1
|
Esmaeili H, Zhang Y, Ravi K, Neff K, Zhu W, Migrino RQ, Park JG, Nikkhah M. Development of an electroconductive Heart-on-a-chip model to investigate cellular and molecular response of human cardiac tissue to gold nanomaterials. Biomaterials 2025; 320:123275. [PMID: 40138961 DOI: 10.1016/j.biomaterials.2025.123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/16/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
To date, various strategies have been developed to construct biomimetic and functional in vitro cardiac tissue models utilizing human induced pluripotent stem cells (hiPSCs). Among these approaches, microfluidic-based Heart-on-a-chip (HOC) models are promising, as they enable the engineering of miniaturized, physiologically relevant in vitro cardiac tissues with precise control over cellular constituents and tissue architecture. Despite significant advancements, previously reported HOC models often lack the electroconductivity features of the native human myocardium. In this study, we developed a 3D electroconductive HOC (referred to as eHOC) model through the co-culture of isogenic hiPSC-derived cardiomyocytes (hiCMs) and cardiac fibroblasts (hiCFs), embedded within an electroconductive hydrogel scaffold in a microfluidic-based chip system. Functional and gene expression analyses demonstrated that, compared to non-conductive HOC, the eHOC model exhibited enhanced contractile functionality, improved calcium transients, and increased expression of structural and calcium handling genes. The eHOC model was further leveraged to investigate the underlying electroconduction-induced pathway(s) associated with cardiac tissue development through single-cell RNA sequencing (scRNA-seq). Notably, scRNA-seq analyses revealed a significant downregulation of a set of cardiac genes, associated with the fetal stage of heart development, as well as upregulation of sarcomere- and conduction-related genes within the eHOC model. Additionally, upregulation of the cardiac muscle contraction and motor protein pathways were observed in the eHOC model, consistent with enhanced contractile functionality of the engineered cardiac tissues. Comparison of scRNA-seq data from the 3D eHOC model with published datasets of adult human hearts demonstrated a similar expression pattern of fetal- and adult-like cardiac genes. Overall, this study provides a unique eHOC model with improved biomimcry and organotypic features, which could be potentially used for drug testing and discovery, as well as disease modeling applications.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Kalpana Ravi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Keagan Neff
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, 85022, USA; University of Arizona College of Medicine, Phoenix, AZ, 85004, USA
| | - Jin G Park
- Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnosis, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
2
|
Hoffmann S, Seeger T. Advances in human induced pluripotent stem cell (hiPSC)-based disease modelling in cardiogenetics. MED GENET-BERLIN 2025; 37:137-146. [PMID: 40207041 PMCID: PMC11976404 DOI: 10.1515/medgen-2025-2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-based disease modelling has significantly advanced the field of cardiogenetics, providing a precise, patient-specific platform for studying genetic causes of heart diseases. Coupled with genome editing technologies such as CRISPR/Cas, hiPSC-based models not only allow the creation of isogenic lines to study mutation-specific cardiac phenotypes, but also enable the targeted modulation of gene expression to explore the effects of genetic and epigenetic deficits at the cellular and molecular level. hiPSC-based models of heart disease range from two-dimensional cultures of hiPSC-derived cardiovascular cell types, such as various cardiomyocyte subtypes, endothelial cells, pericytes, vascular smooth muscle cells, cardiac fibroblasts, immune cells, etc., to cardiac tissue cultures including organoids, microtissues, engineered heart tissues, and microphysiological systems. These models are further enhanced by multi-omics approaches, integrating genomic, transcriptomic, epigenomic, proteomic, and metabolomic data to provide a comprehensive view of disease mechanisms. In particular, advances in cardiovascular tissue engineering enable the development of more physiologically relevant systems that recapitulate native heart architecture and function, allowing for more accurate modelling of cardiac disease, drug screening, and toxicity testing, with the overall goal of personalised medical approaches, where therapies can be tailored to individual genetic profiles. Despite significant progress, challenges remain in the maturation of hiPSC-derived cardiomyocytes and the complexity of reproducing adult heart conditions. Here, we provide a concise update on the most advanced methods of hiPSC-based disease modelling in cardiogenetics, with a focus on genome editing and cardiac tissue engineering.
Collapse
Affiliation(s)
- Sandra Hoffmann
- University Hospital HeidelbergInstitute of Human GeneticsHeidelbergGermany
| | | |
Collapse
|
3
|
Laskary AR, Hudson JE, Porrello ER. Designing multicellular cardiac tissue engineering technologies for clinical translation. Semin Cell Dev Biol 2025; 171:103612. [PMID: 40306230 DOI: 10.1016/j.semcdb.2025.103612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/31/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide-claiming one-third of all deaths every year. Current two-dimensional in vitro cell culture systems and animal models cannot completely recapitulate the clinical complexity of these diseases in humans. Therefore, there is a dire need for higher fidelity biological systems capable of replicating these phenotypes to inform clinical outcomes and therapeutic development. Cardiac tissue engineering (CTE) strategies have emerged to fulfill this need by the design of in vitro three-dimensional myocardial tissue systems from human pluripotent stem cells. In this way, CTE systems serve as highly controllable human models for a variety of applications-including for physiological and pathological modeling, drug discovery and preclinical testing platforms, and even direct therapeutic interventions in the clinic. Although significant progress has been made in the development of these CTE technologies, critical challenges remain and necessary refinements are required to derive more advanced human heart tissue technologies. In this review, we distill three focus areas for the field to address: I) Generating cardiac muscle cell types and scalable manufacturing methods, II) Engineering tissue structure, function, and analyses, and III) Curating system design for specific application. In each of our focus areas, we emphasize the importance of designing CTE systems capable of mimicking the intricate intercellular connectivity of the human heart and discuss fundamental design considerations that subsequently arise. We conclude by highlighting cutting-edge applications that use CTE technologies for clinical modeling and the direct repair of damaged and diseased hearts.
Collapse
Affiliation(s)
- Andrew R Laskary
- QIMR Berghofer, Brisbane, Queensland, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; UQ Medicine, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | - James E Hudson
- QIMR Berghofer, Brisbane, Queensland, Australia; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Victoria, Australia; Department of Anatomy & Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Zhang F, Evans T. Stage-specific DNA methylation dynamics in mammalian heart development. Epigenomics 2025; 17:359-371. [PMID: 39980349 PMCID: PMC11970762 DOI: 10.1080/17501911.2025.2467024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Cardiac development is a precisely regulated process governed by both genetic and epigenetic mechanisms. Among these, DNA methylation is one mode of epigenetic regulation that plays a crucial role in controlling gene expression at various stages of heart development and maturation. Understanding stage-specific DNA methylation dynamics is critical for unraveling the molecular processes underlying heart development from specification of early progenitors, formation of a primitive and growing heart tube from heart fields, heart morphogenesis, organ function, and response to developmental and physiological signals. This review highlights research that has explored profiles of DNA methylation that are highly dynamic during cardiac development and maturation, exploring stage-specific roles and the key molecular players involved. By exploring recent insights into the changing methylation landscape, we aim to highlight the complex interplay between DNA methylation and stage-specific cardiac gene expression, differentiation, and maturation.
Collapse
Affiliation(s)
- Fangfang Zhang
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
5
|
Piñeiro-Llanes J, Suzuki-Hatano S, Jain A, Venigalla S, Kamat M, Basso KB, Cade WT, Simmons CS, Pacak CA. Rescue of mitochondrial dysfunction through alteration of extracellular matrix composition in barth syndrome cardiac fibroblasts. Biomaterials 2025; 315:122922. [PMID: 39509858 PMCID: PMC11625619 DOI: 10.1016/j.biomaterials.2024.122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Fibroblast-ECM (dys)regulation is associated with a plethora of diseases. The ECM acts as a reservoir of inflammatory factors and cytokines that mediate molecular mechanisms within cardiac cell populations. The role of ECM-mitochondria crosstalk in the development and progression of cardiac disorders remains uncertain. We evaluated the influence of ECM produced by stromal cells from patients with the mitochondrial cardiomyopathy (Barth syndrome, BTHS) and unaffected healthy controls on cardiac fibroblast (CF) metabolic function. To do this, cell-derived matrices CDMs were generated from BTHS and healthy human pluripotent stem cell-derived CFs (hPSC-CF) and used as cell culture substrates. BTHS CDMs negatively impacted the mitochondrial function of healthy hPSC-CFs while healthy CDMs improved mitochondrial function in BTHS hPSC-CFs. Mass spectrometry comparisons identified 5 matrisome proteins differentially expressed in BTHS compared to healthy CDM. Our results highlight a key role for the ECM in disease through its impact on mitochondrial function.
