1
|
Li Q, Zhang F, Zhao H. Construction and biocompatibility of penetrating corneal transplant substitute with cross-linked acellular porcine cornea and biopolymer polyurethane. BIOMATERIALS ADVANCES 2025; 170:214201. [PMID: 39904016 DOI: 10.1016/j.bioadv.2025.214201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/20/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
In this study, acellular porcine cornea (APC) was composited with biopolymer polyurethane (PU), in which Polyethylene glycol (PEG) served as porogen, to fabricate a breathable and impermeable barrier and maintain the transparency of APC. To improve the effect of decellularization on the collagen fibrolamella of the APC, structural regularity and stability as well as postoperative corneal edema and melting, crosslinking was taken as an effective way to improve the mechanical properties and anti-enzymatic hydrolysis of APC. Chemical cross-linking in different agents, crosslink concentrations, and reaction times were conducted. The transparency, elastic modulus, oxygen permeability, crosslinking degree, and expansion thickness were examined. Furthermore, the immunogenicity, cytocompatibility, and histocompatibility of the cross-linked APC-PU composite under the optimal crosslinking parameters (GP-0.2 %-3.0, EDC-1.0 %-1.0, GD-0.8 %-0.3) were analyzed. The results showed that the GD-0.8 %-0.3 samples demonstrated cytotoxicity and significant neovascularization during subcutaneous experiments. Moreover, a proliferation membrane was formed on the PU surface in the orthotopic transplantation, suggesting immune rejection. The GP-0.2 %-3.0 group exhibited pronounced edema and delamination in the 4th week, indicating inadequate permeability and incomplete fiber cross-linking. However, the EDC-1.0 %-1.0 group promoted cell adhesion and proliferation, while maintaining graft integrity without degradation upon subcutaneous implantation. No corneal swelling or degradation was observed within 4 weeks post-transplantation. Cross-linking of EDC/NHS is an effective method for fabricating the ideal and functional APC-PU composite for penetrating keratoplasty.
Collapse
Affiliation(s)
- Qing Li
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Haibin Zhao
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Manoochehrabadi T, Solouki A, Majidi J, Khosravimelal S, Lotfi E, Lin K, Daryabari SH, Gholipourmalekabadi M. Silk biomaterials for corneal tissue engineering: From research approaches to therapeutic potentials; A review. Int J Biol Macromol 2025; 305:141039. [PMID: 39956223 DOI: 10.1016/j.ijbiomac.2025.141039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The corneal complications can result in opacity and eventual blindness. Furthermore, a shortage of available donors constrains the existing therapeutic options. Therefore, one of the most promising strategies involves the application of biomaterials, particularly silk. Silk has garnered significant attention among these biomaterials due to its natural origin and diverse features derived from different sources. One of the most critical factors of silk is its transparency, which is crucial for the cornea, and there are no concerns about infection. This material also possesses several advantages, including cost-effectiveness in production, biocompatibility in vivo and in vitro, biodegradation, and desirable mechanical characteristics. Modifications in the topographical structure, porosity, and crystallinity of silk enhance its properties and optimize its suitability for wound dressing, efficient drug delivery systems, and various cornea-related treatments. In each layer, silk was examined as a single biomaterial or blended with the others, so, this review aims to explore silk as a potential material for corneal regenerative medicine from a novel viewpoint. By considering a range of studies, a classification system has been developed that categorizes the utilization of silk in the various layers of the cornea and sub-categorizes the different modifications and applications of silk.
Collapse
Affiliation(s)
- Tahereh Manoochehrabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Solouki
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jila Majidi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadjad Khosravimelal
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ehsan Lotfi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kaili Lin
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| | | | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; NanoBiotechnology & Regenerative Medicine Innovation Group, Noavarn Salamat ZHINO (PHC), Tehran, Iran.
| |
Collapse
|
3
|
Liu X, Dong X, Peng Z, Wang C, Wan J, Chen M, Zheng C. Collagenase-functionalized Liposomes Based on Enhancing Penetration into the Extracellular Matrix Augment Therapeutic Effect on Idiopathic Pulmonary Fibrosis. AAPS PharmSciTech 2025; 26:113. [PMID: 40281247 DOI: 10.1208/s12249-025-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
In this study, a quercetin-loaded liposome system modified with collagenase was developed to increase QU penetration in the ECM and improve IPF treatment. Quercetin-loaded long circulation liposome (QU-LP) and quercetin-loaded liposome modified with collagenase type I (QU-CLP) were prepared, followed by characterization of the encapsulation efficiency, particle size, morphology, and in vitro drug release. Their effect on the cytotoxicity of A549 cells was detected by the Cell Counting Kit-8, and the cellular uptake was investigated using cellular fluorescence imaging and flow cytometry. TGF-β1 induced A549 cell model was established to mimic pulmonary fibrosis to explore further the anti-pulmonary fibrosis effect of QU-CLP by CCK8 experiment. QU-CLP significantly improves the solubility and bioavailability of QU by encapsulating it in the internal cavity with a high encapsulation efficiency (EE%) of 92.86 ± 1.03%. Liposomes alleviate the influence of QU on normal A549 cell growth. Enhanced fluorescence intensity was observed in A549 cells treated with coumarin 6-labeled and collagenase-modified nanoliposomes (C6-CLP) after 4 h of incubation on the collagen matrix, confirming that collagenase-loaded liposomes could penetrate the collagen barrier and cells internalized more hydrophobic drug. The mean fluorescence intensity (MFI) of the C6-CLP group was 2.88 times that of the C6-labeled nanoliposomes (C6-LP). Moreover, QU-CLP significantly (**P < 0.01) inhibited the proliferation of A549 cells stimulated by TGF-β1. QU-CLP has excellent potential for delivering QU with enhanced bioavailability, high cellular uptake efficiency, and improved therapeutic efficacy in IPF.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Xiaoling Dong
- Shandong Hubble Kisen Biological Technology Co.,Ltd., Jinan, 250100, China
| | - Zhen Peng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Cuihong Wang
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Min Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| | - Chunli Zheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Gore A, Efrati R, Atanelov S, Glick P, Cohen M, Gutman H, Gez R, Horwitz V. Use of a transgenic mouse model for in vivo monitoring of corneal pathologies following Sulfur Mustard Exposure. Ocul Surf 2025; 37:247-259. [PMID: 40287061 DOI: 10.1016/j.jtos.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE The dynamic course of sulfur mustard (SM)-induced ocular insult involves an acute phase, which may progress to a chronic phase or a quiescent period, followed by late pathology. Visualizing pathological corneal changes in vivo could enhance understanding of this process and aid treatment development. METHODS SM burn was induced in the right eyes of three transgenic mouse strains-expressing RFP under the VE-Cadherin promoter (blood vessels and hematopoietic cells), GFP under the keratin 15 promoter (limbal stem cells), and YFP under the Thy-1 promoter (mid-stromal nerve fibers, MSNFs)-by vapor exposure. Cell infiltration, neovascularization (NV), innervation loss, and stem cell (SC) depletion were monitored in vivo by stereomicroscopy for up to 8 weeks. Corneal whole-mounts were used to assess 360° structures, infiltrating cells, and subbasal nerve plexus (SNP) loss. Histology included H&E, Masson-Trichrome, and periodic acid-Schiff staining. RESULTS A 35-s exposure caused minor ocular insult with moderate SNP changes, corneal cell infiltration, and reversible SC loss, mostly resolving by 4 weeks. A 120-s exposure caused severe insult with NV, extensive MSNF and SNP loss, marked CD45+ and Iba1+ infiltration, and irreversible SC depletion. NV, stromal inflammation, edema, epithelial changes, and goblet cells were seen in histology and correlated with fluorescence imaging. CONCLUSIONS This study demonstrates the utility of transgenic mice as powerful models for studying SM-induced ocular injury and for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ariel Gore
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel.
| | - Rahav Efrati
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Shelly Atanelov
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Pnina Glick
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Maayan Cohen
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Hila Gutman
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Relli Gez
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Vered Horwitz
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| |
Collapse
|
5
|
Yang S, Deng H, Zhang J, Zhang T, Xue C, Wang X, Wang Y. Spatial heterogeneity of corneal biomechanical properties in myopia at nanoscale: A preliminary study. Exp Eye Res 2025; 253:110277. [PMID: 39952426 DOI: 10.1016/j.exer.2025.110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE To investigate the spatial heterogeneity of the corneal biomechanical properties in individuals with non-high and high myopia. METHODS Atomic force microscopy was used to quantify the region-dependent elastic modulus (E) of 34 corneal lenticules from keratorefractive lenticule extraction surgery. The local E values of the central region, as well as the superior, inferior, nasal, and temporal points at the pericentral region, were measured. Differences between non-high myopia (-6.0 D < spherical equivalent [SE] ≤ -0.5 D) and high myopia (SE ≤ -6.0 D) were compared. RESULTS E was significantly higher in the non-high myopia group than in the high myopia group (P < 0.0001). In non-high myopia, the central cornea exhibited a higher E than its pericentral counterpart (P < 0.0001), and the pericentral region E was higher in the horizontal direction than in the vertical direction (P = 0.0393). However, these values converged to be similar in high myopia (P = 0.5973, P = 0.7799). No significant differences in E were found between the superior and inferior pericentral corneas, nor between the nasal and temporal in both non-high (P = 0.0931, P = 0.1800) and high myopia (P = 0.5154, P = 0.1007). The E values of central and pericentral cornea were positively correlated with the mean radius of the posterior corneal surface (r = 0.3747, P = 0.0290; r = 0.3961, P = 0.0204). CONCLUSION In non-high myopia, region-dependent corneal biomechanics revealed higher stiffness centrally than pericentrally, with pericentral cornea stiffer horizontally than vertically. High myopia exhibited a reduced E and a gradual loss of spatial heterogeneity. Emphasizing spatial heterogeneity is crucial for a comprehensive understanding of the biomechanical behavior in myopia.
Collapse
Affiliation(s)
- Shu Yang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
| | - Haiqiong Deng
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), China
| | - Jing Zhang
- School of Optometry, Hong Kong Polytechnic University, Hong Kong; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Tong Zhang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
| | - Chao Xue
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China; Nankai University Eye Institute, Nankai University, Tianjin, China
| | - Xin Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), China.
| | - Yan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China; Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China; Nankai University Eye Institute, Nankai University, Tianjin, China.
| |
Collapse
|
6
|
Orash Mahmoudsalehi A, Soleimani M, Stalin Catzim Rios K, Ortega-Lara W, Mamidi N. Advanced 3D scaffolds for corneal stroma regeneration: a preclinical progress. J Mater Chem B 2025. [PMID: 40105794 DOI: 10.1039/d5tb00090d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Corneal stromal defects represent a significant global cause of blindness, necessitating innovative therapeutic strategies to address the limitations of conventional treatments, such as corneal transplantation. Tissue engineering, a cornerstone of regenerative medicine, offers a transformative approach by leveraging biomaterial-based solutions to restore damaged tissues. Among these, three-dimensional (3D) scaffolds fabricated using advanced techniques like 3D printing have emerged as a promising platform for corneal regeneration. These scaffolds replicate the native extracellular matrix (ECM) architecture, providing a biomimetic microenvironment that supports cell proliferation, differentiation, and tissue integration. This review highlights recent advances in the design and fabrication of 3D scaffolds for corneal stroma engineering (CSE), emphasizing the critical interplay between scaffold architecture, mechanical properties, and bioactive signaling in directing cellular behavior and tissue regeneration. Likewise, we emphasize the diverse range of biomaterials utilized in scaffold fabrication, highlighting their influence on cellular interactions and tissue reconstruction. By elucidating the complex relationship between scaffold design and biologics, this review aims to illuminate the evolution of next-generation strategies for engineering functional corneal tissue. Eventually, this review will provide a comprehensive synthesis of the current state-of-the-art in 3D scaffold-based corneal tissue engineering (CTE), offering insights that could advance progress toward effective vision restoration therapies.
