1
|
Wang Y, Tang J, Huang L, Wang X, Yu J. Liquid Metal-Ionogel Core-Shell Fibers for Reflection-Suppressed Electromagnetic Interference Shielding and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27299-27309. [PMID: 40295109 DOI: 10.1021/acsami.5c05273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Electromagnetic interference (EMI) shielding fibers are crucial in practical uses for their flexibility and one-dimensional form. However, their application is limited by poor compatibility between EMI shielding components and fiber substrates, and high electromagnetic wave reflectivity. Herein, a core/shell-structured EMI shielding fiber is introduced, featuring a core of Ga-In-Sn-Zn alloy, Carbopol, and air bubbles, and a shell of ionogel formed from copolymerized acrylamide and acrylic acid. A single fiber achieves a total shielding effectiveness of ∼35 dB within the 2-18 GHz range, which increases to ∼70 dB when three fibers are stacked. Remarkably, the fiber demonstrates enhanced EMI shielding performance following stretching and recovery. Additionally, it exhibits excellent impedance matching, with a reflection power coefficient as low as 0.14 at 10 GHz. The fiber's EMI shielding mechanism encompasses reflection shielding, absorption shielding─attributable to conduction loss and polarization loss─and multiple reflection shielding. Furthermore, the fiber shows potential as a strain sensor. This research offers an effective strategy for creating flexible fibers with high EMI shielding capabilities and low EM wave reflection.
Collapse
Affiliation(s)
- Yichao Wang
- College of Textiles, Donghua University, Shanghai 201600, China
| | - Jingli Tang
- College of Textiles, Donghua University, Shanghai 201600, China
| | - Liqian Huang
- College of Textiles, Donghua University, Shanghai 201600, China
- Clothing and Design Faculty, Minjiang University, Fuzhou 350108, China
| | - Xueli Wang
- Textile Technology Innovation Center, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Textile Technology Innovation Center, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Mesfin JM, Carrow KP, Chen A, Hopps MP, Holm JJ, Lyons QP, Nguyen MB, Hunter JD, Magassa A, Wong EG, Reimold K, Paleti SN, Gardner E, Thompson MP, Luo CG, Zhang X, Christman KL, Gianneschi NC. Protein-Like Polymers Targeting Keap1/Nrf2 as Therapeutics for Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417885. [PMID: 40277240 DOI: 10.1002/adma.202417885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/13/2025] [Indexed: 04/26/2025]
Abstract
Myocardial infarction (MI) results in oxidative stress to the myocardium and frequently leads to heart failure (HF). There is an unmet clinical need to develop therapeutics that address the inflammatory stress response and prevent negative left ventricular remodeling. Here, the Keap1/Nrf2 protein-protein interaction is specifically targeted, as Nrf2 activation is known to mitigate the inflammatory response following MI. This is achieved using a Nrf2-mimetic protein-like polymer (PLP) to inhibit the Keap1-Nrf2 interaction. The PLP platform technology provides stability in vivo, potent intracellular bioactivity, and multivalency leading to high avidity Keap1 binding. In vitro and in vivo assays to probe cellular activity and MI therapeutic utility are employed. These Keap1-inhibiting PLPs (Keap1i-PLPs) impart cytoprotection from oxidative stress via Nrf2 activation at sub-nanomolar concentrations in primary cardiomyocytes. Single-digit mg kg-1, single-dose, intravenous PLP administration significantly improves cardiac function in rats post-MI through immunomodulatory, anti-apoptotic, and angiogenic mechanisms. Thus Keap1i-PLPs disrupt key intracellular protein-protein interactions following intravenous, systemic administration in vivo. These results have broad implications not only for MI but also for other oxidative stress-driven diseases and conditions.
Collapse
Affiliation(s)
- Joshua M Mesfin
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Kendal P Carrow
- Medical Scientist Training Program, Department of Biomedical Engineering, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alexander Chen
- Program in Materials Science and Engineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Madeline P Hopps
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - JoJo J Holm
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Quincy P Lyons
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael B Nguyen
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jervaughn D Hunter
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Assa Magassa
- Department of Chemistry, Department of Materials Science & Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Elyse G Wong
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Kate Reimold
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Sriya N Paleti
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Emily Gardner
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Matthew P Thompson
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Colin G Luo
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Department of Materials Science & Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering, Program in Materials Science and Engineering, Sanford Consortium for Regenerative Medicine, Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, 92037, USA
| | - Nathan C Gianneschi
- Department of Biomedical Engineering, Department of Chemistry, Department of Materials Science & Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
3
|
Parshad B, Arora S, Singh B, Pan Y, Tang J, Hu Z, Patra HK. Towards precision medicine using biochemically triggered cleavable conjugation. Commun Chem 2025; 8:100. [PMID: 40175511 PMCID: PMC11965331 DOI: 10.1038/s42004-025-01491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/13/2025] [Indexed: 04/04/2025] Open
Abstract
Personalised and precision medicines are emerging as the future of therapeutic strategies. Biochemically triggered cleavable conjugation is thus crucial and timely due to its potential to response as per the loco-regional environment. It enables targeted release of therapeutic agents in response to specific biochemical signals and thus minimizing off-target effects and improving treatment precision. It holds promise in a range of biomedical applications, including cancer therapy, senolytic therapy, gene therapy, and regenerative medicine. The focus of this review is to offer comprehensive insight into the significance of biochemically cleavable conjugations within intrinsically stimuli-responsive architectures. Pathological conditions and alteration in tissues microenvironment in the body exhibit distinct biochemical settings characterized by change in redox potential, pH level, hypoxia, reactive oxygen species (ROS), and various catalytic protein/enzyme overexpression. Understanding these intrinsic features is crucial for researchers aiming to develop intelligent cleavable bio-engineered systems for biomedicines. By strategically designing cleavable linkage, researchers can leverage the variations in the tumor, infection, inflammation, and senescence microenvironments. Through an extensive examination of relevant literature, we present a comprehensive classification of the intrinsic physicochemical differences found in pathological areas and their applications in drug delivery, prodrug activation, imaging, and theranostics for future personalised medicines. This review will provide comprehensive guidance and critical insights to researchers in both industry and academia who are involved in the design of advanced, functional biochemically cleavable conjugations.
Collapse
Affiliation(s)
- Badri Parshad
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Nano Medical Sciences, University of Delhi, Delhi, India
| | - Smriti Arora
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, Berlin, Germany
| | - Balram Singh
- Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhigang Hu
- Center for Hydrogen Science, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hirak K Patra
- Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK.
| |
Collapse
|
4
|
Kuddushi M, Vithalani H, Singh H, Dave H, Jain A, Pal A, Kumar S, Bhatia Z, Seshadri S, Dhanka M. Easily Injectable, Organic Solvent-Free Self-Assembled Hydrogel Platform for Endoscope Mediated Gastrointestinal Polypectomy. Adv Healthc Mater 2025; 14:e2403915. [PMID: 39988843 DOI: 10.1002/adhm.202403915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/31/2025] [Indexed: 02/25/2025]
Abstract
Endoscopic submucosal dissection (ESD) and endoscopic mucosal resection (ESR) are used to eliminate tiny, flat lesions in the gastrointestinal tract (GIT). A substantial submucosal cushion is required for effective dissection. Commonly used saline and hypertonic dextrose injections disperse quickly and do not offer significant elevation, whereas polymers such as gelatin and alginate are challenging to inject. In this study, a novel amphiphilic polyglycerol stearate-based hydrogel (PGSH) platform is demonstrated which could be administered via an endoscopic catheter to help create a stable submucosal elevation. PGSH is easy to inject across different needle gauges, shear-thinning, and forms a long-lasting submucosal cushion during ESD. This hydrogel can encapsulate hydrophilic drugs such as streptomycin, allowing controlled enzymatic and nonenzymatic release. Ex-vivo experiments on goat's GIT demonstrate that PGSH is smoothly injectable without clogging the catheter's needle, achieving the necessary submucosal elevation. Furthermore, ex-vivo blood studies demonstrate immediate clotting behavior while maintaining hemocompatibility. In-vivo, investigations in mice show that the hydrogel forms a biocompatible cushion of suitable height with a nontoxic organ profile that does not overexpress inflammatory cytokines. ESD studies in the porcine model suggest that PGSH has the potential to significantly improve treatment outcomes in the early endoscopic removal of gastrointestinal polyps.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Hitasha Vithalani
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Hemant Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Harshil Dave
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | | | - Ankit Pal
- Muljibhai Patel Urological Hospital, Nadiad, Gujarat, India
| | - Sunny Kumar
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Zeel Bhatia
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Mukesh Dhanka
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| |
Collapse
|
5
|
Mealy JE, Torres WM, Freeburg LA, Barlow SC, Whalen AA, Maduka CV, Shazly TM, Burdick JA, Spinale FG. Shear-Thinning Hydrogel for Delayed Delivery of a Small Molecule Metalloproteinase Inhibitor Attenuates Myocardial Infarction Remodeling. JACC Basic Transl Sci 2025; 10:458-472. [PMID: 40306854 DOI: 10.1016/j.jacbts.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 05/02/2025]
Abstract
Strategic delivery of hydrogels to the newly formed myocardial infarction (MI) is an area of active investigation and offers high target specificity for releasing a small molecule therapeutic payload. This study examined the effects of delayed post-MI delivery (pigs, 3 days post-MI) of a shear-thinning hydrogel which encapsulated and released a small molecule matrix metalloproteinase inhibitor. The results demonstrated the feasibility and efficacy of targeted delivery of a shear-thinning injectable hydrogel containing a small molecule matrix metalloproteinase inhibitor to attenuate post-MI remodeling.
