tissue stem cell fate determination is less well understood. In this review, we systematically discuss recent advances in epigenetic control by chromatin remodelers of hematopoietic stem cells, intestinal epithelial stem cells, neural stem cells, and skin stem cells in their fate determination and highlight the importance of their essential role in tissue homeostasis, development, and regeneration. Moreover, the exploration of the molecular and cellular mechanisms of TSCs is crucial for advancing our understanding of tissue maintenance and for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China
| | - Gaoxiang Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China.
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China.
| |
Collapse
|
7
|
Wong TN, Mychalowych A, Feldpausch ER, Carson A, Karpova D, Link DC. The Clonal Hematopoiesis-associated Gene Srcap Plays an Essential Role in Hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607812. [PMID: 39229096 PMCID: PMC11370474 DOI: 10.1101/2024.08.16.607812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Somatic mutations arising in hematopoietic stem cells (HSCs) may provide the latter with a fitness advantage, allowing the mutant HSC to clonally expand. Such mutations have been recurrently identified in the chromatin modifier, SRCAP, in both non-malignant and leukemic clones, suggesting that this gene plays a significant role in hematopoiesis. We generated a conditional Srcap loss of function murine model and determined the consequences of hematopoietic-specific loss of this gene. We show that Srcap is essential for normal fetal liver erythropoiesis and monocytopoiesis. In Srcap deficient fetal livers, the number of phenotypic HSCs is similar to that of controls, but these HSCs exhibit a profound repopulating defect. Likewise, conditional deletion of Srcap during adult hematopoiesis results in a rapid loss of HSCs. Loss of Srcap is associated with evidence of increased DNA damage in HSCs and lineage-restricted progenitors as assessed by y-H2AX expression. Consistent with this finding, we observed strong transcriptional upregulation of the p53 pathway in Srcap deficient erythroid precursors. Collectively our data highlight the importance of Srcap in maintaining HSC function and supporting hematopoietic differentiation and suggests that it plays an essential role in maintaining genomic integrity.
Collapse
Affiliation(s)
- Terrence N. Wong
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Anna Mychalowych
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ellie R. Feldpausch
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Alexander Carson
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Darja Karpova
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel C. Link
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Rispal J, Rives C, Jouffret V, Leoni C, Dubois L, Chevillard-Briet M, Trouche D, Escaffit F. Control of Intestinal Stemness and Cell Lineage by Histone Variant H2A.Z Isoforms. Mol Cell Biol 2024; 44:455-472. [PMID: 39155414 PMCID: PMC11529411 DOI: 10.1080/10985549.2024.2387720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The histone variant H2A.Z plays important functions in the regulation of gene expression. In mammals, it is encoded by two genes, giving rise to two highly related isoforms named H2A.Z.1 and H2A.Z.2, which can have similar or antagonistic functions depending on the promoter. Knowledge of the physiopathological consequences of such functions emerges, but how the balance between these isoforms regulates tissue homeostasis is not fully understood. Here, we investigated the relative role of H2A.Z isoforms in intestinal epithelial homeostasis. Through genome-wide analysis of H2A.Z genomic localization in differentiating Caco-2 cells, we uncovered an enrichment of H2A.Z isoforms on the bodies of genes which are induced during enterocyte differentiation, stressing the potential importance of H2A.Z isoforms dynamics in this process. Through a combination of in vitro and in vivo experiments, we further demonstrated the two isoforms cooperate for stem and progenitor cells proliferation, as well as for secretory lineage differentiation. However, we found that they antagonistically regulate enterocyte differentiation, with H2A.Z.1 preventing terminal differentiation and H2A.Z.2 favoring it. Altogether, these data indicate that H2A.Z isoforms are critical regulators of intestine homeostasis and may provide a paradigm of how the balance between two isoforms of the same chromatin structural protein can control physiopathological processes.
Collapse
Affiliation(s)
- Jérémie Rispal
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Clémence Rives
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Virginie Jouffret
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Caroline Leoni
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Louise Dubois
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Martine Chevillard-Briet
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Didier Trouche
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Fabrice Escaffit
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| |
Collapse
|
9
|
Yin X, Zeng D, Liao Y, Tang C, Li Y. The Function of H2A Histone Variants and Their Roles in Diseases. Biomolecules 2024; 14:993. [PMID: 39199381 PMCID: PMC11352661 DOI: 10.3390/biom14080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Epigenetic regulation, which is characterized by reversible and heritable genetic alterations without changing DNA sequences, has recently been increasingly studied in diseases. Histone variant regulation is an essential component of epigenetic regulation. The substitution of canonical histones by histone variants profoundly alters the local chromatin structure and modulates DNA accessibility to regulatory factors, thereby exerting a pivotal influence on gene regulation and DNA damage repair. Histone H2A variants, mainly including H2A.Z, H2A.B, macroH2A, and H2A.X, are the most abundant identified variants among all histone variants with the greatest sequence diversity. Harboring varied chromatin occupancy and structures, histone H2A variants perform distinct functions in gene transcription and DNA damage repair. They are implicated in multiple pathophysiological mechanisms and the emergence of different illnesses. Cancer, embryonic development abnormalities, neurological diseases, metabolic diseases, and heart diseases have all been linked to histone H2A variant alterations. This review focuses on the functions of H2A histone variants in mammals, including H2A.Z, H2A.B, macroH2A, and H2A.X, and their current roles in various diseases.
