1
|
Hudacova E, Abaffy P, Kaplan MM, Krausova M, Kubista M, Machon O. Single-cell transcriptomic resolution of osteogenesis during craniofacial morphogenesis. Bone 2025; 190:117297. [PMID: 39461490 DOI: 10.1016/j.bone.2024.117297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Craniofacial morphogenesis depends on complex cell fate decisions during the differentiation of post-migratory cranial neural crest cells. Molecular mechanisms of cell differentiation of mesenchymal cells to developing bones, cartilage, teeth, tongue, and other craniofacial tissues are still poorly understood. We performed single-cell transcriptomic analysis of craniofacial mesenchymal cells derived from cranial NCCs in mouse embryo. Using FACS sorting of Wnt1-Cre2 progeny, we carefully mapped the cell heterogeneity in the craniofacial region during the initial stages of cartilage and bone formation. Transcriptomic data and in vivo validations identified molecular determinants of major cell populations involved in the development of lower and upper jaw, teeth, tongue, dermis, or periocular mesenchyme. Single-cell transcriptomic analysis of Meis2-deficient mice revealed critical gene expression differences, including increased osteogenic and cell adhesion markers. This leads to affected mesenchymal cell differentiation and increased ossification, resulting in impaired bone, cartilage, and tongue formation.
Collapse
Affiliation(s)
- Erika Hudacova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12000 Prague, Czech Republic.
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Mehmet Mahsum Kaplan
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Michaela Krausova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| |
Collapse
|
2
|
Feiner N, Yang W, Bunikis I, While GM, Uller T. Adaptive introgression reveals the genetic basis of a sexually selected syndrome in wall lizards. SCIENCE ADVANCES 2024; 10:eadk9315. [PMID: 38569035 PMCID: PMC10990284 DOI: 10.1126/sciadv.adk9315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The joint expression of particular colors, morphologies, and behaviors is a common feature of adaptation, but the genetic basis for such "phenotypic syndromes" remains poorly understood. Here, we identified a complex genetic architecture associated with a sexually selected syndrome in common wall lizards, by capitalizing on the adaptive introgression of coloration and morphology into a distantly related lineage. Consistent with the hypothesis that the evolution of phenotypic syndromes in vertebrates is facilitated by developmental linkage through neural crest cells, most of the genes associated with the syndrome are involved in neural crest cell regulation. A major locus was a ~400-kb region, characterized by standing structural genetic variation and previously implied in the evolutionary innovation of coloration and beak size in birds. We conclude that features of the developmental and genetic architecture contribute to maintaining trait integration, facilitating the extensive and rapid introgressive spread of suites of sexually selected characters.
Collapse
Affiliation(s)
| | - Weizhao Yang
- Department of Biology, Lund University, Lund, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Geoffrey M. While
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Gomez Ramos B, Ohnmacht J, de Lange N, Valceschini E, Ginolhac A, Catillon M, Ferrante D, Rakovic A, Halder R, Massart F, Arena G, Antony P, Bolognin S, Klein C, Krause R, Schulz MH, Sauter T, Krüger R, Sinkkonen L. Multiomics analysis identifies novel facilitators of human dopaminergic neuron differentiation. EMBO Rep 2024; 25:254-285. [PMID: 38177910 PMCID: PMC10897179 DOI: 10.1038/s44319-023-00024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Midbrain dopaminergic neurons (mDANs) control voluntary movement, cognition, and reward behavior under physiological conditions and are implicated in human diseases such as Parkinson's disease (PD). Many transcription factors (TFs) controlling human mDAN differentiation during development have been described, but much of the regulatory landscape remains undefined. Using a tyrosine hydroxylase (TH) human iPSC reporter line, we here generate time series transcriptomic and epigenomic profiles of purified mDANs during differentiation. Integrative analysis predicts novel regulators of mDAN differentiation and super-enhancers are used to identify key TFs. We find LBX1, NHLH1 and NR2F1/2 to promote mDAN differentiation and show that overexpression of either LBX1 or NHLH1 can also improve mDAN specification. A more detailed investigation of TF targets reveals that NHLH1 promotes the induction of neuronal miR-124, LBX1 regulates cholesterol biosynthesis, and NR2F1/2 controls neuronal activity.
Collapse
Affiliation(s)
- Borja Gomez Ramos
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Jochen Ohnmacht
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Nikola de Lange
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Elena Valceschini
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Aurélien Ginolhac
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Marie Catillon
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Daniele Ferrante
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Aleksandar Rakovic
- Institute of Neurogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - François Massart
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site Rhein-Main, 60590, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University, Frankfurt am Main, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), L-1210, Luxembourg, Luxembourg
- Luxembourg Institute of Health (LIH), L-1445, Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg.