Collapse
Affiliation(s)
- Janny Piñeiro-Llanes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Silveli Suzuki-Hatano
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Ananya Jain
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Sree Venigalla
- Department of Neurology and Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, 55455, USA.
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - William T Cade
- Doctor of Physical Therapy Division, Duke University, Durham, NC, 27710, USA.
| | - Chelsey S Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA; Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Department of Neurology and Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, 55455, USA.
| |
Collapse
|
6
|
Kuckelkorn C, Aksoy E, Stojanovic N, Oulahyane L, Ritter M, Pfannkuche K, Fischer H. Engineered In Vitro Multi-Cell Type Ventricle Model Generates Long-Term Pulsatile Flow and Modulates Cardiac Output in Response to Cardioactive Drugs. Adv Healthc Mater 2025; 14:e2403897. [PMID: 39943918 PMCID: PMC12004430 DOI: 10.1002/adhm.202403897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/31/2025] [Indexed: 04/18/2025]
Abstract
Cardiac in vitro models serve as promising platforms for physiological and pathological studies, drug testing, and regenerative medicine. This study hypothesizes that immobilizing cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs) on a biofunctionalized, hemispherical membrane can generate pulsatile flow through synchronized contractions, thus offering as an in vitro left ventricle model. To test this, a ventricle using a polydimethylsiloxane (PDMS) membrane coated with polydopamine and laminin 511 E8 fragments is engineered. Human iPSC-CMs are cultured on these membranes, alone or in co-culture with cardiac fibroblasts or endothelial cells, for 28 and 14 days, respectively, in a newly developed bioreactor. Flow measurements track beating and flow generation, while drug response, cardiac gene expression, and cell morphology are analyzed. The engineered ventricles maintain continuous beating and flow, achieving a theoretical cardiac output of up to 4 µL min-1 over 28 days, indicating stable cell adhesion and synchronized contraction. Cardiomyocytes respond to cardioactive drugs (carbachol, isoproterenol) and show expected changes in heart rate and cardiac output. In conclusion, the results demonstrate that the proposed engineered ventricle can serve as an in vitro left ventricle model by supporting cardiomyocyte culture and differentiation, generating long-term stable flow, and responding physiologically to cardioactive drugs.
Collapse
Affiliation(s)
- Christoph Kuckelkorn
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Ebru Aksoy
- Center for Physiology and PathophysiologyInstitute for NeurophysiologyUniversity and University Hospital of CologneRobert Koch Str. 3950931CologneGermany
| | - Natalija Stojanovic
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Laila Oulahyane
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Mira Ritter
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Kurt Pfannkuche
- Center for Physiology and PathophysiologyInstitute for NeurophysiologyUniversity and University Hospital of CologneRobert Koch Str. 3950931CologneGermany
- Center for Molecular Medicine Cologne (CMMC)50931CologneGermany
- Marga‐and‐Walter‐Boll‐Laboratory for Cardiac Tissue Engineering50931CologneGermany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| |
Collapse
|
7
|
Jin L, Hwang B, Rezapourdamanab S, Sridhar V, Nandwani R, Amoli MS, Serpooshan V. Bioengineering Approaches to In Vitro Modeling of Genetic and Acquired Cardiac Diseases. Curr Cardiol Rep 2025; 27:72. [PMID: 40111543 PMCID: PMC11926001 DOI: 10.1007/s11886-025-02218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW This review aims to explore recent advancements in bioengineering approaches used in developing and testing in vitro cardiac disease models. It seeks to find out how these tools can address the limitations of traditional in vitro models and be applied to improve our understanding of cardiac disease mechanisms, facilitate preclinical drug screening, and equip the development of personalized therapeutics. RECENT FINDINGS Human induced pluripotent stem cells have enabled the generation of diverse cardiac cell types and patient-specific models. Techniques like 3D tissue engineering, heart-on-a-chip platforms, biomechanical conditioning, and CRISPR-based gene editing have enabled faithful recreation of complex cardiac microenvironments and disease conditions. These models have advanced the study of both genetic and acquired cardiac disorders. Bioengineered in vitro models are transforming the basic science and clinical research in cardiovascular disease by improving the biomimicry and complexity of tissue analogues, increasing throughput and reproducibility of screening platforms, as well as offering patient and disease specificity. Despite challenges in scalability and functional maturity, integrating multiple bioengineering techniques with advanced analytical tools in in vitro modeling platforms holds promise for future precision and personalized medicine and therapeutic innovations.
Collapse
Affiliation(s)
- Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Sarah Rezapourdamanab
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Vani Sridhar
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Roshni Nandwani
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Mehdi Salar Amoli
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Children's Healthcare of Atlanta, 1075 Haygood Dr., Suite N425, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
Guragain B, Zhang H, Wu Y, Wang Y, Wei Y, Wood GA, Ye L, Walcott GP, Zhang J, Rogers JM. Optogenetic stimulation and simultaneous optical mapping of membrane potential and calcium transients in human engineered cardiac spheroids. J Mol Cell Cardiol 2025; 199:51-59. [PMID: 39674364 PMCID: PMC11788028 DOI: 10.1016/j.yjmcc.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Optogenetic stimulation combined with optical mapping of membrane potential (Vm) and calcium transients (CaT) is a powerful electrophysiological tool. We developed a novel experimental platform in which tissue is stimulated optogenetically while Vm and CaT are imaged simultaneously. The Vm indicator is an organic dye, while the CaT indicator is genetically encoded. We used cardiac spheroids containing cardiomyocytes and fibroblasts differentiated from human induced pluripotent stem cells as model tissue. The spheroids were genetically encoded with an optogenetic actuator, CheRiff, and the calcium indicator jRCaMP1b. The Vm indicator was the organic dye RH237. CheRiff was excited using blue light (450 nm), and both RH237 and jRCaMP1b were excited using a single band of green light (either 525-575 nm or 558-575 nm). Fluorescence emission was split and imaged by two cameras (CaT: 595-665 nm; Vm: >700 nm). The spheroids were successfully stimulated optogenetically and Vm and CaT were recorded simultaneously without cross-talk using both excitation light bands. The 525-575 nm band produced higher signal-to-noise ratios than the 558-575 nm band, but caused a slight increase in tissue excitability because of CheRiff activation. The optogenetic actuator and CaT indicator are genetically encoded and can be expressed in engineered tissue constructs. In contrast, the Vm indicator is an organic dye that can stain any tissue. This system is well-suited for studying coupling between engineered tissue grafts and host tissue because the two tissue types can be stimulated independently, and tissue activation can be unambiguously attributed to either graft or host.
Collapse
Affiliation(s)
- Bijay Guragain
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Hanyu Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Yalin Wu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Yongyu Wang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Garrett A Wood
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Gregory P Walcott
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America; Department of Medicine/Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America; Department of Medicine/Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Jack M Rogers
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America.
| |
Collapse
|
9
|
Yildirim Z, Swanson K, Wu X, Zou J, Wu J. Next-Gen Therapeutics: Pioneering Drug Discovery with iPSCs, Genomics, AI, and Clinical Trials in a Dish. Annu Rev Pharmacol Toxicol 2025; 65:71-90. [PMID: 39284102 PMCID: PMC12011342 DOI: 10.1146/annurev-pharmtox-022724-095035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In the high-stakes arena of drug discovery, the journey from bench to bedside is hindered by a daunting 92% failure rate, primarily due to unpredicted toxicities and inadequate therapeutic efficacy in clinical trials. The FDA Modernization Act 2.0 heralds a transformative approach, advocating for the integration of alternative methods to conventional animal testing, including cell-based assays that employ human induced pluripotent stem cell (iPSC)-derived organoids, and organ-on-a-chip technologies, in conjunction with sophisticated artificial intelligence (AI) methodologies. Our review explores the innovative capacity of iPSC-derived clinical trial in a dish models designed for cardiovascular disease research. We also highlight how integrating iPSC technology with AI can accelerate the identification of viable therapeutic candidates, streamline drug screening, and pave the way toward more personalized medicine. Through this, we provide a comprehensive overview of the current landscape and future implications of iPSC and AI applications being navigated by the research community and pharmaceutical industry.