Collapse
Affiliation(s)
- Xuemin Yin
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Dong Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Yingjun Liao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| |
Collapse
|
10
|
Park G, Patel AB, Wu C, Louder RK. Structures of H2A.Z-associated human chromatin remodelers SRCAP and TIP60 reveal divergent mechanisms of chromatin engagement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605802. [PMID: 39131301 PMCID: PMC11312561 DOI: 10.1101/2024.07.30.605802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
H2A.Z is a conserved histone variant that is localized to specific genomic regions where it plays important roles in transcription, DNA repair, and replication. Central to the biochemistry of human H2A.Z are the SRCAP and TIP60 chromatin remodelers, homologs of yeast SWR1 which catalyzes ATP-dependent H2A.Z exchange. Here, we use cryo-electron microscopy to resolve six structural states of the native SRCAP complex, uncovering conformational intermediates interpreted as a stepwise path to full nucleosome engagement. We also resolve the structure of the native TIP60 complex which consists of a structured core from which flexibly tethered chromatin binding domains emerge. Despite the shared subunit composition, the core of TIP60 displays divergent architectures from SRCAP that structurally disfavor nucleosome engagement, suggesting a distinct biochemical function.
Collapse
Affiliation(s)
- Giho Park
- Biochemistry, Cellular and Molecular Graduate Program, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
| | - Avinash B. Patel
- Department of Biophysics, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Carl Wu
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Robert K. Louder
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD 21218, USA
| |
Collapse
|
11
|
Serra-Bardenys G, Blanco E, Escudero-Iriarte C, Serra-Camprubí Q, Querol J, Pascual-Reguant L, Morancho B, Escorihuela M, Tissera NS, Sabé A, Martín L, Segura-Bayona S, Verde G, Aiese Cigliano R, Millanes-Romero A, Jerónimo C, Cebrià-Costa JP, Nuciforo P, Simonetti S, Viaplana C, Dienstmann R, Oliveira M, Peg V, Stracker TH, Arribas J, Canals F, Villanueva J, Di Croce L, García de Herreros A, Tian TV, Peiró S. LOXL2-mediated chromatin compaction is required to maintain the oncogenic properties of triple-negative breast cancer cells. FEBS J 2024; 291:2423-2448. [PMID: 38451841 DOI: 10.1111/febs.17112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Oxidation of histone H3 at lysine 4 (H3K4ox) is catalyzed by lysyl oxidase homolog 2 (LOXL2). This histone modification is enriched in heterochromatin in triple-negative breast cancer (TNBC) cells and has been linked to the maintenance of compacted chromatin. However, the molecular mechanism underlying this maintenance is still unknown. Here, we show that LOXL2 interacts with RuvB-Like 1 (RUVBL1), RuvB-Like 2 (RUVBL2), Actin-like protein 6A (ACTL6A), and DNA methyltransferase 1associated protein 1 (DMAP1), a complex involved in the incorporation of the histone variant H2A.Z. Our experiments indicate that this interaction and the active form of RUVBL2 are required to maintain LOXL2-dependent chromatin compaction. Genome-wide experiments showed that H2A.Z, RUVBL2, and H3K4ox colocalize in heterochromatin regions. In the absence of LOXL2 or RUVBL2, global levels of the heterochromatin histone mark H3K9me3 were strongly reduced, and the ATAC-seq signal in the H3K9me3 regions was increased. Finally, we observed that the interplay between these series of events is required to maintain H3K4ox-enriched heterochromatin regions, which in turn is key for maintaining the oncogenic properties of the TNBC cell line tested (MDA-MB-231).
Collapse
Affiliation(s)
- Gemma Serra-Bardenys
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Institut Bonanova FP Sanitaria, Consorci Mar Parc de Salut de Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
| | | | | | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laura Pascual-Reguant
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
| | | | | | | | - Anna Sabé
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Luna Martín
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Gaetano Verde
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Alba Millanes-Romero
- Institute for Research in Biomedicine (IRB Barcelona) and Barcelona Institute of Science and Technology, Spain
| | - Celia Jerónimo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
- Institut de Recherches Cliniques de Montréal, Canada
| | | | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sara Simonetti
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | - Mafalda Oliveira
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Vicente Peg
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Travis H Stracker
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Joaquín Arribas
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Tian V Tian
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
12
|
Ren X, Liu Q, Zhou P, Zhou T, Wang D, Mei Q, Flavell RA, Liu Z, Li M, Pan W, Zhu S. DHX9 maintains epithelial homeostasis by restraining R-loop-mediated genomic instability in intestinal stem cells. Nat Commun 2024; 15:3080. [PMID: 38594251 PMCID: PMC11004185 DOI: 10.1038/s41467-024-47235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.
Collapse
Affiliation(s)
- Xingxing Ren
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China
| | - Qiuyuan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Peirong Zhou
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China
| | - Tingyue Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Decai Wang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China.
| | - Wen Pan
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Shu Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Data Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
13
|
Yu J, Sui F, Gu F, Li W, Yu Z, Wang Q, He S, Wang L, Xu Y. Structural insights into histone exchange by human SRCAP complex. Cell Discov 2024; 10:15. [PMID: 38331872 PMCID: PMC10853557 DOI: 10.1038/s41421-023-00640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Histone variant H2A.Z is found at promoters and regulates transcription. The ATP-dependent chromatin remodeler SRCAP complex (SRCAP-C) promotes the replacement of canonical histone H2A-H2B dimer with H2A.Z-H2B dimer. Here, we determined structures of human SRCAP-C bound to H2A-containing nucleosome at near-atomic resolution. The SRCAP subunit integrates a 6-subunit actin-related protein (ARP) module and an ATPase-containing motor module. The ATPase-associated ARP module encircles half of the nucleosome along the DNA and may restrain net DNA translocation, a unique feature of SRCAP-C. The motor module adopts distinct nucleosome binding modes in the apo (nucleotide-free), ADP-bound, and ADP-BeFx-bound states, suggesting that ATPase-driven movement destabilizes H2A-H2B by unwrapping the entry DNA and pulls H2A-H2B out of nucleosome through the ZNHIT1 subunit. Structure-guided chromatin immunoprecipitation sequencing analysis confirmed the requirement of H2A-contacting ZNHIT1 in maintaining H2A.Z occupancy on the genome. Our study provides structural insights into the mechanism of H2A-H2A.Z exchange mediated by SRCAP-C.