Collapse
Affiliation(s)
- Joshua E Mealy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William M Torres
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA; Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Lisa A Freeburg
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Shayne C Barlow
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Alison A Whalen
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Chima V Maduka
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Tarek M Shazly
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Francis G Spinale
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA; Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina, USA; Columbia VA Health Care Center, Columbia, South Carolina, USA.
| |
Collapse
|
6
|
Sadraei A, Naghib SM, Rabiee N. 4D printing biological stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 1. Expert Opin Drug Deliv 2025; 22:471-490. [PMID: 39939161 DOI: 10.1080/17425247.2025.2466772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION The advent of 3D printing has revolutionized biomedical engineering, yet limitations in creating dynamic human tissues remain. The emergence of 4D printing, which introduces time as a fourth dimension, offers new possibilities by enabling the production of adaptable, stimuli-responsive structures. A thorough literature search was performed across various databases, including Google Scholar, PubMed, Scopus, and Web of Science, to identify pertinent studies published up to 2025. The search parameters were confined to articles published in English that concentrated on peer-reviewed clinical studies. AREAS COVERED This review explores the transition from 3D to 4D printing and focuses on stimuli-responsive materials, particularly hydrogels, which react to environmental changes. The literature search examined recent studies on the interaction of these materials with biological stimuli, emphasizing their application in tissue engineering and drug delivery applications. EXPERT OPINION 4D printing, combined with smart materials, holds immense promise for advancing biomedical treatments, including customized therapies and regenerative medicine. However, technological challenges must be addressed to realize its full potential.
Collapse
Affiliation(s)
- Alireza Sadraei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
7
|
Dave H, Vithalani H, Singh H, Yadav I, Jain A, Pal A, Patidar N, Navale A, Dhanka M. Amphiphilic Gelator-Based Shear-Thinning Hydrogel for Minimally Invasive Delivery via Endoscopy Catheter to Remove Gastrointestinal Polyps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405508. [PMID: 39506390 DOI: 10.1002/smll.202405508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Injectable polymeric hydrogels delivered via endoscopic catheter have emerged as promising submucosal agents, offering durable, long-lasting cushions to enhance the efficacy of endoscopic submucosal dissection (ESD) for the removal of small, flat polyps from the gastrointestinal tract (GIT). However, polymer-based injections do not meet the easy-injectability criteria via catheter because their high viscosity tends to clog the catheter needle. To the best of knowledge, for the first time, report the fabrication of an amphiphile-based small molecule hydrogel of diglycerol monostearate (DGMS) that self-assembles to form hydrogel (DGMSH) for delivery via an endoscopic catheter. Physicochemical characterization of the hydrogel reveals its fibrous morphology, shear-thinning behaviour, and easy injectability, along with its scalability and long shelf-life (6 months). Ex vivo studies on the goat's stomach and intestine demonstrate the ease of injectability through the catheters and the development of visible submucosal cushion depots with the desired height. Moreover, the hydrogel can encapsulate both hydrophobic and hydrophilic drugs/dyes. In vivo studies in small animals have found that the hydrogel depot is durable, biocompatible, non-immunogenic, and has a hemostatic effect. Endoscopic studies in the porcine model demonstrate a safe injection and endoscopic excision of GI polyps acting as a suitable agent for ESD.
Collapse
Affiliation(s)
- Harshil Dave
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Hitasha Vithalani
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Hemant Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Indu Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Abhinav Jain
- Gastro1 Hospital, Ahmedabad, Gujarat, 380060, India
| | - Ankit Pal
- Muljibhai Patel Urological Hospital, Nadiad, Gujarat, 38700, India
| | - Nishant Patidar
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Archana Navale
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Mukesh Dhanka
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| |
Collapse
|
8
|
Wu T, Wu H, Wang Q, He X, Shi P, Yu B, Cong H, Shen Y. Current status and future developments of biopolymer microspheres in the field of pharmaceutical preparation. Adv Colloid Interface Sci 2024; 334:103317. [PMID: 39461111 DOI: 10.1016/j.cis.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Polymer composite microspheres offer several advantages including highly designable structural properties, adjustable micro-nano particle size distribution, easy surface modification, large specific surface area, and high stability. These features make them valuable in various fields such as medicine, sensing, optics, and display technologies, with significant applications in clinical diagnostics, pathological imaging, and drug delivery in the medical field. Currently, microspheres are primarily used in biomedical research as long-acting controlled-release agents and targeted delivery systems, and are widely applied in bone tissue repair, cancer treatment, and wound healing. Different types of polymer microspheres offer distinct advantages and application prospects. Efforts are ongoing to transition successful experimental research to industrial production by expanding various fabrication technologies. This article provides an overview of materials used in microsphere manufacturing, different fabrication methods, modification techniques to enhance their properties and applications, and discusses the role of microspheres in drug delivery engineering.
Collapse
Affiliation(s)
- Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Qiubo Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiangqiong He
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Pengbao Shi
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Wu KY, Qian SY, Faucher A, Tran SD. Advancements in Hydrogels for Corneal Healing and Tissue Engineering. Gels 2024; 10:662. [PMID: 39451315 PMCID: PMC11507397 DOI: 10.3390/gels10100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant attention for their versatile applications across various fields, including biomedical engineering. This review delves into the fundamentals of hydrogels, exploring their definition, properties, and classification. Hydrogels, as three-dimensional networks of crosslinked polymers, possess tunable properties such as biocompatibility, mechanical strength, and hydrophilicity, making them ideal for medical applications. Uniquely, this article offers original insights into the application of hydrogels specifically for corneal tissue engineering, bridging a gap in current research. The review further examines the anatomical and functional complexities of the cornea, highlighting the challenges associated with corneal pathologies and the current reliance on donor corneas for transplantation. Considering the global shortage of donor corneas, this review discusses the potential of hydrogel-based materials in corneal tissue engineering. Emphasis is placed on the synthesis processes, including physical and chemical crosslinking, and the integration of bioactive molecules. Stimuli-responsive hydrogels, which react to environmental triggers, are identified as promising tools for drug delivery and tissue repair. Additionally, clinical applications of hydrogels in corneal pathologies are explored, showcasing their efficacy in various trials. Finally, the review addresses the challenges of regulatory approval and the need for further research to fully realize the potential of hydrogels in corneal tissue engineering, offering a promising outlook for future developments in this field.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Shu Yu Qian
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Anne Faucher
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
10
|
Ma B, Shi J, Zhang Y, Li Z, Yong H, Zhou YN, Liu S, A S, Zhou D. Enzymatically Activatable Polymers for Disease Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306358. [PMID: 37992728 DOI: 10.1002/adma.202306358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Indexed: 11/24/2023]
Abstract
The irregular expression or activity of enzymes in the human body leads to various pathological disorders and can therefore be used as an intrinsic trigger for more precise identification of disease foci and controlled release of diagnostics and therapeutics, leading to improved diagnostic accuracy, sensitivity, and therapeutic efficacy while reducing systemic toxicity. Advanced synthesis strategies enable the preparation of polymers with enzymatically activatable skeletons or side chains, while understanding enzymatically responsive mechanisms promotes rational incorporation of activatable units and predictions of the release profile of diagnostics and therapeutics, ultimately leading to promising applications in disease diagnosis and treatment with superior biocompatibility and efficiency. By overcoming the challenges, new opportunities will emerge to inspire researchers to develop more efficient, safer, and clinically reliable enzymatically activatable polymeric carriers as well as prodrugs.