Collapse
Affiliation(s)
- Zehra Yildirim
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| | - Kyle Swanson
- Greenstone Biosciences, Palo Alto, California, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Xuekun Wu
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| | - James Zou
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Joseph Wu
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
10
|
Nagalingam RS, Jayousi F, Hamledari H, Dababneh S, Hosseini D, Lindsay C, Klein Geltink R, Lange PF, Dixon IM, Rose RA, Czubryt MP, Tibbits GF. Molecular and metabolomic characterization of hiPSC-derived cardiac fibroblasts transitioning to myofibroblasts. Front Cell Dev Biol 2024; 12:1496884. [PMID: 39698493 PMCID: PMC11653212 DOI: 10.3389/fcell.2024.1496884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Background Mechanical stress and pathological signaling trigger the activation of fibroblasts to myofibroblasts, which impacts extracellular matrix composition, disrupts normal wound healing, and can generate deleterious fibrosis. Myocardial fibrosis independently promotes cardiac arrhythmias, sudden cardiac arrest, and contributes to the severity of heart failure. Fibrosis can also alter cell-to-cell communication and increase myocardial stiffness which eventually may lead to lusitropic and inotropic cardiac dysfunction. Human induced pluripotent stem cell derived cardiac fibroblasts (hiPSC-CFs) have the potential to enhance clinical relevance in precision disease modeling by facilitating the study of patient-specific phenotypes. However, it is unclear whether hiPSC-CFs can be activated to become myofibroblasts akin to primary cells, and the key signaling mechanisms in this process remain unidentified. Objective We aim to explore the notable changes in fibroblast phenotype upon passage-mediated activation of hiPSC-CFs with increased mitochondrial metabolism, like primary cardiac fibroblasts. Methods We activated the hiPSC-CFs with serial passaging from passage 0 to 3 (P0 to P3) and treatment of P0 with TGFβ1. Results Passage-mediated activation of hiPSC-CFs was associated with a gradual induction of genes to initiate the activation of these cells to myofibroblasts, including collagen, periostin, fibronectin, and collagen fiber processing enzymes with concomitant downregulation of cellular proliferation markers. Most importantly, canonical TGFβ1 and Hippo signaling component genes including TAZ were influenced by passaging hiPSC-CFs. Seahorse assay revealed that passaging and TGFβ1 treatment increased mitochondrial respiration, consistent with fibroblast activation requiring increased energy production, whereas treatment with the glutaminolysis inhibitor BPTES completely attenuated this process. Conclusion Our study highlights that the hiPSC-CF passaging enhanced fibroblast activation, activated fibrotic signaling pathways, and enhanced mitochondrial metabolism approximating what has been reported in primary cardiac fibroblasts. Thus, hiPSC-CFs may provide an accurate in vitro preclinical model for the cardiac fibrotic condition, which may facilitate the identification of putative anti-fibrotic therapies, including patient-specific approaches.
Collapse
Affiliation(s)
- Raghu Sundaresan Nagalingam
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Farah Jayousi
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Homa Hamledari
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dina Hosseini
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Chloe Lindsay
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Ramon Klein Geltink
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Philipp F. Lange
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ian Michael Dixon
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Robert Alan Rose
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Michael Paul Czubryt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Glen Findlay Tibbits
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Chuang CY, Wang BW, Yu YJ, Fang WJ, Lin CM, Shyu KG, Chua SK. Exosomal MALAT1 from Rapid Electrical Stimulation-Treated Atrial Fibroblasts Enhances Sox-6 Expression by Downregulating miR-499a-5p. Cells 2024; 13:1942. [PMID: 39682691 PMCID: PMC11640216 DOI: 10.3390/cells13231942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is a common cardiac arrhythmia associated with significant morbidity and mortality. Rapid electrical stimulation (RES) of atrial fibroblasts plays a crucial role in AF pathogenesis, but the underlying molecular mechanisms remain unclear. This study investigates the regulatory axis involving MALAT1, miR-499a-5p, and SOX6 in human cardiac fibroblasts from adult atria (HCF-aa) under RES conditions. METHODS HCF-aa were subjected to RES at 0.5 V/cm and 10 Hz. The expression levels of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), miR-499a-5p, and SRY-Box Transcription Factor 6 (SOX6) were measured using qPCR and Western blot analyses. Luciferase reporter assays were performed to confirm target relationships. The effects of MALAT1 siRNA, miR-499a-5p mimics/inhibitors, and SOX6 overexpression on gene expression and apoptosis were assessed. RESULTS RES increased exosomal MALAT1 expression, peaking at 2 h. MiR-499a-5p levels initially increased, then decreased at 2 h, coinciding with peak MALAT1 expression. SOX6 mRNA and protein levels increased, peaking at 4 and 6 h, respectively. Luciferase assays confirmed MALAT1 and SOX6 as miR-499a-5p targets. MALAT1 knockdown increased miR-499a-5p levels and reduced SOX6 expression. MiR-499a-5p overexpression decreased SOX6 levels and inhibited RES-induced apoptosis. CONCLUSION In HCF-aa under RES, increased exosomal MALAT1 expression counteracts miR-499-5p's suppression of SOX6, suggesting that MALAT1-containing exsosomes derived from HCF-aa may offer a novel cell-free therapeutic approach for AF.
Collapse
Affiliation(s)
- Cheng-Yen Chuang
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan; (C.-Y.C.); (B.-W.W.); (Y.-J.Y.); (W.-J.F.); (C.-M.L.); (K.-G.S.)
| | - Bao-Wei Wang
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan; (C.-Y.C.); (B.-W.W.); (Y.-J.Y.); (W.-J.F.); (C.-M.L.); (K.-G.S.)
| | - Ying-Ju Yu
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan; (C.-Y.C.); (B.-W.W.); (Y.-J.Y.); (W.-J.F.); (C.-M.L.); (K.-G.S.)
| | - Wei-Jen Fang
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan; (C.-Y.C.); (B.-W.W.); (Y.-J.Y.); (W.-J.F.); (C.-M.L.); (K.-G.S.)
| | - Chiu-Mei Lin
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan; (C.-Y.C.); (B.-W.W.); (Y.-J.Y.); (W.-J.F.); (C.-M.L.); (K.-G.S.)
- Department of Emergency Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Kou-Gi Shyu
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan; (C.-Y.C.); (B.-W.W.); (Y.-J.Y.); (W.-J.F.); (C.-M.L.); (K.-G.S.)
| | - Su-Kiat Chua
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan; (C.-Y.C.); (B.-W.W.); (Y.-J.Y.); (W.-J.F.); (C.-M.L.); (K.-G.S.)
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| |
Collapse
|
12
|
Alexanian M, Padmanabhan A, Nishino T, Travers JG, Ye L, Pelonero A, Lee CY, Sadagopan N, Huang Y, Auclair K, Zhu A, An Y, Ekstrand CA, Martinez C, Teran BG, Flanigan WR, Kim CKS, Lumbao-Conradson K, Gardner Z, Li L, Costa MW, Jain R, Charo I, Combes AJ, Haldar SM, Pollard KS, Vagnozzi RJ, McKinsey TA, Przytycki PF, Srivastava D. Chromatin remodelling drives immune cell-fibroblast communication in heart failure. Nature 2024; 635:434-443. [PMID: 39443808 PMCID: PMC11698514 DOI: 10.1038/s41586-024-08085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Chronic inflammation and tissue fibrosis are common responses that worsen organ function, yet the molecular mechanisms governing their cross-talk are poorly understood. In diseased organs, stress-induced gene expression changes fuel maladaptive cell state transitions1 and pathological interaction between cellular compartments. Although chronic fibroblast activation worsens dysfunction in the lungs, liver, kidneys and heart, and exacerbates many cancers2, the stress-sensing mechanisms initiating transcriptional activation of fibroblasts are poorly understood. Here we show that conditional deletion of the transcriptional co-activator Brd4 in infiltrating Cx3cr1+ macrophages ameliorates heart failure in mice and significantly reduces fibroblast activation. Analysis of single-cell chromatin accessibility and BRD4 occupancy in vivo in Cx3cr1+ cells identified a large enhancer proximal to interleukin-1β (IL-1β, encoded by Il1b), and a series of CRISPR-based deletions revealed the precise stress-dependent regulatory element that controls Il1b expression. Secreted IL-1β activated a fibroblast RELA-dependent (also known as p65) enhancer near the transcription factor MEOX1, resulting in a profibrotic response in human cardiac fibroblasts. In vivo, antibody-mediated IL-1β neutralization improved cardiac function and tissue fibrosis in heart failure. Systemic IL-1β inhibition or targeted Il1b deletion in Cx3cr1+ cells prevented stress-induced Meox1 expression and fibroblast activation. The elucidation of BRD4-dependent cross-talk between a specific immune cell subset and fibroblasts through IL-1β reveals how inflammation drives profibrotic cell states and supports strategies that modulate this process in heart disease and other chronic inflammatory disorders featuring tissue remodelling.
