1
|
Lee JW, Lee KA, Jang IH, Nam K, Kim SH, Kyung M, Cho KC, Lee JH, You H, Kim EK, Koh YH, Lee H, Park J, Hwang SY, Chung YW, Ryu CM, Kwon Y, Roh SH, Ryu JH, Lee WJ. Microbiome-emitted scents activate olfactory neuron-independent airway-gut-brain axis to promote host growth in Drosophila. Nat Commun 2025; 16:2199. [PMID: 40038269 PMCID: PMC11880416 DOI: 10.1038/s41467-025-57484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
While it is now accepted that the microbiome has strong impacts on animal growth promotion, the exact mechanism has remained elusive. Here we show that microbiome-emitted scents contain volatile somatotrophic factors (VSFs), which promote host growth in an olfaction-independent manner in Drosophila. We found that inhaled VSFs are readily sensed by olfactory receptor 42b non-neuronally expressed in subsets of tracheal airway cells, enteroendocrine cells, and enterocytes. Olfaction-independent sensing of VSFs activates the airway-gut-brain axis by regulating Hippo, FGF and insulin-like growth factor signaling pathways, which are required for airway branching, organ oxygenation and body growth. We found that a mutant microbiome that did not produce (2R,3R)-2,3-butanediol failed to activate the airway-gut-brain axis for host growth. Importantly, forced inhalation of (2R,3R)-2,3-butanediol completely reversed these defects. Our discovery of contact-independent and olfaction-independent airborne interactions between host and microbiome provides a novel perspective on the role of the airway-gut-brain axis in microbiome-controlled host development.
Collapse
Affiliation(s)
- Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung-Ah Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Saeloun Bio Inc., Seoul, South Korea
| | - In-Hwan Jang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kibum Nam
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung-Hee Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Minsoo Kyung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyu-Chan Cho
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Hoon Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hyejin You
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Kyoung Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Young Hoon Koh
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hansol Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Junsun Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Youn Wook Chung
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Soung-Hun Roh
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Ji-Hwan Ryu
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea.
| |
Collapse
|
2
|
Heidarian Y, Fasteen TD, Mungcal L, Buddika K, Mahmoudzadeh NH, Nemkov T, D'Alessandro A, Tennessen JM. Hypoxia-inducible factor 1α is required to establish the larval glycolytic program in Drosophila melanogaster. Mol Metab 2025; 93:102106. [PMID: 39894213 PMCID: PMC11869853 DOI: 10.1016/j.molmet.2025.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVES The rapid growth that occurs during Drosophila larval development requires a dramatic rewiring of central carbon metabolism to support biosynthesis. Larvae achieve this metabolic state, in part, by coordinately up-regulating the expression of genes involved in carbohydrate metabolism. The resulting metabolic program exhibits hallmark characteristics of aerobic glycolysis and establishes a physiological state that supports growth. To date, the only factor known to activate the larval glycolytic program is the Drosophila Estrogen-Related Receptor (dERR). However, dERR is dynamically regulated during the onset of this metabolic switch, indicating that other factors must be involved. Here we examine the possibility that the Drosophila ortholog of Hypoxia inducible factor 1α (Hif1α) is also required to activate the larval glycolytic program. METHODS CRISPR/Cas9 was used to generate new loss-of-function alleles in the Drosophila gene similar (sima), which encodes the sole fly ortholog of Hif1α. The resulting mutant strains were analyzed using a combination of metabolomics and RNAseq for defects in carbohydrate metabolism. RESULTS Our studies reveal that sima mutants fail to activate aerobic glycolysis and die during larval development with metabolic phenotypes that mimic those displayed by dERR mutants. Moreover, we demonstrate that dERR and Sima/Hif1α protein accumulation is mutually dependent, as loss of either transcription factor results in decreased abundance of the other protein. CONCLUSIONS These findings demonstrate that Sima/HIF1α is required during embryogenesis to coordinately up-regulate carbohydrate metabolism in preparation for larval growth. Notably, our study also reveals that the Sima/HIF1α-dependent gene expression program shares considerable overlap with that observed in dERR mutant, suggesting that Sima/HIF1α and dERR cooperatively regulate embryonic and larval glycolytic gene expression.
Collapse
Affiliation(s)
- Yasaman Heidarian
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Liam Mungcal
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Member, Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Heidarian Y, Fasteen TD, Mungcal L, Buddika K, Mahmoudzadeh NH, Nemkov T, D'Alessandro A, Tennessen JM. Hypoxia-inducible factor 1α is required to establish the larval glycolytic program in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631819. [PMID: 39829828 PMCID: PMC11741260 DOI: 10.1101/2025.01.07.631819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The rapid growth that occurs during Drosophila larval development requires a dramatic rewiring of central carbon metabolism to support biosynthesis. Larvae achieve this metabolic state, in part, by coordinately up-regulating the expression of genes involved in carbohydrate metabolism. The resulting metabolic program exhibits hallmark characteristics of aerobic glycolysis and establishes a physiological state that supports growth. To date, the only factor known to activate the larval glycolytic program is the Drosophila Estrogen-Related Receptor (dERR). However, dERR is dynamically regulated during the onset of this metabolic switch, indicating that other factors must be involved. Here we discover that Sima, the Drosophila ortholog of Hif1α, is also essential for establishing the larval glycolytic program. Using a multi-omics approach, we demonstrate that sima mutants fail to properly activate aerobic glycolysis and die during larval development with metabolic defects that phenocopy dERR mutants. Moreover, we demonstrate that dERR and Sima/Hif1α protein accumulation is mutually dependent, as loss of either transcription factor results in decreased abundance of the other protein. Considering that the mammalian homologs of ERR and Hif1α also cooperatively regulate aerobic glycolysis in cancer cells, our findings establish the fly as a powerful genetic model for studying the interaction between these two key metabolic regulators.