Collapse
Affiliation(s)
- Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahao Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhe Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ya-Nan Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sigen A
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Wirtz BM, Yun AG, Wick C, Gao XJ, Mai DJ. Protease-Driven Phase Separation of Elastin-Like Polypeptides. Biomacromolecules 2024; 25:4898-4904. [PMID: 38980747 DOI: 10.1021/acs.biomac.4c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Elastin-like polypeptides (ELPs) are a promising material platform for engineering stimuli-responsive biomaterials, as ELPs undergo phase separation above a tunable transition temperature. ELPs with phase behavior that is isothermally regulated by biological stimuli remain attractive for applications in biological systems. Herein, we report protease-driven phase separation of ELPs. Protease-responsive "cleavable" ELPs comprise a hydrophobic ELP block connected to a hydrophilic ELP block by a protease cleavage site linker. The hydrophilic ELP block acts as a solubility tag for the hydrophobic ELP block, creating a temperature window in which the cleavable ELP reactant is soluble and the proteolytically generated hydrophobic ELP block is insoluble. Within this temperature window, isothermal, protease-driven phase separation occurs when a critical concentration of hydrophobic cleavage product accumulates. Furthermore, protease-driven phase separation is generalizable to four compatible protease-cleavable ELP pairings. This work presents exciting opportunities to regulate ELP phase behavior in biological systems using proteases.
Collapse
Affiliation(s)
- Brendan M Wirtz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Allison G Yun
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Chloe Wick
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiaojing J Gao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Yu C, Qiu Y, Yao F, Wang C, Li J. Chemically Programmed Hydrogels for Spatiotemporal Modulation of the Cardiac Pathological Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404264. [PMID: 38830198 DOI: 10.1002/adma.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.
Collapse
Affiliation(s)
- Chaojie Yu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Changyong Wang
- Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
13
|
Piskorz T, Perez-Chirinos L, Qiao B, Sasselli IR. Tips and Tricks in the Modeling of Supramolecular Peptide Assemblies. ACS OMEGA 2024; 9:31254-31273. [PMID: 39072142 PMCID: PMC11270692 DOI: 10.1021/acsomega.4c02628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
Supramolecular peptide assemblies (SPAs) hold promise as materials for nanotechnology and biomedicine. Although their investigation often entails adapting experimental techniques from their protein counterparts, SPAs are fundamentally distinct from proteins, posing unique challenges for their study. Computational methods have emerged as indispensable tools for gaining deeper insights into SPA structures at the molecular level, surpassing the limitations of experimental techniques, and as screening tools to reduce the experimental search space. However, computational studies have grappled with issues stemming from the absence of standardized procedures and relevant crystal structures. Fundamental disparities between SPAs and protein simulations, such as the absence of experimentally validated initial structures and the importance of the simulation size, number of molecules, and concentration, have compounded these challenges. Understanding the roles of various parameters and the capabilities of different models and simulation setups remains an ongoing endeavor. In this review, we aim to provide readers with guidance on the parameters to consider when conducting SPA simulations, elucidating their potential impact on outcomes and validity.
Collapse
Affiliation(s)
| | - Laura Perez-Chirinos
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Baofu Qiao
- Department
of Natural Sciences, Baruch College, City
University of New York, New York, New York 10010, United States
| | - Ivan R. Sasselli
- Centro
de Física de Materiales (CFM), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
14
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
15
|
Zhao LY, Wang XY, Wen ML, Pan NN, Yin XQ, An MW, Wang L, Liu Y, Song JB. Advances in injectable hydrogels for radiation-induced heart disease. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1031-1063. [PMID: 38340315 DOI: 10.1080/09205063.2024.2314364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Radiological heart damage (RIHD) is damage caused by unavoidable irradiation of the heart during chest radiotherapy, with a long latency period and a progressively increasing proportion of delayed cardiac damage due to conventional doses of chest radiotherapy. There is a risk of inducing diseases such as acute/chronic pericarditis, myocarditis, delayed myocardial fibrosis and damage to the cardiac conduction system in humans, which can lead to myocardial infarction or even death in severe cases. This paper details the pathogenesis of RIHD and gives potential targets for treatment at the molecular and cellular level, avoiding the drawbacks of high invasiveness and immune rejection due to drug therapy, medical device implantation and heart transplantation. Injectable hydrogel therapy has emerged as a minimally invasive tissue engineering therapy to provide necessary mechanical support to the infarcted myocardium and to act as a carrier for various bioactive factors and cells to improve the cellular microenvironment in the infarcted area and induce myocardial tissue regeneration. Therefore, this paper combines bioactive factors and cellular therapeutic mechanisms with injectable hydrogels, presents recent advances in the treatment of cardiac injury after RIHD with different injectable gels, and summarizes the therapeutic potential of various types of injectable hydrogels as a potential solution.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xin-Yue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Ling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Ning-Ning Pan
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xing-Qi Yin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Wen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Bo Song
- Shanghai NewMed Medical Corporation, Shanghai, China
| |
Collapse
|
16
|
Le HT, Mahara A, Fukazawa K, Nagasaki T, Yamaoka T. Widely distributable and retainable in-situ gelling material for treating myocardial infarction. Acta Biomater 2024; 176:221-233. [PMID: 38242190 DOI: 10.1016/j.actbio.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Intramyocardial hydrogel injection is a promising therapy to prevent negative remodeling following myocardial infarction (MI). In this study, we report a mechanism for in-situ gel formation without external stimulation, resulting in an injectable and tissue-retainable hydrogel for MI treatment, and investigate its therapeutic outcomes. A liquid-like polymeric solution comprising poly(3-acrylamidophenylboronic acid-co-acrylamide) (BAAm), polyvinyl alcohol (PVA), and sorbitol (S) increases the viscous modulus by reducing the pre-added sorbitol concentration is developed. This solution achieves a sol-gel transition in-vitro in heart tissue by spontaneously diffusing the sorbitol. After intramyocardial injection, the BAAm/PVA/S with lower initial viscous modulus widely spreads in the myocardium and gelate compared to a viscoelastic alginate (ALG) hydrogel and is retained longer than the BAAm/S solution. Serial echocardiogram analyses prove that injecting the BAAm/PVA/S into the hearts of subacute MI rats significantly increases the fraction shortening and ejection shortening and attenuates the expansion of systolic LV diameter for up to 21 d after injection compared to the saline injection as a control, but the ALG injection does not. In addition, histological evaluation shows that only the BAAm/PVA/S decreases the infarct size and increases the wall thickness 21 d after injection. The BAAm/PVA/S intramyocardial injection is better at restraining systolic ventricular dilatation and cardiac failure in the rat MI model than in the control groups. Our findings highlight an effective injectable hydrogel therapy for MI by optimizing injectability-dependent distribution and retention of injected material. STATEMENT OF SIGNIFICANCE: In-situ gelling material is a promising strategy for intramyocardial hydrogel injection therapy for myocardial infarction (MI). Since the sol-gel transition of reported materials is driven by external stimulation such as temperature, pH, or ultraviolet, their application in vivo remains challenging. In this study, we first reported a synthetic in-situ gelling material (BAAm/PVA/S) whose gelation is stimulated by spontaneously reducing pre-added sorbitol after contacting the heart tissue. The BAAm/PVA/S solution spreads evenly, and is retained for at least 21 d in the heart tissue. Our study demonstrated that intramyocardial injection of the BAAm/PVA/S with more extensive distribution and longer retention had better effects on preventing LV dilation and improving cardiac function after MI than that of viscoelastic ALG and saline solution. We expect that these findings provide fundamental information for the optimum design of injectable biomaterials for treating MI.
Collapse
Affiliation(s)
- Hue Thi Le
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shimmachi, Suita, Osaka 564-8565, Japan; Department of Physiology, Hanoi Medical University, Hanoi 10000, Vietnam
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shimmachi, Suita, Osaka 564-8565, Japan
| | - Kyoko Fukazawa
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shimmachi, Suita, Osaka 564-8565, Japan
| | - Takeshi Nagasaki
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shimmachi, Suita, Osaka 564-8565, Japan; Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, He 14-1, Mukai-motoori-machi, Komatsu, Ishikawa 923-0961, Japan.
| |
Collapse
|
17
|
Sasselli IR, Coluzza I. Assessment of the MARTINI 3 Performance for Short Peptide Self-Assembly. J Chem Theory Comput 2024; 20:224-238. [PMID: 38113378 PMCID: PMC10782451 DOI: 10.1021/acs.jctc.3c01015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
The coarse-grained MARTINI force field, initially developed for membranes, has proven to be an exceptional tool for investigating supramolecular peptide assemblies. Over the years, the force field underwent refinements to enhance accuracy, enabling, for example, the reproduction of protein-ligand interactions and constant pH behavior. However, these protein-focused improvements seem to have compromised its ability to model short peptide self-assembly. In this study, we assess the performance of MARTINI 3 in reproducing peptide self-assembly using the well-established diphenylalanine (FF) as our test case. Unlike its success in version 2.1, FF does not even exhibit aggregation in version 3. By systematically exploring parameters for the aromatic side chains and charged backbone beads, we established a parameter set that effectively reproduces tube formation. Remarkably, these parameter adjustments also replicate the self-assembly of other di- and tripeptides and coassemblies. Furthermore, our analysis uncovers pivotal insights for enhancing the performance of MARTINI in modeling short peptide self-assembly. Specifically, we identify issues stemming from overestimated hydrophilicity arising from charged termini and disruptions in π-stacking interactions due to insufficient planarity in aromatic groups and a discrepancy in intermolecular distances between this and backbone-backbone interactions. This investigation demonstrates that strategic modifications can harness the advancements offered by MARTINI 3 for the realm of short peptide self-assembly.