Collapse
Affiliation(s)
- Amin Orash Mahmoudsalehi
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico.
| | - Maryam Soleimani
- Silesian University of Technology, Faculty of Mechanical Engineering, Department of Didactic Laboratory of Nanotechnology and Material Technologies, 18a Konareskiego Str, 44-100 Gliwice, Poland
| | - Kevin Stalin Catzim Rios
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico.
| | - Wendy Ortega-Lara
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico.
| | - Narsimha Mamidi
- School of Pharmacy, Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
7
|
Zhou X, Xu L, Tan Y, Wang W, Huang X, Li G. Stiffness Regulates the Morphology and Stemness of Limbal Niche Cells Through Unique nYAP/cYAP Translocation. Invest Ophthalmol Vis Sci 2025; 66:43. [PMID: 39951297 PMCID: PMC11824500 DOI: 10.1167/iovs.66.2.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/23/2025] [Indexed: 02/19/2025] Open
Abstract
Purpose To investigate the effect of matrix stiffness on the morphology and stem characters of maintenance and differentiation of limbal niche cells (LNCs) and the mechanisms involved. Methods Human LNCs were isolated, cultured, and identified based on published literature, and LNCs from passages 4 to 6 (P4-P6) were used in this study. They were coated with hydrogels of different concentrations to prepare matrices with different stiffnesses, and non-coated plate were used for the control group. Elastic modulus values were determined by atomic force microscopy (AFM). The expression of putative stem cell markers (SOX2, OCT4, PAX6) and fibrosis markers (α-SMA, COL1A1, S100A4) was analyzed by immunofluorescence and quantitative reverse-transcription PCR (RT-qPCR). The intracellular distribution and expression of Yes-associated protein (YAP) and drosophila mothers against decapentaplegic protein family members 2 and 3 (SMAD2/3) accordingly were analyzed using immunofluorescence and western blot. Results The elastic modulus values of plastic, low-concentration hydrogel-coated surfaces, and high-concentration hydrogel-coated surfaces were 3261.05 ± 172.78 MPa, 30.39 ± 5.84 kPa, and 6.99 ± 4.04 kPa, respectively; thus, they were referred to as the dish, stiff, and soft groups. Using an in vitro model to explore the effect of matrix stiffness on LNCs, we found that a soft substrate could activate YAP to change the morphology and elevate the stemness of LNCs, whereas activation of SMAD2/3 on a stiff substrate decreased nuclear YAP (nYAP) levels, leading to myofibroblast phenotype. Inhibition of SMAD2/3 on stiff substrates partially restored LNC stemness by promoting YAP nuclear translocation. Conclusions Our findings confirm that matrix stiffness regulates the stemness and differentiation of LNCs through the YAP/SMAD signaling pathway, indicating a potential strategy for the treatment of limbal stem cell deficiency based on LNCs.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Otolaryngologic and Ophthalmic Diseases, Wuhan, China
| | - Lingjuan Xu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Otolaryngologic and Ophthalmic Diseases, Wuhan, China
| | - Yongyao Tan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Otolaryngologic and Ophthalmic Diseases, Wuhan, China
| | - Wei Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Otolaryngologic and Ophthalmic Diseases, Wuhan, China
| | - Xiaoyu Huang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Otolaryngologic and Ophthalmic Diseases, Wuhan, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Otolaryngologic and Ophthalmic Diseases, Wuhan, China
| |
Collapse
|
8
|
Wang L, Nie X, Wei Y, Chen Q, Sun Y, Zhao X, Xu X, Liu W, Liang Q. 3D printed biomimetic bilayer limbal implants for regeneration of the corneal structure in limbal stem cell deficiency. Acta Biomater 2025; 193:157-170. [PMID: 39798638 DOI: 10.1016/j.actbio.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant. Encapsulated CECs and CSSCs maintained viability and proliferative activity in the bilayer limbal implant. In vivo, both CEC-loaded and CEC/CSSC-loaded hydrogel could repair the corneal surface in the LSCD model effectively. Notably, the corneal epithelial healing was faster, and corneal opacity and neovascularization were minimal in CEC/CSSC-loaded group. These findings highlight the feasibility of 3D printing in limbal construction, providing CEC/CSSC-loaded limbal implants as a treatment strategy for LSCD and corneal blindness. STATEMENT OF SIGNIFICANCE: This study aimed to enhance the long-term prognosis of limbal epithelial cell transplantation in patients with limbal stem cell deficiency by developing a 3D limbal implant that encapsulates corneal epithelial cells and limbal niche cells simultaneously. The 3D printed implant offers the advantages of mimicking the natural layered limbal structure and were found to enhance the regenerative capacity of corneal epithelial cells, suppress inflammation, and alleviate corneal scarring in vivo. This study highlights the importance of limbal microenvironment remodeling in the treatment of limbal stem cell deficiency and the potential of 3D printing in the treatment of corneal diseases.
Collapse
Affiliation(s)
- Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xiongfeng Nie
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Yage Sun
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xinrui Zhao
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China.
| |
Collapse
|
9
|
Li T, Fu W, Li X, Huo Y, Ji H, Liang T, Zhang R. Quercetin-Loaded Melanin Nanoparticles Decorated with Collagenase Mediates Synergistic Immunomodulation and Restores Extracellular Matrix Homeostasis in Liver Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:386-397. [PMID: 39692444 DOI: 10.1021/acsami.4c15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Liver fibrosis is a chronic disease that lacks effective drug treatment. Chronic damage and inflammation lead to the formation of collagen and fibrous scars. However, the excessive accumulation of collagen I significantly hinders the delivery of drugs into liver tissue. Therefore, this study developed a quercetin-loaded melanin nanoparticle codecorated collagenase (MNP-QUE-COL) for the treatment of liver fibrosis. These results showed that MNP-QUE-COL degraded excessive collagen I, thereby efficiently delivering melanin and quercetin into the liver tissue. MNP-QUE-COL exhibited optimal PA/MRI dual-mode imaging ability. In addition, the synergistic anti-inflammatory and reactive oxygen species scavenging function of quercetin and melanin was achieved by regulation of M1-M2 macrophage polarization and inhibition of pro-inflammatory cytokine release, reshaping the imbalanced extracellular interstitial inflammatory environment. The results of this research suggest that MNP-QUE-COL is a safe and efficient therapeutic nanoplatform for liver fibrosis, showing promise as a potential therapeutic strategy for liver fibrosis and associated diseases.
Collapse
Affiliation(s)
- Tingting Li
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Weihua Fu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xueqi Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Yuanqing Huo
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Huifang Ji
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Taigang Liang
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
10
|
Gupta S, Zhang E, Sinha S, Martin LM, Varghese TS, Forck NG, Sinha PR, Ericsson AC, Hesemann NP, Mohan RR. Analysis of Smad3 in the modulation of stromal extracellular matrix proteins in corneal scarring after alkali injury. Mol Vis 2024; 30:448-464. [PMID: 39959170 PMCID: PMC11829792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/28/2024] [Indexed: 02/18/2025] Open
Abstract
Purpose During ocular trauma, excessive proliferation and transdifferentiation of corneal stromal fibroblasts cause haze/fibrosis in the cornea. Transforming growth factor β (TGFβ) plays a key role in corneal fibrosis through the Smad signaling pathway. The aberrant activity of TGFβ signaling during ocular trauma (viz. mechanical, infectious, chemical, or surgically altered TGFβ/Smad signaling) leads to regulating the predominant expression of myogenic proteins and the extracellular matrix (ECM). We sought to investigate the functional role of Smad3 in corneal wound repair and stromal ECM assembly using Smad3+/+ wild-type and Smad3-/- deficient mice. Methods Corneal injury was introduced with the topical application of an alkali-soaked 2-mm filter disc on the central cornea in the Smad3+/+ (C57BL/6J) and Smad3-/- (129-Smad3tm1Par/J) mouse strains. Slit-lamp and stereo microscopy were used for clinical assessment and corneal haze grading in live animals. Hematoxylin and eosin and Masson's trichrome staining were used to study comparative morphology and collagen level alterations between the groups. Real-time qRT-PCR, western blot, and immunohistochemistry were used to measure changes in profibrotic genes at the mRNA and protein levels. Results Slit-lamp clinical exams and stereo microscopy detected notably less opaque cornea in the eyes of Smad3-/- compared with Smad3+/+ mice at 3 weeks (p<0.01) in live animals. Corneal tissue sections of Smad3-/- mice showed significantly fewer α-smooth muscle actin-positive cells compared with those of the Smad3+/+ animals (p<0.05). The corneas of the Smad3-/- mice showed significantly lower mRNA levels of pro-fibrotic genes, α-smooth muscle actin, fibronectin, and collagen I (p<0.05, p<0.01, and p<0.001). In addition, the matrix metalloproteinase and tissue inhibitors of metalloproteinase levels were significantly increased (p<0.001) in the corneal tissue during alkali injury in both Smad3+/+ wild-type and Smad3-/- deficient mice. Conclusions The significant changes in profibrotic genes and stromal ECM proteins revealed a direct role of Smad3 in stromal ECM proteins and TGFβ/Smad-driven wound healing. Smad3 appears to be an attractive molecular target for limiting abnormal stroma wound healing to treat corneal fibrosis in vivo.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Eric Zhang
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Sampann Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Lynn M. Martin
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Thomas S. Varghese
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Nathan G. Forck
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Prashant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Aaron C. Ericsson
- Departments of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Nathan P. Hesemann
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| |
Collapse
|
11
|
Deng B, Huang R, Liang R, Fei Y, Luo Q, Song G. Design and evaluation of collagenase-loaded nanoparticles for mechanical intervention of orthotopic hepatocellular carcinoma in rat model. Int J Biol Macromol 2024; 285:138311. [PMID: 39638179 DOI: 10.1016/j.ijbiomac.2024.138311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Altered tissue mechanics is vital for cancer development and malignancy, whether targeting the mechanical microenvironment could retard the initiation and progression of tumor is less explored. In this study, an orthotopic hepatocellular carcinoma (HCC) rat model was constructed to reproduce the mechanical and pathophysiological microenvironment of HCC development. LpMSN@CLG, a liver-targeted (L) and pH-sensitive (p) mesoporous silica nanoparticle (MSN) encapsulated with collagenase type-I (CLG), and DOX-LpMSN@CLG, on the basis of LpMSN@CLG, encapsulated with CLG and doxorubicin (DOX), were prepared to reduce matrix stiffness by degrading collagen in liver and HCC tumor. LpMSN@CLG, and DOX-LpMSN@CLG were respectively injected (i.v.) into rats at the stage of fibrosis and HCC, resulting in decreased collagen content in liver and HCC tissue, as well as reduced matrix stiffness. In addition, LpMSN@CLG treatment at the fibrosis stage retarded HCC initiation, and DOX-LpMSN@CLG treatment inhibited the growth of HCC tumor when compared with that of the rats treated by DOX alone, suggesting that reducing matrix stiffness in HCC tumor can improve the therapeutic efficacy of DOX. Taken together, our study demonstrated that mechanical intervention of tissue stiffness by CLG-loaded nanoparticles could retard the initiation and progression of HCC, suggesting the promising of mechanical intervention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Bowen Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rui Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
12
|
Li Y, Ge L, Ren B, Zhang X, Yin Z, Liu H, Yang Y, Liu Y, Xu H. De-Differentiation of Corneal Epithelial Cells Into Functional Limbal Epithelial Stem Cells After the Ablation of Innate Stem Cells. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 39546294 DOI: 10.1167/iovs.65.13.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose Regeneration after tissue injury is often associated with cell fate plasticity, which restores damaged or lost cells. Here, we examined the de-differentiation of corneal epithelial cells (CECs) into functional limbal epithelial stem cells (LESCs) after the ablation of innate stem cells. Methods The regeneration of LESCs after the ablation of innate LESCs was identified by a set of markers: ApoE+/Cx43low/CK12-. CK14-CreERT2 or Slc1a3-CreERT mice were crossed with reporter mice to trace the fate of CECs. YAP-TEAD inhibitor verteporfin (VTP) and LATS inhibitor TRULI were used to examine the role of Hippo/YAP pathway in the de-differentiation of CECs. Results LESCs-ablation cornea showed to be functionally normal, including the maintenance of corneal transparency, prevention of conjunctivalization, and wound healing rate equivalent to that of normal cornea. ApoE+/Cx43low/CK12- LESCs regenerated at the limbus at 6 days after the ablation of innate stem cells, and maintained for at least 6 months. Corneal epithelial lineage tracing showed that CECs migrated back to the limbus after the ablation of innate stem cells, and de-differentiated into active and quiescent LESCs (aLESCs and qLESCs), which participated in corneal epithelial homeostasis and wound healing, respectively, like their innate counterparts. However, when the limbus niche was destroyed by NaOH (1 M, 5 seconds), CECs that occupied the limbus could not de-differentiate into ApoE+/Cx43low/CK12- LESCs and cornea developed into conjunctivalization. In addition, the protein level and activity of YAP increased at the early stage (1-2 days) after the ablation of limbal epithelium, and decreased when the de-differentiation occurred. The YAP-TEAD inhibitor VTP promoted the de-differentiation, whereas LATS inhibitor TRULI inhibited the de-differentiation of CECs. However, the persistent activation of YAP prevented the de-differentiation of CECs after an additional NaOH burn to the limbal stroma, and VTP could not rescue the capacity of CECs to de-differentiate into LESCs. Conclusions These results reveal the de-differentiation of CECs into functional LESCs after the ablation of innate stem cells, and suggest potential role of Hippo/YAP pathway in the de-differentiation of CECs in vivo.
