1
|
Anderson MJ, Lewandoski M. Response to Wu et al. Differentiation 2025; 143:100865. [PMID: 40349482 DOI: 10.1016/j.diff.2025.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/14/2025]
Affiliation(s)
- Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
2
|
Balusamy SR, Balamurugan M, Purushothaman S, Somasundaram S, Elsadek MF, Sohn D, Almutairi SM, Mijakovic I, Rahimi S, Perumalsamy H. Apoptotic cell death of stomach cancer lines (AGS) induced by Co-NTB complex through cellular organelles and DNA damage. RSC Adv 2025; 15:739-747. [PMID: 39802467 PMCID: PMC11711993 DOI: 10.1039/d4ra06377e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Given that stomach cancer is the fourth leading cause of cancer-related death, there is a need to develop new drugs. Among various methods, metal-based coordination compounds are considered as an efficient strategy against this type of cancer. Similarly, the benzimidazole moiety plays a crucial role in biology; thus, various benzimidazole-based compounds have been found to be active as potential anticancer drugs and are currently used in clinical trials. In this study, we explored the benzimidazole-based cobalt(ii) complex as an anticancer agent against AGS stomach cancer cell lines. Interestingly, the MTT assay of the Co-NTB complex shows a lower IC50 value of 4.25 μg mL-1 compared to cisplatin, which has an IC50 of 7.5 μg mL-1 against AGS cell lines. Light microscopy and Hoechst/propidium iodide dye staining clearly indicate that the complex damages DNA, leading to cell death through an apoptotic pathway. The apoptotic cell death pathway was further complemented by Lysotracker and Mitotracker staining, as well as transmission electron microscopy (TEM) imaging. Overall, the Co-NTB complex acts as an effective anticancer agent against AGS stomach cancer cell lines, with apoptotic cell death induced by targeting cellular organelles and DNA.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University Gwangjin-gu Seoul Republic of Korea
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University (SNU) 1 Gwanak ro Seoul 08826 Republic of Korea
| | - Sumitha Purushothaman
- Department of Microbiology, Bioprocess Engineering Division, Smykon Biotech Kanniyakumari India
| | - Sivaraman Somasundaram
- Department of Chemistry, Saveetha School of Engineering, SIMATS Chennai Tamil Nadu 600124 India
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Science, King Saud University P.O. 2455 Riyadh 11451 Saudi Arabia
| | - Daewon Sohn
- Department of Chemistry, College of Natural Sciences, Hanyang University Seoul 04763 Republic of Korea
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University P.O. 2455 Riyadh 11451 Saudi Arabia
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology Gothenburg SE-412 96 Sweden
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark Kongens Lyngby DK-2800 Denmark
| | - Shadi Rahimi
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology Gothenburg SE-412 96 Sweden
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University Seoul 04763 Republic of Korea
- Center for Creative Convergence Education, Hanyang University Seoul 04763 Republic of Korea
| |
Collapse
|
3
|
Komza M, Chipuk JE. Mitochondrial metabolism: A moving target in hepatocellular carcinoma therapy. J Cell Physiol 2025; 240:e31441. [PMID: 39324415 PMCID: PMC11732733 DOI: 10.1002/jcp.31441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Mitochondria are pivotal contributors to cancer mechanisms due to their homeostatic and pathological roles in cellular bioenergetics, biosynthesis, metabolism, signaling, and survival. During transformation and tumor initiation, mitochondrial function is often disrupted by oncogenic mutations, leading to a metabolic profile distinct from precursor cells. In this review, we focus on hepatocellular carcinoma, a cancer arising from metabolically robust and nutrient rich hepatocytes, and discuss the mechanistic impact of altered metabolism in this setting. We provide distinctions between normal mitochondrial activity versus disease-related function which yielded therapeutic opportunities, along with highlighting recent preclinical and clinical efforts focused on targeting mitochondrial metabolism. Finally, several novel strategies for exploiting mitochondrial programs to eliminate hepatocellular carcinoma cells in metabolism-specific contexts are presented to integrate these concepts and gain foresight into the future of mitochondria-focused therapeutics.
Collapse
Affiliation(s)
- Monika Komza
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Diabetes, Obesity, and Metabolism Institute, New York, New York, USA
| |
Collapse
|
4
|
Khatun J, Gelles JD, Chipuk JE. Dynamic death decisions: How mitochondrial dynamics shape cellular commitment to apoptosis and ferroptosis. Dev Cell 2024; 59:2549-2565. [PMID: 39378840 PMCID: PMC11469553 DOI: 10.1016/j.devcel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The incorporation of mitochondria into early eukaryotes established organelle-based biochemistry and enabled metazoan development. Diverse mitochondrial biochemistry is essential for life, and its homeostatic control via mitochondrial dynamics supports organelle quality and function. Mitochondrial crosstalk with numerous regulated cell death (RCD) pathways controls the decision to die. In this review, we will focus on apoptosis and ferroptosis, two distinct forms of RCD that utilize divergent signaling to kill a targeted cell. We will highlight how proteins and processes involved in mitochondrial dynamics maintain biochemically diverse subcellular compartments to support apoptosis and ferroptosis machinery, as well as unite disparate RCD pathways through dual control of organelle biochemistry and the decision to die.
Collapse
Affiliation(s)
- Jesminara Khatun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jesse D Gelles
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
5
|
Li LG, Hu J, Han N, Chen NN, Yu TT, Ren T, Xu HZ, Peng XC, Li XY, Ma TQ, Chen H, Zhang L, Chen X, Wang MF, Li TF. Dihydroartemisinin-driven TOM70 inhibition leads to mitochondrial destabilization to induce pyroptosis against lung cancer. Phytother Res 2024; 38:3856-3876. [PMID: 38761036 DOI: 10.1002/ptr.8242] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.