Collapse
Affiliation(s)
- Ivan R. Sasselli
- Centro
de Física de Materiales (CFM), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research
and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Ivan Coluzza
- Ikerbasque,
Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
18
|
Xie L, Liu R, Li J, Li Y, He J, Zhang M, Yang H. A multifunctional and self-adaptive double-layer hydrogel dressing based on chitosan for deep wound repair. Int J Biol Macromol 2023; 253:127033. [PMID: 37742896 DOI: 10.1016/j.ijbiomac.2023.127033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Hydrogel wound dressing for irregular shape and deep wound repair is a research hotspot. Herein, a multifunctional and self-adaptive double-layer hydrogel was constructed, which was comprised of chitosan-based inner layer hydrogel and gellan gum-based outer layer hydrogel. Various properties of inner layer hydrogel were systematically investigated, including injectability, shape-adaptability, solid-liquid phase transition, biocompatibility, hemostasis, antibacterial performance and anti-inflammatory. Thanks to the phase-transition from solid to liquid at body temperature, inner layer hydrogel exhibited stronger adaptability to fill irregular and deep wounds, in which chitosan was liquefied and its therapeutic effect was maximized. Outer layer hydrogel was fabricated by calcium ions and gellan gum, whose certain mechanical strength could provide protection and a moister environment for wounds. Because of these characteristics, double-layer hydrogel markedly promoted skin tissue regeneration and wound closure and thereby possessed potential clinical application prospect as wound dressing for deep wounds.
Collapse
Affiliation(s)
- Li Xie
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Rong Liu
- School of Basic Medical Sciences, Chengdu University, Chengdu, China.
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Ying Li
- Clinical Medical College, Chengdu University, Chengdu, China
| | - Jinfeng He
- Clinical Medical College, Chengdu University, Chengdu, China
| | - Mengyuan Zhang
- Clinical Medical College, Chengdu University, Chengdu, China
| | - Haijin Yang
- Clinical Medical College, Chengdu University, Chengdu, China
| |
Collapse
|
19
|
Wu D, Zhou J, Zheng Y, Zheng Y, Zhang Q, Zhou Z, Chen X, Chen Q, Ruan Y, Wang Y, Chen Z. Pathogenesis-adaptive polydopamine nanosystem for sequential therapy of ischemic stroke. Nat Commun 2023; 14:7147. [PMID: 37932306 PMCID: PMC10628287 DOI: 10.1038/s41467-023-43070-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Ischemic stroke is lethal cerebrovascular disease, and reperfusion as the main strategy of blood supply restoration can cause severe ischemic brain damage. Considered as the major obstacle in medication for stroke, neuroinflammation after reperfusion undergoes dynamic progression, making precision treatment for stroke a Herculean task. In this work, we report a pathogenesis-adaptive polydopamine nanosystem for sequential therapy of ischemic stroke. Intrinsic free radical scavenging and tailored mesostructure of the nanosystem can attenuate oxidative stress at the initial stage. Upon microglial overactivation at the later stage, minocycline-loaded nanosystem can timely reverse the pro-inflammatory transition in response to activated matrix metalloproteinase-2, providing on-demand regulation. Further in vivo stroke study demonstrates a higher survival rate and improved brain recovery of the sequential strategy, compared with mono-therapy and combined therapy. Complemented with satisfactory biosafety results, this adaptive nanosystem for sequential and on-demand regulation of post-stroke neuroinflammation is a promising approach to ischemic stroke therapy.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jing Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
20
|
Shen S, Zhang J, Han Y, Pu C, Duan Q, Huang J, Yan B, You X, Lin R, Shen X, Qiu X, Hou H. A Core-Shell Nanoreinforced Ion-Conductive Implantable Hydrogel Bioelectronic Patch with High Sensitivity and Bioactivity for Real-Time Synchronous Heart Monitoring and Repairing. Adv Healthc Mater 2023; 12:e2301990. [PMID: 37467758 DOI: 10.1002/adhm.202301990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
To achieve synchronous repair and real-time monitoring the infarcted myocardium based on an integrated ion-conductive hydrogel patch is challenging yet intriguing. Herein, a novel synthetic strategy is reported based on core-shell-structured curcumin-nanocomposite-reinforced ion-conductive hydrogel for synchronous heart electrophysiological signal monitoring and infarcted heart repair. The nanoreinforcement and multisite cross-linking of bioactive curcumin nanoparticles enable well elasticity with negligible hysteresis, implantability, ultrahigh mechanoelectrical sensitivity (37 ms), and reliable sensing capacity (over 3000 cycles) for the nanoreinforced hydrogel. Results of in vitro and in vivo experiments demonstrate that such solely physical microenvironment of electrophysiological and biomechanical characteristics combining with the role of bioactive curcumin exert the synchronous benefit of regulating inflammatory microenvironment, promoting angiogenesis, and reducing myocardial fibrosis for effective myocardial infarction (MI) repair. Especially, the hydrogel sensors offer the access for achieving accurate acquisition of cardiac signals, thus monitoring the whole MI healing process. This novel bioactive and electrophysiological-sensing ion-conductive hydrogel cardiac patch highlights a versatile strategy promising for synchronous integration of in vivo real-time monitoring the MI status and excellent MI repair performance.
Collapse
Affiliation(s)
- Si Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yanni Han
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Chunyi Pu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Qixiang Duan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jianxing Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Bing Yan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoxi Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
21
|
Zhang Y, Wu BM. Current Advances in Stimuli-Responsive Hydrogels as Smart Drug Delivery Carriers. Gels 2023; 9:838. [PMID: 37888411 PMCID: PMC10606589 DOI: 10.3390/gels9100838] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
In recent years, significant advancements in the field of advanced materials and hydrogel engineering have enabled the design and fabrication of smart hydrogels and nanogels that exhibit sensitivity to specific signals or pathological conditions, leading to a wide range of applications in drug delivery and disease treatment. This comprehensive review aims to provide an in-depth analysis of the stimuli-responsive principles exhibited by smart hydrogels in response to various triggers, such as pH levels, temperature fluctuations, light exposure, redox conditions, or the presence of specific biomolecules. The functionality and performance characteristics of these hydrogels are highly influenced by both their constituent components and fabrication processes. Key design principles, their applications in disease treatments, challenges, and future prospects were also discussed. Overall, this review aims to contribute to the current understanding of gel-based drug delivery systems and stimulate further research in this rapidly evolving field.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
| | - Benjamin M. Wu
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Wu C, Wang M, Sun J, Jia Y, Zhu X, Liu G, Zhu Y, Guan Y, Zhang Z, Pang X. Peptide-drug co-assembling: A potent armament against cancer. Theranostics 2023; 13:5322-5347. [PMID: 37908727 PMCID: PMC10614680 DOI: 10.7150/thno.87356] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer is still one of the major problems threatening human health and the therapeutical efficacies of available treatment choices are often rather low. Due to their favorable biocompatibility, simplicity of modification, and improved therapeutic efficacy, peptide-based self-assembled delivery systems have undergone significant evolution. Physical encapsulation and covalent conjugation are two common approaches to load drugs for peptide assembly-based delivery, which are always associated with drug leaks in the blood circulation system or changed pharmacological activities, respectively. To overcome these difficulties, a more elegant peptide-based assembly strategy is desired. Notably, peptide-mediated co-assembly with drug molecules provides a new method for constructing nanomaterials with improved versatility and structural stability. The co-assembly strategy can be used to design various nanostructures for cancer therapy, such as nanotubes, nanofibrils, hydrogels, and nanovesicles. Recently, these co-assembled nanostructures have gained tremendous attention for their unique superiorities in tumor therapy. This article describes the classification of assembled peptides, driving forces for co-assembly, and specifically, the design methodologies for various drug molecules in co-assembly. It also highlights recent research on peptide-mediated co-assembled delivery systems for cancer therapy. Finally, it summarizes the pros and cons of co-assembly in cancer therapy and offers some suggestions for conquering the challenges in this field.