| |
Collapse
|
4
|
Bardag Gorce F, Al Dahan M, Narwani K, Terrazas J, Ferrini M, Calhoun CC, Uyanne J, Royce-Flores J, Crum E, Niihara Y. Human Oral Mucosa as a Potentially Effective Source of Neural Crest Stem Cells for Clinical Practice. Cells 2023; 12:2216. [PMID: 37759439 PMCID: PMC10526281 DOI: 10.3390/cells12182216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
We report in this study on the isolation and expansion of neural crest stem cells (NCSCs) from the epithelium of oral mucosa (OM) using reagents that are GMP-certified and FDA-approved for clinical use. Characterization analysis showed that the levels of keratins K2, K6C, K4, K13, K31, and K15-specific to OM epithelial cells-were significantly lower in the experimental NCSCs. While SOX10 was decreased with no statistically significant difference, the earliest neural crest specifier genes SNAI1/2, Ap2a, Ap2c, SOX9, SOX30, Pax3, and Twist1 showed a trend in increased expression in NCSCs. In addition, proteins of Oct4, Nestin and Noth1 were found to be greatly expressed, confirming NCSC multipotency. In conclusion, our study showed that the epithelium of OM contains NCSCs that can be isolated and expanded with clinical-grade reagents to supply the demand for multipotent cells required for clinical applications in regenerative medicine. Supported by Emmaus Medical Inc.
Collapse
Affiliation(s)
- Fawzia Bardag Gorce
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mais Al Dahan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Kavita Narwani
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
| | - Jesus Terrazas
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Monica Ferrini
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Colonya C. Calhoun
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Department of Oral & Maxillofacial Surgery and Hospital Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Jettie Uyanne
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Herman Ostrow School of Dentistry of USC, Los Angeles, CA 90089, USA
| | - Jun Royce-Flores
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Eric Crum
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Yutaka Niihara
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Emmaus Medical, Inc., Torrance, CA 90503, USA
| |
Collapse
|
5
|
Ray L, Medeiros D. Linking Vertebrate Gene Duplications to the New Head Hypothesis. BIOLOGY 2023; 12:1213. [PMID: 37759612 PMCID: PMC10525774 DOI: 10.3390/biology12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Vertebrates have diverse morphologies and various anatomical novelties that set them apart from their closest invertebrate relatives. A conspicuous head housing a large brain, paired sense organs, and protected by a skeleton of cartilage and bone is unique to vertebrates and is a defining feature of this taxon. Gans and Northcutt (1980s) proposed that the evolution of this "new head" was dependent on two key developmental innovations: neural crest cells (NCCs) and ectodermal placodes. NCCs are migratory embryonic cells that form bone, cartilage, and neurons in the new head. Based on genome size, Ohno (1970s) proposed a separate hypothesis, stating that vertebrate genome content was quadrupled via two rounds (2R) of whole genome duplications (WGDs), and the surplus of genetic material potentiated vertebrate morphological diversification. While both hypotheses offer explanations for vertebrate success, it is unclear if, and how, the "new head" and "2R" hypotheses are linked. Here, we consider both hypotheses and evaluate the experimental evidence connecting the two. Overall, evidence suggests that while the origin of the NC GRN predates the vertebrate WGDs, these genomic events may have potentiated the evolution of distinct genetic subnetworks in different neural crest subpopulations. We describe the general composition of the NC GRN and posit that its increased developmental modularity facilitated the independent evolution of NC derivatives and the diversification of the vertebrate head skeleton. Lastly, we discuss experimental strategies needed to test whether gene duplications drove the diversification of neural crest derivatives and the "new head".
Collapse
Affiliation(s)
- Lindsey Ray
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Daniel Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
6
|
Losa M, Barozzi I, Osterwalder M, Hermosilla-Aguayo V, Morabito A, Chacón BH, Zarrineh P, Girdziusaite A, Benazet JD, Zhu J, Mackem S, Capellini TD, Dickel D, Bobola N, Zuniga A, Visel A, Zeller R, Selleri L. A spatio-temporally constrained gene regulatory network directed by PBX1/2 acquires limb patterning specificity via HAND2. Nat Commun 2023; 14:3993. [PMID: 37414772 PMCID: PMC10325989 DOI: 10.1038/s41467-023-39443-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
A lingering question in developmental biology has centered on how transcription factors with widespread distribution in vertebrate embryos can perform tissue-specific functions. Here, using the murine hindlimb as a model, we investigate the elusive mechanisms whereby PBX TALE homeoproteins, viewed primarily as HOX cofactors, attain context-specific developmental roles despite ubiquitous presence in the embryo. We first demonstrate that mesenchymal-specific loss of PBX1/2 or the transcriptional regulator HAND2 generates similar limb phenotypes. By combining tissue-specific and temporally controlled mutagenesis with multi-omics approaches, we reconstruct a gene regulatory network (GRN) at organismal-level resolution that is collaboratively directed by PBX1/2 and HAND2 interactions in subsets of posterior hindlimb mesenchymal cells. Genome-wide profiling of PBX1 binding across multiple embryonic tissues further reveals that HAND2 interacts with subsets of PBX-bound regions to regulate limb-specific GRNs. Our research elucidates fundamental principles by which promiscuous transcription factors cooperate with cofactors that display domain-restricted localization to instruct tissue-specific developmental programs.