Collapse
Affiliation(s)
- Michael Alexanian
- Gladstone Institutes, San Francisco, CA, USA.
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA.
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| | - Arun Padmanabhan
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Tomohiro Nishino
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Joshua G Travers
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lin Ye
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Angelo Pelonero
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Clara Youngna Lee
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Nandhini Sadagopan
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Kirsten Auclair
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Ada Zhu
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Yuqian An
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Christina A Ekstrand
- CoLabs initiative, University of California, San Francisco, CA, USA
- ImmunoX initiative, University of California, San Francisco, CA, USA
| | - Cassandra Martinez
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Barbara Gonzalez Teran
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Will R Flanigan
- Gladstone Institutes, San Francisco, CA, USA
- UC Berkeley-UCSF Joint Program in Bioengineering, Berkeley, CA, USA
| | - Charis Kee-Seon Kim
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Koya Lumbao-Conradson
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary Gardner
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Li
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mauro W Costa
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Rajan Jain
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Alexis J Combes
- CoLabs initiative, University of California, San Francisco, CA, USA
- ImmunoX initiative, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Saptarsi M Haldar
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Amgen Research, Cardiometabolic Disorders, South San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
- Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Ronald J Vagnozzi
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pawel F Przytycki
- Gladstone Institutes, San Francisco, CA, USA
- Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Niro F, Fernandes S, Cassani M, Apostolico M, Oliver-De La Cruz J, Pereira-Sousa D, Pagliari S, Vinarsky V, Zdráhal Z, Potesil D, Pustka V, Pompilio G, Sommariva E, Rovina D, Maione AS, Bersanini L, Becker M, Rasponi M, Forte G. Fibrotic extracellular matrix impacts cardiomyocyte phenotype and function in an iPSC-derived isogenic model of cardiac fibrosis. Transl Res 2024; 273:58-77. [PMID: 39025226 PMCID: PMC11832458 DOI: 10.1016/j.trsl.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. Here, we devised a single-step decellularization protocol to obtain and thoroughly characterize the biochemical and micro-mechanical properties of the ECM secreted by activated cFbs differentiated from human induced pluripotent stem cells (iPSCs). We activated iPSC-derived cFbs to the myofibroblast phenotype by tuning basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-β1) signalling and confirmed that activated cells acquired key features of myofibroblast phenotype, like SMAD2/3 nuclear shuttling, the formation of aligned alpha-smooth muscle actin (α-SMA)-rich stress fibres and increased focal adhesions (FAs) assembly. Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts in vitro. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.
Collapse
Affiliation(s)
- Francesco Niro
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; Masaryk University, Faculty of Medicine, Department of Biomedical Sciences, Brno 62500, Czech Republic; School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, UK
| | - Soraia Fernandes
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno
| | - Marco Cassani
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno
| | - Monica Apostolico
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno
| | - Jorge Oliver-De La Cruz
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Daniel Pereira-Sousa
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; Masaryk University, Faculty of Medicine, Department of Biomedical Sciences, Brno 62500, Czech Republic
| | - Stefania Pagliari
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, UK
| | - Vladimir Vinarsky
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Vaclav Pustka
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy; Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Davide Rovina
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Angela Serena Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | | | | | - Marco Rasponi
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, UK.
| |
Collapse
|
14
|
Khalil NN, Rexius-Hall ML, Gupta D, McCarthy L, Verma R, Kellogg AC, Takamoto K, Xu M, Nejatpoor T, Parker SJ, McCain ML. Hypoxic-Normoxic Crosstalk Activates Pro-Inflammatory Signaling in Human Cardiac Fibroblasts and Myocytes in a Post-Infarct Myocardium on a Chip. Adv Healthc Mater 2024; 13:e2401478. [PMID: 39001626 PMCID: PMC11560646 DOI: 10.1002/adhm.202401478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Indexed: 08/06/2024]
Abstract
Myocardial infarctions locally deprive myocardium of oxygenated blood and cause immediate cardiac myocyte necrosis. Irreparable myocardium is then replaced with a scar through a dynamic repair process that is an interplay between hypoxic cells of the infarct zone and normoxic cells of adjacent healthy myocardium. In many cases, unresolved inflammation or fibrosis occurs for reasons that are incompletely understood, increasing the risk of heart failure. Crosstalk between hypoxic and normoxic cardiac cells is hypothesized to regulate mechanisms of repair after a myocardial infarction. To test this hypothesis, microfluidic devices are fabricated on 3D printed templates for co-culturing hypoxic and normoxic cardiac cells. This system demonstrates that hypoxia drives human cardiac fibroblasts toward glycolysis and a pro-fibrotic phenotype, similar to the anti-inflammatory phase of wound healing. Co-culture with normoxic fibroblasts uniquely upregulates pro-inflammatory signaling in hypoxic fibroblasts, including increased secretion of tumor necrosis factor alpha (TNF-α). In co-culture with hypoxic fibroblasts, normoxic human induced pluripotent stem cell (hiPSC)-derived cardiac myocytes also increase pro-inflammatory signaling, including upregulation of interleukin 6 (IL-6) family signaling pathway and increased expression of IL-6 receptor. Together, these data suggest that crosstalk between hypoxic fibroblasts and normoxic cardiac cells uniquely activates phenotypes that resemble the initial pro-inflammatory phase of post-infarct wound healing.
Collapse
Affiliation(s)
- Natalie N Khalil
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Megan L Rexius-Hall
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Divya Gupta
- Department of Biomedical Sciences and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Liam McCarthy
- Department of Biomedical Sciences and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Riya Verma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Austin C Kellogg
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kaelyn Takamoto
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Maryann Xu
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tiana Nejatpoor
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sarah J Parker
- Department of Biomedical Sciences and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Megan L McCain
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
15
|
Turner DGP, De Lange WJ, Zhu Y, Coe CL, Simcox J, Ge Y, Kamp TJ, Ralphe JC, Glukhov AV. Neutral sphingomyelinase regulates mechanotransduction in human engineered cardiac tissues and mouse hearts. J Physiol 2024; 602:4387-4407. [PMID: 37889115 PMCID: PMC11052922 DOI: 10.1113/jp284807] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in the USA and is known to be exacerbated by elevated mechanical stress from hypertension. Caveolae are plasma membrane structures that buffer mechanical stress but have been found to be reduced in pathological conditions associated with chronically stretched myocardium. To explore the physiological implications of the loss of caveolae, we used human engineered cardiac tissue (ECT) constructs, composed of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and hiPSC-derived cardiac fibroblasts, to develop a long-term cyclic stretch protocol that recapitulates the effects of hypertension on caveolae expression, membrane tension, and the β-adrenergic response. Leveraging this new stretch protocol, we identified neutral sphingomyelinases (nSMase) as mechanoregulated mediators of caveolae loss, ceramide production and the blunted β-adrenergic response in this human cardiac model. Specifically, in our ECT model, nSMase inhibition via GW4869 prevented stretch-induced loss of caveolae-like structures, mitigated nSMase-dependent ceramide production, and maintained the ECT contractile kinetic response to isoprenaline. These findings are correlated with a blood lipidomic analysis in middle-aged and older adults, which revealed an increase of the circulating levels of ceramides in adults with hypertension. Furthermore, we found that conduction slowing from increased pressure loading in mouse left ventricle was abolished in the context of nSMase inhibition. Collectively, these findings identify nSMase as a potent drug target for mitigating stretch-induced effects on cardiac function. KEY POINTS: We have developed a new stretch protocol for human engineered cardiac tissue that recapitulates changes in plasma membrane morphology observed in animal models of pressure/volume overload. Stretch of engineered cardiac tissue induces activation of neutral sphingomyelinase (nSMase), generation of ceramide, and disassembly of caveolae. Activation of nSMase blunts cardiac β-adrenergic contractile kinetics and mediates stretch-induced slowing of conduction and upstroke velocity. Circulating ceramides are increased in adults with hypertension, highlighting the clinical relevance of stretch-induced nSMase activity.