Collapse
Affiliation(s)
- Can Wu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Manman Wang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Jinpan Sun
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Yongyan Jia
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Xiali Zhu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Gaizhi Liu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Yanhui Zhu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Yanbin Guan
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medicine Science, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Xin Pang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
23
|
Wu C, Zhang H, Kong N, Wu B, Lin X, Wang H. Dynamic Control of Cyclic Peptide Assembly to Form Higher-Order Assemblies. Angew Chem Int Ed Engl 2023; 62:e202303455. [PMID: 37409642 DOI: 10.1002/anie.202303455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Chirality correction, asymmetry, ring-chain tautomerism and hierarchical assemblies are fundamental phenomena in nature. They are geometrically related and may impact the biological roles of a protein or other supermolecules. It is challenging to study those behaviors within an artificial system due to the complexity of displaying these features. Herein, we design an alternating D,L peptide to recreate and validate the naturally occurring chirality inversion prior to cyclization in water. The resulting asymmetrical cyclic peptide containing a 4-imidazolidinone ring provides an excellent platform to study the ring-chain tautomerism, thermostability and dynamic assembly of the nanostructures. Different from traditional cyclic D,L peptides, the formation of 4-imidazolidinone promotes the formation of intertwined nanostructures. Analysis of the nanostructures confirmed the left-handedness, representing chirality induced self-assembly. This proves that a rationally designed peptide can mimic multiple natural phenomena and could promote the development of functional biomaterials, catalysts, antibiotics, and supermolecules.
Collapse
Affiliation(s)
- Chongyang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hongyue Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Nan Kong
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Bihan Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Xinhui Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| |
Collapse
|
24
|
Yang Z, Chen L, Liu J, Zhuang H, Lin W, Li C, Zhao X. Short Peptide Nanofiber Biomaterials Ameliorate Local Hemostatic Capacity of Surgical Materials and Intraoperative Hemostatic Applications in Clinics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301849. [PMID: 36942893 DOI: 10.1002/adma.202301849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Short designer self-assembling peptide (dSAP) biomaterials are a new addition to the hemostat group. It may provide a diverse and robust toolbox for surgeons to integrate wound microenvironment with much safer and stronger hemostatic capacity than conventional materials and hemostatic agents. Especially in noncompressible torso hemorrhage (NCTH), diffuse mucosal surface bleeding, and internal medical bleeding (IMB), with respect to the optimal hemostatic formulation, dSAP biomaterials are the ingenious nanofiber alternatives to make bioactive neural scaffold, nasal packing, large mucosal surface coverage in gastrointestinal surgery (esophagus, gastric lesion, duodenum, and lower digestive tract), epicardiac cell-delivery carrier, transparent matrix barrier, and so on. Herein, in multiple surgical specialties, dSAP-biomaterial-based nano-hemostats achieve safe, effective, and immediate hemostasis, facile wound healing, and potentially reduce the risks in delayed bleeding, rebleeding, post-operative bleeding, or related complications. The biosafety in vivo, bleeding indications, tissue-sealing quality, surgical feasibility, and local usability are addressed comprehensively and sequentially and pursued to develop useful surgical techniques with better hemostatic performance. Here, the state of the art and all-round advancements of nano-hemostatic approaches in surgery are provided. Relevant critical insights will inspire exciting investigations on peptide nanotechnology, next-generation biomaterials, and better promising prospects in clinics.
Collapse
Affiliation(s)
- Zehong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hua Zhuang
- Department of Ultrasonography, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Wei Lin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Women and Children Diseases of the Ministry of Education, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan, 610041, China
| | - Changlong Li
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
25
|
El-Husseiny HM, Mady EA, El-Dakroury WA, Doghish AS, Tanaka R. Stimuli-responsive hydrogels: smart state of-the-art platforms for cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1174075. [PMID: 37449088 PMCID: PMC10337592 DOI: 10.3389/fbioe.2023.1174075] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Biomedicine and tissue regeneration have made significant advancements recently, positively affecting the whole healthcare spectrum. This opened the way for them to develop their applications for revitalizing damaged tissues. Thus, their functionality will be restored. Cardiac tissue engineering (CTE) using curative procedures that combine biomolecules, biomimetic scaffolds, and cells plays a critical part in this path. Stimuli-responsive hydrogels (SRHs) are excellent three-dimensional (3D) biomaterials for tissue engineering (TE) and various biomedical applications. They can mimic the intrinsic tissues' physicochemical, mechanical, and biological characteristics in a variety of ways. They also provide for 3D setup, adequate aqueous conditions, and the mechanical consistency required for cell development. Furthermore, they function as competent delivery platforms for various biomolecules. Many natural and synthetic polymers were used to fabricate these intelligent platforms with innovative enhanced features and specialized capabilities that are appropriate for CTE applications. In the present review, different strategies employed for CTE were outlined. The light was shed on the limitations of the use of conventional hydrogels in CTE. Moreover, diverse types of SRHs, their characteristics, assembly and exploitation for CTE were discussed. To summarize, recent development in the construction of SRHs increases their potential to operate as intelligent, sophisticated systems in the reconstruction of degenerated cardiac tissues.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
26
|
Chen W, Wang C, Liu W, Zhao B, Zeng Z, Long F, Wang C, Li S, Lin N, Zhou J. A Matrix-Metalloproteinase-Responsive Hydrogel System for Modulating the Immune Microenvironment in Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209041. [PMID: 36754377 DOI: 10.1002/adma.202209041] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Injectable hydrogels carrying therapeutic factors to modulate the infarct immune microenvironment show great potential in the treatment of myocardial infarction (MI). However, conventional injectable hydrogels release therapeutic factors in an uncontrolled manner, which leads to poor treatment efficacy and acute side effects on normal tissues. In this work, a matrix metalloproteinase (MMP)2/9-responsive hydrogel system (MPGC4) is developed, considering the characteristics of the post-MI microenvironment. MPGC4 consists of tetra-poly(ethylene glycol) (PEG) hydrogels and a composite gene nanocarrier (CTL4) that is composed of carbon dots (CDots) coupled with interleukin-4 plasmid DNA via electrostatic interactions. MPGC4 can be automatically triggered to release CTL4 on demand after MI to regulate the infarct immune microenvironment. In addition, due to the photoluminescence properties of CDots, a large amount of viscoelastic MPGC4 is found to be retained in situ after injection into the infarct region without leakage. The in vitro results demonstrate that CTL4 promotes proinflammatory M1 macrophage polarization to the anti-inflammatory M2 subtype and contributes to cardiomyocyte survival through macrophage transition. In a rat model of MI, MPGC4 clears MMPs and precisely targets CTL4 to the infarcted region. In particular, MPGC4 improves cardiac function by modulating macrophage transition to reduce early inflammatory responses and proangiogenic activity.
Collapse
Affiliation(s)
- Wei Chen
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing, 100850, P. R. China
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing, 100850, P. R. China
| | - Wei Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing, 100850, P. R. China
| | - Bicheng Zhao
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Zhicheng Zeng
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Fen Long
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Chunlan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing, 100850, P. R. China
| | - Siwei Li
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing, 100850, P. R. China
| | - Naibo Lin
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Jin Zhou
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing, 100850, P. R. China
| |
Collapse
|
27
|
Yang Y, Zheng W, Tan W, Wu X, Dai Z, Li Z, Yan Z, Ji Y, Wang Y, Su W, Zhong S, Li Y, Sun Y, Li S, Huang W. Injectable MMP1-sensitive microspheres with spatiotemporally controlled exosome release promote neovascularized bone healing. Acta Biomater 2023; 157:321-336. [PMID: 36481504 DOI: 10.1016/j.actbio.2022.11.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Bone marrow mesenchymal stromal cell-derived exosomes (BMSC-Exos) can recruit stem cells for bone repair, with neovessels serving as the main migratory channel for stem cells to the injury site. However, existing exosome (Exo) delivery strategies cannot reach the angiogenesis phase following bone injury. To that end, an enzyme-sensitive Exo delivery material that responds to neovessel formation during the angiogenesis phase was designed in the present study to achieve spatiotemporally controlled Exo release. Herein, matrix metalloproteinase-1 (MMP1) was found to be highly expressed in neovascularized bone; as a result, we proposed an injectable MMP1-sensitive hydrogel microspheres (KGE) made using a microfluidic chip prepared by mixing self-assembling peptide (KLDL-MMP1), GelMA, and BMSC-Exos. The results revealed that KGE microspheres had a uniform diameter of 50-70 µm, ideal for minimally invasive injection and could release exosomes in response to MMP1 expression. In vitro experiments demonstrated that KGE had less cytotoxicity and could promote the migration and osteodifferentiation of BMSCs. Furthermore, in vivo experiments confirmed that KGE could promote bone repair during angiogenesis by recruiting CD90+ stem cells via neovessels. Collectively, our results suggest that injectable enzyme-responsive KGE microspheres could be a promising Exo-secreting material for accelerating neovascularized bone healing. STATEMENT OF SIGNIFICANCE: Exosomes can spread through blood vessels and activate stem cells to participate in bone repair, but under normal circumstances, exosomes lacking sustained-release delivery materials cannot be maintained until the angiogenesis phase. In this study, we found that MMP1 was highly expressed in neovascularized bone, then we proposed an MMP1-sensitive injectable microsphere that carries exosomes and responds temporally and spatially to neovascularization, which maximizes the ability of exosomes to recruit stem cells. Different from previous strategies that focus on promoting angiogenesis to accelerate bone healing, this is a brand new delivery strategy that is stimuli-responsive to neovessel formation. In addition, the preparation of self-assembled peptide microspheres by a microfluidic chip is also proposed for the first time.