Collapse
Affiliation(s)
- Marta Losa
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Iros Barozzi
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Viviana Hermosilla-Aguayo
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Angela Morabito
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Brandon H Chacón
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Peyman Zarrineh
- School of Medical Sciences, University of Manchester, Manchester, UK
| | - Ausra Girdziusaite
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Jean Denis Benazet
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jianjian Zhu
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diane Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nicoletta Bobola
- School of Medical Sciences, University of Manchester, Manchester, UK
| | - Aimée Zuniga
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Rolf Zeller
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Licia Selleri
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Afzal Z, Lange JJ, Nolte C, McKinney S, Wood C, Paulson A, De Kumar B, Unruh J, Slaughter BD, Krumlauf R. Shared retinoic acid responsive enhancers coordinately regulate nascent transcription of Hoxb coding and non-coding RNAs in the developing mouse neural tube. Development 2023; 150:dev201259. [PMID: 37102683 PMCID: PMC10233718 DOI: 10.1242/dev.201259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.
Collapse
Affiliation(s)
- Zainab Afzal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christof Nolte
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Kemmler CL, Moran HR, Murray BF, Scoresby A, Klem JR, Eckert RL, Lepovsky E, Bertho S, Nieuwenhuize S, Burger S, D'Agati G, Betz C, Puller AC, Felker A, Ditrychova K, Bötschi S, Affolter M, Rohner N, Lovely CB, Kwan KM, Burger A, Mosimann C. Next-generation plasmids for transgenesis in zebrafish and beyond. Development 2023; 150:dev201531. [PMID: 36975217 PMCID: PMC10263156 DOI: 10.1242/dev.201531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.
Collapse
Affiliation(s)
- Cassie L. Kemmler
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Hannah R. Moran
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Brooke F. Murray
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Aaron Scoresby
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - John R. Klem
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rachel L. Eckert
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Elizabeth Lepovsky
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sylvain Bertho
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Susan Nieuwenhuize
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Sibylle Burger
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Gianluca D'Agati
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Charles Betz
- Growth & Development, Biozentrum, Spitalstrasse 41, University of Basel, 4056 Basel, Switzerland
| | - Ann-Christin Puller
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Anastasia Felker
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Karolina Ditrychova
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Seraina Bötschi
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Markus Affolter
- Growth & Development, Biozentrum, Spitalstrasse 41, University of Basel, 4056 Basel, Switzerland
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - C. Ben Lovely
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexa Burger
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Schock EN, York JR, LaBonne C. The developmental and evolutionary origins of cellular pluripotency in the vertebrate neural crest. Semin Cell Dev Biol 2023; 138:36-44. [PMID: 35534333 PMCID: PMC11513157 DOI: 10.1016/j.semcdb.2022.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
Neural crest cells are central to vertebrate development and evolution, endowing vertebrates with a "new head" that resulted in morphological, physiological, and behavioral features that allowed vertebrates to become active predators. One remarkable feature of neural crest cells is their multi-germ layer potential that allows for the formation of both ectodermal (pigmentation, peripheral glia, sensory neurons) and mesenchymal (connective tissue, cartilage/bone, dermis) cell types. Understanding the cellular and evolutionary origins of this broad cellular potential in the neural crest has been a long-standing focus for developmental biologists. Here, we review recent work that has demonstrated that neural crest cells share key features with pluripotent blastula stem cells, including expression of the Yamanaka stem cell factors (Oct3/4, Klf4, Sox2, c-Myc). These shared features suggest that pluripotency is either retained in the neural crest from blastula stages or subsequently reactivated as the neural crest forms. We highlight the cellular and molecular parallels between blastula stem cells and neural crest cells and discuss the work that has led to current models for the cellular origins of broad potential in the crest. Finally, we explore how these themes can provide new insights into how and when neural crest cells and pluripotency evolved in vertebrates and the evolutionary relationship between these populations.
Collapse
Affiliation(s)
| | | | - Carole LaBonne
- Dept. of Molecular Biosciences; NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
10
|
Howard AGA, Uribe RA. Hox proteins as regulators of extracellular matrix interactions during neural crest migration. Differentiation 2022; 128:26-32. [PMID: 36228422 PMCID: PMC10802151 DOI: 10.1016/j.diff.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 01/19/2023]
Abstract
Emerging during embryogenesis, the neural crest are a migratory, transient population of multipotent stem cell that differentiates into various cell types in vertebrates. Neural crest cells arise along the anterior-posterior extent of the neural tube, delaminate and migrate along routes to their final destinations. The factors that orchestrate how neural crest cells undergo delamination and their subsequent sustained migration is not fully understood. This review provides a primer about neural crest epithelial-to-mesenchymal transition (EMT), with a special emphasis on the role of the Extracellular matrix (ECM), cellular effector proteins of EMT, and subsequent migration. We also summarize published findings that link the expression of Hox transcription factors to EMT and ECM modification, thereby implicating Hox factors in regulation of EMT and ECM remodeling during neural crest cell ontogenesis.