Collapse
Affiliation(s)
- Yasaman Heidarian
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Liam Mungcal
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Affiliate Member, Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| |
Collapse
|
4
|
Szabla N, Maria Labecka A, Antoł A, Sobczyk Ł, Angilletta MJ, Czarnoleski M. Evolution and development of Drosophila melanogaster under different thermal conditions affected cell sizes and sensitivity to paralyzing hypoxia. JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104671. [PMID: 38972633 DOI: 10.1016/j.jinsphys.2024.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Environmental gradients cause evolutionary and developmental changes in the cellular composition of organisms, but the physiological consequences of these effects are not well understood. Here, we studied experimental populations of Drosophila melanogaster that had evolved in one of three selective regimes: constant 16 °C, constant 25 °C, or intergenerational shifts between 16 °C and 25 °C. Genotypes from each population were reared at three developmental temperatures (16 °C, 20.5 °C, and 25 °C). As adults, we measured thorax length and cell sizes in the Malpighian tubules and wing epithelia of flies from each combination of evolutionary and developmental temperatures. We also exposed flies from these treatments to a short period of nearly complete oxygen deprivation to measure hypoxia tolerance. For genotypes from any selective regime, development at a higher temperature resulted in smaller flies with smaller cells, regardless of the tissue. At every developmental temperature, genotypes from the warm selective regime had smaller bodies and smaller wing cells but had larger tubule cells than did genotypes from the cold selective regime. Genotypes from the fluctuating selective regime were similar in size to those from the cold selective regime, but their cells of either tissue were the smallest among the three regimes. Evolutionary and developmental treatments interactively affected a fly's sensitivity to short-term paralyzing hypoxia. Genotypes from the cold selective regime were less sensitive to hypoxia after developing at a higher temperature. Genotypes from the other selective regimes were more sensitive to hypoxia after developing at a higher temperature. Our results show that thermal conditions can trigger evolutionary and developmental shifts in cell size, coupled with changes in body size and hypoxia tolerance. These patterns suggest links between the cellular composition of the body, levels of hypoxia within cells, and the energetic cost of tissue maintenance. However, the patterns can be only partially explained by existing theories about the role of cell size in tissue oxygenation and metabolic performance.
Collapse
Affiliation(s)
- Natalia Szabla
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Andrzej Antoł
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; MR Consulting Sp. z o.o. Środowiskowa sp.k., Szosa Chełmińska 177-181, 87-100 Toruń, Poland
| | - Łukasz Sobczyk
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
5
|
Shin M, Chang E, Lee D, Kim N, Cho B, Cha N, Koranteng F, Song JJ, Shim J. Drosophila immune cells transport oxygen through PPO2 protein phase transition. Nature 2024; 631:350-359. [PMID: 38926577 PMCID: PMC11236712 DOI: 10.1038/s41586-024-07583-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Insect respiration has long been thought to be solely dependent on an elaborate tracheal system without assistance from the circulatory system or immune cells1,2. Here we describe that Drosophila crystal cells-myeloid-like immune cells called haemocytes-control respiration by oxygenating Prophenoloxidase 2 (PPO2) proteins. Crystal cells direct the movement of haemocytes between the trachea of the larval body wall and the circulation to collect oxygen. Aided by copper and a neutral pH, oxygen is trapped in the crystalline structures of PPO2 in crystal cells. Conversely, PPO2 crystals can be dissolved when carbonic anhydrase lowers the intracellular pH and then reassembled into crystals in cellulo by adhering to the trachea. Physiologically, larvae lacking crystal cells or PPO2, or those expressing a copper-binding mutant of PPO2, display hypoxic responses under normoxic conditions and are susceptible to hypoxia. These hypoxic phenotypes can be rescued by hyperoxia, expression of arthropod haemocyanin or prevention of larval burrowing activity to expose their respiratory organs. Thus, we propose that insect immune cells collaborate with the tracheal system to reserve and transport oxygen through the phase transition of PPO2 crystals, facilitating internal oxygen homeostasis in a process that is comparable to vertebrate respiration.
Collapse
Affiliation(s)
- Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Eunji Chang
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Daewon Lee
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Nayun Kim
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Nuri Cha
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Ferdinand Koranteng
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Natural Science, Hanyang University, Seoul, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea.
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Musselman LP, Truong HG, DiAngelo JR. Transcriptional Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782870 DOI: 10.1007/5584_2024_808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Transcriptional control of lipid metabolism uses a framework that parallels the control of lipid metabolism at the protein or enzyme level, via feedback and feed-forward mechanisms. Increasing the substrates for an enzyme often increases enzyme gene expression, for example. A paucity of product can likewise potentiate transcription or stability of the mRNA encoding the enzyme or enzymes needed to produce it. In addition, changes in second messengers or cellular energy charge can act as on/off switches for transcriptional regulators to control transcript (and protein) abundance. Insects use a wide range of DNA-binding transcription factors (TFs) that sense changes in the cell and its environment to produce the appropriate change in transcription at gene promoters. These TFs work together with histones, spliceosomes, and additional RNA processing factors to ultimately regulate lipid metabolism. In this chapter, we will first focus on the important TFs that control lipid metabolism in insects. Next, we will describe non-TF regulators of insect lipid metabolism such as enzymes that modify acetylation and methylation status, transcriptional coactivators, splicing factors, and microRNAs. To conclude, we consider future goals for studying the mechanisms underlying the control of lipid metabolism in insects.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Huy G Truong
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Justin R DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA.
| |
Collapse
|
7
|
Turingan MJ, Li T, Wright J, Sharma A, Ding K, Khan S, Lee B, Grewal SS. Hypoxia delays steroid-induced developmental maturation in Drosophila by suppressing EGF signaling. PLoS Genet 2024; 20:e1011232. [PMID: 38669270 PMCID: PMC11098494 DOI: 10.1371/journal.pgen.1011232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Animals often grow and develop in unpredictable environments where factors like food availability, temperature, and oxygen levels can fluctuate dramatically. To ensure proper sexual maturation into adulthood, juvenile animals need to adapt their growth and developmental rates to these fluctuating environmental conditions. Failure to do so can result in impaired maturation and incorrect body size. Here we describe a mechanism by which Drosophila larvae adapt their development in low oxygen (hypoxia). During normal development, larvae grow and increase in mass until they reach critical weight (CW), after which point a neuroendocrine circuit triggers the production of the steroid hormone ecdysone from the prothoracic gland (PG), which promotes maturation to the pupal stage. However, when raised in hypoxia (5% oxygen), larvae slow their growth and delay their maturation to the pupal stage. We find that, although hypoxia delays the attainment of CW, the maturation delay occurs mainly because of hypoxia acting late in development to suppress ecdysone production. This suppression operates through a distinct mechanism from nutrient deprivation, occurs independently of HIF-1 alpha and does not involve dilp8 or modulation of Ptth, the main neuropeptide that initiates ecdysone production in the PG. Instead, we find that hypoxia lowers the expression of the EGF ligand, spitz, and that the delay in maturation occurs due to reduced EGFR/ERK signaling in the PG. Our study sheds light on how animals can adjust their development rate in response to changing oxygen levels in their environment. Given that hypoxia is a feature of both normal physiology and many diseases, our findings have important implications for understanding how low oxygen levels may impact animal development in both normal and pathological situations.