Collapse
Affiliation(s)
- Yang Yang
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weihan Zheng
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei Tan
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Xiaoqi Wu
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Zhenning Dai
- Department of Stomatology, Guangdong Key Laboratory of Traditional Chinese Medicine Research and Development, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, China
| | - Ziyue Li
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zi Yan
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuelun Ji
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Yilin Wang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiwei Su
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shu Zhong
- Department of orthopedic, Dongguan People's Hospital, Dongguan 523058, China
| | - Yanbing Li
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongjian Sun
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China.
| | - Shiyu Li
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wenhua Huang
- The Third Affiliated Hospital of Southern Medical University, Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, Guangzhou 510630, China; Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
28
|
Zhang B, Lu D, Duan H. Recent advances in responsive antibacterial materials: design and application scenarios. Biomater Sci 2023; 11:356-379. [PMID: 36408610 DOI: 10.1039/d2bm01573k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial infection is one of the leading causes of death globally, although modern medicine has made considerable strides in the past century. As traditional antibiotics are suffering from the emergence of drug resistance, new antibacterial strategies are of great interest. Responsive materials are appealing alternatives that have shown great potential in combating resistant bacteria and avoiding the side effects of traditional antibiotics. In this review, the responsive antibacterial materials are introduced in terms of stimulus signals including intrinsic (pH, enzyme, ROS, etc.) and extrinsic (light, temperature, magnetic fields, etc.) stimuli. Their biomedical applications in therapeutics and medical devices are then discussed. Finally, the author's perspective of the challenge and the future of such a system is provided.
Collapse
Affiliation(s)
- Bo Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Derong Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
29
|
Mokhtarinia K, Rezvanian P, Masaeli E. Sustainable hydrogel-based cell therapy. SUSTAINABLE HYDROGELS 2023:443-470. [DOI: 10.1016/b978-0-323-91753-7.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
31
|
Yue T, Xiong S, Zheng D, Wang Y, Long P, Yang J, Danzeng D, Gao H, Wen X, Li X, Hou J. Multifunctional biomaterial platforms for blocking the fibrosis process and promoting cellular restoring effects in myocardial fibrosis therapy. Front Bioeng Biotechnol 2022; 10:988683. [PMID: 36185428 PMCID: PMC9520723 DOI: 10.3389/fbioe.2022.988683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Myocardial fibrosis is the result of abnormal healing after acute and chronic myocardial damage and is a direct cause of heart failure and cardiac insufficiency. The clinical approach is to preserve cardiac function and inhibit fibrosis through surgery aimed at dredging blood vessels. However, this strategy does not adequately address the deterioration of fibrosis and cardiac function recovery. Therefore, numerous biomaterial platforms have been developed to address the above issues. In this review, we summarize the existing biomaterial delivery and restoring platforms, In addition, we also clarify the therapeutic strategies based on biomaterial platforms, including general strategies to block the fibrosis process and new strategies to promote cellular restoring effects. The development of structures with the ability to block further fibrosis progression as well as to promote cardiomyocytes viability should be the main research interests in myocardial fibrosis, and the reestablishment of structures necessary for normal cardiac function is central to the treatment of myocardial fibrosis. Finally, the future application of biomaterials for myocardial fibrosis is also highlighted.
Collapse
Affiliation(s)
- Tian Yue
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Dezhi Zheng
- Department of Cardiovascular Surgery, The 960th Hospital of the PLA Joint Logistic Support Force, Jinan, China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Pan Long
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jiali Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Dunzhu Danzeng
- Department of Basic Medicine, Medical College, Tibet University, Lhasa, China
| | - Han Gao
- Department of Basic Medicine, Medical College, Tibet University, Lhasa, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People’s Hospital, Chengdu, China
| | - Xin Li
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Jun Hou
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
32
|
Iravani S, Varma RS. Advanced Drug Delivery Micro- and Nanosystems for Cardiovascular Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185843. [PMID: 36144581 PMCID: PMC9506137 DOI: 10.3390/molecules27185843] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022]
Abstract
Advanced drug delivery micro- and nanosystems have been widely explored due to their appealing specificity/selectivity, biodegradability, biocompatibility, and low toxicity. They can be applied for the targeted delivery of pharmaceuticals, with the benefits of good biocompatibility/stability, non-immunogenicity, large surface area, high drug loading capacity, and low leakage of drugs. Cardiovascular diseases, as one of the primary mortalities cause worldwide with significant impacts on the quality of patients’ life, comprise a variety of heart and circulatory system pathologies, such as peripheral vascular diseases, myocardial infarction, heart failure, and coronary artery diseases. Designing novel micro- and nanosystems with suitable targeting properties and smart release behaviors can help circumvent crucial challenges of the tolerability, low stability, high toxicity, and possible side- and off-target effects of conventional drug delivery routes. To overcome different challenging issues, namely physiological barriers, low efficiency of drugs, and possible adverse side effects, various biomaterials-mediated drug delivery systems have been formulated with reduced toxicity, improved pharmacokinetics, high bioavailability, sustained release behavior, and enhanced therapeutic efficacy for targeted therapy of cardiovascular diseases. Despite the existing drug delivery systems encompassing a variety of biomaterials for treating cardiovascular diseases, the number of formulations currently approved for clinical use is limited due to the regulatory and experimental obstacles. Herein, the most recent advancements in drug delivery micro- and nanosystems designed from different biomaterials for the treatment of cardiovascular diseases are deliberated, with a focus on the important challenges and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Correspondence: (S.I.); (R.S.V.)
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, Olomouc 78371, Czech Republic
- Correspondence: (S.I.); (R.S.V.)
| |
Collapse
|
33
|
Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in Stimuli-Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200291. [PMID: 35306751 DOI: 10.1002/smll.202200291] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) describe abnormal vascular system conditions affecting the brain and heart. Among these, ischemic heart disease and ischemic stroke are the leading causes of death worldwide, resulting in 16% and 11% of deaths globally. Although several therapeutic approaches are presented over the years, the continuously increasing mortality rates suggest the need for more advanced strategies for their treatment. One of these strategies lies in the use of stimuli-responsive biomaterials. These "smart" biomaterials can specifically target the diseased tissue, and after "reading" the altered environmental cues, they can respond by altering their physicochemical properties and/or their morphology. In this review, the progress in the field of stimuli-responsive biomaterials for CCVDs in the last five years, aiming at highlighting their potential as early-stage therapeutics in the preclinical scenery, is described.
Collapse
Affiliation(s)
- Christos Tapeinos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Han Gao
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Tomás Bauleth-Ramos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
34
|
Cheng C, Sun Q, Wang X, He B, Jiang T. Enzyme-manipulated hydrogelation of small molecules for biomedical applications. Acta Biomater 2022; 151:88-105. [PMID: 35970483 DOI: 10.1016/j.actbio.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Enzyme-manipulated hydrogelation based on self-assembly of small molecules is an attractive methodology for development of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. Such approach has numerous advantages of region- and enantioselectivity, and mild reaction conditions for encapsulation of biomedications or cells that are fragile to environmental change. In addition to the common applications as drug reservoirs or cell scaffolds, the utilization of endogenous enzymes as stimuli to initiate self-assembly in the living cells and tissue is considered as an intelligent spatiotemporally controllable hydrogelation strategy for biomedical applications. The enzyme-instructed in situ self-assembly and hydrogelation can modulate the cell behavior, and even present therapeutic bioactivities, which provides a new perspective in the field of disease treatment. In this review, we categorize distinct enzymatic stimuli and elaborate substrate design, catalytic characteristics, and mechanisms of self-assembly and hydrogelation. The biomedical applications in drug delivery, tissue engineering, bioimaging, and in situ gelation-produced bioactivity are outlined. Advantages and limitations regarding the state-of-the-art enzyme-driven hydrogelation technologies and future perspectives are also discussed. STATEMENT OF SIGNIFICANCE: Hydrogel is a semi-solid soft material containing a large amount of water. Due to the features of adjustable flexibility, extremely porous architecture, and the high similarity of structure to natural extracellular matrices, the hydrogel has broad application prospects in biomedicine. In recent 20 years, enzyme-manipulated hydrogelation based on self-assembly of small molecules has developed rapidly as an attractive methodology for the construction of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. This review summarized the characteristics of enzymatic hydrogel, as well as the traditional application and emerging prospect of enzyme-instructed self-assembly and hydrogelation.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Qingyun Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xiuping Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
35
|
Fang J, Li JJ, Zhong X, Zhou Y, Lee RJ, Cheng K, Li S. Engineering stem cell therapeutics for cardiac repair. J Mol Cell Cardiol 2022; 171:56-68. [PMID: 35863282 DOI: 10.1016/j.yjmcc.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/18/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Cardiovascular disease is the leading cause of death in the world. Stem cell-based therapies have been widely investigated for cardiac regeneration in patients with heart failure or myocardial infarction (MI) and surged ahead on multiple fronts over the past two decades. To enhance cellular therapy for cardiac regeneration, numerous engineering techniques have been explored to engineer cells, develop novel scaffolds, make constructs, and deliver cells or their derivatives. This review summarizes the state-of-art stem cell-based therapeutics for cardiac regeneration and discusses the emerged bioengineering approaches toward the enhancement of therapeutic efficacy of stem cell therapies in cardiac repair. We cover the topics in stem cell source and engineering, followed by stem cell-based therapies such as cell aggregates and cell sheets, and biomaterial-mediated stem cell therapies such as stem cell delivery with injectable hydrogel, three-dimensional scaffolds, and microneedle patches. Finally, we discuss future directions and challenges of engineering stem cell therapies for clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jennifer J Li
- Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Xintong Zhong
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Randall J Lee
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Ke Cheng
- Department of Biomedical Engineering, North Carolina State University, NC, USA
| | - Song Li
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California 90095, USA.