Collapse
Affiliation(s)
- Aubrey G A Howard
- BioSciences Department, Rice University, Houston, TX, 77005, USA; Biochemistry and Cell Biology Program, Rice University, Houston, TX, 77005, USA
| | - Rosa A Uribe
- BioSciences Department, Rice University, Houston, TX, 77005, USA; Biochemistry and Cell Biology Program, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
11
|
Fabik J, Psutkova V, Machon O. Meis2 controls skeletal formation in the hyoid region. Front Cell Dev Biol 2022; 10:951063. [PMID: 36247013 PMCID: PMC9554219 DOI: 10.3389/fcell.2022.951063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
A vertebrate skull is composed of many skeletal elements which display enormous diversity of shapes. Cranial bone formation embodies a multitude of processes, i.e., epithelial-mesenchymal induction, mesenchymal condensation, and endochondral or intramembranous ossification. Molecular pathways determining complex architecture and growth of the cranial skeleton during embryogenesis are poorly understood. Here, we present a model of the hyoid apparatus development in Wnt1-Cre2-induced Meis2 conditional knock-out (cKO) mice. Meis2 cKO embryos develop an aberrant hyoid apparatus—a complete skeletal chain from the base of the neurocranium to lesser horns of the hyoid, resembling extreme human pathologies of the hyoid-larynx region. We examined key stages of hyoid skeletogenesis to obtain a complex image of the hyoid apparatus formation. Lack of Meis2 resulted in ectopic loci of mesenchymal condensations, ectopic cartilage and bone formation, disinhibition of skeletogenesis, and elevated proliferation of cartilage precursors. We presume that all these mechanisms contribute to formation of the aberrant skeletal chain in the hyoid region. Moreover, Meis2 cKO embryos exhibit severely reduced expression of PBX1 and HAND2 in the hyoid region. Altogether, MEIS2 in conjunction with PBX1 and HAND2 affects mesenchymal condensation, specification and proliferation of cartilage precursors to ensure development of the anatomically correct hyoid apparatus.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Ondrej Machon,
| |
Collapse
|
12
|
Howard AGA, Nguyen AC, Tworig J, Ravisankar P, Singleton EW, Li C, Kotzur G, Waxman JS, Uribe RA. Elevated Hoxb5b Expands Vagal Neural Crest Pool and Blocks Enteric Neuronal Development in Zebrafish. Front Cell Dev Biol 2022; 9:803370. [PMID: 35174164 PMCID: PMC8841348 DOI: 10.3389/fcell.2021.803370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Neural crest cells (NCCs) are a migratory, transient, and multipotent stem cell population essential to vertebrate embryonic development, contributing to numerous cell lineages in the adult organism. While great strides have been made in elucidating molecular and cellular events that drive NCC specification, comprehensive knowledge of the genetic factors that orchestrate NCC developmental programs is still far from complete. We discovered that elevated Hoxb5b levels promoted an expansion of zebrafish NCCs, which persisted throughout multiple stages of development. Correspondingly, elevated Hoxb5b also specifically expanded expression domains of the vagal NCC markers foxd3 and phox2bb. Increases in NCCs were most apparent after pulsed ectopic Hoxb5b expression at early developmental stages, rather than later during differentiation stages, as determined using a novel transgenic zebrafish line. The increase in vagal NCCs early in development led to supernumerary Phox2b+ enteric neural progenitors, while leaving many other NCC-derived tissues without an overt phenotype. Surprisingly, these NCC-derived enteric progenitors failed to expand properly into sufficient quantities of enterically fated neurons and stalled in the gut tissue. These results suggest that while Hoxb5b participates in vagal NCC development as a driver of progenitor expansion, the supernumerary, ectopically localized NCC fail to initiate expansion programs in timely fashion in the gut. All together, these data point to a model in which Hoxb5b regulates NCCs both in a tissue specific and temporally restricted manner.
Collapse
Affiliation(s)
| | - Aaron C. Nguyen
- BioSciences Department, Rice University, Houston, TX, United States
| | - Joshua Tworig
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Priya Ravisankar
- Molecular Cardiovascular Biology Division, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Allen Institute of Immunology, Seattle, WA, United States
| | | | - Can Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Grayson Kotzur
- BioSciences Department, Rice University, Houston, TX, United States
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rosa A. Uribe
- BioSciences Department, Rice University, Houston, TX, United States
- *Correspondence: Rosa A. Uribe,
| |
Collapse
|
13
|
Transcriptional Regulation and Implications for Controlling Hox Gene Expression. J Dev Biol 2022; 10:jdb10010004. [PMID: 35076545 PMCID: PMC8788451 DOI: 10.3390/jdb10010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Hox genes play key roles in axial patterning and regulating the regional identity of cells and tissues in a wide variety of animals from invertebrates to vertebrates. Nested domains of Hox expression generate a combinatorial code that provides a molecular framework for specifying the properties of tissues along the A–P axis. Hence, it is important to understand the regulatory mechanisms that coordinately control the precise patterns of the transcription of clustered Hox genes required for their roles in development. New insights are emerging about the dynamics and molecular mechanisms governing transcriptional regulation, and there is interest in understanding how these may play a role in contributing to the regulation of the expression of the clustered Hox genes. In this review, we summarize some of the recent findings, ideas and emerging mechanisms underlying the regulation of transcription in general and consider how they may be relevant to understanding the transcriptional regulation of Hox genes.