Collapse
Affiliation(s)
- Liu-Gen Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jun Hu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ning Han
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Nan-Nan Chen
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ting-Ting Yu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Pathology, Renmin Hospital of Shiyan, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tao Ren
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xing-Chun Peng
- Department of Pathology, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou, China
| | - Xian-Yu Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tian-Qi Ma
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hao Chen
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Zhang
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mei-Fang Wang
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tong-Fei Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
6
|
Arun AS, Kim SC, Ahsen ME, Stolovitzky G. Modeling combination therapies in patient cohorts and cell cultures using correlated drug action. iScience 2024; 27:108905. [PMID: 38390492 PMCID: PMC10882105 DOI: 10.1016/j.isci.2024.108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/05/2023] [Accepted: 01/10/2024] [Indexed: 02/24/2024] Open
Abstract
Characterizing the effect of combination therapies is vital for treating diseases like cancer. We introduce correlated drug action (CDA), a baseline model for the study of drug combinations in both cell cultures and patient populations, which assumes that the efficacy of drugs in a combination may be correlated. We apply temporal CDA (tCDA) to clinical trial data, and demonstrate the utility of this approach in identifying possible synergistic combinations and others that can be explained in terms of monotherapies. Using MCF7 cell line data, we assess combinations with dose CDA (dCDA), a model that generalizes other proposed models (e.g., Bliss response-additivity, the dose equivalence principle), and introduce Excess over CDA (EOCDA), a new metric for identifying possible synergistic combinations in cell culture.
Collapse
Affiliation(s)
- Adith S Arun
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
- Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Mehmet Eren Ahsen
- Gies College of Business, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Carle-Illinois School of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | | |
Collapse
|
7
|
Stern AD, Smith GR, Santos LC, Sarmah D, Zhang X, Lu X, Iuricich F, Pandey G, Iyengar R, Birtwistle MR. Relating individual cell division events to single-cell ERK and Akt activity time courses. Sci Rep 2022; 12:18077. [PMID: 36302844 PMCID: PMC9613772 DOI: 10.1038/s41598-022-23071-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/25/2022] [Indexed: 02/01/2023] Open
Abstract
Biochemical correlates of stochastic single-cell fates have been elusive, even for the well-studied mammalian cell cycle. We monitored single-cell dynamics of the ERK and Akt pathways, critical cell cycle progression hubs and anti-cancer drug targets, and paired them to division events in the same single cells using the non-transformed MCF10A epithelial line. Following growth factor treatment, in cells that divide both ERK and Akt activities are significantly higher within the S-G2 time window (~ 8.5-40 h). Such differences were much smaller in the pre-S-phase, restriction point window which is traditionally associated with ERK and Akt activity dependence, suggesting unappreciated roles for ERK and Akt in S through G2. Simple metrics of central tendency in this time window are associated with subsequent cell division fates. ERK activity was more strongly associated with division fates than Akt activity, suggesting Akt activity dynamics may contribute less to the decision driving cell division in this context. We also find that ERK and Akt activities are less correlated with each other in cells that divide. Network reconstruction experiments demonstrated that this correlation behavior was likely not due to crosstalk, as ERK and Akt do not interact in this context, in contrast to other transformed cell types. Overall, our findings support roles for ERK and Akt activity throughout the cell cycle as opposed to just before the restriction point, and suggest ERK activity dynamics may be more important than Akt activity dynamics for driving cell division in this non-transformed context.
Collapse
Affiliation(s)
- Alan D Stern
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis C Santos
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepraj Sarmah
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Xiang Zhang
- School of Computing, Clemson University, Clemson, SC, USA
| | - Xiaoming Lu
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | | | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc R Birtwistle
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
8
|
O’Neill KC, Liapis E, Harris BT, Perlin DS, Carter CL. Mass spectrometry imaging discriminates glioblastoma tumor cell subpopulations and different microvascular formations based on their lipid profiles. Sci Rep 2022; 12:17069. [PMID: 36224354 PMCID: PMC9556690 DOI: 10.1038/s41598-022-22093-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/10/2022] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is a prevalent malignant brain tumor and despite clinical intervention, tumor recurrence is frequent and usually fatal. Genomic investigations have provided a greater understanding of molecular heterogeneity in glioblastoma, yet there are still no curative treatments, and the prognosis has remained unchanged. The aggressive nature of glioblastoma is attributed to the heterogeneity in tumor cell subpopulations and aberrant microvascular proliferation. Ganglioside-directed immunotherapy and membrane lipid therapy have shown efficacy in the treatment of glioblastoma. To truly harness these novel therapeutics and develop a regimen that improves clinical outcome, a greater understanding of the altered lipidomic profiles within the glioblastoma tumor microenvironment is urgently needed. In this work, high resolution mass spectrometry imaging was utilized to investigate lipid heterogeneity in human glioblastoma samples. Data presented offers the first insight into the histology-specific accumulation of lipids involved in cell metabolism and signaling. Cardiolipins, phosphatidylinositol, ceramide-1-phosphate, and gangliosides, including the glioblastoma stem cell marker, GD3, were shown to differentially accumulate in tumor and endothelial cell subpopulations. Conversely, a reduction in sphingomyelins and sulfatides were detected in tumor cell regions. Cellular accumulation for each lipid class was dependent upon their fatty acid residue composition, highlighting the importance of understanding lipid structure-function relationships. Discriminating ions were identified and correlated to histopathology and Ki67 proliferation index. These results identified multiple lipids within the glioblastoma microenvironment that warrant further investigation for the development of predictive biomarkers and lipid-based therapeutics.
Collapse
Affiliation(s)
- Kelly C. O’Neill
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110 USA
| | - Evangelos Liapis
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110 USA
| | - Brent T. Harris
- grid.411667.30000 0001 2186 0438Departments of Neurology and Pathology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - David S. Perlin
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110 USA ,grid.429392.70000 0004 6010 5947Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110 USA
| | - Claire L. Carter
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110 USA ,grid.429392.70000 0004 6010 5947Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ 07110 USA
| |
Collapse
|
9
|
Luo G, Feng R, Li W, Chen Y, Sun Y, Ma J, Duo Y, Wen T. Dcf1 induces glioblastoma cells apoptosis by blocking autophagy. Cancer Med 2022; 11:207-223. [PMID: 34799992 PMCID: PMC8704163 DOI: 10.1002/cam4.4440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Dcf1 has been demonstrated to play vital roles in many CNS diseases, it also has a destructive role on cell mitochondria in glioma cells and promotes the autophagy. Hitherto, it is unclear whether the viability of glioblastoma cells is affected by Dcf1, in particular Dcf1 possesses broad localization on different organelles, and the organelles interaction frequently implicated in cancer cells survival. METHODS Surgically excised WHO grade IV human glioblastoma tissues were collected and cells isolated for culturing. RT-PCR and DNA sequencing assay to estimate the abundance and mutation of Dcf1. iTRAQ sequencing and bioinformatic analysis were performed. Subsequently, immunoprecipitation assay to evaluate the degradation of HistoneH2A isomers by UBA52 ubiquitylation. Transmission electron microscopy (TEM) was applied to observe the structure change of mitochondria and autophagosome. Organelle isolated assay to determine the distribution of protein. Cell cycle and apoptosis were evaluated by flow cytometric assays. RESULTS Dcf1 was downregulated in WHO grade IV tumor without mutation, and overexpression of Dcf1 was found to significantly regulate glioblastoma cells. One hundred and seventy-six differentially expressed proteins were identified by iTRAQ sequencing. Furthermore, we confirmed that overexpression of Dcf1 destabilized the structure of the nucleosome via UBA52 ubiquitination to downregulate HistoneH2A.X but not macroH2A or HistoneH2A.Z, decreased the mitochondrial DNA copy number and inhibited the mitochondrial biogenesis, thus causing mitochondrial destruction and dysfunction in order to supply cellular energy and induce mitophagy preferentially but not apoptosis. Dcf1 also has disrupted the integrity of lysosomes to block autolysosome degradation and autophagy and to increase the release of Cathepsin B and D from lysosomes into cytosol. These proteins cleaved and activated BID to induce glioblastoma cells apoptosis. CONCLUSIONS In this study, we demonstrated that unmutated Dcf1 expression is negatively related to the malignancy of glioblastoma, Dcf1 overexpression causes nucleosomes destabilization, mitochondria destruction and dysfunction to induce mitophagy preferentially, and block autophagy by impairing lysosomes to induce apoptosis in glioblastoma.