Collapse
Affiliation(s)
- Michael J. Turingan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Tan Li
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Jenna Wright
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Abhishek Sharma
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Kate Ding
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Shahoon Khan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| |
Collapse
|
8
|
Quadros-Mennella PS, Lucin KM, White RE. What can the common fruit fly teach us about stroke?: lessons learned from the hypoxic tolerant Drosophila melanogaster. Front Cell Neurosci 2024; 18:1347980. [PMID: 38584778 PMCID: PMC10995290 DOI: 10.3389/fncel.2024.1347980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Stroke, resulting in hypoxia and glucose deprivation, is a leading cause of death and disability worldwide. Presently, there are no treatments that reduce neuronal damage and preserve function aside from tissue plasminogen activator administration and rehabilitation therapy. Interestingly, Drosophila melanogaster, the common fruit fly, demonstrates robust hypoxic tolerance, characterized by minimal effects on survival and motor function following systemic hypoxia. Due to its organized brain, conserved neurotransmitter systems, and genetic similarity to humans and other mammals, uncovering the mechanisms of Drosophila's tolerance could be a promising approach for the development of new therapeutics. Interestingly, a key facet of hypoxic tolerance in Drosophila is organism-wide metabolic suppression, a response involving multiple genes and pathways. Specifically, studies have demonstrated that pathways associated with oxidative stress, insulin, hypoxia-inducible factors, NFκB, Wnt, Hippo, and Notch, all potentially contribute to Drosophila hypoxic tolerance. While manipulating the oxidative stress response and insulin signaling pathway has similar outcomes in Drosophila hypoxia and the mammalian middle cerebral artery occlusion (MCAO) model of ischemia, effects of Notch pathway manipulation differ between Drosophila and mammals. Additional research is warranted to further explore how other pathways implicated in hypoxic tolerance in Drosophila, such as NFκB, and Hippo, may be utilized to benefit mammalian response to ischemia. Together, these studies demonstrate that exploration of the hypoxic response in Drosophila may lead to new avenues of research for stroke treatment in humans.
Collapse
Affiliation(s)
| | - Kurt M. Lucin
- Department of Biology, Eastern Connecticut State University, Willimantic, CT, United States
| | - Robin E. White
- Department of Biology, Westfield State University, Westfield, MA, United States
| |
Collapse
|
9
|
Stobdan T, Wen NJ, Lu-Bo Y, Zhou D, Haddad GG. The Pupa Stage Is the Most Sensitive to Hypoxia in Drosophila melanogaster. Int J Mol Sci 2024; 25:710. [PMID: 38255782 PMCID: PMC10815303 DOI: 10.3390/ijms25020710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Hypoxia not only plays a critical role in multiple disease conditions; it also influences the growth and development of cells, tissues and organs. To identify novel hypoxia-related mechanisms involved in cell and tissue growth, studying a precise hypoxia-sensitive time window can be an effective approach. Drosophila melanogaster has been a useful model organism for studying a variety of conditions, and we focused in this study on the life cycle stages of Drosophila to investigate their hypoxia sensitivity. When normoxia-grown flies were treated with 4% O2 at the pupa stage for 3, 2 and 1 day/s, the eclosion rates were 6.1%, 66.7% and 96.4%, respectively, and, when 4% O2 was kept for the whole pupa stage, this regimen was lethal. Surprisingly, when our hypoxia-adapted flies who normally live in 4% O2 were treated with 4% O2 at the pupa stage, no fly eclosed. Within the pupa stage, the pupae at 2 and 3 days after pupae formation (APF), when treated for 2 days, demonstrated 12.5 ± 8.5% and 23.6 ± 1.6% eclosion, respectively, but this was completely lethal when treated for 3 days. We conclude that pupae, at 2 days APF and for a duration of a minimum of 2 days, were the most sensitive to hypoxia. Our data from our hypoxia-adapted flies clearly indicate that epigenetic factors play a critical role in pupa-stage hypoxia sensitivity.
Collapse
Affiliation(s)
- Tsering Stobdan
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.S.); (N.J.W.); (Y.L.-B.); (D.Z.)
| | - Nicholas J. Wen
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.S.); (N.J.W.); (Y.L.-B.); (D.Z.)
| | - Ying Lu-Bo
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.S.); (N.J.W.); (Y.L.-B.); (D.Z.)
| | - Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.S.); (N.J.W.); (Y.L.-B.); (D.Z.)
| | - Gabriel G. Haddad
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.S.); (N.J.W.); (Y.L.-B.); (D.Z.)
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
10
|
Ding K, Barretto EC, Johnston M, Lee B, Gallo M, Grewal SS. Transcriptome analysis of FOXO-dependent hypoxia gene expression identifies Hipk as a regulator of low oxygen tolerance in Drosophila. G3 (BETHESDA, MD.) 2022; 12:6749561. [PMID: 36200850 PMCID: PMC9713431 DOI: 10.1093/g3journal/jkac263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/16/2022] [Indexed: 12/05/2022]
Abstract
When exposed to low oxygen or hypoxia, animals must alter their metabolism and physiology to ensure proper cell-, tissue-, and whole-body level adaptations to their hypoxic environment. These alterations often involve changes in gene expression. While extensive work has emphasized the importance of the HIF-1 alpha transcription factor on controlling hypoxia gene expression, less is known about other transcriptional mechanisms. We previously identified the transcription factor FOXO as a regulator of hypoxia tolerance in Drosophila larvae and adults. Here, we use an RNA-sequencing approach to identify FOXO-dependent changes in gene expression that are associated with these tolerance effects. We found that hypoxia altered the expression of over 2,000 genes and that ∼40% of these gene expression changes required FOXO. We discovered that hypoxia exposure led to a FOXO-dependent increase in genes involved in cell signaling, such as kinases, GTPase regulators, and regulators of the Hippo/Yorkie pathway. Among these, we identified homeodomain-interacting protein kinase as being required for hypoxia survival. We also found that hypoxia suppresses the expression of genes involved in ribosome synthesis and egg production, and we showed that hypoxia suppresses tRNA synthesis and mRNA translation and reduces female fecundity. Among the downregulated genes, we discovered that FOXO was required for the suppression of many ribosomal protein genes and genes involved in oxidative phosphorylation, pointing to a role for FOXO in limiting energetically costly processes such as protein synthesis and mitochondrial activity upon hypoxic stress. This work uncovers a widespread role for FOXO in mediating hypoxia changes in gene expression.