Collapse
|
14
|
Parker HJ, De Kumar B, Pushel I, Bronner ME, Krumlauf R. Analysis of lamprey meis genes reveals that conserved inputs from Hox, Meis and Pbx proteins control their expression in the hindbrain and neural tube. Dev Biol 2021; 479:61-76. [PMID: 34310923 DOI: 10.1016/j.ydbio.2021.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
Meis genes are known to play important roles in the hindbrain and neural crest cells of jawed vertebrates. To explore the roles of Meis genes in head development during evolution of vertebrates, we have identified four meis genes in the sea lamprey genome and characterized their patterns of expression and regulation, with a focus on the hindbrain and pharynx. Each of the lamprey meis genes displays temporally and spatially dynamic patterns of expression, some of which are coupled to rhombomeric domains in the developing hindbrain and select pharyngeal arches. Studies of Meis loci in mouse and zebrafish have identified enhancers that are bound by Hox and TALE (Meis and Pbx) proteins, implicating these factors in the direct regulation of Meis expression. We examined the lamprey meis loci and identified a series of cis-elements conserved between lamprey and jawed vertebrate meis genes. In transgenic reporter assays we demonstrated that these elements act as neural enhancers in lamprey embryos, directing reporter expression in appropriate domains when compared to expression of their associated endogenous meis gene. Sequence alignments reveal that these conserved elements are in similar relative positions of the meis loci and contain a series of consensus binding motifs for Hox and TALE proteins. This suggests that ancient Hox and TALE-responsive enhancers regulated expression of ancestral vertebrate meis genes in segmental domains in the hindbrain and have been retained in the meis loci during vertebrate evolution. The presence of conserved Meis, Pbx and Hox binding sites in these lamprey enhancers links Hox and TALE factors to regulation of lamprey meis genes in the developing hindbrain, indicating a deep ancestry for these regulatory interactions prior to the divergence of jawed and jawless vertebrates.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Irina Pushel
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
15
|
Wang J, Xia Y, Li J, Wang W. miR-129-5p in exosomes inhibits diabetes-associated osteogenesis in the jaw via targeting FZD4. Biochem Biophys Res Commun 2021; 566:87-93. [PMID: 34119828 DOI: 10.1016/j.bbrc.2021.05.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/13/2023]
Abstract
Diabetes mellitus (DM) influence induces poor osseointegration. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is a critical factor in successful dental implants. Certain microRNAs play important roles during bone development, and others are deregulated in diabetes. This study investigated the roles of miR-129-5p in the osteoblast differentiation regulation. Exosomes containing miR-129-5p inhibited the osteoblast differentiation and was found in the blood of DM rats. The BMSCs isolated from the jaw of rats were used to detect the miR-129-5p expression. Frizzled (FZD) proteins function as receptors for WNT ligands. The FZD4 was the target of miR-129-5p in dual luciferase assay and Western blot. The miR-129-5p inhibited osteoblast differentiation and decreased the osteoblast markers. The exosomes isolated from the blood of DM rats showed more miR-129-5p level. Results suggested that the exosomes containing miR-129-5p maybe regulators of BMSCs in jaw. The collected exosomes containing miR-129-5p showed the inhibition effect in osteoblast differentiation and decreased the expression osteoblastic markers by targeting FZD4/β-catenin signaling pathway. Therefore, the exosomes containing miR-129-5p in DM rats inhibits osteoblast differentiation by targeting FZD4/β-catenin pathway.
Collapse
Affiliation(s)
- Jinhui Wang
- Department of Clinical Laboratory, Xiamen Children's Hospital, Xiamen, China
| | - Yanyun Xia
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianhao Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
16
|
Abstract
During early development, the hindbrain is sub-divided into rhombomeres that underlie the organisation of neurons and adjacent craniofacial tissues. A gene regulatory network of signals and transcription factors establish and pattern segments with a distinct anteroposterior identity. Initially, the borders of segmental gene expression are imprecise, but then become sharply defined, and specialised boundary cells form. In this Review, we summarise key aspects of the conserved regulatory cascade that underlies the formation of hindbrain segments. We describe how the pattern is sharpened and stabilised through the dynamic regulation of cell identity, acting in parallel with cell segregation. Finally, we discuss evidence that boundary cells have roles in local patterning, and act as a site of neurogenesis within the hindbrain.
Collapse
Affiliation(s)
- Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Dept of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, KS 66160, USA
| | | |
Collapse
|
17
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
18
|
Bayramov AV, Ermakova GV, Kuchryavyy AV, Zaraisky AG. Genome Duplications as the Basis of Vertebrates’ Evolutionary Success. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
The Hox protein conundrum: The "specifics" of DNA binding for Hox proteins and their partners. Dev Biol 2021; 477:284-292. [PMID: 34102167 PMCID: PMC8846413 DOI: 10.1016/j.ydbio.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
Homeotic genes (Hox genes) are homeodomain-transcription factors involved in conferring segmental identity along the anterior-posterior body axis. Molecular characterization of HOX protein function raises some interesting questions regarding the source of the binding specificity of the HOX proteins. How do HOX proteins regulate common and unique target specificity across space and time? This review attempts to summarize and interpret findings in this area, largely focused on results from in vitro and in vivo studies in Drosophila and mouse systems. Recent studies related to HOX protein binding specificity compel us to reconsider some of our current models for transcription factor-DNA interactions. It is crucial to study transcription factor binding by incorporating components of more complex, multi-protein interactions in concert with small changes in binding motifs that can significantly impact DNA binding specificity and subsequent alterations in gene expression. To incorporate the multiple elements that can determine HOX protein binding specificity, we propose a more integrative Cooperative Binding model.