Collapse
Affiliation(s)
- Guanghong Luo
- Laboratory of Molecular Neural BiologySchool of Life SciencesShanghai UniversityShanghaiChina
- Department of Radiation OncologyThe Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
- Integrated Chinese and Western Medicine Postdoctoral Research StationJinan UniversityGuangzhouChina
| | - Ruili Feng
- Laboratory of Molecular Neural BiologySchool of Life SciencesShanghai UniversityShanghaiChina
| | - Wengang Li
- Department of NeurosurgeryShanghai Fifth People's HospitalFudan UniversityShanghaiChina
| | - Yanlu Chen
- Laboratory of Molecular Neural BiologySchool of Life SciencesShanghai UniversityShanghaiChina
| | - Yangyang Sun
- Laboratory of Molecular Neural BiologySchool of Life SciencesShanghai UniversityShanghaiChina
| | - Junfeng Ma
- Department of NeurosurgeryShanghai Fifth People's HospitalFudan UniversityShanghaiChina
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Tieqiao Wen
- Laboratory of Molecular Neural BiologySchool of Life SciencesShanghai UniversityShanghaiChina
| |
Collapse
|
10
|
Downregulation of HSPA12A underlies myotoxicity of local anesthetic agent bupivacaine through inhibiting PGC1α-mediated mitochondrial integrity. Toxicol Appl Pharmacol 2021; 434:115798. [PMID: 34793778 DOI: 10.1016/j.taap.2021.115798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Local anesthetics (LAs) are widely used for intraoperative anesthesia and postoperative analgesia. However, LAs (e.g. Bupivacaine) can evoke myotoxicity that closely associated to mitochondrial damage. PGC1a is a mast co-factor for mitochondrial quality control. We have recently demonstrated that PGC1a can be activated by HSPA12A in hepatocytes, suggesting a possibility that HSPA12A protects from LAs myotoxicity through activating PGC1α-mediated mitochondrial integrity. Here, we reported that HSPA12A was downregulated during Bupivacaine-induced myotoxicity in skeletal muscles of mice in vivo and C2c12 myoblast cultures in vitro. Intriguingly, overexpression of HSPA12A attenuated the Bupivacaine-induced C2c12 cell death. We also noticed that the Bupivacaine-induced decrease of glucose consumption and ATP production was improved by HSPA12A overexpression. Moreover, overexpression of HSPA12A in C2c12 cells attenuated the Bupivacaine-induced decrease of mitochondrial contents and increase of mitochondrial fragmentation. The Bupivacaine-induced reduction of PGC1α expression and nuclear localization was markedly attenuated by HSPA12A overexpression. Importantly, pretreatment with a selective PGC1α inhibitor (SR-18292) abolished the protection of HSPA12A from Bupivacaine-induced death and mitochondrial loss in C2c12 cells. Altogether, the findings indicate that downregulation of HSPA12A underlies myotoxicity of Local anesthetic agent Bupivacaine through inhibiting PGC1α-mediated Mitochondrial Integrity. Thus, HSPA12A might represent a viable strategy for preventing myotoxicity of LAs.
Collapse
|
11
|
Alikhani M, Touati E, Karimipoor M, Vosough M, Mohammadi M. Mitochondrial DNA Copy Number Variations in Gastrointestinal Tract Cancers: Potential Players. J Gastrointest Cancer 2021; 53:770-781. [PMID: 34486088 DOI: 10.1007/s12029-021-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Alterations of mitochondria have been linked to several cancers. Also, the mitochondrial DNA copy number (mtDNA-CN) is altered in various cancers, including gastrointestinal tract (GIT) cancers, and several research groups have investigated its potential as a cancer biomarker. However, the exact causes of mtDNA-CN variations are not yet revealed. This review discussed the conceivable players in this scheme, including reactive oxygen species (ROS), mtDNA genetic variations, DNA methylation, telomere length, autophagy, immune system activation, aging, and infections, and discussed their possible impact in the initiation and progression of cancer. By further exploring such mechanisms, mtDNA-CN variations may be effectively utilized as cancer biomarkers and provide grounds for developing novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Mehdi Alikhani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR2001, Institut Pasteur, 25-28 Rue du Dr Roux cedex 15, 75724, Paris, France
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Mohammadi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
12
|
Zhang J, Peng J, Kong D, Wang X, Wang Z, Liu J, Yu W, Wu H, Long Z, Zhang W, Liu R, Hai C. Silent information regulator 1 suppresses epithelial-to-mesenchymal transition in lung cancer cells via its regulation of mitochondria status. Life Sci 2021; 280:119716. [PMID: 34119539 DOI: 10.1016/j.lfs.2021.119716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
AIMS Silent information regulator 1 (SIRT1) is a NAD+-dependent protein-modifying enzyme involved in regulating gene expression, DNA damage repair, cell metabolism, and mitochondrial functions. Given that it acts as both a tumor promoter and suppressor, the complex mechanisms underlying SIRT1 signaling in cancer remain controversial. Epithelial-to-mesenchymal transition (EMT) plays a key role in the progression of carcinogenesis and tumors metastasis. Studies have shown that mitochondrial defects are critical in EMT process, and SIRT1 is found to regulate the generation and energy metabolism of mitochondria. Here, we elucidate a novel mechanism by which SIRT1 affects EMT in lung cancer cells via its regulation on mitochondria. MAIN METHODS SIRT1 signaling was detected in TGF-β1-induced EMT and was found to regulate mitochondria status, including mitochondrial biogenesis-related protein levels as detected by western blotting, mitochondrial structure observed by transmission electron microscopy, and respiratory functions analyzed by a respiration capacity assay. The effects of modulating SIRT1 expression on EMT and migration of lung cancer cells or normal cells were evaluated by in vitro and in vivo models. KEY FINDINGS We found that the regulation of SIRT1 signaling on the biogenesis or functions of mitochondria was critical to EMT. Overexpression of SIRT1 reduced EMT or metastasis potential of lung cancer cells by improving the quantity and quality of mitochondria, whereas silencing SIRT1 promote EMT in cancer cells, even in normal cells by disturbing mitochondria status. SIGNIFICANCE Consequently, SIRT1 is an attractive therapeutic target for reversing EMT or tumor metastasis.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Peng