Collapse
Affiliation(s)
- Jiali Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology of China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Fengrui Sui
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Feng Gu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wanjun Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuang He
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
- Greater Bay Area Institute of Precision Medicine, Fudan University, Nansha District, Guangzhou, Guangdong, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology of China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
- Greater Bay Area Institute of Precision Medicine, Fudan University, Nansha District, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Yu D, Dai Q, Wang Z, Hou SX, Sun LV. ARF1 maintains intestinal homeostasis by modulating gut microbiota and stem cell function. Life Sci 2023:121902. [PMID: 37392777 DOI: 10.1016/j.lfs.2023.121902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
AIMS The small GTPase protein ARF1 has been shown to be involved in the lipolysis pathway and to selectively kill stem cells in Drosophila melanogaster. However, the role of ARF1 in mammalian intestinal homeostasis remains elusive. This study aimed to explore the role of ARF1 in intestinal epithelial cells (IECs) and reveal the possible mechanism. MATERIALS AND METHODS IEC-specific ARF1 deletion mouse model was used to evaluate the role of ARF1 in intestine. Immunohistochemistry and immunofluorescence analyses were performed to detect specific cell type markers, and intestinal organoids were cultured to assess intestinal stem cell (ISC) proliferation and differentiation. Fluorescence in situ hybridization, 16S rRNA-Seq analysis, and antibiotic treatments were conducted to elucidate the role of gut microbes in ARF1-mediated intestinal function and the underlying mechanism. Colitis was induced in control and ARF1-deficient mice by dextran sulfate sodium (DSS). RNA-seq was performed to elucidate the transcriptomic changes after ARF1 deletion. KEY FINDINGS ARF1 was essential for ISC proliferation and differentiation. Loss of ARF1 increased susceptibility to DSS-induced colitis and gut microbial dysbiosis. Gut microbiota depletion by antibiotics could rescue the intestinal abnormalities to a certain extent. Furthermore, RNA-Seq analysis revealed alterations in multiple metabolic pathways. SIGNIFICANCE This work is the first to elucidate the essential role of ARF1 in regulating gut homeostasis, and provides novel insights into the pathogenesis of intestinal diseases and potential therapeutic targets.
Collapse
Affiliation(s)
- Danni Yu
- China State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Developmental Biology and Molecular Medicine, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Children's Hospital, Department of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Quanhui Dai
- China State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zixiang Wang
- China State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Developmental Biology and Molecular Medicine, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Children's Hospital, Department of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Steven X Hou
- China State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Developmental Biology and Molecular Medicine, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Children's Hospital, Department of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Ling V Sun
- China State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Developmental Biology and Molecular Medicine, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Children's Hospital, Department of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| |
Collapse
|
15
|
Huang Y, Zhou B. Mitochondrial Dysfunction in Cardiac Diseases and Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11051500. [PMID: 37239170 DOI: 10.3390/biomedicines11051500] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria are the main site of intracellular synthesis of ATP, which provides energy for various physiological activities of the cell. Cardiomyocytes have a high density of mitochondria and mitochondrial damage is present in a variety of cardiovascular diseases. In this paper, we describe mitochondrial damage in mitochondrial cardiomyopathy, congenital heart disease, coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and drug-induced cardiotoxicity, in the context of the key roles of mitochondria in cardiac development and homeostasis. Finally, we discuss the main current therapeutic strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction, including pharmacological strategies, gene therapy, mitochondrial replacement therapy, and mitochondrial transplantation. It is hoped that this will provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| |
Collapse
|
16
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
17
|
Dannappel MV, Zhu D, Sun X, Chua HK, Poppelaars M, Suehiro M, Khadka S, Lim Kam Sian TC, Sooraj D, Loi M, Gao H, Croagh D, Daly RJ, Faridi P, Boyer TG, Firestein R. CDK8 and CDK19 regulate intestinal differentiation and homeostasis via the chromatin remodeling complex SWI/SNF. J Clin Invest 2022; 132:158593. [PMID: 36006697 PMCID: PMC9566890 DOI: 10.1172/jci158593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Initiation and maintenance of transcriptional states are critical for controlling normal tissue homeostasis and differentiation. The cyclin dependent kinases CDK8 and CDK19 (Mediator kinases) are regulatory components of Mediator, a highly conserved complex that orchestrates enhancer-mediated transcriptional output. While Mediator kinases have been implicated in the transcription of genes necessary for development and growth, its function in mammals has not been well defined. Using genetically defined models and pharmacological inhibitors, we showed that CDK8 and CDK19 function in a redundant manner to regulate intestinal lineage specification in humans and mice. The Mediator kinase module bound and phosphorylated key components of the chromatin remodeling complex switch/sucrose non-fermentable (SWI/SNF) in intestinal epithelial cells. Concomitantly, SWI/SNF and MED12-Mediator colocalized at distinct lineage-specifying enhancers in a CDK8/19-dependent manner. Thus, these studies reveal a transcriptional mechanism of intestinal cell specification, coordinated by the interaction between the chromatin remodeling complex SWI/SNF and Mediator kinase.