Collapse
Affiliation(s)
- Kate Ding
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elizabeth C Barretto
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael Johnston
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Byoungchun Lee
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marco Gallo
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Savraj S Grewal
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
11
|
Sun X, Xue C, Jin Y, Bian C, Zhou N, Sun S. Glucose transporter GLUT1 expression is important for oriental river prawn (Macrobrachium nipponense) hemocyte adaptation to hypoxic conditions. J Biol Chem 2022; 299:102748. [PMID: 36436564 PMCID: PMC9758439 DOI: 10.1016/j.jbc.2022.102748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Crustaceans have an open vascular system in which hemocytes freely circulate in hemolymph. Hemocytes are rich in hemocyanin, a specific oxygen-transport protein in crustaceans; therefore, understanding the response of hemocytes to hypoxia is crucial. Although hemocytes take up glucose during hypoxia, the molecular mechanism of glucose uptake in crustaceans remains unclear. Herein, we identified two highly conserved glucose transporters (GLUT1 and GLUT2) in Macrobrachium nipponense (oriental river prawn) and analyzed their tissue-specific expression patterns. Our immunofluorescence assays showed that GLUT1 and GLUT2 are located on the cell membrane, with a strong GLUT1 signal in primary hemocytes under hypoxia. We found that during acute hypoxia, hypoxia-inducible factor-1α-related metabolic alterations result in decreased mitochondrial cytochrome c oxidase activity, implying a classic glycolytic mechanism. As a proof of concept, we replicated these findings in insect S2 cells. Acute hypoxia significantly induced hypoxia-inducible factor-1α, GLUT1, and pyruvate dehydrogenase kinase isozyme 1 expression in primary hemocytes, and hypoxia-induced increases in glucose uptake and lactate secretion were observed. GLUT1 knockdown induced intracellular reactive oxygen species generation and apoptosis in vitro and in vivo, resulting in increased prawn mortality and more apoptotic cells in their brains, implying a vital function of GLUT1 in hypoxia adaptation. Taken together, our results suggest a close relationship between hypoxia-mediated glycolysis and GLUT1 in hemocytes. These results demonstrated that in crustaceans, adaptation to hypoxia involves glucose metabolic plasticity.
Collapse
Affiliation(s)
- Xichao Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Cheng Xue
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yiting Jin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.
| |
Collapse
|
12
|
Yang Y, Li X, Liu Z, Ruan X, Wang H, Zhang Q, Cao L, Song L, Chen Y, Sun Y. Moderate Treadmill Exercise Alleviates NAFLD by Regulating the Biogenesis and Autophagy of Lipid Droplet. Nutrients 2022; 14:nu14224910. [PMID: 36432597 PMCID: PMC9697757 DOI: 10.3390/nu14224910] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Lipid droplet is a dynamic organelle that undergoes periods of biogenesis and degradation under environmental stimuli. The excessive accumulation of lipid droplets is the major characteristic of non-alcoholic fatty liver disease (NAFLD). Moderate aerobic exercise is a powerful intervention protecting against the progress of NAFLD. However, its impact on lipid droplet dynamics remains ambiguous. Mice were fed with 15 weeks of high-fat diet in order to induce NAFLD. Meanwhile, the mice performed 15 weeks of treadmill exercise. Our results showed that 15 weeks of regular moderate treadmill exercise alleviated obesity, insulin intolerance, hyperlipidemia, and hyperglycemia induced by HFD. Importantly, exercise improved histological phenotypes of NAFLD, including hepatic steatosis, inflammation, and locular ballooning, as well as prevented liver fat deposition and liver injury induced by HFD. Exercise reduced hepatic lipid droplet size, and moreover, it reduced PLIN2 protein level and increased PLIN3 protein level in the liver of HFD mice. Interestingly, our results showed that exercise did not significantly affect the gene expressions of DGAT1, DGAT2, or SEIPIN, which were involved in TG synthesis. However, it did reduce the expressions of FITM2, CIDEA, and FSP27, which were major involved in lipid droplet growth and budding, and lipid droplet expansion. In addition, exercise reduced ATGL protein level in HFD mice, and regulated lipophagy-related markers, including increasing ATG5, LAMP1, LAMP2, LAL, and CTSD, decreasing LC3II/I and p62, and promoting colocalization of LAMP1 with LDs. In summary, our data suggested that 15 weeks of moderate treadmill exercise was beneficial for regulating liver lipid droplet dynamics in HFD mice by inhibiting abnormal lipid droplets expansion and enhancing clearance of lipid droplets by lysosomes during the lipophagic process, which might provide highly flexible turnover for lipid mobilization and metabolism. Abbreviations: β-actin: actin beta; ATG5: autophagy related 5; LAMP2: lysosomal-associated membrane protein 2; LAMP1: lysosomal-associated membrane protein 1; SQSTM1/p62: sequestosome 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; ATGL: adipose triglyceride lipase; CSTD: cathepsin D; LAL: lysosomal acid lipase; DGAT1: diacylglycerol-o-acyltransferase 1; DGAT2: diacylglycerol-o-acyltransferase 2; CIDEA: cell death inducing dffa-like effector a; CIDEC/FSP27: cell death inducing dffa-like effector c; FITM2: fat storage-inducing transmembrane protein 2; PLIN2: adipose differentiation related protein; PLN3: tail-interacting protein 47; HSP90: heat shock protein 90; SREBP1c: sterol regulatory element binding protein-1c; chREBP: carbohydrate response element binding protein.
Collapse
Affiliation(s)
- Yangjun Yang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zonghan Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xinyu Ruan
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Huihui Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Lu Cao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Luchen Song
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yinghong Chen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yi Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
- Correspondence: ; Tel.: +86-021-54341197
| |
Collapse
|
13
|
The steroid hormone ecdysone regulates growth rate in response to oxygen availability. Sci Rep 2022; 12:4730. [PMID: 35304878 PMCID: PMC8933497 DOI: 10.1038/s41598-022-08563-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
In almost all animals, physiologically low oxygen (hypoxia) during development slows growth and reduces adult body size. The developmental mechanisms that determine growth under hypoxic conditions are, however, poorly understood. Here we show that the growth and body size response to moderate hypoxia (10% O2) in Drosophila melanogaster is systemically regulated via the steroid hormone ecdysone. Hypoxia increases level of circulating ecdysone and inhibition of ecdysone synthesis ameliorates the negative effect of low oxygen on growth. We also show that the effect of ecdysone on growth under hypoxia is through suppression of the insulin/IGF-signaling pathway, via increased expression of the insulin-binding protein Imp-L2. These data indicate that growth suppression in hypoxic Drosophila larvae is accomplished by a systemic endocrine mechanism that overlaps with the mechanism that slows growth at low nutrition. This suggests the existence of growth-regulatory mechanisms that respond to general environmental perturbation rather than individual environmental factors.