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Deqin Kong
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xiang Wang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zhao Wang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Weihua Yu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Hao Wu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zi Long
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Rui Liu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Chunxu Hai
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
13
|
Hu S, Wang Y, Xu Z, Zhou Y, Cao J, Zhang H, Zhou J. Identification of the Bcl-2 and Bax homologs from Rhipicephalus haemaphysaloides and their function in the degeneration of tick salivary glands. Parasit Vectors 2021; 14:386. [PMID: 34348769 PMCID: PMC8336254 DOI: 10.1186/s13071-021-04879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background The salivary glands of female ticks degenerate rapidly by apoptosis and autophagy after feeding. Bcl-2 family proteins play an important role in the apoptosis pathways, but the functions of these proteins in ticks are unclear. We studied Bcl-2 and Bax homologs from Rhipicephalus haemaphysaloides and determined their functions in the degeneration of the salivary glands. Methods Two molecules containing conserved BH (Bcl-2 family homology) domains were identified and named RhBcl-2 and RhBax. After protein purification and mouse immunization, specific polyclonal antibodies (PcAb) were created in response to the recombinant proteins. Reverse transcription quantitative PCR (RT-qPCR) and western blot were used to detect the presence of RhBcl-2 and RhBax in ticks. TUNEL assays were used to determine the level of apoptosis in the salivary glands of female ticks at different feeding times after gene silencing. Co-transfection and GST pull-down assays were used to identify interactions between RhBcl-2 and RhBax. Results The RT-qPCR assay revealed that RhBax gene transcription increased significantly during feeding at all tick developmental stages (engorged larvae, nymphs, and adult females). Transcriptional levels of RhBcl-2 and RhBax increased more significantly in the female salivary glands than in other tissues post engorgement. RhBcl-2 silencing significantly inhibited tick feeding. In contrast, RhBax interference had no effect on tick feeding. TUNEL staining showed that apoptosis levels were significantly reduced after interference with RhBcl-2 expression. Co-transfection and GST pull-down assays showed that RhBcl-2 and RhBax could interact but not combine in the absence of the BH3 domain. Conclusions This study identified the roles of RhBcl-2 and RhBax in tick salivary gland degeneration and finds that the BH3 domain is a key factor in their interactions. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04879-z.
Collapse
Affiliation(s)
- Shanming Hu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
14
|
Huang-Pu-Tong-Qiao Formula Ameliorates the Hippocampus Apoptosis in Diabetic Cognitive Dysfunction Mice by Activating CREB/BDNF/TrkB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5514175. [PMID: 34211563 PMCID: PMC8211510 DOI: 10.1155/2021/5514175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Background Huang-Pu-Tong-Qiao formula (HPTQ), a traditional Chinese medicine (TCM) formula used to improve cognitive impairment. However, the underlying neuroprotective mechanism of HPTQ treated for diabetic cognitive dysfunction (DCD) remains unclear. The purpose of this study was to investigate the neuroprotective mechanism of HPTQ in DCD mice based on molecular docking. Methods To investigate the neuroprotective effect of HPTQ in DCD, the Morris water maze (MWM), novel object recognition (NOR) test was used to detect the learning and memory changes of mice; hematoxylin-eosin (HE) staining was used to investigate the damage of hippocampal neurons; the western blot (WB) was used to examine the level of brain-derived neurotrophic factor (BDNF) of hippocampus. To investigate the neuroprotective mechanism of HPTQ in DCD, molecular docking was used to predict the possible target proteins of different active components in HPTQ and then the WB was used to verify the expression of key target proteins in the hippocampus of mice. Results HPTQ improved the learning and memory ability, hippocampal neuron damage, and the level of BDNF in the hippocampus of the DCD model treated with HFD/STZ for 12 weeks. Besides, the results of molecular docking showed that the main chemical components of HPTQ could be well combined with the targets of Bcl-2-associated X (Bax) and B-cell lymphoma2 (Bcl-2) and caspase-3. The levels of Bax/Bcl-2 protein ratio and caspase-3 increased in the DCD model while the HPTQ inhibited it. In addition, HPTQ restored DCD-induced decline of p-CREB, BDNF, TrkB, and p-Akt in the hippocampus. Conclusions These data indicated that HPTQ ameliorates the hippocampus apoptosis in diabetic cognitive dysfunction mice by activating CREB/BDNF/TrkB signaling pathway.
Collapse
|
15
|
Yu J, Wang JQ. Research mechanisms of and pharmaceutical treatments for ferroptosis in liver diseases. Biochimie 2020; 180:149-157. [PMID: 33166595 DOI: 10.1016/j.biochi.2020.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Regulated cell death (RCD) is a universal process in living organisms that is essential for tissue homeostasis or to the restoration of biological equilibrium following stress. Ferroptosis is a specific nonapoptotic cell death that is dependent on iron and is very different from other forms of RCD. Ferroptosis can affect the development of liver diseases such as drug-induced liver injury (DILI), liver fibrosis, and hepatocellular carcinoma (HCC) by regulating the level of intracellular iron, the production of intracellular reactive oxygen species, and lipid peroxides. In this review, we summarize the current knowledge of ferroptosis, in terms of discovery, history, characteristics, mechanism, and the factors regulating liver diseases. We discuss how these factors and signaling pathways change in the context of liver disease. Furthermore, we focus on delineating the roles of effective therapeutic drugs or compounds in liver disease. In summary, we discuss the role of ferroptosis in liver disease, providing a strategy and new ideas for preventing liver disease, finding new therapeutic targets, and reducing liver damage.