| |
Collapse
|
36
|
Carboxymethyl chitosan-based hydrogels containing fibroblast growth factors for triggering diabetic wound healing. Carbohydr Polym 2022; 287:119336. [DOI: 10.1016/j.carbpol.2022.119336] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
|
37
|
V D, P J S, Rajeev N, S AL, Chandran A, G B G, Sadanandan S. Recent Advances in Peptides-Based Stimuli-Responsive Materials for Biomedical and Therapeutic Applications: A Review. Mol Pharm 2022; 19:1999-2021. [PMID: 35730605 DOI: 10.1021/acs.molpharmaceut.1c00983] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Smart materials are engineered materials that have one or more properties that are introduced in a controlled fashion by surrounding stimuli. Engineering of biomacromolecules like proteins into a smart material call for meticulous artistry. Peptides have grabbed notable attention as a preferred source for smart materials in the medicinal field, promoted by their versatile chemical and biophysical attributes of biocompatibility, and biodegradability. Recent advances in the synthesis of multifunctional peptides have proliferated their application in diverse domains: agriculture, nanotechnology, medicines, biosensors, therapeutics, and soft robotics. Stimuli such as pH, temperature, light, metal ions, and enzymes have vitalized physicochemical properties of peptides by augmented sensitivity, stability, and selectivity. This review elucidates recent (2018-2021) advances in the design and synthesis of smart materials, from stimuli-responsive peptides followed by their biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Devika V
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Sreelekshmi P J
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Niranjana Rajeev
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Aiswarya Lakshmi S
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Amrutha Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Gouthami G B
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Sandhya Sadanandan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
38
|
Hao Y, Yuan C, Deng J, Zheng W, Ji Y, Zhou Q. Injectable Self-Healing First-Aid Tissue Adhesives with Outstanding Hemostatic and Antibacterial Performances for Trauma Emergency Care. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16006-16017. [PMID: 35378035 DOI: 10.1021/acsami.2c00877] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft-tissue trauma emergency caused by natural disasters and traffic accidents is highly prevalent, which can result in massive bleeding, pathogen infection, and even death. Although numerous tissue adhesives can bind to tissue surfaces and cover wounds, most of them still have several deficiencies, including long gelation time, poor adhesive strength, and anti-infection, making them inappropriate for use as first-aid bandages. Herein, injectable and self-healing four-arm-PEG-CHO/polyethyleneimine (PEI) tissue adhesives as liquid first-aid supplies are developed via the dynamic Schiff base reaction for trauma emergency. It is found that the prepared hydrogel adhesives exhibit short and controlled gelation time (9∼88 s), strong adhesive strength, and excellent antibacterial ability. Their hemostatic and antimicrobial performances can be tailored by the mass ratio of four-arm-PEG-CHO/PEI. Moreover, in vitro biological assays display that the developed tissue adhesives possess satisfactory cyto/hemocompatibility. Importantly, in vivo the designed adhesives show fast hemostatic capacity and excellent anti-infection as compared to commercial Prontosan gel. Thus, this work indicates that the four-arm-PEG-CHO/PEI first-aid tissue adhesives display great potential for wound emergency management.
Collapse
Affiliation(s)
- Yuanping Hao
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Changqing Yuan
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Jing Deng
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Weiping Zheng
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Yanjing Ji
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| |
Collapse
|
39
|
Guo M, Chang ZH, Liang E, Mitchell H, Zhou L, Yin Q, Guinn EJ, Heng JY. The effect of chain length and side chains on the solubility of peptides in water from 278.15 K to 313.15 K: A case study in glycine homopeptides and dipeptides. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Li Z, Zhou Y, Li T, Zhang J, Tian H. Stimuli‐responsive hydrogels: Fabrication and biomedical applications. VIEW 2022. [DOI: 10.1002/viw.20200112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ziyuan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Yanzi Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Tianyue Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| |
Collapse
|
41
|
|
42
|
Yang Y, Zhao Q, Peng Z, Zhou Y, Niu MM, Chen L. A GSH/CB Dual-Controlled Self-Assembled Nanomedicine for High-Efficacy Doxorubicin-Resistant Breast Cancer Therapy. Front Pharmacol 2022; 12:811724. [PMID: 35095524 PMCID: PMC8795745 DOI: 10.3389/fphar.2021.811724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance is a major therapeutic obstacle in the treatment of breast cancer. Therefore, how to overcome chemoresistance is a problem to be solved. Here, a glutathione (GSH)/cathepsin B (CB) dual-controlled nanomedicine formed by cyclic disulfide-bridged peptide (cyclic-1a) as a potent anticancer agent is reported. Under the sequential treatment of GSH and CB, cyclic-1a can efficiently self-assemble into nanofibers. In vitro studies show that cyclic-1a promotes the apoptosis of MCF-7/DOX cells by inducing the cleavages of caspase-3 and PARP. In vivo studies confirm that cyclic-1a significantly inhibits the progression of MCF-7/DOX cells-derived xenograft in nude mice, with no obvious adverse reactions. This study provides a paradigm of GSH/CB dual-controlled nanomedicine for high-efficacy and low-toxic DOX-resistant breast cancer therapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China,*Correspondence: Yang Yang, ; Lin Chen,
| | - Quanfeng Zhao
- Department of Pharmacy, Southwest Hospital, First Affiliated Hospital to TMMU, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhe Peng
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yunjiang Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lin Chen
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China,Department of Pharmacology, Chongqing Medical University, Chongqing, China,*Correspondence: Yang Yang, ; Lin Chen,
| |
Collapse
|
43
|
Wang M, Gao B, Wang X, Li W, Feng Y. Enzyme-responsive strategy as a prospective cue to construct intelligent biomaterials for disease diagnosis and therapy. Biomater Sci 2022; 10:1883-1903. [DOI: 10.1039/d2bm00067a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive materials have been widely studied and applied in biomedical field. Under the stimulation of enzymes, the enzyme-responsive materials (ERMs) can be triggered to change their structures, properties and functions....
Collapse
|
44
|
Abstract
Self-assembling peptides (SAPs), which form hydrogels through physical cross-linking of soluble structures, are an intriguing class of materials that have been applied as tissue engineering scaffolds and drug delivery vehicles. For feasible application of these tissue mimetics via minimally invasive delivery, their bulk mechanical properties must be compatible with current delivery strategies. However, injectable SAPs which possess shear-thinning capacity, as well as the ability to reassemble after cessation of shearing can be technically challenging to generate. Many SAPs either clog the high-gauge needle/catheter at high concentration during delivery or are incapable of reassembly following delivery. In this chapter, we provide a detailed protocol for topological control of enzyme-responsive peptide-based hydrogels that enable the user to access both advantages. These materials are formulated as sterically constrained cyclic peptide progelators to temporarily disrupt self-assembly during injection-based delivery, which avoids issues with clogging of needles and catheters as well as nearby vasculature. Proteolytic cleavage by enzymes produced at the target tissue induces progelator linearization and hydrogelation. The scope of this approach is demonstrated by their ability to flow through a catheter without clogging and activated gelation upon exposure to target enzymes.