Collapse
|
20
|
Fuiten AM, Cresko WA. Evolutionary divergence of a Hoxa2b hindbrain enhancer in syngnathids mimics results of functional assays. Dev Genes Evol 2021; 231:57-71. [PMID: 34003345 DOI: 10.1007/s00427-021-00676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Hoxa2 genes provide critical patterning signals during development, and their regulation and function have been extensively studied. We report a previously uncharacterized significant sequence divergence of a highly conserved hindbrain hoxa2b enhancer element in the family syngnathidae (pipefishes, seahorses, pipehorses, seadragons). We compared the hox cis-regulatory element variation in the Gulf pipefish and two species of seahorse against eight other species of fish, as well as human and mouse. We annotated the hoxa2b enhancer element binding sites across three species of seahorse, four species of pipefish, and one species of ghost pipefish. Finally, we performed in situ hybridization analysis of hoxa2b expression in Gulf pipefish embryos. We found that all syngnathid fish examined share a modified rhombomere 4 hoxa2b enhancer element, despite the fact that this element has been found to be highly conserved across all vertebrates examined previously. Binding element sequence motifs and spacing between binding elements have been modified for the hoxa2b enhancer in several species of pipefish and seahorse, and that the loss of the Prep/Meis binding site and further space shortening happened after ghost pipefish split from the rest of the syngnathid clade. We showed that expression of this gene in rhombomere 4 is lower relative to the surrounding rhombomeres in developing Gulf pipefish embryos, reflecting previously published functional tests for this enhancer. Our findings highlight the benefits of studying highly derived, diverse taxa for understanding of gene regulatory evolution and support the hypothesis that natural mutations can occur in deeply conserved pathways in ways potentially related to phenotypic diversity.
Collapse
Affiliation(s)
- Allison M Fuiten
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
- Present address: Department of Dermatology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
21
|
Howard AGA, Baker PA, Ibarra-García-Padilla R, Moore JA, Rivas LJ, Tallman JJ, Singleton EW, Westheimer JL, Corteguera JA, Uribe RA. An atlas of neural crest lineages along the posterior developing zebrafish at single-cell resolution. eLife 2021; 10:e60005. [PMID: 33591267 PMCID: PMC7886338 DOI: 10.7554/elife.60005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation.
Collapse
Affiliation(s)
| | - Phillip A Baker
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | - Joshua A Moore
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Lucia J Rivas
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - James J Tallman
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | | | | | - Rosa A Uribe
- Department of BioSciences, Rice UniversityHoustonUnited States
| |
Collapse
|
22
|
Kuratani S. Evo-devo studies of cyclostomes and the origin and evolution of jawed vertebrates. Curr Top Dev Biol 2020; 141:207-239. [PMID: 33602489 DOI: 10.1016/bs.ctdb.2020.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modern vertebrates consist of two sister groups: cyclostomes and gnathostomes. Cyclostomes are a monophyletic jawless group that can be further divided into hagfishes and lampreys, which show conspicuously different developmental and morphological patterns. However, during early pharyngula development, there appears to be a stage when the embryos of hagfishes and lampreys resemble each other by showing an "ancestral" craniofacial pattern; this pattern enables morphological comparison of hagfish and lamprey craniofacial development at late stages. This cyclostome developmental pattern, or more accurately, this developmental pattern of the jawless grade of vertebrates in early pharyngula was very likely shared by the gnathostome stem before the division of the nasohypophyseal placode led to the jaw and paired nostrils. The craniofacial pattern of the modern jawed vertebrates seems to have begun in fossil ostracoderms (including galeaspids), and was completed by the early placoderm lineages. The transition from jawless to jawed vertebrates was thus driven by heterotopy of development, mainly caused by separation and shift of ectodermal placodes and resultant ectomesenchymal distribution, and shifts of the epithelial-mesenchymal interactions that underlie craniofacial differentiation. Thus, the evolution of the jaw was not a simple modification of the mandibular arch, but a heterotopic shift of the developmental interactions involving not only the mandibular arch, but also the premandibular region rostral to the mandibular arch.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan; Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Hyogo, Japan.
| |
Collapse
|
23
|
Pujades C. The multiple functions of hindbrain boundary cells: Tinkering boundaries? Semin Cell Dev Biol 2020; 107:179-189. [DOI: 10.1016/j.semcdb.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 02/01/2023]
|
24
|
Abstract
Over the last few decades, an increasing number of vertebrate taxa have been identified that undergo programmed genome rearrangement, or programmed DNA loss, during development. In these organisms, the genome of germ cells is often reproducibly different from the genome of all other cells within the body. Although we clearly have not identified all vertebrate taxa that undergo programmed genome loss, the list of species known to undergo loss now represents ∼10% of vertebrate species, including several basally diverging lineages. Recent studies have shed new light on the targets and mechanisms of DNA loss and their association with canonical modes of DNA silencing. Ultimately, expansion of these studies into a larger collection of taxa will aid in reconstructing patterns of shared/independent ancestry of programmed DNA loss in the vertebrate lineage, as well as more recent evolutionary events that have shaped the structure and content of eliminated DNA.