Collapse
Affiliation(s)
- Jun Yu
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Jian-Qing Wang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
16
|
Qi H, Li X, Jin Z, Simmen T, Shuai J. The Oscillation Amplitude, Not the Frequency of Cytosolic Calcium, Regulates Apoptosis Induction. iScience 2020; 23:101671. [PMID: 33196017 PMCID: PMC7644924 DOI: 10.1016/j.isci.2020.101671] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/15/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023] Open
Abstract
Although a rising concentration of cytosolic Ca2+ has long been recognized as an essential signal for apoptosis, the dynamical mechanisms by which Ca2+ regulates apoptosis are not clear yet. To address this, we constructed a computational model that integrates known biochemical reactions and can reproduce the dynamical behaviors of Ca2+-induced apoptosis as observed in experiments. Model analysis shows that oscillating Ca2+ signals first convert into gradual signals and eventually transform into a switch-like apoptotic response. Via the two processes, the apoptotic signaling pathway filters the frequency of Ca2+ oscillations effectively but instead responds acutely to their amplitude. Collectively, our results suggest that Ca2+ regulates apoptosis mainly via oscillation amplitude, rather than frequency, modulation. This study not only provides a comprehensive understanding of how oscillatory Ca2+ dynamically regulates the complex apoptotic signaling network but also presents a typical example of how Ca2+ controls cellular responses through amplitude modulation.
Collapse
Affiliation(s)
- Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, China.,Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan 030006, China
| | - Xiang Li
- Department of Physics, Xiamen University, Xiamen 361005, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| | - Zhen Jin
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, China.,Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan 030006, China
| | - Thomas Simmen
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
17
|
Sugiyama H, Shiokaramatsu M, Kagihiro M, Fukumori K, Horiguchi I, Kino-Oka M. Apoptosis-based method for determining lot sizes in the filling of human-induced pluripotent stem cells. J Tissue Eng Regen Med 2020; 14:1641-1651. [PMID: 32886861 DOI: 10.1002/term.3127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 11/05/2022]
Abstract
Standardization in process design and operation is needed in the commercial production of human-induced pluripotent stem (hiPS) cells. Lot sizing in the filling of hiPS cells into containers, a part of the preservation process, also needs to be standardized because of the temporal changes in cell quality during the process. Here, we present an apoptosis-based method that can determine lot sizes in the filling of hiPS cells considering temporal changes in cell quality. Two indicators were developed for (i) the cell quality change using reactive oxygen species (ROS) measurement and (ii) the cell survival and probability of filling success, which are parts of the lot-sizing problem. Using computational simulation, a map out of the optimal lot size was produced that minimized the expected production costs at a given cell demand and an acceptable change in cell quality. At a filling temperature of 4°C, the largest possible lot size was calculated as 6 L (corresponding to a filling time of 125 min). The results of a sensitivity analysis recommended cold filling or the addition of an antioxidant. The presented method is effective to determine the lot size considering the change in cell quality during filling. The study uniquely combines the experimental results with mathematical modeling and computational simulation techniques. The map out of the optimal lot size could guide the development of industrial filling processes of hiPS cells.
Collapse
Affiliation(s)
- Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Shiokaramatsu
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | | | | | - Ikki Horiguchi
- Department of Biotechnology, Osaka University, Suita, Japan
| | | |
Collapse
|
18
|
Shi XJ, Wang S, Li XJ, Yuan XH, Cao LJ, Yu B, Liu HM. Discovery of tofacitinib derivatives as orally active antitumor agents based on the scaffold hybridization strategy. Eur J Med Chem 2020; 203:112601. [PMID: 32682202 DOI: 10.1016/j.ejmech.2020.112601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/31/2020] [Accepted: 06/15/2020] [Indexed: 01/30/2023]
Abstract
In this work, a novel series of tofacitinib analogs were designed and synthesized based on the scaffold hybridization strategy and then evaluated for their antiproliferative activity toward three gastric cancer cell lines, leading to the identification of compound C18 which exhibited potent inhibitory activity against MGC-803 cell lines with an IC50 value of 2.68 μM. Compound C18 could effectively inhibit the colony formation, suppress the cell migration and induce apoptosis of MGC-803 cells through activating the p38 and JNK signaling pathways, while C18 showed no obvious effect on the cell cycle distribution in MGC-803 cells. In addition, C18 could initiate mitochondrial dysfunction of MGC-803 cells. Besides, in vivo antitumor studies indicated that C18 could inhibit gastric cancer tumor growth in vivo without obvious global toxicity.
Collapse
Affiliation(s)
- Xiao-Jing Shi
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China; Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Xiao-Jing Li
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Han Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Juan Cao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Inde Z, Forcina GC, Denton K, Dixon SJ. Kinetic Heterogeneity of Cancer Cell Fractional Killing. Cell Rep 2020; 32:107845. [PMID: 32640215 PMCID: PMC7409774 DOI: 10.1016/j.celrep.2020.107845] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/09/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023] Open
Abstract
Lethal drugs can induce incomplete cell death in a population of cancer cells, a phenomenon referred to as fractional killing. Here, we show that high-throughput population-level time-lapse imaging can be used to quantify fractional killing in response to hundreds of different drug treatments in parallel. We find that stable intermediate levels of fractional killing are uncommon, with many drug treatments resulting in complete or near-complete eradication of all cells, if given enough time. The kinetics of fractional killing over time vary substantially as a function of drug, drug dose, and genetic background. At the molecular level, the antiapoptotic protein MCL1 is an important determinant of the kinetics of fractional killing in response to MAPK pathway inhibitors but not other lethal stimuli. These studies suggest that fractional killing is governed by diverse lethal stimulus-specific mechanisms.
Collapse
Affiliation(s)
- Zintis Inde
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Kyle Denton
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Abstract
For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.