Collapse
Affiliation(s)
- Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Xue Zhang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Zhiyuan Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Hongling Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yuli Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
13
|
Pourjabbar B, Shams F, Heidari Keshel S, Biazar E. Proliferation and differentiation of Wharton's jelly-derived mesenchymal stem cells on prgf-treated hydrogel scaffold. Regen Med 2024; 19:549-560. [PMID: 39558722 PMCID: PMC11633401 DOI: 10.1080/17460751.2024.2427513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND To address the limitations of Cultivated Limbal Epithelial Transplantation (CLET) and the use of amniotic membrane (AM) in treating Limbal Stem Cell Deficiency (LSCD), we aimed to develop a Collagen/Silk Fibroin (Co/SF) scaffold enriched with Platelet-Rich Growth Factor (PRGF) to support the proliferation, maintenance, and differentiation of Wharton's jelly-derived mesenchymal stem cells (WJMSCs) into corneal epithelial cells (CECs). METHOD Scaffolds loaded with PRGF were evaluated through release studies, cytotoxicity assays, and cell differentiation. The proliferation and differentiation of WJMSCs and Limbal Epithelial Stem Cells (LESCs) were investigated using MTT assays, real-time PCR and immunostaining. RESULTS The PRGF-loaded Co/SF scaffold significantly promoted the proliferation of both WJMSCs and LESCs in a concentration-dependent manner. Real-time PCR and immune staining revealed a significant increase in the expression of P63, ABCG2, and cytokeratin 3/12 markers in WJMSCs, a significant decrease in the expression of P63 and ABCG2, and a significant increase in the expression of cytokeratin 3/12 markers indicating successful differentiation into CECs. CONCLUSION The WJMSC cultured on PRGF-enriched Co/SF scaffold demonstrates potential as a viable alternative to conventional CLET, offering a promising strategy for corneal tissue regeneration.
Collapse
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
14
|
Wu KY, Qian SY, Faucher A, Tran SD. Advancements in Hydrogels for Corneal Healing and Tissue Engineering. Gels 2024; 10:662. [PMID: 39451315 PMCID: PMC11507397 DOI: 10.3390/gels10100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant attention for their versatile applications across various fields, including biomedical engineering. This review delves into the fundamentals of hydrogels, exploring their definition, properties, and classification. Hydrogels, as three-dimensional networks of crosslinked polymers, possess tunable properties such as biocompatibility, mechanical strength, and hydrophilicity, making them ideal for medical applications. Uniquely, this article offers original insights into the application of hydrogels specifically for corneal tissue engineering, bridging a gap in current research. The review further examines the anatomical and functional complexities of the cornea, highlighting the challenges associated with corneal pathologies and the current reliance on donor corneas for transplantation. Considering the global shortage of donor corneas, this review discusses the potential of hydrogel-based materials in corneal tissue engineering. Emphasis is placed on the synthesis processes, including physical and chemical crosslinking, and the integration of bioactive molecules. Stimuli-responsive hydrogels, which react to environmental triggers, are identified as promising tools for drug delivery and tissue repair. Additionally, clinical applications of hydrogels in corneal pathologies are explored, showcasing their efficacy in various trials. Finally, the review addresses the challenges of regulatory approval and the need for further research to fully realize the potential of hydrogels in corneal tissue engineering, offering a promising outlook for future developments in this field.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Shu Yu Qian
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Anne Faucher
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
15
|
Di Girolamo N. Biologicals and Biomaterials for Corneal Regeneration and Vision Restoration in Limbal Stem Cell Deficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401763. [PMID: 38777343 DOI: 10.1002/adma.202401763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The mammalian cornea is decorated with stem cells bestowed with the life-long task of renewing the epithelium, provided they remain healthy, functional, and in sufficient numbers. If not, a debilitating disease known as limbal stem cell deficiency (LSCD) can develop causing blindness. Decades after the first stem cell (SC) therapy is devised to treat this condition, patients continue to suffer unacceptable failures. During this time, improvements to therapeutics have included identifying better markers to isolate robust SC populations and nurturing them on crudely modified biological or biomaterial scaffolds including human amniotic membrane, fibrin, and contact lenses, prior to their delivery. Researchers are now gathering information about the biomolecular and biomechanical properties of the corneal SC niche to decipher what biological and/or synthetic materials can be incorporated into these carriers. Advances in biomedical engineering including electrospinning and 3D bioprinting with surface functionalization and micropatterning, and self-assembly models, have generated a wealth of biocompatible, biodegradable, integrating scaffolds to choose from, some of which are being tested for their SC delivery capacity in the hope of improving clinical outcomes for patients with LSCD.
Collapse
Affiliation(s)
- Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
16
|
Kang NW, Jang K, Song E, Han U, Seo YA, Chen F, Wungcharoen T, Heilshorn SC, Myung D. In Situ-Forming, Bioorthogonally Cross-linked, Nanocluster-Reinforced Hydrogel for the Regeneration of Corneal Defects. ACS NANO 2024; 18:21925-21938. [PMID: 39106436 DOI: 10.1021/acsnano.4c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Corneal defects can lead to stromal scarring and vision loss, which is currently only treatable with a cadaveric corneal transplant. Although in situ-forming hydrogels have been shown to foster regeneration of the cornea in the setting of stromal defects, the cross-linking, biomechanical, and compositional parameters that optimize healing have not yet been established. This, Corneal defects are also almost universally inflamed, and their rapid closure without fibrosis are critical to preserving vision. Here, an in situ forming, bioorthogonally cross-linked, nanocluster (NC)-reinforced collagen and hyaluronic acid hydrogel (NCColHA hydrogel) with enhanced structural integrity and both pro-regenerative and anti-inflammatory effects was developed and tested within a corneal defect model in vivo. The NCs serve as bioorthogonal nanocross-linkers, providing higher cross-linking density than polymer-based alternatives. The NCs also serve as delivery vehicles for prednisolone (PRD) and the hepatocyte growth factor (HGF). NCColHA hydrogels rapidly gel within a few minutes upon administration and exhibit robust rheological properties, excellent transparency, and negligible swelling/deswelling behavior. The hydrogel's biocompatibility and capacity to support cell growth were assessed using primary human corneal epithelial cells. Re-epithelialization on the NCColHA hydrogel was clearly observed in rabbit eyes, both ex vivo and in vivo, with expression of normal epithelial biomarkers, including CD44, CK12, CK14, α-SMA, Tuj-1, and ZO-1, and stratified, multilayered morphology. The applied hydrogel maintained its structural integrity for at least 14 days and remodeled into a transparent stroma by 56 days.
Collapse
Affiliation(s)
- Nae-Won Kang
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Kyeongwoo Jang
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Euisun Song
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Uiyoung Han
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Youngyoon Amy Seo
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Fang Chen
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Thitima Wungcharoen
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - David Myung
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- VA Palo Alto HealthCare System, Palo Alto, California 94304, United States
| |
Collapse
|
17
|
Zhurenkov KE, Lobov AA, Bildyug NB, Alexander-Sinclair EI, Darvish DM, Lomert EV, Kriger DV, Zainullina BR, Chabina AS, Khorolskaya JI, Perepletchikova DA, Blinova MI, Mikhailova NA. Focal Adhesion Maturation Responsible for Behavioral Changes in Human Corneal Stromal Fibroblasts on Fibrillar Substrates. Int J Mol Sci 2024; 25:8601. [PMID: 39201288 PMCID: PMC11354758 DOI: 10.3390/ijms25168601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
The functioning of the human cornea heavily relies on the maintenance of its extracellular matrix (ECM) mechanical properties. Within this context, corneal stromal fibroblasts (CSFs) are essential, as they are responsible for remodeling the corneal ECM. In this study, we used a decellularized human amniotic membrane (dHAM) and a custom fibrillar collagen film (FCF) to explore the effects of fibrillar materials on human CSFs. Our findings indicate that substrates like FCF can enhance the early development of focal adhesions (FAs), leading to the activation and propagation of mechanotransduction signals. This is primarily achieved through FAK autophosphorylation and YAP1 nuclear translocation pathways. Remarkably, inhibiting FAK autophosphorylation negated the observed changes. Proteome analysis further confirmed the central role of FAs in mechanotransduction propagation in CSFs cultured on FCF. This analysis also highlighted complex signaling pathways, including chromatin epigenetic modifications, in response to fibrillar substrates. Overall, our research highlights the potential pathways through which CSFs undergo behavioral changes when exposed to fibrillar substrates, identifying FAs as essential mechanotransducers.
Collapse
Affiliation(s)
- Kirill E Zhurenkov
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
- Department of Cytology and Histology, St. Petersburg State University, St. Petersburg 199032, Russia
| | - Arseniy A Lobov
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Natalya B Bildyug
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | | | - Diana M Darvish
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Ekaterina V Lomert
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Daria V Kriger
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Bozhana R Zainullina
- Centre for Molecular and Cell Technologies, St. Petersburg State University, St. Petersburg 199032, Russia
| | - Alina S Chabina
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Julia I Khorolskaya
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | | | - Miralda I Blinova
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Natalia A Mikhailova
- Institute of Cytology Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
18
|
Wang Y, Yang F, Yang M, Wang S, He H, Hong M, Wang G, Li S, Liu H, Wang Y. Construction of Dome-Shaped 3D Corneal Epithelial Tissue Models Based on Eyeball-Shaped Gel Microspheres. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31597-31609. [PMID: 38850560 DOI: 10.1021/acsami.4c05697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
By overcoming interspecies differences and mimicking the in vivo microenvironment, three-dimensional (3D) in vitro corneal models have become a significant novel tool in contemporary ophthalmic disease research. However, existing 3D corneal models struggle to replicate the actual human corneal environment, especially the dome-shaped physiological structure with adjustable curvature. Addressing these challenges, this study introduces a straightforward method for fabricating collagen/chitosan-alginate eyeball-shaped gel microspheres with a Janus structure via a two-phase aqueous system, used subsequently to construct in vitro 3D corneal epithelial tissue models. By adjusting the diameter ratio of collagen/chitosan to alginate droplets, we can create eyeball-shaped gel microspheres with varying curvatures. Human corneal epithelial cells were seeded on the surfaces of these microspheres, leading to the formation of in vitro 3D corneal epithelial tissues characterized by dome-like multilayers and tight junctions. Additionally, the model demonstrated responsiveness to UVB exposure through the secretion of reactive oxygen species (ROS) and proinflammatory factors. Therefore, we believe that in vitro 3D corneal epithelial tissue models with dome-shaped structures hold significant potential for advancing ophthalmic research.