Collapse
Affiliation(s)
- Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA; , ,
| | | | - Cody Saraceno
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA; , ,
| |
Collapse
|
25
|
York JR, Yuan T, McCauley DW. Evolutionary and Developmental Associations of Neural Crest and Placodes in the Vertebrate Head: Insights From Jawless Vertebrates. Front Physiol 2020; 11:986. [PMID: 32903576 PMCID: PMC7438564 DOI: 10.3389/fphys.2020.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Neural crest and placodes are key innovations of the vertebrate clade. These cells arise within the dorsal ectoderm of all vertebrate embryos and have the developmental potential to form many of the morphological novelties within the vertebrate head. Each cell population has its own distinct developmental features and generates unique cell types. However, it is essential that neural crest and placodes associate together throughout embryonic development to coordinate the emergence of several features in the head, including almost all of the cranial peripheral sensory nervous system and organs of special sense. Despite the significance of this developmental feat, its evolutionary origins have remained unclear, owing largely to the fact that there has been little comparative (evolutionary) work done on this topic between the jawed vertebrates and cyclostomes—the jawless lampreys and hagfishes. In this review, we briefly summarize the developmental mechanisms and genetics of neural crest and placodes in both jawed and jawless vertebrates. We then discuss recent studies on the role of neural crest and placodes—and their developmental association—in the head of lamprey embryos, and how comparisons with jawed vertebrates can provide insights into the causes and consequences of this event in early vertebrate evolution.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W McCauley
- Department of Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
26
|
Chen Z, Zheng J, Hong H, Chen D, Deng L, Zhang X, Ling J, Wu L. lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro. J Cell Physiol 2020; 235:8507-8519. [PMID: 32324272 DOI: 10.1002/jcp.29695] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Zhengyuan Chen
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Jinxuan Zheng
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Hong Hong
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Dongru Chen
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Lidi Deng
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Xueqin Zhang
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Junqi Ling
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Liping Wu
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| |
Collapse
|
27
|
York JR, McCauley DW. Functional genetic analysis in a jawless vertebrate, the sea lamprey: insights into the developmental evolution of early vertebrates. J Exp Biol 2020; 223:223/Suppl_1/jeb206433. [DOI: 10.1242/jeb.206433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Lampreys and hagfishes are the only surviving relicts of an ancient but ecologically dominant group of jawless fishes that evolved in the seas of the Cambrian era over half a billion years ago. Because of their phylogenetic position as the sister group to all other vertebrates (jawed vertebrates), comparisons of embryonic development between jawless and jawed vertebrates offers researchers in the field of evolutionary developmental biology the unique opportunity to address fundamental questions related to the nature of our earliest vertebrate ancestors. Here, we describe how genetic analysis of embryogenesis in the sea lamprey (Petromyzon marinus) has provided insight into the origin and evolution of developmental-genetic programs in vertebrates. We focus on recent work involving CRISPR/Cas9-mediated genome editing to study gene regulatory mechanisms involved in the development and evolution of neural crest cells and new cell types in the vertebrate nervous system, and transient transgenic assays that have been instrumental in dissecting the evolution of cis-regulatory control of gene expression in vertebrates. Finally, we discuss the broad potential for these functional genomic tools to address previously unanswerable questions related to the evolution of genomic regulatory mechanisms as well as issues related to invasive sea lamprey population control.
Collapse
Affiliation(s)
- Joshua R. York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - David W. McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
28
|
Parker HJ, Krumlauf R. A Hox gene regulatory network for hindbrain segmentation. Curr Top Dev Biol 2020; 139:169-203. [DOI: 10.1016/bs.ctdb.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Hockman D, Chong-Morrison V, Green SA, Gavriouchkina D, Candido-Ferreira I, Ling ITC, Williams RM, Amemiya CT, Smith JJ, Bronner ME, Sauka-Spengler T. A genome-wide assessment of the ancestral neural crest gene regulatory network. Nat Commun 2019; 10:4689. [PMID: 31619682 PMCID: PMC6795873 DOI: 10.1038/s41467-019-12687-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
The neural crest (NC) is an embryonic cell population that contributes to key vertebrate-specific features including the craniofacial skeleton and peripheral nervous system. Here we examine the transcriptional and epigenomic profiles of NC cells in the sea lamprey, in order to gain insight into the ancestral state of the NC gene regulatory network (GRN). Transcriptome analyses identify clusters of co-regulated genes during NC specification and migration that show high conservation across vertebrates but also identify transcription factors (TFs) and cell-adhesion molecules not previously implicated in NC migration. ATAC-seq analysis uncovers an ensemble of cis-regulatory elements, including enhancers of Tfap2B, SoxE1 and Hox-α2 validated in the embryo. Cross-species deployment of lamprey elements identifies the deep conservation of lamprey SoxE1 enhancer activity, mediating homologous expression in jawed vertebrates. Our data provide insight into the core GRN elements conserved to the base of the vertebrates and expose others that are unique to lampreys.