Collapse
Affiliation(s)
| | - Wafik S El-Deiry
- The Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
21
|
Kannoly S, Gao T, Dey S, Wang IN, Singh A, Dennehy JJ. Optimum Threshold Minimizes Noise in Timing of Intracellular Events. iScience 2020; 23:101186. [PMID: 32504874 PMCID: PMC7276437 DOI: 10.1016/j.isci.2020.101186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023] Open
Abstract
How the noisy expression of regulatory proteins affects timing of intracellular events is an intriguing fundamental problem that influences diverse cellular processes. Here we use the bacteriophage λ to study event timing in individual cells where cell lysis is the result of expression and accumulation of a single protein (holin) in the Escherichia coli cell membrane up to a critical threshold level. Site-directed mutagenesis of the holin gene generated phage variants that vary in their lysis times from 30 to 190 min. Observation of the lysis times of single cells reveals an intriguing finding-the noise in lysis timing first decreases with increasing lysis time to reach a minimum and then sharply increases at longer lysis times. A mathematical model with stochastic expression of holin together with dilution from cell growth was sufficient to explain the non-monotonic noise profile and identify holin accumulation thresholds that generate precision in lysis timing.
Collapse
Affiliation(s)
- Sherin Kannoly
- Biology Department, Queens College of The City University of New York, Queens, NY, USA
| | - Tianhui Gao
- Biology Department, Queens College of The City University of New York, Queens, NY, USA
| | - Supravat Dey
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, USA
| | - Ing-Nang Wang
- Department of Biological Sciences, University at Albany, Albany, NY, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, USA.
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, Queens, NY, USA; The Graduate Center of The City University of New York, New York City, NY, USA.
| |
Collapse
|
22
|
Wang X, Ma W, Wang T, Yang J, Wu Z, Liu K, Dai Y, Zang C, Liu W, Liu J, Liang Y, Guo J, Li L. BDNF-TrkB and proBDNF-p75NTR/Sortilin Signaling Pathways are Involved in Mitochondria-Mediated Neuronal Apoptosis in Dorsal Root Ganglia after Sciatic Nerve Transection. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:66-82. [PMID: 31957620 DOI: 10.2174/1871527319666200117110056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Background:
Brain-Derived Neurotrophic Factor (BDNF) plays critical roles during development
of the central and peripheral nervous systems, as well as in neuronal survival after injury.
Although proBDNF induces neuronal apoptosis after injury in vivo, whether it can also act as a death
factor in vitro and in vivo under physiological conditions and after nerve injury, as well as its mechanism
of inducing apoptosis, is still unclear.
Objective:
In this study, we investigated the mechanisms by which proBDNF causes apoptosis in sensory
neurons and Satellite Glial Cells (SGCs) in Dorsal Root Ganglia (DRG) After Sciatic Nerve
Transection (SNT).
Methods:
SGCs cultures were prepared and a scratch model was established to analyze the role of
proBDNF in sensory neurons and SGCs in DRG following SNT. Following treatment with proBDNF
antiserum, TUNEL and immunohistochemistry staining were used to detect the expression of Glial
Fibrillary Acidic Protein (GFAP) and Calcitonin Gene-Related Peptide (CGRP) in DRG tissue; immunocytochemistry
and Cell Counting Kit-8 (CCK8) assay were used to detect GFAP expression and
cell viability of SGCs, respectively. RT-qPCR, western blot, and ELISA were used to measure mRNA
and protein levels, respectively, of key factors in BDNF-TrkB, proBDNF-p75NTR/sortilin, and apoptosis
signaling pathways.
Results:
proBDNF induced mitochondrial apoptosis of SGCs and neurons by modulating BDNF-TrkB
and proBDNF-p75NTR/sortilin signaling pathways. In addition, neuroprotection was achieved by inhibiting
the biological activity of endogenous proBDNF protein by injection of anti-proBDNF serum. Furthermore,
the anti-proBDNF serum inhibited the activation of SGCs and promoted their proliferation.
Conclusion:
proBDNF induced apoptosis in SGCs and sensory neurons in DRG following SNT. The
proBDNF signaling pathway is a potential novel therapeutic target for reducing sensory neuron and
SGCs loss following peripheral nerve injury.
Collapse
Affiliation(s)
- Xianbin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Tongtong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jinwei Yang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Zhen Wu
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Kuangpin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yunfei Dai
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Chenghao Zang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jianhui Guo
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
23
|
Zhan D, Zhang X, Li J, Ding X, Cui Y, Jia J. MTH1 Inhibitor TH287 Suppresses Gastric Cancer Development Through the Regulation of PI3K/AKT Signaling. Cancer Biother Radiopharm 2020; 35:223-232. [PMID: 32077746 DOI: 10.1089/cbr.2019.3031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Cancer cells evade oxidative stress through the MutT homologue-1 (MTH1), a member of the Nudix family. MTH1 maintains genome integrity and the viability of tumor cells. A new class of MTH1 inhibitors have attracted interest as anticancer agents, but their mechanisms of action remain poorly characterized. In this study, the authors evaluated the anticancer effects of the MTH1 inhibitor TH287 on gastric cancer (GCa) cells. Materials and Methods: BGC-823 and SGC-7901 cells were treated with TH287 and CCK-8, and colony-forming assays were performed. Cell migration was assessed through Transwell and scratch assays. Apoptotic status was measured via flow cytometry and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) staining. Cell cycle status was assessed by propidium iodide (PI) staining. The expression of PI3K/AKT signaling-related proteins was verified by western blotting. Results: TH287 inhibited cell viability, reduced cell proliferation, inhibited apoptosis, induced G2/M arrest, and suppressed cell migration. A loss of mitochondrial membrane potential and reduced Bcl-2/Bax expression were also observed in TH287-treated cells. These effects were mediated through the inhibition of pro-oncogenic PI3K/AKT signaling. Conclusions: These findings indicate that the MTH1 inhibitor TH287 mediates an array of anticancer effects in GCa cells through its effects on mitochondrial function and PI3K/AKT signaling. Collectively, these data highlight the promise of TH287 as a novel therapeutic option for GCa cells.
Collapse
Affiliation(s)
- Dankai Zhan
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xinxin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jiahui Li
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xiaojiao Ding
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - YiXuan Cui
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jianguang Jia
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
24
|
Abstract
Significance: Mitochondria undergo constant morphological changes through fusion, fission, and mitophagy. As the key organelle in cells, mitochondria are responsible for numerous essential cellular functions such as metabolism, regulation of calcium (Ca2+), generation of reactive oxygen species, and initiation of apoptosis. Unsurprisingly, mitochondrial dysfunctions underlie many pathologies including cancer. Recent Advances: Currently, the gold standard for cancer treatment is chemotherapy, radiation, and surgery. However, the efficacy of these treatments varies across different cancer cells. It has been suggested that mitochondria may be at the center of these diverse responses. In the past decade, significant advances have been made in understanding distinct types of mitochondrial dysfunctions in cancer. Through investigations of underlying mechanisms, more effective treatment options are developed. Critical Issues: We summarize various mitochondria dysfunctions in cancer progression that have led to the development of therapeutic options. Current mitochondrial-targeted therapies and challenges are discussed. Future Directions: To address the "root" of cancer, utilization of mitochondrial-targeted therapy to target cancer stem cells may be valuable. Investigation of other areas such as mitochondrial trafficking may offer new insights into cancer therapy. Moreover, common antibiotics could be explored as mitocans, and synthetic lethality screens can be utilized to overcome the plasticity of cancer cells.