Collapse
Affiliation(s)
- Yilan Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Feng Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Menghan Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Siping Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Huatao He
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Meiying Hong
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Guanxiong Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Suiyan Li
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Hong Liu
- Department of General Surgery, Wuxi No. 5 People's Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214061, China
| | - Yaolei Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
19
|
Sanie-Jahromi F, Khaki M, Heydari M, Nowroozzadeh MH, Akbarizadeh AR, Daneshamouz S, NejatyJahromy Y, Nejabat M, Mahmoudi A, Zareei A, Nejabat M. Effect of low dose honey on the apoptosis and inflammation gene expression in corneal limbal stem cells and keratocytes and its efficacy as an ophthalmic formulation in the treatment of dry eye: in-vitro and clinical study. Front Med (Lausanne) 2024; 11:1359463. [PMID: 38831993 PMCID: PMC11144896 DOI: 10.3389/fmed.2024.1359463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Background The use of honey as an eye treatment encounters challenges due to its high osmolarity, low pH, and difficulties in sterilization. This study addresses these issues by employing a low concentration of honey, focusing on both in-vitro experiments and clinical trials for treating dry eye disease in corneal cells. Methods In the in-vitro experiment, we investigated the impact of a 1% honey-supplemented medium (HSM) on limbal stem cells (LSCs) and keratocytes using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and real-time polymerase chain reaction (PCR) for BCL-2, BAX, and IL-1β gene expression. Simultaneously, in the clinical trial, 80 participants were divided into two groups, receiving either a 1% w/v honey ophthalmic formulation or a placebo for 3 months. Study outcomes included subjective improvement in dry eye symptoms, tear break-up time (TBUT), and Schirmer's test results. Results MTT results indicated that 1% HSM did not compromise the survival of corneal cells and significantly reduced the expression of the IL-1β gene. Additionally, participants in the honey group demonstrated a higher rate of improvement in dry eye symptoms and a significant enhancement in TBUT values at the three-month follow-up. However, there was no significant difference between the study groups in terms of Schirmer's test values. No adverse events were observed or reported. Conclusion In conclusion, 1% honey exhibits anti-inflammatory and anti-infective properties, proving effective in ameliorating dry eye symptoms and enhancing tear film stability in patients with dry eye disease.Clinical Trial Registration: https://irct.behdasht.gov.ir/trial/63800.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khaki
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Reza Akbarizadeh
- Department of Quality Control, Food and Drug, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Daneshamouz
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yaser NejatyJahromy
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nejabat
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Mahmoudi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Athar Zareei
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Nejabat
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Tjoa K, Nadhif MH, Utami SS, Kusuma SR, Astagiri PY, Adriono GA. Mechanical, optical, chemical, and biological evaluations of fish scale-derived scaffold for corneal replacements: A systematic review. Int J Biol Macromol 2024; 267:131183. [PMID: 38580016 DOI: 10.1016/j.ijbiomac.2024.131183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Corneal blindness is commonly treated through corneal replacement with allogeneic corneal donors, which may face shortage. Regarding this issue, xenogeneic alternatives are explored. Fish scale-derived scaffolds (FSSs) are among the alternatives due to the lower risk of infection and abundant sources of raw materials. Unfortunately, the information about mechanical, optical, chemical, and biological performances of FSSs for corneal replacements is still scattered, as well as about the fabrication techniques. This study aims to gather scattered pieces of information about the mentioned performances and fabrication techniques of FSSs for corneal replacements. Sorted from four scientific databases and using the PRISMA checklist, eleven relevant articles are collected. FSSs are commonly fabricated using decellularization and decalcification processes, generating FSSs with parallel multilayers or crossed fibers with topographic microchannels. In the collected studies, similar mechanical properties of FSSs to native tissues are discovered, as well as good transparency, light remittance, but poorer refractive indexes than native tissues. Biological evaluations mostly discuss histology, cell proliferations, and immune responses on FSSs, while only a few studies examine the vascularization. No studies completed comprehensive evaluations on the four properties. The current progress of FSS developments demonstrates the potential of FSS use for corneal replacements.
Collapse
Affiliation(s)
- Kevin Tjoa
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Muhammad Hanif Nadhif
- Botnar Research Centre, University of Oxford, Oxford, United Kingdom; Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Medical Technology Cluster, Indonesian Medical Education and Research Institute, Jakarta, Indonesia.
| | | | | | - Prasandhya Yusuf Astagiri
- Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Medical Technology Cluster, Indonesian Medical Education and Research Institute, Jakarta, Indonesia
| | | |
Collapse
|
21
|
Bhutani U, Dey N, Chowdhury SK, Waghmare N, Mahapatra RD, Selvakumar K, Chandru A, Bhowmick T, Agrawal P. Biopolymeric corneal lenticules by digital light processing based bioprinting: a dynamic substitute for corneal transplant. Biomed Mater 2024; 19:035017. [PMID: 38471165 DOI: 10.1088/1748-605x/ad3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Digital light processing (DLP) technology has gained significant attention for its ability to construct intricate structures for various applications in tissue modeling and regeneration. In this study, we aimed to design corneal lenticules using DLP bioprinting technology, utilizing dual network bioinks to mimic the characteristics of the human cornea. The bioink was prepared using methacrylated hyaluronic acid and methacrylated gelatin, where ruthenium salt and sodium persulfate were included for mediating photo-crosslinking while tartrazine was used as a photoabsorber. The bioprinted lenticules were optically transparent (85.45% ± 0.14%), exhibited adhesive strength (58.67 ± 17.5 kPa), and compressive modulus (535.42 ± 29.05 kPa) sufficient for supporting corneal tissue integration and regeneration. Puncture resistance tests and drag force analysis further confirmed the excellent mechanical performance of the lenticules enabling their application as potential corneal implants. Additionally, the lenticules demonstrated outstanding support for re-epithelialization and stromal regeneration when assessed with human corneal stromal cells. We generated implant ready corneal lenticules while optimizing bioink and bioprinting parameters, providing valuable solution for individuals suffering from various corneal defects and waiting for corneal transplants.
Collapse
Affiliation(s)
- Utkarsh Bhutani
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Namit Dey
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Suvro Kanti Chowdhury
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Neha Waghmare
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Rita Das Mahapatra
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Kamalnath Selvakumar
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Arun Chandru
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Tuhin Bhowmick
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
- Pandorum International Inc., San Francisco, CA, United States of America
| | - Parinita Agrawal
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| |
Collapse
|
22
|
Liu S, Chen H, Xie H, Liu X, Zhang M. Substrate Stiffness Modulates Stemness and Differentiation of Rabbit Corneal Endothelium Through the Paxillin-YAP Pathway. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38466286 DOI: 10.1167/iovs.65.3.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Purpose To explore the role of substrate stiffness and the mechanism beneath corneal endothelial cells' (CECs') stemness maintenance and differentiation. Methods CECs were divided into central zone (8 mm trephined boundary) and peripheral zone (8 mm trephined edge with attached limbal). Two zones were analyzed by hematoxylin-eosin staining and scanning electron microscopy for anatomic structure. The elastic modulus of Descemet's membrane (DM) was analyzed by atomic force microscopy. Compressed type I collagen gels with different stiffness were constructed as an in vitro model system to test the role of stiffness on phenotype using cultured rabbit CECs. Cell morphology, expression and intracellular distribution of Yes-associated protein (YAP), differentiation (ZO-1, Na+/K+-ATPase), stemness (FOXD3, CD34, Sox2, Oct3/4), and endothelial-mesenchymal transition (EnMT) markers were analyzed by immunofluorescence, quantitative RT-PCR, and Western blot. Results The results showed that the peripheral area of rabbit and human DM is softer than the central area ex vivo. Using the biomimetic extracellular matrix collagen gels in vitro model, we then demonstrated that soft substrate weakens the differentiation and EnMT in the culture of CECs. It was further proved by the inhibitor experiment that soft substrate enhances stemness maintenance via inhibition of paxillin-YAP signaling, which was activated on a stiff substrate. Conclusions Our findings confirm that substrate stiffness modulates the stemness maintenance and differentiation of CECs and suggest a potential strategy for CEC-based corneal tissue engineering.
Collapse
Affiliation(s)
- Shuting Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Chen
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Huatao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Kabakova I, Zhang J, Xiang Y, Caponi S, Bilenca A, Guck J, Scarcelli G. Brillouin microscopy. NATURE REVIEWS. METHODS PRIMERS 2024; 4:8. [PMID: 39391288 PMCID: PMC11465583 DOI: 10.1038/s43586-023-00286-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 10/12/2024]
Abstract
The field of Brillouin microscopy and imaging was established approximately 20 years ago, thanks to the development of non-scanning high-resolution optical spectrometers. Since then, the field has experienced rapid expansion, incorporating technologies from telecommunications, astrophotonics, multiplexed microscopy, quantum optics and machine learning. Consequently, these advancements have led to much-needed improvements in imaging speed, spectral resolution and sensitivity. The progress in Brillouin microscopy is driven by a strong demand for label-free and contact-free methods to characterize the mechanical properties of biomaterials at the cellular and subcellular scales. Understanding the local biomechanics of cells and tissues has become crucial in predicting cellular fate and tissue pathogenesis. This Primer aims to provide a comprehensive overview of the methods and applications of Brillouin microscopy. It includes key demonstrations of Brillouin microscopy and imaging that can serve as a reference for the existing research community and new adopters of this technology. The article concludes with an outlook, presenting the authors' vision for future developments in this vibrant field. The Primer also highlights specific examples where Brillouin microscopy can have a transformative impact on biology and biomedicine.
Collapse
Affiliation(s)
- Irina Kabakova
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Yuchen Xiang
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Silvia Caponi
- Istituto Officina dei Materiali–National Research Council (IOM-CNR)–Research Unit in Perugia, c/o Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Maryland Biophysics Program, University of Maryland, College Park, MD, USA
| |
Collapse
|
24
|
Samalova M, Melnikava A, Elsayad K, Peaucelle A, Gahurova E, Gumulec J, Spyroglou I, Zemlyanskaya EV, Ubogoeva EV, Balkova D, Demko M, Blavet N, Alexiou P, Benes V, Mouille G, Hejatko J. Hormone-regulated expansins: Expression, localization, and cell wall biomechanics in Arabidopsis root growth. PLANT PHYSIOLOGY 2023; 194:209-228. [PMID: 37073485 PMCID: PMC10762514 DOI: 10.1093/plphys/kiad228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Expansins facilitate cell expansion by mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in controlling CW biomechanical properties in specific tissues and organs remains elusive. We monitored hormonal responsiveness and spatial specificity of expression and localization of expansins predicted to be the direct targets of cytokinin signaling in Arabidopsis (Arabidopsis thaliana). We found EXPANSIN1 (EXPA1) homogenously distributed throughout the CW of columella/lateral root cap, while EXPA10 and EXPA14 localized predominantly at 3-cell boundaries in the epidermis/cortex in various root zones. EXPA15 revealed cell-type-specific combination of homogenous vs. 3-cell boundaries localization. By comparing Brillouin frequency shift and AFM-measured Young's modulus, we demonstrated Brillouin light scattering (BLS) as a tool suitable for non-invasive in vivo quantitative assessment of CW viscoelasticity. Using both BLS and AFM, we showed that EXPA1 overexpression upregulated CW stiffness in the root transition zone (TZ). The dexamethasone-controlled EXPA1 overexpression induced fast changes in the transcription of numerous CW-associated genes, including several EXPAs and XYLOGLUCAN:XYLOGLUCOSYL TRANSFERASEs (XTHs), and associated with rapid pectin methylesterification determined by in situ Fourier-transform infrared spectroscopy in the root TZ. The EXPA1-induced CW remodeling is associated with the shortening of the root apical meristem, leading to root growth arrest. Based on our results, we propose that expansins control root growth by a delicate orchestration of CW biomechanical properties, possibly regulating both CW loosening and CW remodeling.