Collapse
Affiliation(s)
- Dorit Hockman
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Vanessa Chong-Morrison
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Division of Biosciences, Faculty of Life Sciences, University College London, London, UK
| | - Stephen A Green
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Daria Gavriouchkina
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Okinawa Institute of Science and Technology, Molecular Genetics Unit, Onna, Japan
| | - Ivan Candido-Ferreira
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Irving T C Ling
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ruth M Williams
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Chris T Amemiya
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
30
|
Cheung M, Tai A, Lu PJ, Cheah KS. Acquisition of multipotent and migratory neural crest cells in vertebrate evolution. Curr Opin Genet Dev 2019; 57:84-90. [PMID: 31470291 DOI: 10.1016/j.gde.2019.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022]
Abstract
The emergence of multipotent and migratory neural crest (NC) cells defines a key evolutionary transition from invertebrates to vertebrates. Studies in vertebrates have identified a complex gene regulatory network that governs sequential stages of NC ontogeny. Comparative analysis has revealed extensive conservation of the overall architecture of the NC gene regulatory network between jawless and jawed vertebrates. Among invertebrates, urochordates express putative NC gene homologs in the neural plate border region, but these NC-like cells do not have migratory capacity, whereas cephalochordates contain no NC cells but its genome contains most homologs of vertebrate NC genes. Whether the absence of migratory NC cells in invertebrates is due to differences in enhancer elements or an intrinsic limitation in potency remains unclear. We provide a brief overview of mechanisms that might explain how ancestral NC-like cells acquired the multipotency and migratory capacity seen in vertebrates.
Collapse
Affiliation(s)
- Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Andrew Tai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Peter Jianning Lu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kathryn Se Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Leung B, Shimeld SM. Evolution of vertebrate spinal cord patterning. Dev Dyn 2019; 248:1028-1043. [PMID: 31291046 DOI: 10.1002/dvdy.77] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
The vertebrate spinal cord is organized across three developmental axes, anterior-posterior (AP), dorsal-ventral (DV), and medial-lateral (ML). Patterning of these axes is regulated by canonical intercellular signaling pathways: the AP axis by Wnt, fibroblast growth factor, and retinoic acid (RA), the DV axis by Hedgehog, Tgfβ, and Wnt, and the ML axis where proliferation is controlled by Notch. Developmental time plays an important role in which signal does what and when. Patterning across the three axes is not independent, but linked by interactions between signaling pathway components and their transcriptional targets. Combined this builds a sophisticated organ with many different types of cell in specific AP, DV, and ML positions. Two living lineages share phylum Chordata with vertebrates, amphioxus, and tunicates, while the jawless fish such as lampreys, survive as the most basally divergent vertebrate lineage. Genes and mechanisms shared between lampreys and other vertebrates tell us what predated vertebrates, while those also shared with other chordates tell us what evolved early in chordate evolution. Between these lie vertebrate innovations: genetic and developmental changes linked to evolution of new morphology. These include gene duplications, differences in how signals are received, and new regulatory connections between signaling pathways and their target genes.
Collapse
Affiliation(s)
- Brigid Leung
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
32
|
Parker HJ, Bronner ME, Krumlauf R. An atlas of anterior hox gene expression in the embryonic sea lamprey head: Hox-code evolution in vertebrates. Dev Biol 2019; 453:19-33. [PMID: 31071313 DOI: 10.1016/j.ydbio.2019.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/05/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022]
Abstract
In the hindbrain and the adjacent cranial neural crest (NC) cells of jawed vertebrates (gnathostomes), nested and segmentally-restricted domains of Hox gene expression provide a combinatorial Hox-code for specifying regional properties during head development. Extant jawless vertebrates, such as the sea lamprey (Petromyzon marinus), can provide insights into the evolution and diversification of this Hox-code in vertebrates. There is evidence for gnathostome-like spatial patterns of Hox expression in lamprey; however, the expression domains of the majority of lamprey hox genes from paralogy groups (PG) 1-4 are yet to be characterized, so it is unknown whether they are coupled to hindbrain segments (rhombomeres) and NC. In this study, we systematically describe the spatiotemporal expression of all 14 sea lamprey hox genes from PG1-PG4 in the developing hindbrain and pharynx to investigate the extent to which their expression conforms to the archetypal gnathostome hindbrain and pharyngeal hox-codes. We find many similarities in Hox expression between lamprey and gnathostome species, particularly in rhombomeric domains during hindbrain segmentation and in the cranial neural crest, enabling inference of aspects of Hox expression in the ancestral vertebrate embryonic head. These data are consistent with the idea that a Hox regulatory network underlying hindbrain segmentation is a pan vertebrate trait. We also reveal differences in hindbrain domains at later stages, as well as expression in the endostyle and in pharyngeal arch (PA) 1 mesoderm. Our analysis suggests that many Hox expression domains that are observed in extant gnathostomes were present in ancestral vertebrates but have been partitioned differently across Hox clusters in gnathostome and cyclostome lineages after duplication.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|