Collapse
Affiliation(s)
- Marius V Dannappel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Danxi Zhu
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Xin Sun
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Hui Kheng Chua
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Marle Poppelaars
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Monica Suehiro
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Subash Khadka
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Terry Cc Lim Kam Sian
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology
| | - Dhanya Sooraj
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Melissa Loi
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Hugh Gao
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | | | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Thomas G Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| |
Collapse
|
18
|
Feng Y, Zhang Y, Lin Z, Ye X, Lin X, Lv L, Lin Y, Sun S, Qi Y, Lin X. Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development. PLoS Genet 2022; 18:e1010395. [PMID: 36166470 PMCID: PMC9514664 DOI: 10.1371/journal.pgen.1010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Programmed Cell Death (PCD) or apoptosis is a highly conserved biological process and plays essential roles both in the development and stress context. In Drosophila, expression of pro-apoptotic genes, including reaper (rpr), head involution defective (hid), grim, and sickle (skl), is sufficient to induce cell death. Here, we demonstrate that the chromatin remodeler Dmp18, the homolog of mammalian Znhit1, plays a crucial role in regulating apoptosis in eye and wing development. We showed that loss of Dmp18 disrupted eye and wing development, up-regulated transcription of pro-apoptotic genes, and induced apoptosis. Inhibition of apoptosis suppressed the eye defects caused by Dmp18 deletion. Furthermore, loss of Dmp18 disrupted H2Av incorporation into chromatin, promoted H3K4me3, but reduced H3K27me3 modifications on the TSS regions of pro-apoptotic genes. These results indicate that Dmp18 negatively regulates apoptosis by mediating H2Av incorporation and histone H3 modifications at pro-apoptotic gene loci for transcriptional regulation. Our study uncovers the role of Dmp18 in regulating apoptosis in Drosophila eye and wing development and provides insights into chromatin remodeling regulating apoptosis at the epigenetic levels.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail: (YF); (YQ); (XL)
| | - Yan Zhang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| | - Xinhua Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| |
Collapse
|
19
|
Wei W, Tang X, Jiang N, Ni C, He H, Sun S, Yu M, Yu C, Qiu M, Yan D, Zhou Z, Song Y, Liu H, Zhao B, Lin X. Chromatin Remodeler Znhit1 Controls Bone Morphogenetic Protein Signaling in Embryonic Lung Tissue Branching. J Biol Chem 2022; 298:102490. [PMID: 36115458 PMCID: PMC9547297 DOI: 10.1016/j.jbc.2022.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Branching morphogenesis is a key process essential for lung and other organ development in which cellular and tissue architecture branch out to maximize surface area. While this process is known to be regulated by differential gene expression of ligands and receptors, how chromatin remodeling regulates this process remains unclear. Znhit1, acting as a chromatin remodeler, has previously been shown to control the deposition of the histone variant H2A.Z. Here, we demonstrate that Znhit1 also plays an important role in regulating lung branching. Using Znhit1 conditional knockout mice, we show that Znhit1 deficiency in the embryonic lung epithelium leads to failure of branching morphogenesis and neonatal lethality, which is accompanied by reduced cell proliferation and increased cell apoptosis of the epithelium. The results from the transcriptome and the ChIP assay reveal that this is partially regulated by the derepression of Bmp4, encoding bone morphogenetic protein 4, which is a direct target of H2A.Z. Furthermore, we show that inhibition of BMP signaling by the protein inhibitor Noggin rescues the lung branching defects of Znhit1 mutants ex vivo. Taken together, our study identifies the critical role of Znhit1/H2A.Z in embryonic lung morphogenesis via the regulation of BMP signaling.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China
| | - Xiaofang Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Ni
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua He
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China
| | - Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meng Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuyue Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengdi Qiu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dong Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Hanmin Liu
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China.
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China.
| |
Collapse
|
20
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
21
|
Sun S, Jiang Y, Zhang Q, Pan H, Li X, Yang L, Huang M, Wei W, Wang X, Qiu M, Cao L, He H, Yu M, Liu H, Zhao B, Jiang N, Li R, Lin X. Znhit1 controls meiotic initiation in male germ cells by coordinating with Stra8 to activate meiotic gene expression. Dev Cell 2022; 57:901-913.e4. [PMID: 35413238 DOI: 10.1016/j.devcel.2022.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/25/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
The switch from mitosis to meiosis ensures the successive formation of gametes. However, it remains unclear how meiotic initiation occurs within the context of chromatin. Recent studies have shown that zinc finger HIT-type containing 1 (Znhit1), a subunit of the SRCAP chromatin remodeling complex, plays essential roles in modulating the chromatin structure. Herein, we report that the germline-conditional deletion of Znhit1 in male mice specifically blocks meiotic initiation. We show that Znhit1 is required for meiotic prophase events, including synapsis, DNA double-strand break formation, and meiotic DNA replication. Mechanistically, Znhit1 controls the histone variant H2A.Z deposition, which facilitates the expression of meiotic genes, such as Meiosin, but not the expression of Stra8. Interestingly, Znhit1 deficiency disrupts the transcription bubbles of meiotic genes. Thus, our findings identify the essential role of Znhit1-dependent H2A.Z deposition in allowing activation of meiotic gene expression, thereby controlling the initiation of meiosis.
Collapse
Affiliation(s)
- Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yamei Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Qiaoli Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hongjie Pan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Li Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Meina Huang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Wei Wei
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu 610041, China
| | - Xiaoye Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Mengdi Qiu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Lihuan Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Hua He
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu 610041, China
| | - Miao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Hanmin Liu
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu 610041, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Runsheng Li
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China.