Collapse
Affiliation(s)
- Marketa Samalova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Alesia Melnikava
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Kareem Elsayad
- Division of Anatomy, Centre for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | | | - Evelina Gahurova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Ioannis Spyroglou
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Elena V Zemlyanskaya
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630073, Russia
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V Ubogoeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Darina Balkova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Martin Demko
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Nicolas Blavet
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Panagiotis Alexiou
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | - Jan Hejatko
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
25
|
Altshuler A, Amitai-Lange A, Nasser W, Dimri S, Bhattacharya S, Tiosano B, Barbara R, Aberdam D, Shimmura S, Shalom-Feuerstein R. Eyes open on stem cells. Stem Cell Reports 2023; 18:2313-2327. [PMID: 38039972 PMCID: PMC10724227 DOI: 10.1016/j.stemcr.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023] Open
Abstract
Recently, the murine cornea has reemerged as a robust stem cell (SC) model, allowing individual SC tracing in living animals. The cornea has pioneered seminal discoveries in SC biology and regenerative medicine, from the first corneal transplantation in 1905 to the identification of limbal SCs and their transplantation to successfully restore vision in the early 1990s. Recent experiments have exposed unexpected properties attributed to SCs and progenitors and revealed flexibility in the differentiation program and a key role for the SC niche. Here, we discuss the limbal SC model and its broader relevance to other tissues, disease, and therapy.
Collapse
Affiliation(s)
- Anna Altshuler
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Aya Amitai-Lange
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Waseem Nasser
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shalini Dimri
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Swarnabh Bhattacharya
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ramez Barbara
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Daniel Aberdam
- Université Paris-Cité, INSERM U1138, Centre des Cordeliers, 75270 Paris, France
| | - Shigeto Shimmura
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Tokyo, Japan
| | - Ruby Shalom-Feuerstein
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
26
|
Zhao LM, Da LC, Wang R, Wang L, Jiang YL, Zhang XZ, Li YX, Lei XX, Song YT, Zou CY, Huang LP, Zhang WQ, Zhang QY, Li QJ, Nie R, Zhang Y, Liang Y, Li-Ling J, Xie HQ. Promotion of uterine reconstruction by a tissue-engineered uterus with biomimetic structure and extracellular matrix microenvironment. SCIENCE ADVANCES 2023; 9:eadi6488. [PMID: 37967178 PMCID: PMC10651121 DOI: 10.1126/sciadv.adi6488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
The recurrence rate for severe intrauterine adhesions is as high as 60%, and there is still lack of effective prevention and treatment. Inspired by the nature of uterus, we have developed a bilayer scaffold (ECM-SPS) with biomimetic heterogeneous features and extracellular matrix (ECM) microenvironment of the uterus. As proved by subtotal uterine reconstruction experiments, the mechanical and antiadhesion properties of the bilayer scaffold could meet the requirement for uterine repair. With the modification with tissue-specific cell-derived ECM, the ECM-SPS had the ECM microenvironment signatures of both the endometrium and myometrium and exhibited the property of inducing stem cell-directed differentiation. Furthermore, the ECM-SPS has recruited more endogenous stem cells to promote endometrial regeneration at the initial stage of repair, which was accompanied by more smooth muscle regeneration and a higher pregnancy rate. The reconstructed uterus could also sustain normal pregnancy and live birth. The ECM-SPS may thereby provide a potential treatment for women with severe intrauterine adhesions.
Collapse
Affiliation(s)
- Long-mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Lin-cui Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Reproductive Center of Fujian Maternity and Child Health Care Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Rui Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Long Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan-lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiu-zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya-xing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiong-xin Lei
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu-ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chen-yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li-ping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen-qian Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing-yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian-jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Liang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jesse Li-Ling
- Center of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui-qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| |
Collapse
|
27
|
Singh VK, Kethiri AR, Pingali T, Sahoo A, Salman M, Koduri MA, Prasad D, Bokara KK, Basu S, Singh V. Development and validation of a reliable rabbit model of limbal stem cell deficiency by mechanical debridement using an ophthalmic burr. Exp Eye Res 2023; 236:109667. [PMID: 37758156 DOI: 10.1016/j.exer.2023.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
A simple and reproducible method is necessary to generate reliable animal models of limbal stem cell deficiency (LSCD) for assessing the safety and efficacy of new therapeutic modalities. This study aimed to develop and validate a rabbit model of LSCD through mechanical injury. The corneal and limbal epithelium of New Zealand White rabbits (n = 18) were mechanically debrided using an ophthalmic burr (Algerbrush II) with a 1.0-mm rotating head after 360° conjunctival peritomy. The debrided eyes were serially evaluated for changes in corneal opacity, neo-vascularization, epithelial defect and corneal thickness using clinical photography, slit lamp imaging, fluorescein staining, and anterior segment optical coherence tomography scanning (AS-OCT). Following this, an assessment of histopathology and phenotypic marker expression of the excised corneas was conducted. The experimental eyes were grouped as mild (n = 4), moderate (n = 10), and severe (n = 4) based on the grade of LSCD. The moderate group exhibited abnormal epithelium, cellular infiltration in the stroma, and vascularization in the central, peripheral, and limbal regions of the cornea. The severe group demonstrated central epithelial edema, peripheral epithelial thinning with sparse goblet cell population, extensive cellular infiltration in the stroma, and dense vascularization in the limbal region of the cornea. A significant decrease in the expression of K12 and p63 (p < 0.0001) was observed, indicating the loss of corneal epithelium and limbal epithelial stem cells in the LSCD cornea. This study demonstrates that the Alger brush-induced mechanical debridement model provides a reliable model of LSCD with comprehensive clinic-pathological features and that is well suited for evaluating novel therapeutic and regenerative approaches.
Collapse
Affiliation(s)
- Vijay Kumar Singh
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Tejaswini Pingali
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Abhishek Sahoo
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mohd Salman
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Madhuri Amulya Koduri
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Deeksha Prasad
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Sayan Basu
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
28
|
Kauppila M, Mörö A, Valle‐Delgado JJ, Ihalainen T, Sukki L, Puistola P, Kallio P, Ilmarinen T, Österberg M, Skottman H. Toward Corneal Limbus In Vitro Model: Regulation of hPSC-LSC Phenotype by Matrix Stiffness and Topography During Cell Differentiation Process. Adv Healthc Mater 2023; 12:e2301396. [PMID: 37449943 PMCID: PMC11468526 DOI: 10.1002/adhm.202301396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
A functional limbal epithelial stem cells (LSC) niche is a vital element in the regular renewal of the corneal epithelium by LSCs and maintenance of good vision. However, little is known about its unique structure and mechanical properties on LSC regulation, creating a significant gap in development of LSC-based therapies. Herein, the effect of mechanical and architectural elements of the niche on human pluripotent derived LSCs (hPSC-LSC) phenotype and growth is investigated in vitro. Specifically, three formulations of polyacrylamide gels with different controlled stiffnesses are used for culture and characterization of hPSC-LSCs from different stages of differentiation. In addition, limbal mimicking topography in polydimethylsiloxane is utilized for culturing hPSC-LSCs at early time point of differentiation. For comparison, the expression of selected key proteins of the corneal cells is analyzed in their native environment through whole mount staining of human donor corneas. The results suggest that mechanical response and substrate preference of the cells is highly dependent on their developmental stage. In addition, data indicate that cells may carry possible mechanical memory from previous culture matrix, both highlighting the importance of mechanical design of a functional in vitro limbus model.
Collapse
Affiliation(s)
- Maija Kauppila
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Anni Mörö
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Juan José Valle‐Delgado
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityEspoo02150Finland
| | - Teemu Ihalainen
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Lassi Sukki
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Paula Puistola
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Pasi Kallio
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Tanja Ilmarinen
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Monika Österberg
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityEspoo02150Finland
| | - Heli Skottman
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| |
Collapse
|
29
|
Zheng X, Xin Y, Wang C, Fan Y, Yang P, Li L, Yin D, Zhang E, Hong Y, Bao H, Wang J, Bao F, Zhang W, Chen S, Elsheikh A, Swain M. Use of Nanoindentation in Determination of Regional Biomechanical Properties of Rabbit Cornea After UVA Cross-Linking. Invest Ophthalmol Vis Sci 2023; 64:26. [PMID: 37850947 PMCID: PMC10593136 DOI: 10.1167/iovs.64.13.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Purpose To evaluate the regional effects of different corneal cross-linking (CXL) protocols on corneal biomechanical properties. Methods The study involved both eyes of 50 rabbits, and the left eyes were randomized to the five intervention groups, which included the standard CXL group (SCXL), which was exposed to 3-mW/cm2 irradiation, and three accelerated CXL groups (ACXL1-3), which were exposed to ultraviolet-A at irradiations of 9 mW/cm2, 18 mW/cm2, and 30 mW/cm2, respectively, but with the same total dose (5.4 J/cm2). A control (CO) group was not exposed to ultraviolet-A. No surgery was done on the contralateral eyes. The corneas of each group were evaluated by the effective elastic modulus (Eeff) and the hydraulic conductivity (K) within a 7.5-mm radius using nanoindentation measurements. Results Compared with the CO group, Eeff (in regions with radii of 0-1.5 mm, 1.5-3.0 mm, and 3.0-4.5 mm) significantly increased by 309%, 276%, and 226%, respectively, with SCXL; by 222%, 209%, and 173%, respectively, with ACXL1; by 111%, 109%, and 94%, respectively, with ACXL2; and by 59%, 41%, and 37%, respectively, with ACXL3 (all P < 0.05). K was also significantly reduced by 84%, 81%, and 78%, respectively, with SCXL; by 75%, 74%, and 70%, respectively, with ACXL1; by 64%, 62%, and 61%, respectively, with ACXL2; and by 33%, 36%, and 32%, respectively, with ACXL3 (all P < 0.05). For the other regions(with radii between 4.5 and 7.5 mm), the SCXL and ACXL1 groups (but not the ACXL2 and ACXL3 groups) still showed significant changes in Eeff and K. Conclusions CXL had a significant effect on corneal biomechanics in both standard and accelerated procedures that may go beyond the irradiated area. The effect of CXL in stiffening the tissue and reducing permeability consistently decreased with reducing the irradiance duration.
Collapse
Affiliation(s)
- Xiaobo Zheng
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Xin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Dalian Medical University, Affiliated Dalian No. 3 People's Hospital, Dalian, China
| | - Chong Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiwen Fan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peng Yang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lingqiao Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Danping Yin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Erchi Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuxin Hong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Han Bao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junjie Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fangjun Bao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weiwei Zhang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, China
| | - Shihao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - Michael Swain
- AMME, Biomechanics Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
30
|
van Velthoven AJH, Utheim TP, Notara M, Bremond-Gignac D, Figueiredo FC, Skottman H, Aberdam D, Daniels JT, Ferrari G, Grupcheva C, Koppen C, Parekh M, Ritter T, Romano V, Ferrari S, Cursiefen C, Lagali N, LaPointe VLS, Dickman MM. Future directions in managing aniridia-associated keratopathy. Surv Ophthalmol 2023; 68:940-956. [PMID: 37146692 DOI: 10.1016/j.survophthal.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Congenital aniridia is a panocular disorder that is typically characterized by iris hypoplasia and aniridia-associated keratopathy (AAK). AAK results in the progressive loss of corneal transparency and thereby loss of vision. Currently, there is no approved therapy to delay or prevent its progression, and clinical management is challenging because of phenotypic variability and high risk of complications after interventions; however, new insights into the molecular pathogenesis of AAK may help improve its management. Here, we review the current understanding about the pathogenesis and management of AAK. We highlight the biological mechanisms involved in AAK development with the aim to develop future treatment options, including surgical, pharmacological, cell therapies, and gene therapies.