Collapse
Affiliation(s)
- Daniel G P Turner
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Willem J De Lange
- Department of Pediatrics, Pediatric Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yanlong Zhu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Ge
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy J Kamp
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - J Carter Ralphe
- Department of Pediatrics, Pediatric Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Manhas A, Tripathi D, Thomas D, Sayed N. Cardiovascular Toxicity in Cancer Therapy: Protecting the Heart while Combating Cancer. Curr Cardiol Rep 2024; 26:953-971. [PMID: 39042344 DOI: 10.1007/s11886-024-02099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE OF REVIEW This review explores the cardiovascular toxicity associated with cancer therapies, emphasizing the significance of the growing field of cardio-oncology. It aims to elucidate the mechanisms of cardiotoxicity due to radiotherapy, chemotherapy, and targeted therapies, and to discuss the advancements in human induced pluripotent stem cell technology (hiPSC) for predictive disease modeling. RECENT FINDINGS Recent studies have identified several chemotherapeutic agents, including anthracyclines and kinase inhibitors, that significantly increase cardiovascular risks. Advances in hiPSC technology have enabled the differentiation of these cells into cardiovascular lineages, facilitating more accurate modeling of drug-induced cardiotoxicity. Moreover, integrating hiPSCs into clinical trials holds promise for personalized cardiotoxicity assessments, potentially enhancing patient-specific therapeutic strategies. Cardio-oncology bridges oncology and cardiology to mitigate the cardiovascular side-effects of cancer treatments. Despite advancements in predictive models using hiPSCs, challenges persist in accurately replicating adult heart tissue and ensuring reproducibility. Ongoing research is essential for developing personalized therapies that balance effective cancer treatment with minimal cardiovascular harm.
Collapse
Affiliation(s)
- Amit Manhas
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
- Baszucki Family Vascular Surgery Biobank, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dipti Tripathi
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
- Division of Vascular Surgery, Department of Surgery, Stanford, CA, 94305, USA
- Baszucki Family Vascular Surgery Biobank, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA.
- Division of Vascular Surgery, Department of Surgery, Stanford, CA, 94305, USA.
- Baszucki Family Vascular Surgery Biobank, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
Chen TA, Zhao BB, Balbin RA, Sharma S, Ha D, Kamp TJ, Zhou Y, Zhao F. Engineering a robust and anisotropic cardiac-specific extracellular matrix scaffold for cardiac patch tissue engineering. Matrix Biol Plus 2024; 23:100151. [PMID: 38882397 PMCID: PMC11176808 DOI: 10.1016/j.mbplus.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/18/2024] Open
Abstract
Extracellular matrix (ECM) fabricated using human induced pluripotent stem cells (hiPSCs)-derived cardiac fibroblasts (hiPSC-CFs) could serve as a completely biological scaffold for an engineered cardiac patch, leveraging the unlimited source and outstanding reproducibility of hiPSC-CFs. Additionally, hiPSC-CF-derived ECM (hiPSC-CF-ECM) holds the potential to enhance maturation of exogenous cardiomyocytes, such as hiPSC-derived cardiomyocytes (hiPSC-CMs), by providing a microenvironment rich in cardiac-specific biochemical and signaling cues. However, achieving sufficient robustness of hiPSC-CF-ECM is challenging. This study aims to achieve appropriate ECM deposition, scaffold thickness, and mechanical strength of an aligned hiPSC-CF-ECM by optimizing the culture period, ranging from 2 to 10 weeks, of hiPSC-CFs grown on micro-grated substrates, which can direct the alignment of both hiPSC-CFs and their secreted ECM. The hiPSC-CFs demonstrated a production rate of 13.5 µg ECM per day per 20,000 cells seeded. An anisotropic nanofibrous hiPSC-CF-ECM scaffold with a thickness of 20.0 ± 2.1 µm was achieved after 6 weeks of culture, followed by decellularization. Compositional analysis through liquid chromatography-mass spectrometry (LC-MS) revealed the presence of cardiac-specific fibrillar collagens, non-fibrillar collagens, and matricellular proteins. Uniaxial tensile stretching of the hiPSC-CF-ECM scaffold indicated robust tensile resilience. Finally, hiPSCs-CMs cultured on the hiPSC-CF-ECM exhibited alignment following the guidance of ECM nanofibers and demonstrated mature organization of key structural proteins. The culture duration of the anisotropic hiPSC-CF-ECM was successfully refined to achieve a robust scaffold containing structural proteins that resembles cardiac microenvironment. This completely biological, anisotropic, and cardiac-specific ECM holds great potential for cardiac patch engineering.
Collapse
Affiliation(s)
- Te-An Chen
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Brandon B. Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Richard A. Balbin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sameeksha Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Donggi Ha
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy J. Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yuxiao Zhou
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
18
|
Saha S, Haynes WJ, Del Rio NM, Young EE, Zhang J, Seo J, Huang L, Holm AM, Blashka W, Murphy L, Scholz MJ, Henrichs A, Suresh Babu J, Steill J, Stewart R, Kamp TJ, Brown ME. Diminished Immune Cell Adhesion in Hypoimmune ICAM-1 Knockout Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597791. [PMID: 38895244 PMCID: PMC11185752 DOI: 10.1101/2024.06.07.597791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hypoimmune gene edited human pluripotent stem cells (hPSCs) are a promising platform for developing reparative cellular therapies that evade immune rejection. Existing first-generation hypoimmune strategies have used CRISPR/Cas9 editing to modulate genes associated with adaptive (e.g., T cell) immune responses, but have largely not addressed the innate immune cells (e.g., monocytes, neutrophils) that mediate inflammation and rejection processes occurring early after graft transplantation. We identified the adhesion molecule ICAM-1 as a novel hypoimmune target that plays multiple critical roles in both adaptive and innate immune responses post-transplantation. In a series of studies, we found that ICAM-1 blocking or knock-out (KO) in hPSC-derived cardiovascular therapies imparted significantly diminished binding of multiple immune cell types. ICAM-1 KO resulted in diminished T cell proliferation responses in vitro and in longer in vivo retention/protection of KO grafts following immune cell encounter in NeoThy humanized mice. The ICAM-1 KO edit was also introduced into existing first-generation hypoimmune hPSCs and prevented immune cell binding, thereby enhancing the overall hypoimmune capacity of the cells. This novel hypoimmune editing strategy has the potential to improve the long-term efficacy and safety profiles of regenerative therapies for cardiovascular pathologies and a number of other diseases.
Collapse
Affiliation(s)
- Sayandeep Saha
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - W. John Haynes
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Natalia M. Del Rio
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Elizabeth E. Young
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI
| | - Jiwon Seo
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Liupei Huang
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Alexis M. Holm
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Wesley Blashka
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Lydia Murphy
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Merrick J. Scholz
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Abigale Henrichs
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | | | - John Steill
- Morgridge Institute for Research, Madison, WI
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI
| | - Timothy J. Kamp
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Medicine, Madison, WI
| | - Matthew E. Brown
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| |
Collapse
|
19
|
Gokhan I, Blum TS, Campbell SG. Engineered heart tissue: Design considerations and the state of the art. BIOPHYSICS REVIEWS 2024; 5:021308. [PMID: 38912258 PMCID: PMC11192576 DOI: 10.1063/5.0202724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
Originally developed more than 20 years ago, engineered heart tissue (EHT) has become an important tool in cardiovascular research for applications such as disease modeling and drug screening. Innovations in biomaterials, stem cell biology, and bioengineering, among other fields, have enabled EHT technologies to recapitulate many aspects of cardiac physiology and pathophysiology. While initial EHT designs were inspired by the isolated-trabecula culture system, current designs encompass a variety of formats, each of which have unique strengths and limitations. In this review, we describe the most common EHT formats, and then systematically evaluate each aspect of their design, emphasizing the rational selection of components for each application.