Collapse
|
14
|
Parra-Peralbo E, Talamillo A, Barrio R. Origin and Development of the Adipose Tissue, a Key Organ in Physiology and Disease. Front Cell Dev Biol 2022; 9:786129. [PMID: 34993199 PMCID: PMC8724577 DOI: 10.3389/fcell.2021.786129] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue is a dynamic organ, well known for its function in energy storage and mobilization according to nutrient availability and body needs, in charge of keeping the energetic balance of the organism. During the last decades, adipose tissue has emerged as the largest endocrine organ in the human body, being able to secrete hormones as well as inflammatory molecules and having an important impact in multiple processes such as adipogenesis, metabolism and chronic inflammation. However, the cellular progenitors, development, homeostasis and metabolism of the different types of adipose tissue are not fully known. During the last decade, Drosophila melanogaster has demonstrated to be an excellent model to tackle some of the open questions in the field of metabolism and development of endocrine/metabolic organs. Discoveries ranged from new hormones regulating obesity to subcellular mechanisms that regulate lipogenesis and lipolysis. Here, we review the available evidences on the development, types and functions of adipose tissue in Drosophila and identify some gaps for future research. This may help to understand the cellular and molecular mechanism underlying the pathophysiology of this fascinating key tissue, contributing to establish this organ as a therapeutic target.
Collapse
Affiliation(s)
| | - Ana Talamillo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
15
|
He L, Chen IW, Zhang Z, Zheng W, Sayadi A, Wang L, Sang W, Ji R, Lei J, Arnqvist G, Lei C, Zhu-Salzman K. In silico promoter analysis and functional validation identify CmZFH, the co-regulator of hypoxia-responsive genes CmScylla and CmLPCAT. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103681. [PMID: 34800642 DOI: 10.1016/j.ibmb.2021.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Oxygen (O2) plays an essential role in aerobic organisms including terrestrial insects. Under hypoxic stress, the cowpea bruchid (Callosobruchus maculatus) ceases feeding and growth. However, larvae, particularly 4th instar larvae exhibit very high tolerance to hypoxia and can recover normal growth once brought to normoxia. To better understand the molecular mechanism that enables insects to cope with low O2 stress, we performed RNA-seq to distinguish hypoxia-responsive genes in midguts and subsequently identified potential common cis-elements in promoters of hypoxia-induced and -repressed genes, respectively. Selected elements were subjected to gel-shift and transient transfection assays to confirm their cis-regulatory function. Of these putative common cis-elements, AREB6 appeared to regulate the expression of CmLPCAT and CmScylla, two hypoxia-induced genes. CmZFH, the putative AREB6-binding protein, was hypoxia-inducible. Transient expression of CmZFH in Drosophila S2 cells activated CmLPCAT and CmScylla, and their induction was likely through interaction of CmZFH with AREB6. Binding to AREB6 was further confirmed by bacterially expressed CmZFH recombinant protein. Deletion analyses indicated that the N-terminal zinc-finger cluster of CmZFH was the key AREB6-binding domain. Through in silico and experimental exploration, we discovered novel transcriptional regulatory components associated with gene expression dynamics under hypoxia that facilitated insect survival.
Collapse
Affiliation(s)
- Li He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Ivy W Chen
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Zan Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wenping Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, 75236, Sweden
| | - Lei Wang
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Wen Sang
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Rui Ji
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, 75236, Sweden
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
16
|
Valko A, Perez-Pandolfo S, Sorianello E, Brech A, Wappner P, Melani M. Adaptation to hypoxia in Drosophila melanogaster requires autophagy. Autophagy 2021; 18:909-920. [PMID: 34793268 DOI: 10.1080/15548627.2021.1991191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macroautophagy/autophagy, a mechanism of degradation of intracellular material required to sustain cellular homeostasis, is exacerbated under stress conditions like nutrient deprivation, protein aggregation, organelle senescence, pathogen invasion, and hypoxia, among others. Detailed in vivo description of autophagic responses triggered by hypoxia is limited. We have characterized the autophagic response induced by hypoxia in Drosophila melanogaster. We found that this process is essential for Drosophila adaptation and survival because larvae with impaired autophagy are hypersensitive to low oxygen levels. Hypoxia triggers a bona fide autophagic response, as evaluated by several autophagy markers including Atg8, LysoTracker, Lamp1, Pi3K59F/Vps34 activity, transcriptional induction of Atg genes, as well as by transmission electron microscopy. Autophagy occurs in waves of autophagosome formation and maturation as hypoxia exposure is prolonged. Hypoxia-triggered autophagy is induced cell autonomously, and different tissues are sensitive to hypoxic treatments. We found that hypoxia-induced autophagy depends on the basic autophagy machinery but not on the hypoxia master regulator sima/HIF1A. Overall, our studies lay the foundation for using D. melanogaster as a model system for studying autophagy under hypoxic conditions, which, in combination with the potency of genetic manipulations available in this organism, provides a platform for studying the involvement of autophagy in hypoxia-associated pathologies and developmentally regulated processes.Abbreviations: Atg: autophagy-related; FYVE: zinc finger domain from Fab1 (yeast ortholog of PIKfyve); GFP: green fluorescent protein; HIF: hypoxia-inducible factor; hsf: heat shock factor; Hx: hypoxia; mCh: mCherry; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate; Rheb: Ras homolog enriched in brain; sima: similar; Stv: Starvation; TEM: transmission electron microscopy; Tor: target of rapamycin; UAS: upstream activating sequence; Vps: vacuolar protein sorting.