Collapse
Affiliation(s)
- Arianne J H van Velthoven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Dominique Bremond-Gignac
- Ophthalmology Department, University Hospital Necker-Enfants Malades, APHP, Paris Cité University, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | - Francisco C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daniel Aberdam
- Centre de Recherche des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | | | - Giulio Ferrari
- Cornea and Ocular Surface Unit, Eye Repair Lab, San Raffaele Hospital, Milan, Italy
| | - Christina Grupcheva
- Department of Ophthalmology and Visual Sciences, Medical University of Varna, Varna, Bulgaria
| | - Carina Koppen
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Mohit Parekh
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Thomas Ritter
- Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Brescia, Italy
| | | | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
31
|
Zhang J, Nikolic M, Tanner K, Scarcelli G. Rapid biomechanical imaging at low irradiation level via dual line-scanning Brillouin microscopy. Nat Methods 2023; 20:677-681. [PMID: 36894684 PMCID: PMC10363327 DOI: 10.1038/s41592-023-01816-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Brillouin microscopy is a technique for mechanical characterization of biological material without contact at high three-dimensional resolution. Here, we introduce dual line-scanning Brillouin microscopy (dLSBM), which improves acquisition speed and reduces irradiation dose by more than one order of magnitude with selective illumination and single-shot analysis of hundreds of points along the incident beam axis. Using tumor spheroids, we demonstrate the ability to capture the sample response to rapid mechanical perturbations as well as the spatially resolved evolution of the mechanical properties in growing spheroids.
Collapse
Affiliation(s)
- Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
| | - Milos Nikolic
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Maryland Biophysics Program, University of Maryland, College Park, MD, USA
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Maryland Biophysics Program, University of Maryland, College Park, MD, USA.
| |
Collapse
|
32
|
Sprogyte L, Park M, Di Girolamo N. Pathogenesis of Alkali Injury-Induced Limbal Stem Cell Deficiency: A Literature Survey of Animal Models. Cells 2023; 12:cells12091294. [PMID: 37174694 PMCID: PMC10177508 DOI: 10.3390/cells12091294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Limbal stem cell deficiency (LSCD) is a debilitating ocular surface disease that eventuates from a depleted or dysfunctional limbal epithelial stem cell (LESC) pool, resulting in corneal epithelial failure and blindness. The leading cause of LSCD is a chemical burn, with alkali substances being the most common inciting agents. Characteristic features of alkali-induced LSCD include corneal conjunctivalization, inflammation, neovascularization and fibrosis. Over the past decades, animal models of corneal alkali burn and alkali-induced LSCD have been instrumental in improving our understanding of the pathophysiological mechanisms responsible for disease development. Through these paradigms, important insights have been gained with regards to signaling pathways that drive inflammation, neovascularization and fibrosis, including NF-κB, ERK, p38 MAPK, JNK, STAT3, PI3K/AKT, mTOR and WNT/β-catenin cascades. Nonetheless, the molecular and cellular events that underpin re-epithelialization and those that govern long-term epithelial behavior are poorly understood. This review provides an overview of the current mechanistic insights into the pathophysiology of alkali-induced LSCD. Moreover, we highlight limitations regarding existing animal models and knowledge gaps which, if addressed, would facilitate development of more efficacious therapeutic strategies for patients with alkali-induced LSCD.
Collapse
Affiliation(s)
- Lina Sprogyte
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mijeong Park
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
33
|
Bhattacharya S, Mukherjee A, Pisano S, Dimri S, Knaane E, Altshuler A, Nasser W, Dey S, Shi L, Mizrahi I, Blum N, Jokel O, Amitai-Lange A, Kaganovsky A, Mimouni M, Socea S, Midlij M, Tiosano B, Hasson P, Feral C, Wolfenson H, Shalom-Feuerstein R. The biophysical property of the limbal niche maintains stemness through YAP. Cell Death Differ 2023:10.1038/s41418-023-01156-7. [PMID: 37095157 DOI: 10.1038/s41418-023-01156-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
The cell fate decisions of stem cells (SCs) largely depend on signals from their microenvironment (niche). However, very little is known about how biochemical niche cues control cell behavior in vivo. To address this question, we focused on the corneal epithelial SC model in which the SC niche, known as the limbus, is spatially segregated from the differentiation compartment. We report that the unique biomechanical property of the limbus supports the nuclear localization and function of Yes-associated protein (YAP), a putative mediator of the mechanotransduction pathway. Perturbation of tissue stiffness or YAP activity affects SC function as well as tissue integrity under homeostasis and significantly inhibited the regeneration of the SC population following SC depletion. In vitro experiments revealed that substrates with the rigidity of the corneal differentiation compartment inhibit nuclear YAP localization and induce differentiation, a mechanism that is mediated by the TGFβ-SMAD2/3 pathway. Taken together, these results indicate that SC sense biomechanical niche signals and that manipulation of mechano-sensory machinery or its downstream biochemical output may bear fruits in SC expansion for regenerative therapy.
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Abhishek Mukherjee
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Sabrina Pisano
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107, Nice, France
| | - Shalini Dimri
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Eman Knaane
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Anna Altshuler
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Waseem Nasser
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Sunanda Dey
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Lidan Shi
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Ido Mizrahi
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Noam Blum
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Ophir Jokel
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Aya Amitai-Lange
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Anna Kaganovsky
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Michael Mimouni
- Department of Ophthalmology, Rambam Health Care Campus, 31096, Haifa, Israel
| | - Sergiu Socea
- Department of Ophthalmology, Rambam Health Care Campus, 31096, Haifa, Israel
| | - Mohamad Midlij
- Department of Ophthalmology, Hilel Yafe Medical Center, Hadera, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hilel Yafe Medical Center, Hadera, Israel
| | - Peleg Hasson
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Chloe Feral
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107, Nice, France
| | - Haguy Wolfenson
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
| | - Ruby Shalom-Feuerstein
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
| |
Collapse
|
34
|
Orash Mahmoud Salehi A, Heidari-Keshel S, Poursamar SA, Zarrabi A, Sefat F, Mamidi N, Behrouz MJ, Rafienia M. Bioprinted Membranes for Corneal Tissue Engineering: A Review. Pharmaceutics 2022; 14:2797. [PMID: 36559289 PMCID: PMC9784133 DOI: 10.3390/pharmaceutics14122797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Corneal transplantation is considered a convenient strategy for various types of corneal disease needs. Even though it has been applied as a suitable solution for most corneal disorders, patients still face several issues due to a lack of healthy donor corneas, and rejection is another unknown risk of corneal transplant tissue. Corneal tissue engineering (CTE) has gained significant consideration as an efficient approach to developing tissue-engineered scaffolds for corneal healing and regeneration. Several approaches are tested to develop a substrate with equal transmittance and mechanical properties to improve the regeneration of cornea tissue. In this regard, bioprinted scaffolds have recently received sufficient attention in simulating corneal structure, owing to their spectacular spatial control which produces a three-cell-loaded-dimensional corneal structure. In this review, the anatomy and function of different layers of corneal tissue are highlighted, and then the potential of the 3D bioprinting technique for promoting corneal regeneration is also discussed.
Collapse
Affiliation(s)
- Amin Orash Mahmoud Salehi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
| | - Saeed Heidari-Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1434875451, Iran
| | - Seyed Ali Poursamar
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK
| | - Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
| | - Mahmoud Jabbarvand Behrouz
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| |
Collapse
|
35
|
Lin X, Mekonnen T, Verma S, Zevallos-Delgado C, Singh M, Aglyamov SR, Gesteira TF, Larin KV, Coulson-Thomas VJ. Hyaluronan Modulates the Biomechanical Properties of the Cornea. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 36478198 PMCID: PMC9733656 DOI: 10.1167/iovs.63.13.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Hyaluronan (HA) is a major constituent of the extracellular matrix (ECM) that has high viscosity and is essential for maintaining tissue hydration. In the cornea, HA is enriched in the limbal region and is a key component of the limbal epithelial stem cell niche. HA is upregulated after injury participating in the formation of the provisional matrix, and has a key role in regulating the wound healing process. This study investigated whether changes in the distribution of HA before and after injury affects the biomechanical properties of the cornea in vivo. Methods Corneas of wild-type (wt) mice and mice lacking enzymes involved in the biosynthesis of HA were analyzed before, immediately after, and 7 and 14 days after a corneal alkali burn (AB). The corneas were evaluated using both a ring light and fluorescein stain by in vivo confocal microscopy, optical coherence elastography (OCE), and immunostaining of corneal whole mounts. Results Our results show that wt mice and mice lacking HA synthase (Has)1 and 3 present an increase in corneal stiffness 7 and 14 days after AB without a significant increase in HA expression and absence of scarring at 14 days after AB. In contrast, mice lacking Has2 present a significant decrease in corneal stiffness, with a significant increase in HA expression and scarring at 14 days after AB. Conclusions Our findings show that the mechanical properties of the cornea are significantly modulated by changes in HA distribution following alkali burn.
Collapse
Affiliation(s)
- Xiao Lin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Sudhir Verma
- College of Optometry, University of Houston, Houston, Texas, United States,Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas, United States
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | | |
Collapse
|
36
|
Corneal elastic property investigated by terahertz technology. Sci Rep 2022; 12:19229. [PMID: 36357510 PMCID: PMC9649647 DOI: 10.1038/s41598-022-22033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022] Open
Abstract
Terahertz (THz) spectroscopy technique has been applied in ex vivo biomechanical properties analysis of human corneas. Upon the application of light pressure on the cornea, the photo elastic birefringent effect, anisotropic deformation, thickness changes and hydration levels will contribute to the sudden phase changes of terahertz time domain signal. The shelf lifetime study shows that the phase shift is reduced and cornea loose the biomechanical properties with the increase of hydration level. Mechanical behaviors have been further studied based on the "fresh" cut corneas with the similar hydration levels. THz signal was collected by focusing inside of the cornea to avoid the phase shift due to light stress caused movement of the corneal surface. By this way, the amount of THz signal refractive index variation is correlated to the elastic property of the corneas. The correlation between the THz signal phase shift and refractive index shift due to the corneal strain can be used to derive the elastic Young's modulus. Our results demonstrated the THz spectroscopy, as a non-contact and non-invasive detection method, could be potential for understanding the mechanism of corneal deformation under the action of intraocular pressure in the physiological environment in future.