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu 610041, China.
| |
Collapse
|
22
|
Lu J, An J, Wang J, Cao X, Cao Y, Huang C, Jiao S, Yan D, Lin X, Zhou X. Znhit1 Regulates p21Cip1 to Control Mouse Lens Differentiation. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35472217 PMCID: PMC9055562 DOI: 10.1167/iovs.63.4.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/06/2022] [Indexed: 01/22/2023] Open
Abstract
Purpose The transparency of the ocular lens is essential for refracting and focusing light onto the retina, and transparency is controlled by many factors and signaling pathways. Here we showed a critical role of chromatin remodeler zinc finger HIT-type containing 1 (Znhit1) in maintaining lens transparency. Methods To explore the roles of Znhit1 in lens development, the cre-loxp system was used to generate lens-specific Znhit1 knockout mice (Znhit1Mlr10-Cre; Znhit1 cKO). Morphological changes in mice lenses were examined using hematoxylin and eosin staining. RNA sequencing (RNA-seq) and assay for transposase accessible chromatin using sequencing (ATAC-seq) were applied to screen transcriptome changes. Immunofluorescence staining were performed to assess proteins distribution and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining were used for determining apoptosis. The mRNAs expression was examined by quantitative RT-PCR and proteins expression by Western blot. Results Lens-specific conditional knockout mice had a severe cataract, microphthalmia phenotype, and seriously abnormal lens fiber cells differentiation. Deletion of Znhit1 in the lens resulted in decreased cell proliferation and increased cell apoptosis of the lens epithelia. ATAC-seq showed that Znhit1 deficiency increased chromatin accessibility of cyclin-dependent kinase inhibitors, including p57Kip2 and p21Cip1, and upregulated the expression of these genes in mRNA and protein levels. And we also showed that loss of Znhit1 lead to lens fibrosis by upregulating the expression of p21Cip1. Conclusions Our findings suggested that Znhit1 is required for the survival of lens epithelial cells. The loss of Znhit1 leads to the overexpression of p21Cip1, further resulting in lens fibrosis, and impacted the establishment of lens transparency.
Collapse
Affiliation(s)
- Juan Lu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jianhong An
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jiawei Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Xiaowen Cao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yuqing Cao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Chengjie Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Shiming Jiao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences, Wenzhou, China
| |
Collapse
|
23
|
Gene Co-expression Analysis of the Human Substantia Nigra Identifies ZNHIT1 as an SNCA Co-expressed Gene that Protects Against α-Synuclein-Induced Impairments in Neurite Growth and Mitochondrial Dysfunction in SH-SY5Y Cells. Mol Neurobiol 2022; 59:2745-2757. [PMID: 35175558 PMCID: PMC9016026 DOI: 10.1007/s12035-022-02768-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Parkinson’s disease (PD) is neurodegenerative disorder with the pathological hallmarks of progressive degeneration of midbrain dopaminergic neurons from the substantia nigra (SN), and accumulation and spread of inclusions of aggregated α-synuclein (α-Syn). Since current PD therapies do not prevent neurodegeneration, there is a need to identify therapeutic targets that can prevent α-Syn-induced reductions in neuronal survival and neurite growth. We hypothesised that genes that are normally co-expressed with the α-Syn gene (SNCA), and whose co-expression pattern is lost in PD, may be important for protecting against α-Syn-induced dopaminergic degeneration, since broken correlations can be used as an index of functional misregulation. Gene co-expression analysis of the human SN showed that nuclear zinc finger HIT-type containing 1 (ZNHIT1) is co-expressed with SNCA and that this co-expression pattern is lost in PD. Overexpression of ZNHIT1 was found to increase deposition of the H2A.Z histone variant in SH-SY5Y cells, to promote neurite growth and to prevent α-Syn-induced reductions in neurite growth and cell viability. Analysis of ZNHIT1 co-expressed genes showed significant enrichment in genes associated with mitochondrial function. In agreement, bioenergetic state analysis of mitochondrial function revealed that ZNHIT1 increased cellular ATP synthesis. Furthermore, α-Syn-induced impairments in basal respiration, maximal respiration and spare respiratory capacity were not seen in ZNHIT1-overexpressing cells. These data show that ZNHIT1 can protect against α-Syn-induced degeneration and mitochondrial dysfunction, which rationalises further investigation of ZNHIT1 as a therapeutic target for PD.
Collapse
|
24
|
Shi Y, Fan W, Xu M, Lin X, Zhao W, Yang Z. Critical role of Znhit1 for post-natal heart function and vacuolar cardiomyopathy. JCI Insight 2022; 7:148752. [PMID: 35167494 PMCID: PMC8986070 DOI: 10.1172/jci.insight.148752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
Ca2+ is critical for cardiac electrical conduction and contractility, and aberrant Ca2+ homeostasis causes arrhythmia and heart failure. Chromatin remodeling modulates gene expression involved in cardiac sarcomere assembly and postnatal heart function. However, the chromatin-remodeling regulatory mechanism of cardiac Ca2+ homeostasis is unknown. Here, we found that Znhit1, a core subunit of the SRCAP remodeling complex, was essential for heart function. Deletion of Znhit1 in postnatal hearts of mice resulted in arrhythmia, idiopathic vacuolar cardiomyopathy, rapid heart failure, and premature sudden death. In addition, the level of Casq1, a sarcoplasmic reticulum Ca2+ regulatory protein, was massively elevated while SERCA2a showed reduced protein level. Mechanistically, the Znhit1 modulated the expression of Casq1 and SERCA2a by depositing H2A.Z at their promoters. Deletion of Casq1 could substantially alleviate the vacuolar formation in Znhit1Casq1 KO mice. These findings demonstrate that Znhit1 is required for postnatal heart function and maintains cardiac Ca2+ homeostasis and that accumulation of Casq1 might be a causative factor for vacuolar cardiomyopathy.