Collapse
Affiliation(s)
- Ayelén Valko
- Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sebastián Perez-Pandolfo
- Fundación Instituto Leloir, Buenos Aires, Argentina.,Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eleonora Sorianello
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.,Laboratorio De Regulación Hipofisaria, Instituto De Medicina Y Biología Experimental (Ibyme-conicet), Buenos Aires, Argentina
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Pablo Wappner
- Fundación Instituto Leloir, Buenos Aires, Argentina.,Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina
| | - Mariana Melani
- Fundación Instituto Leloir, Buenos Aires, Argentina.,Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Wat LW, Chowdhury ZS, Millington JW, Biswas P, Rideout EJ. Sex determination gene transformer regulates the male-female difference in Drosophila fat storage via the adipokinetic hormone pathway. eLife 2021; 10:e72350. [PMID: 34672260 PMCID: PMC8594944 DOI: 10.7554/elife.72350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Sex differences in whole-body fat storage exist in many species. For example, Drosophila females store more fat than males. Yet, the mechanisms underlying this sex difference in fat storage remain incompletely understood. Here, we identify a key role for sex determination gene transformer (tra) in regulating the male-female difference in fat storage. Normally, a functional Tra protein is present only in females, where it promotes female sexual development. We show that loss of Tra in females reduced whole-body fat storage, whereas gain of Tra in males augmented fat storage. Tra's role in promoting fat storage was largely due to its function in neurons, specifically the Adipokinetic hormone (Akh)-producing cells (APCs). Our analysis of Akh pathway regulation revealed a male bias in APC activity and Akh pathway function, where this sex-biased regulation influenced the sex difference in fat storage by limiting triglyceride accumulation in males. Importantly, Tra loss in females increased Akh pathway activity, and genetically manipulating the Akh pathway rescued Tra-dependent effects on fat storage. This identifies sex-specific regulation of Akh as one mechanism underlying the male-female difference in whole-body triglyceride levels, and provides important insight into the conserved mechanisms underlying sexual dimorphism in whole-body fat storage.
Collapse
Affiliation(s)
- Lianna W Wat
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Zahid S Chowdhury
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Jason W Millington
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| |
Collapse
|
18
|
Lebenzon JE, Torson AS, Sinclair BJ. Diapause differentially modulates the transcriptomes of fat body and flight muscle in the Colorado potato beetle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100906. [PMID: 34509173 DOI: 10.1016/j.cbd.2021.100906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/05/2021] [Accepted: 08/21/2021] [Indexed: 12/21/2022]
Abstract
Many temperate insects, such as the Colorado potato beetle, enter diapause in winter, during which they arrest their development, suppress their metabolic rate and have high stress tolerance. Diapause phenotypes can be transcriptionally regulated, however many studies to date report only whole animal gene expression rather than tissue-specific processes during diapause. We used RNA-seq to measure gene expression in fat body and flight muscle of diapausing and non-diapausing beetles. We used differential expression and GO enrichment analyses to evaluate longstanding hypotheses about the mechanisms that drive arrested development, changes in energy metabolism, and increased stress tolerance during diapause. We found evidence of G2/M cell cycle arrest, juvenile hormone catabolism, increased antioxidant metabolism, epigenetic modification, transposable element regulation, and cytoskeletal remodeling in both the fat body and flight muscle of diapausing beetles. Beetles differentially modulated the fat body and flight muscle transcriptomes during diapause with fat body playing a larger role in the hypoxia response and immunity, whereas flight muscle had higher abundance of transcripts related to the chaperone response and proteostasis. Our transcriptome provides evidence for distinct roles and responses of fat body and flight muscle during diapause in the Colorado potato beetle, and we provide testable hypotheses for biological processes that appear to drive diapause phenotypes in insects.
Collapse
Affiliation(s)
- Jacqueline E Lebenzon
- Department of Biology, University of Western Ontario, 1151 Richmond Street N, London, ON N6A 3K7, Canada.
| | - Alex S Torson
- Department of Biology, University of Western Ontario, 1151 Richmond Street N, London, ON N6A 3K7, Canada.
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, 1151 Richmond Street N, London, ON N6A 3K7, Canada.
| |
Collapse
|
19
|
Pathak H, Vijaykumar Maya A, Tanari AB, Sarkar S, Varghese J. Lint, a transmembrane serine protease, regulates growth and metabolism in Drosophila. Genetics 2021; 218:6163287. [PMID: 33693655 DOI: 10.1093/genetics/iyab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
Insulin signaling in Drosophila has a significant role in regulating growth, metabolism, fecundity, stress response, and longevity. The molecular mechanism by which insulin signaling regulates these vital processes is dependent on the nutrient status and oxygen availability of the organism. In a genetic screen to identify novel genes that regulate Drosophila insulin signaling, we discovered lumens interrupted (lint), a gene that has previously been shown to act in tracheal development. The knockdown of lint gene expression using a Dilp2Gal4 driver which expresses in the neuronal insulin producing cells (IPCs), led to defects in systemic insulin signaling, metabolic status and growth. However, our analysis of lint knockdown phenotypes revealed that downregulation of lint in the trachea and not IPCs was responsible for the growth phenotypes, as the Gal4 driver is also expressed in the tracheal system. We found various tracheal terminal branch defects, including reduction in the length as well as number of branches in the lint knockdown background. Our study reveals that substantial effects of lint downregulation arose because of tracheal defects, which induced tissue hypoxia, altered systemic insulin/TOR signaling, and resulted in effects on developmental growth regulation.
Collapse
Affiliation(s)
- Himani Pathak
- School of Biology, Indian Institute of Science Education and Research (IISER TVM), Maruthamala Post, Vithura, Thiruvananthapuram, Kerala 695551, India
| | | | - Abdul Basith Tanari
- Universite de Côte d'Azur, iBV-Institut de Biologie Valrose, Bat. Sciences Naturalles, Park Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Sohela Sarkar
- School of Biology, Indian Institute of Science Education and Research (IISER TVM), Maruthamala Post, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Jishy Varghese
- School of Biology, Indian Institute of Science Education and Research (IISER TVM), Maruthamala Post, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
20
|
Polan DM, Alansari M, Lee B, Grewal SS. Early-life hypoxia alters adult physiology and reduces stress resistance and lifespan in Drosophila. J Exp Biol 2020; 223:jeb226027. [PMID: 32988998 PMCID: PMC10668336 DOI: 10.1242/jeb.226027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/18/2020] [Indexed: 08/25/2023]
Abstract
In many animals, short-term fluctuations in environmental conditions in early life often exert long-term effects on adult physiology. In Drosophila, one ecologically relevant environmental variable is hypoxia. Drosophila larvae live on rotting, fermenting food rich in microorganisms, an environment characterized by low ambient oxygen. They have therefore evolved to tolerate hypoxia. Although the acute effects of hypoxia in larvae have been well studied, whether early-life hypoxia affects adult physiology and fitness is less clear. Here, we show that Drosophila exposed to hypoxia during their larval period subsequently show reduced starvation stress resistance and shorter lifespan as adults, with these effects being stronger in males. We find that these effects are associated with reduced whole-body insulin signaling but elevated TOR kinase activity, a manipulation known to reduce lifespan. We also identify a sexually dimorphic effect of larval hypoxia on adult nutrient storage and mobilization. Thus, we find that males, but not females, show elevated levels of lipids and glycogen. Moreover, we see that both males and females exposed to hypoxia as larvae show defective lipid mobilization upon starvation stress as adults. These data demonstrate how early-life hypoxia can exert persistent, sexually dimorphic, long-term effects on Drosophila adult physiology and lifespan.