Collapse
|
37
|
Di Girolamo N, Park M. Cell identity changes in ocular surface Epithelia. Prog Retin Eye Res 2022:101148. [DOI: 10.1016/j.preteyeres.2022.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
|
38
|
Gupta S, Fink MK, Kempuraj D, Sinha NR, Martin LM, Keele LM, Sinha PR, Giuliano EA, Hesemann NP, Raikwar SP, Chaurasia SS, Mohan RR. Corneal fibrosis abrogation by a localized AAV-mediated inhibitor of differentiation 3 (Id3) gene therapy in rabbit eyes in vivo. Mol Ther 2022; 30:3257-3269. [PMID: 35780298 PMCID: PMC9552811 DOI: 10.1016/j.ymthe.2022.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022] Open
Abstract
Previously we found that inhibitor of differentiation 3 (Id3) gene, a transcriptional repressor, efficiently inhibits corneal keratocyte differentiation to myofibroblasts in vitro. This study evaluated the potential of adeno-associated virus 5 (AAV5)-mediated Id3 gene therapy to treat corneal scarring using an established rabbit in vivo disease model. Corneal scarring/fibrosis in rabbit eyes was induced by alkali trauma, and 24 h thereafter corneas were administered with either balanced salt solution AAV5-naked vector, or AAV5-Id3 vector (n = 6/group) via an optimized reported method. Therapeutic effects of AAV5-Id3 gene therapy on corneal pathology and ocular health were evaluated with clinical, histological, and molecular techniques. Localized AAV5-Id3 gene therapy significantly inhibited corneal fibrosis/haze clinically from 2.7 to 0.7 on the Fantes scale in live animals (AAV5-naked versus AAV5-Id3; p < 0.001). Furthermore, AAV5-Id3 treatment significantly reduced profibrotic gene mRNA levels: α-smooth muscle actin (α-SMA) (2.8-fold; p < 0.001), fibronectin (3.2-fold; p < 0.001), collagen I (0.8-fold; p < 0.001), and collagen III (1.4-fold; p < 0.001), as well as protein levels of α-SMA (23.8%; p < 0.001) and collagens (1.8-fold; p < 0.001). The anti-fibrotic activity of AAV5-Id3 is attributed to reduced myofibroblast formation by disrupting the binding of E-box proteins to the promoter of α-SMA, a transforming growth factor-β signaling downstream target gene. In conclusion, these results indicate that localized AAV5-Id3 delivery in stroma caused no clinically relevant ocular symptoms or corneal cellular toxicity in the rabbit eyes.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Michael K Fink
- Department of Pathology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Landon M Keele
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Elizabeth A Giuliano
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Department of Pathology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Shyam S Chaurasia
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA; Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65212, USA.
| |
Collapse
|
39
|
Rudolph SE, Longo BN, Tse MW, Houchin MR, Shokoufandeh MM, Chen Y, Kaplan DL. Crypt-Villus Scaffold Architecture for Bioengineering Functional Human Intestinal Epithelium. ACS Biomater Sci Eng 2022; 8:4942-4955. [PMID: 36191009 PMCID: PMC10379436 DOI: 10.1021/acsbiomaterials.2c00851] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crypt-villus architecture in the small intestine is crucial for the structural integrity of the intestinal epithelium and maintenance of gut homeostasis. We utilized three-dimensional (3D) printing and inverse molding techniques to form three-dimensional (3D) spongy scaffold systems that resemble the intestinal crypt-villus microarchitecture. The scaffolds consist of silk fibroin protein with curved lumens with rows of protruding villi with invaginating crypts to generate the architecture. Intestinal cell (Caco-2, HT29-MTX) attachment and growth, as well as long-term culture support were demonstrated with cell polarization and tissue barrier properties compared to two-dimensional (2D) Transwell culture controls. Further, physiologically relevant oxygen gradients were generated in the 3D system. The various advantages of this system may be ascribed to the more physiologically relevant 3D environment, offering a system for the exploration of disease pathogenesis, host-microbiome interactions, and therapeutic discovery.
Collapse
Affiliation(s)
- Sara E Rudolph
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Brooke N Longo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Megan W Tse
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Megan R Houchin
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Mina M Shokoufandeh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
40
|
Chen F, Mundy DC, Le P, Seo YA, Logan CM, Fernandes-Cunha GM, Basco CA, Myung D. In Situ-Forming Collagen-Hyaluronate Semi-Interpenetrating Network Hydrogel Enhances Corneal Defect Repair. Transl Vis Sci Technol 2022; 11:22. [PMID: 36239965 PMCID: PMC9586141 DOI: 10.1167/tvst.11.10.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Millions worldwide suffer vision impairment or blindness from corneal injury, and there remains an urgent need for a more effective and accessible way to treat corneal defects. We have designed and characterized an in situ-forming semi-interpenetrating polymer network (SIPN) hydrogel using biomaterials widely used in ophthalmology and medicine. Methods The SIPN was formed by cross-linking collagen type I with bifunctional polyethylene glycol using N-hydroxysuccinimide ester chemistry in the presence of linear hyaluronic acid (HA). Gelation time and the mechanical, optical, swelling, and degradation properties of the SIPN were assessed. Cytocompatibility with human corneal epithelial cells and corneal stromal stem cells (CSSCs) was determined in vitro, as was the spatial distribution of encapsulated CSSCs within the SIPN. In vivo wound healing was evaluated by multimodal imaging in an anterior lamellar keratectomy injury model in rabbits, followed by immunohistochemical analysis of treated and untreated tissues. Results The collagen-hyaluronate SIPN formed in situ without an external energy source and demonstrated mechanical and optical properties similar to the cornea. It was biocompatible with human corneal cells, enhancing CSSC viability when compared with collagen gel controls and preventing encapsulated CSSC sedimentation. In vivo application of the SIPN significantly reduced stromal defect size compared with controls after 7 days and promoted multilayered epithelial regeneration. Conclusions This in situ-forming SIPN hydrogel may be a promising alternative to keratoplasty and represents a step toward expanding treatment options for patients suffering from corneal injury. Translational Relevance We detail the synthesis and initial characterization of an SIPN hydrogel as a potential alternative to lamellar keratoplasty and a tunable platform for further development in corneal tissue engineering and therapeutic cell delivery.
Collapse
Affiliation(s)
- Fang Chen
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto HealthCare System, Palo Alto, CA, USA
| | - David C Mundy
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Peter Le
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto HealthCare System, Palo Alto, CA, USA
| | - Youngyoon Amy Seo
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Caitlin M Logan
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Chris A Basco
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - David Myung
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto HealthCare System, Palo Alto, CA, USA.,Department of Chemical Engineering, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
41
|
Yang S, Zhang J, Tan Y, Wang Y. Unraveling the mechanobiology of cornea: From bench side to the clinic. Front Bioeng Biotechnol 2022; 10:953590. [PMID: 36263359 PMCID: PMC9573972 DOI: 10.3389/fbioe.2022.953590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
The cornea is a transparent, dome-shaped structure on the front part of the eye that serves as a major optic element and a protector from the external environment. Recent evidence shows aberrant alterations of the corneal mechano-environment in development and progression of various corneal diseases. It is, thus, critical to understand how corneal cells sense and respond to mechanical signals in physiological and pathological conditions. In this review, we summarize the corneal mechano-environment and discuss the impact of these mechanical cues on cellular functions from the bench side (in a laboratory research setting). From a clinical perspective, we comprehensively review the mechanical changes of corneal tissue in several cornea-related diseases, including keratoconus, myopia, and keratectasia, following refractive surgery. The findings from the bench side and clinic underscore the involvement of mechanical cues in corneal disorders, which may open a new avenue for development of novel therapeutic strategies by targeting corneal mechanics.
Collapse
Affiliation(s)
- Shu Yang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
- Department of Ophthalmology, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Jing Zhang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
- School of Optometry, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Youhua Tan
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong SAR, China
- *Correspondence: Youhua Tan, ; Yan Wang,
| | - Yan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
- *Correspondence: Youhua Tan, ; Yan Wang,
| |
Collapse
|
42
|
Mekonnen T, Lin X, Zevallos-Delgado C, Singh M, Aglyamov SR, Coulson-Thomas V, Larin KV. Longitudinal assessment of the effect of alkali burns on corneal biomechanical properties using optical coherence elastography. JOURNAL OF BIOPHOTONICS 2022; 15:e202200022. [PMID: 35460537 PMCID: PMC11057918 DOI: 10.1002/jbio.202200022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Eye injury due to alkali burn is a severe ocular trauma that can profoundly affect corneal structure and function, including its biomechanical properties. Here, we assess the changes in the mechanical behavior of mouse corneas in response to alkali-induced injury by conducting longitudinal measurements using optical coherence elastography (OCE). A non-contact air-coupled ultrasound transducer was used to induce elastic waves in control and alkali-injured mouse corneas in vivo, which were imaged with phase-sensitive optical coherence tomography. Corneal mechanical properties were estimated using a modified Rayleigh-Lamb wave model, and results show that Young's modulus of alkali-burned corneas were significantly greater than that of their healthy counterparts on days 7 (p = 0.029) and 14 (p = 0.026) after injury. These findings, together with the changes in the shear viscosity coefficient postburn, indicate that the mechanical properties of the alkali-burned cornea are significantly modulated during the wound healing process.
Collapse
Affiliation(s)
- Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204‑2020, USA
| | - Christian Zevallos-Delgado
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Vivien Coulson-Thomas
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204‑2020, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| |
Collapse
|
43
|
Zhurenkov KE, Alexander-Sinkler EI, Gavrilyik IO, Yartseva NM, Aleksandrova SA, Mashel TV, Khorolskaya JI, Blinova MI, Kulikov AN, Churashov SV, Chernysh VF, Mikhailova NA. Labial Mucosa Stem Cells: Isolation, Characterization, and Their Potential for Corneal Epithelial Reconstruction. Invest Ophthalmol Vis Sci 2022; 63:16. [PMID: 35848889 PMCID: PMC9308017 DOI: 10.1167/iovs.63.8.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose The purpose of this study was to characterize labial mucosa stem cells (LMSCs) and to investigate their potential for corneal epithelial reconstruction in a rabbit model of total limbal stem cell deficiency (LSCD). Methods Rabbit LMSCs (rLMSCs) and human (hLMSCs) LMSCs were derived from labial mucosa and characterized in terms of their proliferation activity by the evaluation of proliferation index (PI) and colony forming efficiency (CFE), cell senescence, and differentiation abilities. The expression of various limbus-specific, stem cell-specific, and epithelial markers was assessed via immunocytochemistry. Flow cytometry was used to evaluate mesenchymal and hematopoietic cell surface markers expression. Chromosomal stability of the derived cells was examined using the conventional GTG-banding technique. To assess the impact of LMSCs on corneal epithelial reconstruction, rLMSCs were seeded onto a decellularized human amniotic membrane (dHAM), thereafter their regeneration potential was examined in the rabbit model of total LSCD. Results Both rLMSCs and hLMSCs showed high proliferation and differentiation abilities, entered senescence at later passages, and expressed different stem cell-specific (ABCB5, ALDH3A1, ABCG2, and p63α), mesenchymal (vimentin), and epithelial (CK3/12, CK15) markers. Cell surface antigen expression was similar to other described mesenchymal stem cells. No clonal structural chromosome abnormalities (CSCAs) and the low percentage of non-clonal structural chromosome abnormalities (NSCAs) were observed. Transplantation of rLMSCs promoted corneal epithelial reconstruction and enhanced corneal transparency. Conclusions LMSCs have significant proliferation and differentiation abilities, display no detrimental chromosome aberrations, and demonstrate considerable potential for corneal repair.
Collapse
Affiliation(s)
- Kirill E Zhurenkov
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia.,Department of Cytology and Histology, St. Petersburg State University, St. Petersburg, Russia
| | | | | | - Natalia M Yartseva
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | | | - Tatiana V Mashel
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | | | - Miralda I Blinova
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
44
|
Li Q, Zhao H, Wang H, Zhao G. Properties of the acellular porcine cornea crosslinked with UVA/riboflavin as scaffolds for Boston Keratoprosthesis. BIOMATERIALS ADVANCES 2022; 137:212822. [PMID: 35929237 DOI: 10.1016/j.bioadv.2022.212822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The Boston Keratoprosthesis type I (B-KPro) is widely used in the world, but the lack of donor corneas limits its application. This study aims to prepare the acellular porcine cornea (APC) crosslinked with ultraviolet A (UVA)/riboflavin instead of donor corneas as the scaffold for B-KPro. Decellularization of freeze-thaw combined with biological enzymes resulted in approximately 5 ng/mg DNA residue, the a-Gal removal rate of 99%, and glycosaminoglycans retention at a high level of 46.66 ± 2.59 mg/mg. UVA/ riboflavin cross-linking was adopted to induce the formation of new chemical bonds between adjacent collagen chains in the corneal stroma to improve the mechanical properties and resistance to enzymatic hydrolysis. Through comprehensive analysis of the biomechanics, enzyme degradation, immunogenicity and histological structure of the APC crosslinked at different times, CL3 (irradiation conditions, 365 nm, 3 mW/cm, 80 min, both sides) was selected and transplanted into the rabbit cornea model through interlamellar keratoplasty and penetrating keratoplasty as the scaffold of the B-KPro. Compared with the native porcine cornea (NPC) and APC, the experiment of interlamellar pocket indicated that the structure of CL3 was homogeneous without degradation and vascularization in vivo at 12 weeks after surgery. Simultaneously, the results of transplantation of B-KPro showed complete epithelialization of CL3 within 1 week, and neovascularization of the cornea indicated rejection but could be controlled with immunosuppressants. At 3 months postoperatively, the lens of B-KPro remained transparent, and the structure of CL3 was compact and uniform, accompanied by the migration and proliferation of a large number of stromal cells without degradation, suggesting the CL3 could be a promising corneal substitute.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Haibin Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, China.