Collapse
Affiliation(s)
| | - Thomas S. Blum
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
20
|
Stempien A, Josvai M, Notbohm J, Zhang J, Kamp TJ, Crone WC. Influence of Remodeled ECM and Co-culture with iPSC-Derived Cardiac Fibroblasts on the Mechanical Function of Micropatterned iPSC-Derived Cardiomyocytes. Cardiovasc Eng Technol 2024; 15:264-278. [PMID: 38448643 PMCID: PMC11239313 DOI: 10.1007/s13239-024-00711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION In native heart tissue, functions of cardiac fibroblasts (CFs) include synthesis, remodeling, and degradation of the extracellular matrix (ECM) as well as secreting factors that regulate cardiomyocyte (CM) function. The influence of direct co-culture and CF-derived ECM on CM mechanical function are not fully understood. METHODS Here we use an engineered culture platform that provides control over ECM geometry and substrate stiffness to evaluate the influence of iPSC-CFs, and the ECM they produce, on the mechanical function of iPSC-CMs. Mechanical analysis was performed using digital image correlation to quantify maximum contractile strain, spontaneous contraction rate, and full-field organization of the contractions. RESULTS When cultured alone, iPSC-CFs produce and remodel the ECM into fibers following the underlying 15° chevron patterned ECM. The substrates were decellularized and confirmed to have highly aligned fibers that covered a large fraction of the pattern area before reseeding with iPSC-CMs, alone or in co-culture with iPSC-CFs. When seeded on decellularized ECM, larger maximum contractile strains were observed in the co-culture condition compared to the CM Only condition. No significant difference was found in contractile strain between the Matrigel and decellularized ECM conditions; however, the spontaneous contraction rate was lower in the decellularized ECM condition. A methodology for quantifying alignment of cell contraction across the entire field of view was developed based on trajectories approximating the cell displacements during contraction. Trajectory alignment was unaltered by changes in culture or ECM conditions. CONCLUSIONS These combined observations highlight the important role CFs play in vivo and the need for models that enable a quantitative approach to examine interactions between the CFs and CMs, as well as the interactions of these cells with the ECM.
Collapse
Affiliation(s)
- A Stempien
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - M Josvai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - J Notbohm
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - J Zhang
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - T J Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - W C Crone
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
21
|
McClain AK, Monteleone PP, Zoldan J. Sex in cardiovascular disease: Why this biological variable should be considered in in vitro models. SCIENCE ADVANCES 2024; 10:eadn3510. [PMID: 38728407 PMCID: PMC11086622 DOI: 10.1126/sciadv.adn3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Cardiovascular disease (CVD), the world's leading cause of death, exhibits notable epidemiological, clinical, and pathophysiological differences between sexes. Many such differences can be linked back to cardiovascular sexual dimorphism, yet sex-specific in vitro models are still not the norm. A lack of sex reporting and apparent male bias raises the question of whether in vitro CVD models faithfully recapitulate the biology of intended treatment recipients. To ensure equitable treatment for the overlooked female patient population, sex as a biological variable (SABV) inclusion must become commonplace in CVD preclinical research. Here, we discuss the role of sex in CVD and underlying cardiovascular (patho)physiology. We review shortcomings in current SABV practices, describe the relevance of sex, and highlight emerging strategies for SABV inclusion in three major in vitro model types: primary cell, stem cell, and three-dimensional models. Last, we identify key barriers to inclusive design and suggest techniques for overcoming them.
Collapse
Affiliation(s)
- Anna K. McClain
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78751, USA
| | - Peter P. Monteleone
- Ascension Texas Cardiovascular, Austin, TX 78705, USA
- Dell School of Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78751, USA
| |
Collapse
|
22
|
Bekedam FT, Smal R, Smit MC, Aman J, Vonk-Noordegraaf A, Bogaard HJ, Goumans MJ, De Man FS, Llucià-Valldeperas A. Mechanical stimulation of induced pluripotent stem derived cardiac fibroblasts. Sci Rep 2024; 14:9795. [PMID: 38684844 PMCID: PMC11058244 DOI: 10.1038/s41598-024-60102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Cardiac fibrosis contributes to the development of heart failure, and is the response of cardiac fibroblasts (CFs) to pressure or volume overload. Limiting factors in CFs research are the poor availability of human cells and the tendency of CFs to transdifferentiate into myofibroblasts when cultured in vitro. The possibility to generate CFs from induced pluripotent stem cells (iPSC), providing a nearly unlimited cell source, opens new possibilities. However, the behaviour of iPSC-CFs under mechanical stimulation has not been studied yet. Our study aimed to assess the behaviour of iPSC-CFs under mechanical stretch and pro-fibrotic conditions. First, we confirm that iPSC-CFs are comparable to primary CFs at gene, protein and functional level. Furthermore, iPSC-derived CFs adopt a pro-fibrotic response to transforming growth factor beta (TGF-β). In addition, mechanical stretch inhibits TGF-β-induced fibroblast activation in iPSC-CFs. Thus, the responsiveness to cytokines and mechanical stimulation of iPSC-CFs demonstrates they possess key characteristics of primary CFs and may be useful for disease modelling.
Collapse
Affiliation(s)
- Fjodor T Bekedam
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Rowan Smal
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Marisa C Smit
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Jurjan Aman
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Anton Vonk-Noordegraaf
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC, Leiden, The Netherlands
| | - Frances S De Man
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands.
| | - Aida Llucià-Valldeperas
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Lei Y, Al Delbany D, Krivec N, Regin M, Couvreu de Deckersberg E, Janssens C, Ghosh M, Sermon K, Spits C. SALL3 mediates the loss of neuroectodermal differentiation potential in human embryonic stem cells with chromosome 18q loss. Stem Cell Reports 2024; 19:562-578. [PMID: 38552632 PMCID: PMC11096619 DOI: 10.1016/j.stemcr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, because cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but their functional consequences in differentiating cells are scarcely described. In this work, we show that the loss of chromosome 18q impairs neuroectoderm commitment and that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for this failed neuroectodermal differentiation. Knockdown of SALL3 in control lines impaired differentiation in a manner similar to the loss of 18q, and transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, suggesting that these cells are in an altered state of pluripotency.