Collapse
Affiliation(s)
- Danielle M Polan
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| | - Mohammed Alansari
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| | - Byoungchun Lee
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| | - Savraj S Grewal
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
21
|
Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 2020; 77:4523-4551. [PMID: 32448994 PMCID: PMC7599194 DOI: 10.1007/s00018-020-03547-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Organisms adapt to changing environments by adjusting their development, metabolism, and behavior to improve their chances of survival and reproduction. To achieve such flexibility, organisms must be able to sense and respond to changes in external environmental conditions and their internal state. Metabolic adaptation in response to altered nutrient availability is key to maintaining energy homeostasis and sustaining developmental growth. Furthermore, environmental variables exert major influences on growth and final adult body size in animals. This developmental plasticity depends on adaptive responses to internal state and external cues that are essential for developmental processes. Genetic studies have shown that the fruit fly Drosophila, similarly to mammals, regulates its metabolism, growth, and behavior in response to the environment through several key hormones including insulin, peptides with glucagon-like function, and steroid hormones. Here we review emerging evidence showing that various environmental cues and internal conditions are sensed in different organs that, via inter-organ communication, relay information to neuroendocrine centers that control insulin and steroid signaling. This review focuses on endocrine regulation of development, metabolism, and behavior in Drosophila, highlighting recent advances in the role of the neuroendocrine system as a signaling hub that integrates environmental inputs and drives adaptive responses.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Alvarez-Ochoa E, Froldi F, Cheng LY. Interorgan communication in development and cancer. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e394. [PMID: 32852143 DOI: 10.1002/wdev.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/22/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022]
Abstract
Studies in model organisms have demonstrated that extensive communication occurs between distant organs both during development and in diseases such as cancer. Organs communicate with each other to coordinate growth and reach the correct size, while the fate of tumor cells depend on the outcome of their interaction with the immune system and peripheral tissues. In this review, we outline recent studies in Drosophila, which have enabled an improved understanding of the complex crosstalk between organs in the context of both organismal and tumor growth. We argue that Drosophila is a powerful model organism for studying these interactions, and these studies have the potential for improving our understanding of signaling pathways and candidate factors that mediate this conserved interorgan crosstalk. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Development to the Basic Body Plan Invertebrate Organogenesis > Flies.
Collapse
Affiliation(s)
- Edel Alvarez-Ochoa
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Francesca Froldi
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,The Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Malison RL, DelVecchia AG, Woods HA, Hand BK, Luikart G, Stanford JA. Tolerance of aquifer stoneflies to repeated hypoxia exposure and oxygen dynamics in an alluvial aquifer. J Exp Biol 2020; 223:jeb225623. [PMID: 32616547 DOI: 10.1242/jeb.225623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/29/2020] [Indexed: 11/20/2022]
Abstract
Aquatic insects cope with hypoxia and anoxia using a variety of behavioral and physiological responses. Most stoneflies (Plecoptera) occur in highly oxygenated surface waters, but some species live underground in alluvial aquifers containing heterogeneous oxygen concentrations. Aquifer stoneflies appear to be supported by methane-derived food resources, which they may exploit using anoxia-resistant behaviors. We documented dissolved oxygen dynamics and collected stoneflies over 5 years in floodplain wells of the Flathead River, Montana. Hypoxia regularly occurred in two wells, and nymphs of Paraperla frontalis were collected during hypoxic periods. We measured mass-specific metabolic rates (MSMRs) at different oxygen concentrations (12, 8, 6, 4, 2, 0.5 mg l-1, and during recovery) for 111 stonefly nymphs to determine whether aquifer and benthic taxa differed in hypoxia tolerance. Metabolic rates of aquifer taxa were similar across oxygen concentrations spanning 2 to 12 mg l-1 (P>0.437), but the MSMRs of benthic taxa dropped significantly with declining oxygen (P<0.0001; 2.9-times lower at 2 vs. 12 mg l-1). Aquifer taxa tolerated short-term repeated exposure to extreme hypoxia surprisingly well (100% survival), but repeated longer-term (>12 h) exposures resulted in lower survival (38-91%) and lower MSMRs during recovery. Our work suggests that aquifer stoneflies have evolved a remarkable set of behavioral and physiological adaptations that allow them to exploit the unique food resources available in hypoxic zones. These adaptations help to explain how large-bodied consumers might thrive in the underground aquifers of diverse and productive river floodplains.