| | - Hongmei Wang
- Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, Shandong, China
| | - Guoqun Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| |
Collapse
|
45
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
46
|
Nguyen HT, Theerakittayakorn K, Somredngan S, Ngernsoungnern A, Ngernsoungnern P, Sritangos P, Ketudat-Cairns M, Imsoonthornruksa S, Assawachananont J, Keeratibharat N, Wongsan R, Rungsiwiwut R, Laowtammathron C, Bui NX, Parnpai R. Signaling Pathways Impact on Induction of Corneal Epithelial-like Cells Derived from Human Wharton’s Jelly Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms23063078. [PMID: 35328499 PMCID: PMC8949174 DOI: 10.3390/ijms23063078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Corneal epithelium, the outmost layer of the cornea, comprises corneal epithelial cells (CECs) that are continuously renewed by limbal epithelial stem cells (LESCs). Loss or dysfunction of LESCs causes limbal stem cell deficiency (LSCD) which results in corneal epithelial integrity loss and visual impairment. To regenerate the ocular surface, transplantation of stem cell-derived CECs is necessary. Human Wharton’s jelly derived mesenchymal stem cells (WJ-MSCs) are a good candidate for cellular therapies in allogeneic transplantation. This study aimed to test the effects of treatments on three signaling pathways involved in CEC differentiation as well as examine the optimal protocol for inducing corneal epithelial differentiation of human WJ-MSCs. All-trans retinoic acid (RA, 5 or 10 µM) inhibited the Wnt signaling pathway via suppressing the translocation of β-catenin from the cytoplasm into the nucleus. SB505124 downregulated the TGF-β signaling pathway via reducing phosphorylation of Smad2. BMP4 did not increase phosphorylation of Smad1/5/8 that is involved in BMP signaling. The combination of RA, SB505124, BMP4, and EGF for the first 3 days of differentiation followed by supplementing hormonal epidermal medium for an additional 6 days could generate corneal epithelial-like cells that expressed a CEC specific marker CK12. This study reveals that WJ-MSCs have the potential to transdifferentiate into CECs which would be beneficial for further applications in LSCD treatment therapy.
Collapse
Affiliation(s)
- Hong Thi Nguyen
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (H.T.N.); (K.T.); (S.S.)
- Laboratory of Embryo Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (H.T.N.); (K.T.); (S.S.)
| | - Sirilak Somredngan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (H.T.N.); (K.T.); (S.S.)
| | - Apichart Ngernsoungnern
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (A.N.); (P.N.); (P.S.)
| | - Piyada Ngernsoungnern
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (A.N.); (P.N.); (P.S.)
| | - Pishyaporn Sritangos
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (A.N.); (P.N.); (P.S.)
| | - Mariena Ketudat-Cairns
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (M.K.-C.); (S.I.)
| | - Sumeth Imsoonthornruksa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (M.K.-C.); (S.I.)
| | - Juthaporn Assawachananont
- School of Ophthalmology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Nattawut Keeratibharat
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Rangsirat Wongsan
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Ruttachuk Rungsiwiwut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10000, Thailand;
| | - Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10000, Thailand;
| | | | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (H.T.N.); (K.T.); (S.S.)
- Correspondence: ; Tel.: +66-442-242-34
| |
Collapse
|
47
|
da Mata Martins TM, de Carvalho JL, da Silva Cunha P, Gomes DA, de Goes AM. Induction of Corneal Epithelial Differentiation of Induced Pluripotent and Orbital Fat-Derived Stem Cells Seeded on Decellularized Human Corneas. Stem Cell Rev Rep 2022; 18:2522-2534. [PMID: 35247143 DOI: 10.1007/s12015-022-10356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Up to 40% of donor corneas are deemed unsuitable for transplantation, aggravating the shortage of graft tissue. In most cases, the corneal extracellular matrix is intact. Therefore, their decellularization followed by repopulation with autologous cells may constitute an efficient alternative to reduce the amount of discarded tissue and the risk of immune rejection after transplantation. Although induced pluripotent (hiPSCs) and orbital fat-derived stem cells (OFSCs) hold great promise for corneal epithelial (CE) reconstruction, no study to date has evaluated the capacity of decellularized corneas (DCs) to support the attachment and differentiation of these cells into CE-like cells. Here, we recellularize DCs with hiPSCs and OFSCs and evaluate their differentiation potential into CE-like cells using animal serum-free culture conditions. Cell viability and adhesion on DCs were assessed by calcein-AM staining and scanning electron microscopy. Cell differentiation was evaluated by RT-qPCR and immunofluorescence analyses. DCs successfully supported the adhesion and survival of hiPSCs and OFSCs. The OFSCs cultured under differentiation conditions could not express the CE markers, TP63, KRT3, PAX6, and KRT12, while the hiPSCs gave rise to cells expressing high levels of these markers. RT-qPCR data suggested that the DCs provided an inductive environment for CE differentiation of hiPSCs, supporting the expression of PAX6 and KRT12 without the need for any soluble induction factors. Our results open the avenue for future studies regarding the in vivo effects of DCs as carriers for autologous cell transplantation for ocular surface reconstruction.
Collapse
Affiliation(s)
- Thaís Maria da Mata Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Juliana Lott de Carvalho
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasilia, QS 07 - Lote 01, EPCT - Taguatinga, Brasília, Distrito Federal, 71966-700, Brazil.,Faculty of Medicine, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70910-900, Brazil
| | - Pricila da Silva Cunha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.,Department of Biology, Minas Gerais State University, Avenida Olegário Maciel, 1427, Ubá, Minas Gerais, 36502-002, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Alfredo Miranda de Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
48
|
Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the Cornea. Prog Retin Eye Res 2022; 87:101011. [PMID: 34530154 PMCID: PMC8918435 DOI: 10.1016/j.preteyeres.2021.101011] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
The cornea is the outmost layer of the eye, unique in its transparency and strength. The cornea not only transmits the light essential for vision, also refracts light, giving focus to images. Each of the three layers of the cornea has properties essential for the function of vision. Although the epithelium can often recover from injury quickly by cell division, loss of limbal stem cells can cause severe corneal surface abnormalities leading to corneal blindness. Disruption of the stromal extracellular matrix and loss of cells determining this structure, the keratocytes, leads to corneal opacity. Corneal endothelium is the inner part of the cornea without self-renewal capacity. It is very important to maintain corneal dehydration and transparency. Permanent damage to the corneal stroma or endothelium can be effectively treated by corneal transplantation; however, there are drawbacks to this procedure, including a shortage of donors, the need for continuing treatment to prevent rejection, and limits to the survival of the graft, averaging 10-20 years. There exists a need for new strategies to promote regeneration of the stromal structure and restore vision. This review highlights critical contributions in regenerative medicine with the aim of corneal reconstruction after injury or disease. These approaches include corneal stromal stem cells, corneal limbal stem cells, embryonic stem cells, and other adult stem cells, as well as induced pluripotent stem cells. Stem cell-derived trophic factors in the forms of secretomes or exosomes for corneal regeneration are also discussed. Corneal sensory nerve regeneration promoting corneal transparency is discussed. This article provides description of the up-to-date options for corneal regeneration and presents exciting possible avenues for future studies toward clinical applications for corneal regeneration.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
49
|
Hussain NA, Figueiredo FC, Connon CJ. Use of biomaterials in corneal endothelial repair. Ther Adv Ophthalmol 2022; 13:25158414211058249. [PMID: 34988369 PMCID: PMC8721373 DOI: 10.1177/25158414211058249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Human corneal endothelium (HCE) is a single layer of hexagonal cells that lines the posterior surface of the cornea. It forms the barrier that separates the aqueous humor from the rest of the corneal layers (stroma and epithelium layer). This layer plays a fundamental role in maintaining the hydration and transparency of the cornea, which in turn ensures a clear vision. In vivo, human corneal endothelial cells (HCECs) are generally believed to be nonproliferating. In many cases, due to their nonproliferative nature, any damage to these cells can lead to further issues with Descemet’s membrane (DM), stroma and epithelium which may ultimately lead to hazy vision and blindness. Endothelial keratoplasties such as Descemet’s stripping automated endothelial keratoplasty (DSAEK) and Descemet’s membrane endothelial keratoplasty (DEK) are the standard surgeries routinely used to restore vision following endothelial failure. Basically, these two similar surgical techniques involve the replacement of the diseased endothelial layer in the center of the cornea by a healthy layer taken from a donor cornea. Globally, eye banks are facing an increased demand to provide corneas that have suitable features for transplantation. Consequently, it can be stated that there is a significant shortage of corneal grafting tissue; for every 70 corneas required, only 1 is available. Nowadays, eye banks face long waiting lists due to shortage of donors, seriously aggravated when compared with previous years, due to the global COVID-19 pandemic. Thus, there is an urgent need to find alternative and more sustainable sources for treating endothelial diseases, such as utilizing bioengineering to use of biomaterials as a remedy. The current review focuses on the use of biomaterials to repair the corneal endothelium. A range of biomaterials have been considered based on their promising results and outstanding features, including previous studies and their key findings in the context of each biomaterial.
Collapse
Affiliation(s)
- Noor Ahmed Hussain
- University of Jeddah, Jeddah, Saudi ArabiaBiosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Francisco C Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UKDepartment of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Che J Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
50
|
Sun MG, Son T, Crutison J, Guaiquil V, Lin S, Nammari L, Klatt D, Yao X, Rosenblatt MI, Royston TJ. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea. J Mech Behav Biomed Mater 2022; 128:105100. [PMID: 35121423 PMCID: PMC8904295 DOI: 10.1016/j.jmbbm.2022.105100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
The cornea is a highly specialized organ that relies on its mechanical stiffness to maintain its aspheric geometry and refractive power, and corneal diseases such as keratoconus have been linked to abnormal tissue stiffness and biomechanics. Dynamic optical coherence elastography (OCE) is a clinically promising non-contact and non-destructive imaging technique that can provide measurements of corneal tissue stiffness directly in vivo. The method relies on the concepts of elastography where shear waves are generated and imaged within a tissue to obtain mechanical properties such as tissue stiffness. The accuracy of OCE-based measurements is ultimately dependent on the mathematical theories used to model wave behavior in the tissue of interest. In the cornea, elastic waves propagate as guided wave modes which are highly dispersive and can be mathematically complex to model. While recent groups have developed detailed theories for estimating corneal tissue properties from guided wave behavior, the effects of intraocular pressure (IOP)-induced prestress have not yet been considered. It is known that prestress alone can strongly influence wave behavior, in addition to the associated non-linear changes in tissue properties. This present study shows that failure to account for the effects of prestress may result in overestimations of the corneal shear moduli, particularly at high IOPs. We first examined the potential effects of IOP and IOP-induced prestress using a combination of approximate mathematical theories describing wave behavior in thin plates with observations made from data published in the OCE literature. Through wave dispersion analysis, we deduce that IOP introduces a tensile hoop stress and may also influence an elastic foundational effect that were observable in the low-frequency components of the dispersion curves. These effects were incorporated into recently developed models of wave behavior in nearly incompressible, transversely isotropic (NITI) materials. Fitting of the modified NITI model with ex vivo porcine corneal data demonstrated that incorporation of the effects of IOP resulted in reduced estimates of corneal shear moduli. We believe this demonstrates that overestimation of corneal stiffness occurs if IOP is not taken into consideration. Our work may be helpful in separating inherent corneal stiffness properties that are independent of IOP; changes in these properties and in IOP are distinct, clinically relevant issues that affect the cornea health.
Collapse
|