Collapse
Affiliation(s)
- Yingchao Shi
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Wenli Fan
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Mingjie Xu
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Wukui Zhao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zhongzhou Yang
- Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Colino-Sanguino Y, Clark SJ, Valdes-Mora F. The H2A.Z-nuclesome code in mammals: emerging functions. Trends Genet 2021; 38:273-289. [PMID: 34702577 DOI: 10.1016/j.tig.2021.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
H2A.Z is a histone variant that provides specific structural and docking-side properties to the nucleosome, resulting in diverse and specialised molecular and cellular functions. In this review, we discuss the latest studies uncovering new functional aspects of mammalian H2A.Z in gene transcription, including pausing and elongation of RNA polymerase II (RNAPII) and enhancer activity; DNA repair; DNA replication; and 3D chromatin structure. We also review the recently described role of H2A.Z in embryonic development, cell differentiation, neurodevelopment, and brain function. In conclusion, our cumulative knowledge of H2A.Z over the past 40 years, in combination with the implementation of novel molecular technologies, is unravelling an unexpected and complex role of histone variants in gene regulation and disease.
Collapse
Affiliation(s)
- Yolanda Colino-Sanguino
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, NSW, Australia; School of Children and Women Health, University of NSW Sydney, Sydney, NSW, Australia.
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, University of NSW Sydney, Sydney, NSW, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, NSW, Australia; School of Children and Women Health, University of NSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Lowden C, Boulet A, Boehler NA, Seecharran S, Rios Garcia J, Lowe NJ, Liu J, Ong JLK, Wang W, Ma L, Cheng AH, Senatore A, Monks DA, Liu BH, Leary SC, Cheng HYM. Homeostatic control of nuclear-encoded mitochondrial gene expression by the histone variant H2A.Z is essential for neuronal survival. Cell Rep 2021; 36:109704. [PMID: 34525369 DOI: 10.1016/j.celrep.2021.109704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Histone variants are crucial regulators of chromatin structure and gene transcription, yet their functions within the brain remain largely unexplored. Here, we show that the H2A histone variant H2A.Z is essential for neuronal survival. Mice lacking H2A.Z in GABAergic neurons or Purkinje cells (PCs) present with a progressive cerebellar ataxia accompanied by widespread degeneration of PCs. Ablation of H2A.Z in other neuronal subtypes also triggers cell death. H2A.Z binds to the promoters of key nuclear-encoded mitochondrial genes to regulate their expression and promote organelle function. Bolstering mitochondrial activity genetically or by organelle transplant enhances the survival of H2A.Z-ablated neurons. Changes in bioenergetic status alter H2A.Z occupancy at the promoters of nuclear-encoded mitochondrial genes, an adaptive response essential for cell survival. Our results highlight that H2A.Z fulfills a key, conserved role in neuronal survival by acting as a transcriptional rheostat to regulate the expression of genes critical to mitochondrial function.
Collapse
Affiliation(s)
- Christopher Lowden
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nicholas A Boehler
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Shavanie Seecharran
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Julian Rios Garcia
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Nicholas J Lowe
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Jiashu Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jonathan L K Ong
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Wanzhang Wang
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Lingfeng Ma
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Arthur H Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - D Ashley Monks
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Bao-Hua Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
27
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
28
|
Xu M, Yao J, Shi Y, Yi H, Zhao W, Lin X, Yang Z. The SRCAP chromatin remodeling complex promotes oxidative metabolism during prenatal heart development. Development 2021; 148:237772. [PMID: 33913477 DOI: 10.1242/dev.199026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Mammalian heart development relies on cardiomyocyte mitochondrial maturation and metabolism. Embryonic cardiomyocytes make a metabolic shift from anaerobic glycolysis to oxidative metabolism by mid-gestation. VHL-HIF signaling favors anaerobic glycolysis but this process subsides by E14.5. Meanwhile, oxidative metabolism becomes activated but its regulation is largely elusive. Here, we first pinpointed a crucial temporal window for mitochondrial maturation and metabolic shift, and uncovered the pivotal role of the SRCAP chromatin remodeling complex in these processes in mouse. Disruption of this complex massively suppressed the transcription of key genes required for the tricarboxylic acid cycle, fatty acid β-oxidation and ubiquinone biosynthesis, and destroyed respirasome stability. Furthermore, we found that the SRCAP complex functioned through H2A.Z deposition to activate transcription of metabolic genes. These findings have unveiled the important physiological functions of the SRCAP complex in regulating mitochondrial maturation and promoting oxidative metabolism during heart development, and shed new light on the transcriptional regulation of ubiquinone biosynthesis.
Collapse
Affiliation(s)
- Mingjie Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing 210093, China
| | - Jie Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing 210093, China
| | - Yingchao Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing 210093, China
| | - Huijuan Yi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing 210093, China
| | - Wukui Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing 210093, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing 210093, China.,MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
29
|
Huang M, Yang L, Jiang N, Dai Q, Li R, Zhou Z, Zhao B, Lin X. Emc3 maintains intestinal homeostasis by preserving secretory lineages. Mucosal Immunol 2021; 14:873-886. [PMID: 33785873 PMCID: PMC8222001 DOI: 10.1038/s41385-021-00399-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 02/04/2023]
Abstract
Intestinal exocrine secretory lineages, including goblet cells and Paneth cells, provide vital innate host defense to pathogens. However, how these cells are specified and maintained to ensure intestinal barrier function remains poorly defined. Here we show that endoplasmic reticulum membrane protein complex subunit 3 (Emc3) is essential for differentiation and function of exocrine secretory lineages. Deletion of Emc3 in intestinal epithelium decreases mucus production by goblet cells and Paneth cell population, along with gut microbial dysbiosis, which result in spontaneous inflammation and increased susceptibility to DSS-induced colitis. Moreover, Emc3 deletion impairs stem cell niche function of Paneth cells, thus resulting in intestinal organoid culture failure. Mechanistically, Emc3 deficiency leads to increased endoplasmic reticulum (ER) stress. Mitigating ER stress with tauroursodeoxycholate acid alleviates secretory dysfunction and restores organoid formation. Our study identifies a dominant role of Emc3 in maintaining intestinal mucosal homeostasis.