Collapse
Affiliation(s)
- Hsin Yao Chiu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emmy Xue Yun Tay
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Zhong B, Liu M, Bai C, Ruan Y, Wang Y, Qiu L, Hong Y, Wang X, Li L, Li B. Caspase-8 Induces Lysosome-Associated Cell Death in Cancer Cells. Mol Ther 2020; 28:1078-1091. [PMID: 32053770 DOI: 10.1016/j.ymthe.2020.01.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
Caspase-8, a well-characterized initiator of apoptosis, has also been found to play non-apoptotic roles in cells. In this study, we reveal that caspase-8 can induce cell death in a special way, which does not depend on activation of caspases and mitochondrial initiation. Instead, we prove that caspase-8 can cause lysosomal deacidification and thus lysosomal membrane permeabilization. V-ATPase is a multi-subunit proton pump that acidifies the lumen of lysosome. Our results demonstrate that caspase-8 can bind to the V0 domain of lysosomal Vacuolar H+-ATPase (V-ATPase), but not the V1 domain, to block the assembly of functional V-ATPase and alkalinize lysosomes. We further demonstrate that the C-terminal of caspase-8 is mainly responsible for the interaction with V-ATPase and can suffice to inhibit survival of cancer cells. Interestingly, regardless of the protein level, it is the expression rate of caspase-8 that is the major cause of cell death. Taken together, we identify a previously unrevealed caspase-8-mediated cell death pathway different form typical apoptosis, which could render caspase-8 a particular physiological function and may be potentially applied in treatments for apoptosis-resistant cancers.
Collapse
Affiliation(s)
- Benfu Zhong
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China; Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, P.R. China
| | - Miao Liu
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Changsen Bai
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yuxia Ruan
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yuanyuan Wang
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Li Qiu
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yang Hong
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xin Wang
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Lifang Li
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China.
| | - Binghui Li
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China; Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, P.R. China.
| |
Collapse
|
26
|
Yao Q, Li L, Huang X, Li H, Fang Y, Xia J, Fan J, Chen L, Wang J, Peng X. Photostable Fluorescent Tracker for Imaging Mitochondria with Super Resolution. Anal Chem 2019; 91:15777-15783. [PMID: 31718148 DOI: 10.1021/acs.analchem.9b04065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The power factories in cells, mitochondria, play important roles in all physiological processes. It is reported that progressive mitochondrial swelling and outer mitochondrial membrane rupture could be induced by a wide variety of apoptotic and necrotic stimuli. Regrettably, although a variety of mitochondrial probes have been developed, most of them are based on the detection of active species in mitochondria. Probes that can monitor the status and distribution of mitochondria for a long time are still urgently needed. In this study, a fluorescent sensor with excellent properties, EtNBEn, is described. Outstanding performance allows it to be observed not only in cells but also in living Daphnia and zebrafish under confocal microscopy for a long time. Moreover, the swelling process of mitochondria under light stimulation is also visualized under super-resolution (SR) microscopy. All these results suggest that EtNBEn could be employed for tagging mitochondria in various physiological processes, which makes a great contribution to the cure of diseases.
Collapse
Affiliation(s)
- Qichao Yao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Liuju Li
- Institute of Molecular Medicine , Peking University , 100871 Beijing , P. R. China
| | - Xiaoshuai Huang
- Institute of Molecular Medicine , Peking University , 100871 Beijing , P. R. China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Yanyun Fang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Jing Xia
- Department School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Liangyi Chen
- Institute of Molecular Medicine , Peking University , 100871 Beijing , P. R. China
| | - Jingyun Wang
- Department School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| |
Collapse
|
27
|
Kim C, Seedorf GJ, Abman SH, Shepherd DP. Heterogeneous response of endothelial cells to insulin-like growth factor 1 treatment is explained by spatially clustered sub-populations. Biol Open 2019; 8:bio045906. [PMID: 31649121 PMCID: PMC6899026 DOI: 10.1242/bio.045906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
A common strategy to measure the efficacy of drug treatment is the in vitro comparison of ensemble readouts with and without treatment, such as proliferation and cell death. A fundamental assumption underlying this approach is that there exists minimal cell-to-cell variability in the response to a drug. Here, we demonstrate that ensemble and non-spatial single-cell readouts applied to primary cells may lead to incomplete conclusions due to cell-to-cell variability. We exposed primary fetal pulmonary artery endothelial cells (PAEC) isolated from healthy newborn sheep and persistent pulmonary hypertension of the newborn (PPHN) sheep to the growth hormone, insulin-like growth factor 1 (IGF-1). We found that IGF-1 increased proliferation and branch points in tube formation assays but not angiogenic signaling proteins at the population level for both cell types. We hypothesized that this molecular ambiguity was due to the presence of cellular sub-populations with variable responses to IGF-1. Using high throughput single-cell imaging, we discovered a spatially localized response to IGF-1. This suggests localized signaling or heritable cell response to external stimuli may ultimately be responsible for our observations. Discovering and further exploring these rare cells is critical to finding new molecular targets to restore cellular function.