Collapse
Affiliation(s)
- Andrea S Carlini
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA
| | - Mary F Cassidy
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Pharmacology, Northwestern University, Evanston, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
45
|
Perveen S, Rossin D, Vitale E, Rosso R, Vanni R, Cristallini C, Rastaldo R, Giachino C. Therapeutic Acellular Scaffolds for Limiting Left Ventricular Remodelling-Current Status and Future Directions. Int J Mol Sci 2021; 22:ijms222313054. [PMID: 34884856 PMCID: PMC8658014 DOI: 10.3390/ijms222313054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of heart-related deaths worldwide. Following MI, the hypoxic microenvironment triggers apoptosis, disrupts the extracellular matrix and forms a non-functional scar that leads towards adverse left ventricular (LV) remodelling. If left untreated this eventually leads to heart failure. Besides extensive advancement in medical therapy, complete functional recovery is never accomplished, as the heart possesses limited regenerative ability. In recent decades, the focus has shifted towards tissue engineering and regenerative strategies that provide an attractive option to improve cardiac regeneration, limit adverse LV remodelling and restore function in an infarcted heart. Acellular scaffolds possess attractive features that have made them a promising therapeutic candidate. Their application in infarcted areas has been shown to improve LV remodelling and enhance functional recovery in post-MI hearts. This review will summarise the updates on acellular scaffolds developed and tested in pre-clinical and clinical scenarios in the past five years with a focus on their ability to overcome damage caused by MI. It will also describe how acellular scaffolds alone or in combination with biomolecules have been employed for MI treatment. A better understanding of acellular scaffolds potentialities may guide the development of customised and optimised therapeutic strategies for MI treatment.
Collapse
Affiliation(s)
- Sadia Perveen
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Emanuela Vitale
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Rachele Rosso
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
- Correspondence:
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| |
Collapse
|
46
|
Berillo D, Yeskendir A, Zharkinbekov Z, Raziyeva K, Saparov A. Peptide-Based Drug Delivery Systems. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111209. [PMID: 34833427 PMCID: PMC8617776 DOI: 10.3390/medicina57111209] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Peptide-based drug delivery systems have many advantages when compared to synthetic systems in that they have better biocompatibility, biochemical and biophysical properties, lack of toxicity, controlled molecular weight via solid phase synthesis and purification. Lysosomes, solid lipid nanoparticles, dendrimers, polymeric micelles can be applied by intravenous administration, however they are of artificial nature and thus may induce side effects and possess lack of ability to penetrate the blood-brain barrier. An analysis of nontoxic drug delivery systems and an establishment of prospective trends in the development of drug delivery systems was needed. This review paper summarizes data, mainly from the past 5 years, devoted to the use of peptide-based carriers for delivery of various toxic drugs, mostly anticancer or drugs with limiting bioavailability. Peptide-based drug delivery platforms are utilized as peptide–drug conjugates, injectable biodegradable particles and depots for delivering small molecule pharmaceutical substances (500 Da) and therapeutic proteins. Controlled drug delivery systems that can effectively deliver anticancer and peptide-based drugs leading to accelerated recovery without significant side effects are discussed. Moreover, cell penetrating peptides and their molecular mechanisms as targeting peptides, as well as stimuli responsive (enzyme-responsive and pH-responsive) peptides and peptide-based self-assembly scaffolds are also reviewed.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
- Correspondence: (D.B.); (A.S.)
| | - Adilkhan Yeskendir
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
- Correspondence: (D.B.); (A.S.)
| |
Collapse
|
47
|
Tan Z, Bilal M, Raza A, Cui J, Ashraf SS, Iqbal HMN. Expanding the Biocatalytic Scope of Enzyme-Loaded Polymeric Hydrogels. Gels 2021; 7:194. [PMID: 34842692 PMCID: PMC8628689 DOI: 10.3390/gels7040194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023] Open
Abstract
In recent years, polymeric hydrogels have appeared promising matrices for enzyme immobilization to design, signify and expand bio-catalysis engineering. Therefore, the development and deployment of polymeric supports in the form of hydrogels and other robust geometries are continuously growing to green the twenty-first-century bio-catalysis. Furthermore, adequately fabricated polymeric hydrogel materials offer numerous advantages that shield pristine enzymes from denaturation under harsh reaction environments. For instance, cross-linking modulation of hydrogels, distinct rheological behavior, tunable surface entities along with elasticity and mesh size, larger surface-volume area, and hydrogels' mechanical cushioning attributes are of supreme interest makes them the ideal candidate for enzyme immobilization. Furthermore, suitable coordination of polymeric hydrogels with requisite enzyme fraction enables pronounced loading, elevated biocatalytic activity, and exceptional stability. Additionally, the unique catalytic harmony of enzyme-loaded polymeric hydrogels offers numerous applications, such as hydrogels as immobilization matrix, bio-catalysis, sensing, detection and monitoring, tissue engineering, wound healing, and drug delivery applications. In this review, we spotlight the applied perspective of enzyme-loaded polymeric hydrogels with recent and relevant examples. The work also signifies the combined use of multienzyme systems and the future directions that should be attempted in this field.
Collapse
Affiliation(s)
- Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China;
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
48
|
Battistella C, Liang Y, Gianneschi NC. Innovations in Disease State Responsive Soft Materials for Targeting Extracellular Stimuli Associated with Cancer, Cardiovascular Disease, Diabetes, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007504. [PMID: 34145625 PMCID: PMC9836048 DOI: 10.1002/adma.202007504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/20/2021] [Indexed: 05/10/2023]
Abstract
Recent advances in polymer chemistry, materials sciences, and biotechnology have allowed the preclinical development of sophisticated programmable nanomedicines and materials that are able to precisely respond to specific disease-associated triggers and microenvironments. These stimuli, endogenous to the targeted diseases, include pH, redox-state, small molecules, and protein upregulation. Herein, recent advances and innovative approaches in programmable soft materials capable of sensing the aforementioned disease-associated stimuli and responding via a range of dynamic processes including morphological and size transitions, changes in mobility and retention, as well as disassembly are described. In this field generally, the majority of ongoing and past research effort has focused on oncology. Given this interest, examples of the latest innovative approaches to chemo- and immunotherapy treatment strategies for cancer are presented. Moreover, as the field broadens its attention, applications of programmable materials in other diseases are highlighted, with a special focus on cardiovascular disease and diabetes mellitus, where limited attention is paid by the field, but where many promising avenues exist with high potential impact.
Collapse
Affiliation(s)
- Claudia Battistella
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| | - Yifei Liang
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
49
|
Xin X, Zhang Z, Zhang X, Chen J, Lin X, Sun P, Liu X. Bioresponsive nanomedicines based on dynamic covalent bonds. NANOSCALE 2021; 13:11712-11733. [PMID: 34227639 DOI: 10.1039/d1nr02836g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Trends in the development of modern medicine necessitate the efficient delivery of therapeutics to achieve the desired treatment outcomes through precise spatiotemporal accumulation of therapeutics at the disease site. Bioresponsive nanomedicine is a promising platform for this purpose. Dynamic covalent bonds (DCBs) have attracted much attention in studies of the fabrication of bioresponsive nanomedicines with an abundance of combinations of therapeutic modules and carrier function units. DCB-based nanomedicines could be designed to maintain biological friendly synthesis and site-specific release for optimal therapeutic effects, allowing the complex to retain an integrated structure before accumulating at the disease site, but disassembling into individual active components without compromising function in the targeted organs or tissues. In this review, we focus on responsive nanomedicines containing dynamic chemical bonds that can be cleaved by various specific stimuli, enabling achievement of targeted drug release for optimal therapy in various diseases.
Collapse
Affiliation(s)
- Xiaoqian Xin
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, PR China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Miki T, Nakai T, Hashimoto M, Kajiwara K, Tsutsumi H, Mihara H. Intracellular artificial supramolecules based on de novo designed Y15 peptides. Nat Commun 2021; 12:3412. [PMID: 34099696 DOI: 10.1038/s41467-021-23794-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
De novo designed self-assembling peptides (SAPs) are promising building blocks of supramolecular biomaterials, which can fulfill a wide range of applications, such as scaffolds for tissue culture, three-dimensional cell culture, and vaccine adjuvants. Nevertheless, the use of SAPs in intracellular spaces has mostly been unexplored. Here, we report a self-assembling peptide, Y15 (YEYKYEYKYEYKYEY), which readily forms β-sheet structures to facilitate bottom-up synthesis of functional protein assemblies in living cells. Superfolder green fluorescent protein (sfGFP) fused to Y15 assembles into fibrils and is observed as fluorescent puncta in mammalian cells. Y15 self-assembly is validated by fluorescence anisotropy and pull-down assays. By using the Y15 platform, we demonstrate intracellular reconstitution of Nck assembly, a Src-homology 2 and 3 domain-containing adaptor protein. The artificial clusters of Nck induce N-WASP (neural Wiskott-Aldrich syndrome protein)-mediated actin polymerization, and the functional importance of Nck domain valency and density is evaluated.
Collapse
Affiliation(s)
- Takayuki Miki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
| | - Taichi Nakai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Masahiro Hashimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Keigo Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hiroshi Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|