Collapse
Affiliation(s)
- Meina Huang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Li Yang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Jiang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quanhui Dai
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Runsheng Li
- grid.8547.e0000 0001 0125 2443National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Zhao
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinhua Lin
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Rees WD, Tandun R, Yau E, Zachos NC, Steiner TS. Regenerative Intestinal Stem Cells Induced by Acute and Chronic Injury: The Saving Grace of the Epithelium? Front Cell Dev Biol 2020; 8:583919. [PMID: 33282867 PMCID: PMC7688923 DOI: 10.3389/fcell.2020.583919] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
The intestinal epithelium is replenished every 3-4 days through an orderly process that maintains important secretory and absorptive functions while preserving a continuous mucosal barrier. Intestinal epithelial cells (IECs) derive from a stable population of intestinal stem cells (ISCs) that reside in the basal crypts. When intestinal injury reaches the crypts and damages IECs, a mechanism to replace them is needed. Recent research has highlighted the existence of distinct populations of acute and chronic damage-associated ISCs and their roles in maintaining homeostasis in several intestinal perturbation models. What remains unknown is how the damage-associated regenerative ISC population functions in the setting of chronic inflammation, as opposed to acute injury. What long-term consequences result from persistent inflammation and other cellular insults to the ISC niche? What particular "regenerative" cell types provide the most efficacious restorative properties? Which differentiated IECs maintain the ability to de-differentiate and restore the ISC niche? This review will cover the latest research on damage-associated regenerative ISCs and epigenetic factors that determine ISC fate, as well as provide opinions on future studies that need to be undertaken to understand the repercussions of the emergence of these cells, their contribution to relapses in inflammatory bowel disease, and their potential use in therapeutics for chronic intestinal diseases.
Collapse
Affiliation(s)
- William D Rees
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Rene Tandun
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Enoch Yau
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Theodore S Steiner
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
31
|
Scacchetti A, Becker PB. Variation on a theme: Evolutionary strategies for H2A.Z exchange by SWR1-type remodelers. Curr Opin Cell Biol 2020; 70:1-9. [PMID: 33217681 DOI: 10.1016/j.ceb.2020.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023]
Abstract
Histone variants are a universal means to alter the biochemical properties of nucleosomes, implementing local changes in chromatin structure. H2A.Z, one of the most conserved histone variants, is incorporated into chromatin by SWR1-type nucleosome remodelers. Here, we summarize recent advances toward understanding the transcription-regulatory roles of H2A.Z and of the remodeling enzymes that govern its dynamic chromatin incorporation. Tight transcriptional control guaranteed by H2A.Z nucleosomes depends on the context provided by other histone variants or chromatin modifications, such as histone acetylation. The functional cooperation of SWR1-type remodelers with NuA4 histone acetyltransferase complexes, a recurring theme during evolution, is structurally implemented by species-specific strategies.
Collapse
Affiliation(s)
- Alessandro Scacchetti
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
32
|
Rispal J, Escaffit F, Trouche D. Chromatin Dynamics in Intestinal Epithelial Homeostasis: A Paradigm of Cell Fate Determination versus Cell Plasticity. Stem Cell Rev Rep 2020; 16:1062-1080. [PMID: 33051755 PMCID: PMC7667136 DOI: 10.1007/s12015-020-10055-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
The rapid renewal of intestinal epithelium is mediated by a pool of stem cells, located at the bottom of crypts, giving rise to highly proliferative progenitor cells, which in turn differentiate during their migration along the villus. The equilibrium between renewal and differentiation is critical for establishment and maintenance of tissue homeostasis, and is regulated by signaling pathways (Wnt, Notch, Bmp…) and specific transcription factors (TCF4, CDX2…). Such regulation controls intestinal cell identities by modulating the cellular transcriptome. Recently, chromatin modification and dynamics have been identified as major actors linking signaling pathways and transcriptional regulation in the control of intestinal homeostasis. In this review, we synthesize the many facets of chromatin dynamics involved in controlling intestinal cell fate, such as stemness maintenance, progenitor identity, lineage choice and commitment, and terminal differentiation. In addition, we present recent data underlying the fundamental role of chromatin dynamics in intestinal cell plasticity. Indeed, this plasticity, which includes dedifferentiation processes or the response to environmental cues (like microbiota’s presence or food ingestion), is central for the organ’s physiology. Finally, we discuss the role of chromatin dynamics in the appearance and treatment of diseases caused by deficiencies in the aforementioned mechanisms, such as gastrointestinal cancer, inflammatory bowel disease or irritable bowel syndrome. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jérémie Rispal
- LBCMCP, Centre of Integrative Biology (CBI), Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Fabrice Escaffit
- LBCMCP, Centre of Integrative Biology (CBI), Université de Toulouse, CNRS, UPS, Toulouse, 31062, France.
| | - Didier Trouche
- LBCMCP, Centre of Integrative Biology (CBI), Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| |
Collapse
|
33
|
Abstract
Histone variants regulate chromatin accessibility and gene transcription. Given their distinct properties and functions, histone varint substitutions allow for profound alteration of nucleosomal architecture and local chromatin landscape. Skeletal myogenesis driven by the key transcription factor MyoD is characterized by precise temporal regulation of myogenic genes. Timed substitution of variants within the nucleosomes provides a powerful means to ensure sequential expression of myogenic genes. Indeed, growing evidence has shown H3.3, H2A.Z, macroH2A, and H1b to be critical for skeletal myogenesis. However, the relative importance of various histone variants and their associated chaperones in myogenesis is not fully appreciated. In this review, we summarize the role that histone variants play in altering chromatin landscape to ensure proper muscle differentiation. The temporal regulation and cross talk between histones variants and their chaperones in conjunction with other forms of epigenetic regulation could be critical to understanding myogenesis and their involvement in myopathies.