Collapse
Affiliation(s)
- Yingnan Lei
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Diana Al Delbany
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Marius Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Charlotte Janssens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
24
|
Esmaeili H, Patino-Guerrero A, Nelson RA, Karamanova N, M Fisher T, Zhu W, Perreault F, Migrino RQ, Nikkhah M. Engineered Gold and Silica Nanoparticle-Incorporated Hydrogel Scaffolds for Human Stem Cell-Derived Cardiac Tissue Engineering. ACS Biomater Sci Eng 2024; 10:2351-2366. [PMID: 38323834 PMCID: PMC11075803 DOI: 10.1021/acsbiomaterials.3c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Electrically conductive biomaterials and nanomaterials have demonstrated great potential in the development of functional and mature cardiac tissues. In particular, gold nanomaterials have emerged as promising candidates due to their biocompatibility and ease of fabrication for cardiac tissue engineering utilizing rat- or stem cell-derived cardiomyocytes (CMs). However, despite significant advancements, it is still not clear whether the enhancement in cardiac tissue function is primarily due to the electroconductivity features of gold nanoparticles or the structural changes of the scaffold resulting from the addition of these nanoparticles. To address this question, we developed nanoengineered hydrogel scaffolds comprising gelatin methacrylate (GelMA) embedded with either electrically conductive gold nanorods (GNRs) or nonconductive silica nanoparticles (SNPs). This enabled us to simultaneously assess the roles of electrically conductive and nonconductive nanomaterials in the functionality and fate of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our studies revealed that both GNR- and SNP-incorporated hydrogel scaffolds exhibited excellent biocompatibility and similar cardiac cell attachment. Although the expression of sarcomere alpha-actinin did not significantly differ among the conditions, a more organized sarcomere structure was observed within the GNR-embedded hydrogels compared to the nonconductive nanoengineered scaffolds. Furthermore, electrical coupling was notably improved in GNR-embedded scaffolds, as evidenced by the synchronous calcium flux and enhanced calcium transient intensity. While we did not observe a significant difference in the gene expression profile of human cardiac tissues formed on the conductive GNR- and nonconductive SNP-incorporated hydrogels, we noticed marginal improvements in the expression of some calcium and structural genes in the nanomaterial-embedded hydrogel groups as compared to the control condition. Given that the cardiac tissues formed atop the nonconductive SNP-based scaffolds (used as the control for conductivity) also displayed similar levels of gene expression as compared to the conductive hydrogels, it suggests that the electrical conductivity of nanomaterials (i.e., GNRs) may not be the sole factor influencing the function and fate of hiPSC-derived cardiac tissues when cells are cultured atop the scaffolds. Overall, our findings provide additional insights into the role of electrically conductive gold nanoparticles in regulating the functionalities of hiPSC-CMs.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Alejandra Patino-Guerrero
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | - Ronald A Nelson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Nina Karamanova
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona 85022, United States
| | - Taylor M Fisher
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | - François Perreault
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona 85022, United States
- University of Arizona College of Medicine, Phoenix, Arizona 85004, United States
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Virginia G. Piper Center for Personalized Diagnosis, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
25
|
Basara G, Celebi LE, Ronan G, Discua Santos V, Zorlutuna P. 3D bioprinted aged human post-infarct myocardium tissue model. Health Sci Rep 2024; 7:e1945. [PMID: 38655426 PMCID: PMC11035382 DOI: 10.1002/hsr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/24/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
Background and Aims Fibrotic tissue formed after myocardial infarction (MI) can be as detrimental as MI itself. However, current in vitro cardiac fibrosis models fail to recapitulate the complexities of post-MI tissue. Moreover, although MI and subsequent fibrosis is most prominent in the aged population, the field suffers from inadequate aged tissue models. Herein, an aged human post-MI tissue model, representing the native microenvironment weeks after initial infarction, is engineered using three-dimensional bioprinting via creation of individual bioinks to specifically mimic three distinct regions: remote, border, and scar. Methods The aged post-MI tissue model is engineered through combination of gelatin methacryloyl, methacrylated hyaluronic acid, aged type I collagen, and photoinitiator at variable concentrations with different cell types, including aged human induced pluripotent stem cell-derived cardiomyocytes, endothelial cells, cardiac fibroblasts, and cardiac myofibroblasts, by introducing a methodology which utilizes three printheads of the bioprinter to model aged myocardium. Then, using cell-specific proteins, the cell types that comprised each region are confirmed using immunofluorescence. Next, the beating characteristics are analyzed. Finally, the engineered aged post-MI tissue model is used as a benchtop platform to assess the therapeutic effects of stem cell-derived extracellular vesicles on the scar region. Results As a result, high viability (>74%) was observed in each region of the printed model. Constructs demonstrated functional behavior, exhibiting a beating velocity of 6.7 μm/s and a frequency of 0.3 Hz. Finally, the effectiveness of hiPSC-EV and MSC-EV treatment was assessed. While hiPSC-EV treatment showed no significant changes, MSC-EV treatment notably increased cardiomyocyte beating velocity, frequency, and confluency, suggesting a regenerative potential. Conclusion In conclusion, we envision that our approach of modeling post-MI aged myocardium utilizing three printheads of the bioprinter may be utilized for various applications in aged cardiac microenvironment modeling and testing novel therapeutics.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
| | - Lara Ece Celebi
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | - George Ronan
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | | | - Pinar Zorlutuna
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
- Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
26
|
Rosales RM, Mountris KA, Oliván-Viguera A, Pérez-Zabalza M, Cedillo-Servin G, Iglesias-García O, Hrynevich A, Castilho M, Malda J, Prósper F, Doblaré M, Mazo MM, Pueyo E. Experimentally-guided in silico design of engineered heart tissues to improve cardiac electrical function after myocardial infarction. Comput Biol Med 2024; 171:108044. [PMID: 38335818 DOI: 10.1016/j.compbiomed.2024.108044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/23/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Engineered heart tissues (EHTs) built from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) showed promising results for cardiac function restoration following myocardial infarction. Nevertheless, human iPSC-CMs have longer action potential and lower cell-to-cell coupling than adult-like CMs. These immature electrophysiological properties favor arrhythmias due to the generation of electrophysiological gradients when hiPSC-CMs are injected in the cardiac tissue. Culturing hiPSC-CMs on three-dimensional (3D) scaffolds can promote their maturation and influence their alignment. However, it is still uncertain how on-scaffold culturing influences the overall electrophysiology of the in vitro and implanted EHTs, as it requires expensive and time consuming experimentation. Here, we computationally investigated the impact of the scaffold design on the EHT electrical depolarization and repolarization before and after engraftment on infarcted tissue. We first acquired and processed electrical recordings from in vitro EHTs, which we used to calibrate the modeling and simulation of in silico EHTs to replicate experimental outcomes. Next, we built in silico EHT models for a range of scaffold pore sizes, shapes (square, rectangular, auxetic, hexagonal) and thicknesses. In this setup, we found that scaffolds made of small (0.2 mm2), elongated (30° half-angle) hexagons led to faster EHT activation and better mimicked the cardiac anisotropy. The scaffold thickness had a marginal role on the not engrafted EHT electrophysiology. Moreover, EHT engraftment on infarcted tissue showed that the EHT conductivity should be at least 5% of that in healthy tissue for bidirectional EHT-myocardium electrical propagation. For conductivities above such threshold, the scaffold made of small elongated hexagons led to the lowest activation time (AT) in the coupled EHT-myocardium. If the EHT conductivity was further increased and the hiPSC-CMs were uniformly oriented parallel to the epicardial cells, the total AT and the repolarization time gradient decreased substantially, thus minimizing the likelihood for arrhythmias after EHT transplantation.
Collapse
Affiliation(s)
- Ricardo M Rosales
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Aragón, Spain; CIBER-BBN, ISCIII, Madrid, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragón, Spain.
| | | | - Aida Oliván-Viguera
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Aragón, Spain; CIBER-BBN, ISCIII, Madrid, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragón, Spain.
| | - María Pérez-Zabalza
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Aragón, Spain; CIBER-BBN, ISCIII, Madrid, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragón, Spain; Defense University Centre (CUD), Zaragoza, Spain.
| | - Gerardo Cedillo-Servin
- Regenerative Medicine Center, Utrecht, The Netherlands; Department of Orthopedics, University Medical Center, Utrecht, The Netherlands.
| | - Olalla Iglesias-García
- Regenerative Medicine Program, CIMA Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Spain.
| | - Andrei Hrynevich
- Regenerative Medicine Center, Utrecht, The Netherlands; Department of Orthopedics, University Medical Center, Utrecht, The Netherlands.
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center, Utrecht, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jos Malda
- Regenerative Medicine Center, Utrecht, The Netherlands; Department of Orthopedics, University Medical Center, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Felipe Prósper
- Regenerative Medicine Program, CIMA Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Spain; Hematology and Cell Therapy, Clínica Universidad de Navarra, Pamplona, Spain; CIBER de Cáncer (CIBERONC, team CB16/12/00489), Pamplona, Spain.
| | - Manuel Doblaré
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Aragón, Spain; CIBER-BBN, ISCIII, Madrid, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragón, Spain.
| | - Manuel M Mazo
- Regenerative Medicine Program, CIMA Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Spain; Hematology and Cell Therapy, Clínica Universidad de Navarra, Pamplona, Spain.
| | - Esther Pueyo
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Aragón, Spain; CIBER-BBN, ISCIII, Madrid, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragón, Spain.
| |
Collapse
|
27
|
Caudal A, Snyder MP, Wu JC. Harnessing human genetics and stem cells for precision cardiovascular medicine. CELL GENOMICS 2024; 4:100445. [PMID: 38359791 PMCID: PMC10879032 DOI: 10.1016/j.xgen.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/22/2023] [Accepted: 10/25/2023] [Indexed: 02/17/2024]
Abstract
Human induced pluripotent stem cell (iPSC) platforms are valuable for biomedical and pharmaceutical research by providing tissue-specific human cells that retain patients' genetic integrity and display disease phenotypes in a dish. Looking forward, combining iPSC phenotyping platforms with genomic and screening technologies will continue to pave new directions for precision medicine, including genetic prediction, visualization, and treatment of heart disease. This review summarizes the recent use of iPSC technology to unpack the influence of genetic variants in cardiovascular pathology. We focus on various state-of-the-art genomic tools for cardiovascular therapies-including the expansion of genetic toolkits for molecular interrogation, in vitro population studies, and function-based drug screening-and their current applications in patient- and genome-edited iPSC platforms that are heralding new avenues for cardiovascular research.