Collapse
Affiliation(s)
- Rachel L Malison
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - Amanda G DelVecchia
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - H Arthur Woods
- The University of Montana, Division of Biological Sciences, 32 Campus Drive, Missoula, MT 59812, USA
| | - Brian K Hand
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - Gordon Luikart
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - Jack A Stanford
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| |
Collapse
|
24
|
Baccino-Calace M, Prieto D, Cantera R, Egger B. Compartment and cell-type specific hypoxia responses in the developing Drosophila brain. Biol Open 2020; 9:9/8/bio053629. [PMID: 32816692 PMCID: PMC7449796 DOI: 10.1242/bio.053629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Environmental factors such as the availability of oxygen are instructive cues that regulate stem cell maintenance and differentiation. We used a genetically encoded biosensor to monitor the hypoxic state of neural cells in the larval brain of Drosophila. The biosensor reveals brain compartment and cell-type specific levels of hypoxia. The values correlate with differential tracheolation that is observed throughout development between the central brain and the optic lobe. Neural stem cells in both compartments show the strongest hypoxia response while intermediate progenitors, neurons and glial cells reveal weaker responses. We demonstrate that the distance between a cell and the next closest tracheole is a good predictor of the hypoxic state of that cell. Our study indicates that oxygen availability appears to be the major factor controlling the hypoxia response in the developing Drosophila brain and that cell intrinsic and cell-type specific factors contribute to modulate the response in an unexpected manner. This article has an associated First Person interview with the first author of the paper. Summary: A fluorescent biosensor reveals cell type specific hypoxia levels in the Drosophila brain in unprecedented detail. It paves the way for further functional studies addressing the role of oxygen in neural stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Martin Baccino-Calace
- Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Daniel Prieto
- Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Rafael Cantera
- Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.,Zoology Department, Stockholm University, Stockholm 106 91, Sweden
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| |
Collapse
|
25
|
Tolerance to Hypoxia Is Promoted by FOXO Regulation of the Innate Immunity Transcription Factor NF-κB/Relish in Drosophila. Genetics 2020; 215:1013-1025. [PMID: 32513813 DOI: 10.1534/genetics.120.303219] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure of tissues and organs to low oxygen (hypoxia) occurs in both physiological and pathological conditions in animals. Under these conditions, organisms have to adapt their physiology to ensure proper functioning and survival. Here, we define a role for the transcription factor Forkhead Box-O (FOXO) as a mediator of hypoxia tolerance in Drosophila We find that upon hypoxia exposure, FOXO transcriptional activity is rapidly induced in both larvae and adults. Moreover, we see that foxo mutant animals show misregulated glucose metabolism in low oxygen and subsequently exhibit reduced hypoxia survival. We identify the innate immune transcription factor, NF-κB/Relish, as a key FOXO target in the control of hypoxia tolerance. We find that expression of Relish and its target genes is increased in a FOXO-dependent manner in hypoxia, and that relish mutant animals show reduced survival in hypoxia. Together, these data indicate that FOXO is a hypoxia-inducible factor that mediates tolerance to low oxygen by inducing immune-like responses.
Collapse
|
26
|
Transcriptomic evidence that insulin signalling pathway regulates the ageing of subterranean termite castes. Sci Rep 2020; 10:8187. [PMID: 32424344 PMCID: PMC7235038 DOI: 10.1038/s41598-020-64890-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Insulin is a protein hormone that controls the metabolism of sugar, fat and protein via signal transduction in cells, influencing growth and developmental processes such as reproduction and ageing. From nematodes to fruit flies, rodents and other animals, glucose signalling mechanisms are highly conserved. Reproductive termites (queens and kings) exhibit an extraordinarily long lifespan relative to non-reproductive individuals such as workers, despite being generated from the same genome, thus providing a unique model for the investigation of longevity. The key reason for this molecular mechanism, however, remains unclear. To clarify the molecular mechanism underlying this phenomenon, we sequenced the transcriptomes of the primary kings (PKs), primary queens (PQs), male (WMs) and female (WFs) workers of the lower subterranean termite Reticulitermes chinensis. We performed RNA sequencing and identified 33 insulin signalling pathway-related genes in R. chinensis. RT-qPCR analyses revealed that EIF4E and RPS6 genes were highly expressed in WMs and WFs workers, while mTOR expression was lower in PKs and PQs than in WMs and WFs. PQs and PKs exhibited lower expression of akt2-a than female workers. As the highly conserved insulin signalling pathway can significantly prolong the healthspan and lifespan, so we infer that the insulin signalling pathway regulates ageing in the subterranean termite R. chinensis. Further studies are recommended to reveal the biological function of insulin signalling pathway-related genes in the survival of termites to provide new insights into biomolecular homeostasis maintenance and its relationship to remarkable longevity.
Collapse
|
27
|
Delanoue R, Romero NM. Growth and Maturation in Development: A Fly's Perspective. Int J Mol Sci 2020; 21:E1260. [PMID: 32070061 PMCID: PMC7072963 DOI: 10.3390/ijms21041260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
In mammals like humans, adult fitness is improved due to resource allocation, investing energy in the developmental growth process during the juvenile period, and in reproduction at the adult stage. Therefore, the attainment of their target body height/size co-occurs with the acquisition of maturation, implying a need for coordination between mechanisms that regulate organismal growth and maturation timing. Insects like Drosophila melanogaster also define their adult body size by the end of the juvenile larval period. Recent studies in the fly have shown evolutionary conservation of the regulatory pathways controlling growth and maturation, suggesting the existence of common coordinator mechanisms between them. In this review, we will present an overview of the significant advancements in the coordination mechanisms ensuring developmental robustness in Drosophila. We will include (i) the characterization of feedback mechanisms between maturation and growth hormones, (ii) the recognition of a relaxin-like peptide Dilp8 as a central processor coordinating juvenile regeneration and time of maturation, and (iii) the identification of a novel coordinator mechanism involving the AstA/KISS system.
Collapse
Affiliation(s)
- Renald Delanoue
- University Côte d’Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Nuria M. Romero
- University Côte d’Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
- Universitey Côte d’Azur, INRA, CNRS, Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| |
Collapse
|
28
|
Jarc E, Petan T. Lipid Droplets and the Management of Cellular Stress. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:435-452. [PMID: 31543707 PMCID: PMC6747940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Lipid droplets are cytosolic fat storage organelles present in most eukaryotic cells. Long regarded merely as inert fat reservoirs, they are now emerging as major regulators of cellular metabolism. They act as hubs that coordinate the pathways of lipid uptake, distribution, storage, and use in the cell. Recent studies have revealed that they are also essential components of the cellular stress response. One of the hallmark characteristics of lipid droplets is their capacity to buffer excess lipids and to finely tune their subsequent release based on specific cellular requirements. This simple feature of lipid droplet biology, buffering and delayed release of lipids, forms the basis for their pleiotropic roles in the cellular stress response. In stressed cells, lipid droplets maintain energy and redox homeostasis and protect against lipotoxicity by sequestering toxic lipids into their neutral lipid core. Their mobility and dynamic interactions with mitochondria enable an efficient delivery of fatty acids for optimal energy production. Lipid droplets are also involved in the maintenance of membrane and organelle homeostasis by regulating membrane composition, preventing lipid peroxidation and removing damaged proteins and lipids. Finally, they also engage in a symbiotic relationship with autophagy and act as reservoirs of bioactive lipids that regulate inflammation and immunity. Thus, lipid droplets are central managers of lipid metabolism that function as safeguards against various types of cellular stress.
Collapse
Affiliation(s)
- Eva Jarc
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia,To whom all correspondence should be addressed: Toni Petan, Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Tel: +386 1 477 3713, Fax: +386 1 477 3984,
| |
Collapse
|