Collapse
Affiliation(s)
- Christina Kim
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Pediatric Heart Lung Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory J Seedorf
- Pediatric Heart Lung Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Steven H Abman
- Pediatric Heart Lung Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Douglas P Shepherd
- Pediatric Heart Lung Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
28
|
Yang B, Liu Q, Bi Y. Autophagy and apoptosis are regulated by stress on Bcl2 by AMBRA1 in the endoplasmic reticulum and mitochondria. Theor Biol Med Model 2019; 16:18. [PMID: 31665034 PMCID: PMC6819422 DOI: 10.1186/s12976-019-0113-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autophagy and apoptosis are two important physiological processes that determine cell survival or death in response to different stress signals. The regulatory mechanisms of these two processes share B-cell lymphoma-2 family proteins and AMBRA1, which are present in both the endoplasmic reticulum and mitochondria. B-cell lymphoma-2 family proteins sense different stresses and interact with AMBRA1 to regulate autophagy and apoptosis, which are respectively mediated by Beclin1 and Caspases. Therefore, we investigated how different levels of stress on B-cell lymphoma-2 family proteins that bind to AMBRA1 in the endoplasmic reticulum and mitochondria regulate the switch from autophagy to apoptosis. METHODS In this paper, we considered the responses of B-cell lymphoma-2 family proteins, which bind to AMBRA1 in both the endoplasmic reticulum and mitochondria, to two different levels of stress in a model originally proposed by Kapuy et al. We investigated how these two stress levels affect the transition from autophagy to apoptosis and their effects on apoptosis activation over time. Additionally, we analyzed how the feedback regulation in this model affects the bifurcation diagrams of two levels of stress and cell fate decisions between autophagy and apoptosis. RESULTS Autophagy is activated for minor stress in mitochondria regardless of endoplasmic reticulum stress, while apoptosis is activated for only significant stress in mitochondria. Apoptosis is only sensitive to mitochondria stress. The time duration before apoptosis activation is longer in the presence of high AMBRA1 levels with high endoplasmic reticulum and mitochondria stress. AMBRA1 can compete with B-cell lymphoma-2 family proteins to bind and activate Beclin1 and thus promote the autophagy process for a long time before apoptosis. Furthermore, apoptosis is prone to occur with increasing activation of Caspases, inactivation of Beclin1-A and the Michaelis constant of Caspases. CONCLUSION A novel mathematical model has been developed to understand the complex regulatory mechanisms of autophagy and apoptosis. Our model may be applied to further autophagy-apoptosis dynamic modeling experiments and simulations.
Collapse
Affiliation(s)
- Bojie Yang
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Quansheng Liu
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, 010021, China.
| | - Yuanhong Bi
- School of Statistics and Mathematics, Inner Mongolia, University of Finance and Economics, Hohhot, 010070, China
- Inner Mongolia Key Laboratory of Economic Data Analysis and Mining, Hohhot, 010070, China
| |
Collapse
|
29
|
Liang W, Lin C, Yuan L, Chen L, Guo P, Li P, Wang W, Zhang X. Preactivation of Notch1 in remote ischemic preconditioning reduces cerebral ischemia-reperfusion injury through crosstalk with the NF-κB pathway. J Neuroinflammation 2019; 16:181. [PMID: 31526384 PMCID: PMC6747758 DOI: 10.1186/s12974-019-1570-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Remote ischemic preconditioning (RIPC) initiates endogenous protective pathways in the brain from a distance and represents a new, promising paradigm in neuroprotection against cerebral ischemia-reperfusion (I/R) injury. However, the underlying mechanism of RIPC-mediated cerebral ischemia tolerance is complicated and not well understood. We reported previously that preactivation of Notch1 mediated the neuroprotective effects of cerebral ischemic preconditioning in rats subjected to cerebral I/R injury. The present study seeks to further explore the role of crosstalk between the Notch1 and NF-κB signaling pathways in the process of RIPC-induced neuroprotection. Methods Middle cerebral artery occlusion and reperfusion (MCAO/R) in adult male rats and oxygen-glucose deprivation and reoxygenation (OGD/R) in primary hippocampal neurons were used as models of I/R injury in vivo and in vitro, respectively. RIPC was induced by a 3-day procedure with 4 cycles of 5 min of left hind limb ischemia followed by 5 min of reperfusion each day before MCAO/R. Intracerebroventricular DAPT injection and sh-Notch1 lentivirus interference were used to inhibit the Notch1 signaling pathway in vivo and in vitro, respectively. After 24 h of reperfusion, neurological deficit scores, infarct volume, neuronal apoptosis, and cell viability were assessed. The protein expression levels of NICD, Hes1, Phospho-IKKα/β (p-IKK α/β), Phospho-NF-κB p65 (p-NF-κB p65), Bcl-2, and Bax were assessed by Western blotting. Results RIPC significantly improved neurological scores and reduced infarct volume and neuronal apoptosis in rats subjected to I/R injury. OGD preconditioning significantly reduced neuronal apoptosis and improved cell viability after I/R injury on days 3 and 7 after OGD/R. However, the neuroprotective effect was reversed by DAPT in vivo and attenuated by Notch1-RNAi in vitro. RIPC significantly upregulated the expression of proteins related to the Notch1 and NF-κB pathways. NF-κB signaling pathway activity was suppressed by a Notch1 signaling pathway inhibitor and Notch1-RNAi. Conclusions The neuroprotective effect of RIPC against cerebral I/R injury was associated with preactivation of the Notch1 and NF-κB pathways in neurons. The NF-κB pathway is a downstream target of the Notch1 pathway in RIPC and helps protect focal cerebral I/R injury.
Collapse
Affiliation(s)
- Weidong Liang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Chunshui Lin
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Liuqing Yuan
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Li Chen
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Peipei Guo
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Li
- Department of Anesthesia, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Wei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
30
|
Dissecting phenotypic responses of the druggable targetome in cancers. Sci Rep 2019; 9:12513. [PMID: 31467349 PMCID: PMC6715751 DOI: 10.1038/s41598-019-48989-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/16/2019] [Indexed: 02/02/2023] Open
Abstract
Although a large amount of screening data comprising target genes and/or drugs tested against cancer cell line panels are available, different assay conditions and readouts limit the integrated analysis and batch-to-batch comparison of these data. Here, we systematically produced and analyzed the anticancer effect of the druggable targetome to understand the varied phenotypic outcomes of diverse functional classes of target genes. A library of siRNAs targeting ~4,800 druggable genes was screened against cancer cell lines under 2D and/or 3D assay conditions. The anticancer effect was simultaneously measured by quantifying cell proliferation and/or viability. Hit rates varied significantly depending on assay conditions and/or phenotypic readouts. Functional classes of hit genes were correlated with the microenvironment difference between the 2D monolayer cell proliferation and 3D sphere formation assays. Furthermore, multiplexing of cell proliferation and viability measures enabled us to compare the sensitivity and resistance responses to the gene knockdown. Many target genes that inhibited cell proliferation increased the single-cell-level viability of surviving cells, leading to an increase in self-renewal potential. In this study, combinations of parallel 2D/3D assays and multiplexing of cell proliferation and viability measures provided functional insights into the varied phenotypic outcomes of the cancer targetome.
Collapse
|