Collapse
Affiliation(s)
- Nandini Karthik
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
34
|
Sun S, Jiang N, Jiang Y, He Q, He H, Wang X, Yang L, Li R, Liu F, Lin X, Zhao B. Chromatin remodeler Znhit1 preserves hematopoietic stem cell quiescence by determining the accessibility of distal enhancers. Leukemia 2020; 34:3348-3358. [PMID: 32694618 PMCID: PMC7685981 DOI: 10.1038/s41375-020-0988-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 01/10/2023]
Abstract
Hematopoietic stem cell (HSC) utilizes its quiescence feature to combat exhaustion for lifetime blood cell supply. To date, how certain chromatin architecture and subsequent transcription profile permit HSC quiescence remains unclear. Here, we show an essential role of chromatin remodeler zinc finger HIT-type containing 1 (Znhit1) in maintaining HSC quiescence. We find that loss of Znhit1 leads to exhaustion of stem cell pool and impairment of hematopoietic function. Mechanically, Znhit1 determines the chromatin accessibility at distal enhancers of HSC quiescence genes, including Pten, Fstl1, and Klf4, for sustained transcription and consequent PI3K-Akt signaling inhibition. Moreover, Znhit1-Pten-PI3K-Akt axis also participates in controlling myeloid expansion and B-lymphoid specification. Our findings therefore identify a dominant role of Znhit1-mediated chromatin remodeling in preserving HSC function for hematopoietic homeostasis.
Collapse
Affiliation(s)
- Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.,National Health Commission Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yamei Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Qiuping He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Li Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Runsheng Li
- National Health Commission Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
35
|
Ye B, Yang L, Qian G, Liu B, Zhu X, Zhu P, Ma J, Xie W, Li H, Lu T, Wang Y, Wang S, Du Y, Wang Z, Jiang J, Li J, Fan D, Meng S, Wu J, Tian Y, Fan Z. The chromatin remodeler SRCAP promotes self-renewal of intestinal stem cells. EMBO J 2020; 39:e103786. [PMID: 32449550 DOI: 10.15252/embj.2019103786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Lgr5+ intestinal stem cells (ISCs) exhibit self-renewal and differentiation features under homeostatic conditions, but the mechanisms controlling Lgr5 + ISC self-renewal remain elusive. Here, we show that the chromatin remodeler SRCAP is highly expressed in mouse intestinal epithelium and ISCs. Srcap deletion impairs both self-renewal of ISCs and intestinal epithelial regeneration. Mechanistically, SRCAP recruits the transcriptional regulator REST to the Prdm16 promoter and induces expression of this transcription factor. By activating PPARδ expression, Prdm16 in turn initiates PPARδ signaling, which sustains ISC stemness. Rest or Prdm16 deficiency abrogates the self-renewal capacity of ISCs as well as intestinal epithelial regeneration. Collectively, these data show that the SRCAP-REST-Prdm16-PPARδ axis is required for self-renewal maintenance of Lgr5 + ISCs.
Collapse
Affiliation(s)
- Buqing Ye
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liuliu Yang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guomin Qian
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Benyu Liu
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Ma
- MOE Key Laboratory of Bioinformatics, Center for Stem Cell Biology and Regenerative Medicine, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Xie
- MOE Key Laboratory of Bioinformatics, Center for Stem Cell Biology and Regenerative Medicine, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huimu Li
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tianku Lu
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanying Wang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhimin Wang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Jiang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Genome Tagging Project (GTP) Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Genome Tagging Project (GTP) Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dongdong Fan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shu Meng
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiayi Wu
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Lamaa A, Humbert J, Aguirrebengoa M, Cheng X, Nicolas E, Côté J, Trouche D. Integrated analysis of H2A.Z isoforms function reveals a complex interplay in gene regulation. eLife 2020; 9:53375. [PMID: 32109204 PMCID: PMC7048395 DOI: 10.7554/elife.53375] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
The H2A.Z histone variant plays major roles in the control of gene expression. In human, H2A.Z is encoded by two genes expressing two isoforms, H2A.Z.1 and H2A.Z.2 differing by three amino acids. Here, we undertook an integrated analysis of their functions in gene expression using endogenously-tagged proteins. RNA-Seq analysis in untransformed cells showed that they can regulate both distinct and overlapping sets of genes positively or negatively in a context-dependent manner. Furthermore, they have similar or antagonistic function depending on genes. H2A.Z.1 and H2A.Z.2 can replace each other at Transcription Start Sites, providing a molecular explanation for this interplay. Mass spectrometry analysis showed that H2A.Z.1 and H2A.Z.2 have specific interactors, which can mediate their functional antagonism. Our data indicate that the balance between H2A.Z.1 and H2A.Z.2 at promoters is critically important to regulate specific gene expression, providing an additional layer of complexity to the control of gene expression by histone variants.
Collapse
Affiliation(s)
- Assala Lamaa
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center and Oncology Division of CHU de Québec-Université Laval Research Center, Quebec, Canada
| | - Marion Aguirrebengoa
- BigA Core Facility, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center and Oncology Division of CHU de Québec-Université Laval Research Center, Quebec, Canada
| | - Estelle Nicolas
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center and Oncology Division of CHU de Québec-Université Laval Research Center, Quebec, Canada
| | - Didier Trouche
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|