Collapse
Affiliation(s)
- Arianne Caudal
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Greenstone Biosciences, Palo Alto, CA 94304, USA.
| |
Collapse
|
28
|
Nappi F. In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease. Int J Mol Sci 2024; 25:1734. [PMID: 38339013 PMCID: PMC10855915 DOI: 10.3390/ijms25031734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
29
|
Rossler KJ, de Lange WJ, Mann MW, Aballo TJ, Melby JA, Zhang J, Kim G, Bayne EF, Zhu Y, Farrell ET, Kamp TJ, Ralphe JC, Ge Y. Lactate- and immunomagnetic-purified hiPSC-derived cardiomyocytes generate comparable engineered cardiac tissue constructs. JCI Insight 2024; 9:e172168. [PMID: 37988170 PMCID: PMC10906451 DOI: 10.1172/jci.insight.172168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared with magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACS-purified hiPSC-CMs affects the properties of resulting hiPSC-ECTs. Therefore, hiPSC-CMs were differentiated and purified using either lactate-based media or MACS. Global proteomics revealed that lactate-purified hiPSC-CMs displayed a differential phenotype over MACS hiPSC-CMs. hiPSC-CMs were then integrated into 3D hiPSC-ECTs and cultured for 4 weeks. Structurally, there was no significant difference in sarcomere length between lactate and MACS hiPSC-ECTs. Assessment of isometric twitch force and Ca2+ transient measurements revealed similar functional performance between purification methods. High-resolution mass spectrometry-based quantitative proteomics showed no significant difference in protein pathway expression or myofilament proteoforms. Taken together, this study demonstrates that lactate- and MACS-purified hiPSC-CMs generate ECTs with comparable structural, functional, and proteomic features, and it suggests that lactate purification does not result in an irreversible change in a hiPSC-CM phenotype.
Collapse
Affiliation(s)
- Kalina J. Rossler
- Molecular and Cellular Pharmacology Training Program
- Department of Cell and Regenerative Biology
| | | | | | - Timothy J. Aballo
- Molecular and Cellular Pharmacology Training Program
- Department of Cell and Regenerative Biology
| | | | | | | | | | - Yanlong Zhu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Timothy J. Kamp
- Department of Cell and Regenerative Biology
- Department of Medicine
| | | | - Ying Ge
- Department of Cell and Regenerative Biology
- Department of Chemistry, and
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Kerr CM, Silver SE, Choi YS, Floy ME, Bradshaw AD, Cho SW, Palecek SP, Mei Y. Decellularized heart extracellular matrix alleviates activation of hiPSC-derived cardiac fibroblasts. Bioact Mater 2024; 31:463-474. [PMID: 37701451 PMCID: PMC10493503 DOI: 10.1016/j.bioactmat.2023.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Human induced pluripotent stem cell derived cardiac fibroblasts (hiPSC-CFs) play a critical role in modeling human cardiovascular diseases in vitro. However, current culture substrates used for hiPSC-CF differentiation and expansion, such as Matrigel and tissue culture plastic (TCPs), are tissue mismatched and may provide pathogenic cues. Here, we report that hiPSC-CFs differentiated on Matrigel and expanded on tissue culture plastic (M-TCP-iCFs) exhibit transcriptomic hallmarks of activated fibroblasts limiting their translational potential. To alleviate pathogenic activation of hiPSC-CFs, we utilized decellularized extracellular matrix derived from porcine heart extracellular matrix (HEM) to provide a biomimetic substrate for improving hiPSC-CF phenotypes. We show that hiPSC-CFs differentiated and expanded on HEM (HEM-iCFs) exhibited reduced expression of hallmark activated fibroblast markers versus M-TCP-iCFs while retaining their cardiac fibroblast phenotype. HEM-iCFs also maintained a reduction in expression of hallmark genes associated with pathogenic fibroblasts when seeded onto TCPs. Further, HEM-iCFs more homogenously integrated into an hiPSC-derived cardiac organoid model, resulting in improved cardiomyocyte sarcomere development. In conclusion, HEM provides an improved substrate for the differentiation and propagation of hiPSC-CFs for disease modeling.
Collapse
Affiliation(s)
- Charles M. Kerr
- Molecular Cell Biology and Pathobiology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Martha E. Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy D. Bradshaw
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Veterans Affairs Medical Center, SC, USA
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
31
|
Zhang H, Wu JC. Deciphering Congenital Heart Disease Using Human Induced Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:239-252. [PMID: 38884715 DOI: 10.1007/978-3-031-44087-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Congenital heart disease (CHD) is a leading cause of birth defect-related death. Despite significant advances, the mechanisms underlying the development of CHD are complex and remain elusive due to a lack of efficient, reproducible, and translational model systems. Investigations relied on animal models have inherent limitations due to interspecies differences. Human induced pluripotent stem cells (iPSCs) have emerged as an effective platform for disease modeling. iPSCs allow for the production of a limitless supply of patient-specific somatic cells that enable advancement in cardiovascular precision medicine. Over the past decade, researchers have developed protocols to differentiate iPSCs to multiple cardiovascular lineages, as well as to enhance the maturity and functionality of these cells. With the development of physiologic three-dimensional cardiac organoids, iPSCs represent a powerful platform to mechanistically dissect CHD and serve as a foundation for future translational research.
Collapse
Affiliation(s)
- Hao Zhang
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
32
|
Schmuck EG, Roy S, Zhou T, Wille D, Reeves SM, Conklin J, Raval AN. Human left ventricular cardiac fibroblasts undergo a dynamic shift in secretome and gene expression toward a cardiac myofibroblast phenotype during early passage in typical culture expansion conditions. Cytotherapy 2024; 26:81-87. [PMID: 37930292 PMCID: PMC10841749 DOI: 10.1016/j.jcyt.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Cardiac fibroblasts (CFs) are critical components of the cardiac niche and primarily responsible for assembly and maintenance of the cardiac extracellular matrix (ECM). CFs are increasingly of interest for tissue engineering and drug development applications, as they provide synergistic support to cardiomyocytes through direct cell-to-cell signaling and cell-to-ECM interactions via soluble factors, including cytokines, growth factors and extracellular vesicles. CFs can be activated to a cardiac myofibroblast (CMF) phenotype upon injury or stimulation with transforming growth factor beta 1. Once activated, CMFs assemble collagen-rich ECM, which is vitally important to stabilize scar formation following myocardial infarction, for example. Although there is greater experience with culture expansion of CFs among non-human strains, very little is known about human CF-to-CMF transitions and expression patterns during culture expansion. In this study, we evaluated for shifts in inflammatory and angiogenic expression profiles of human CFs in typical culture expansion conditions. Understanding shifts in cellular expression patterns during CF culture expansion is critically important to establish quality benchmarks and optimize large-scale manufacturing for future clinical applications.
Collapse
Affiliation(s)
- Eric G Schmuck
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sushmita Roy
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tianhua Zhou
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Delani Wille
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sophie Mixon Reeves
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James Conklin
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amish N Raval
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
33
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
34
|
Chen TA, Sharma D, Jia W, Ha D, Man K, Zhang J, Yang Y, Zhou Y, Kamp TJ, Zhao F. Detergent-Based Decellularization for Anisotropic Cardiac-Specific Extracellular Matrix Scaffold Generation. Biomimetics (Basel) 2023; 8:551. [PMID: 37999192 PMCID: PMC10669368 DOI: 10.3390/biomimetics8070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Cell-derived extracellular matrix (ECM) has become increasingly popular in tissue engineering applications due to its ability to provide tailored signals for desirable cellular responses. Anisotropic cardiac-specific ECM scaffold decellularized from human induced pluripotent stem cell (hiPSC)-derived cardiac fibroblasts (hiPSC-CFs) mimics the native cardiac microenvironment and provides essential biochemical and signaling cues to hiPSC-derived cardiomyocytes (hiPSC-CMs). The objective of this study was to assess the efficacy of two detergent-based decellularization methods: (1) a combination of ethylenediaminetetraacetic acid and sodium dodecyl sulfate (EDTA + SDS) and (2) a combination of sodium deoxycholate and deoxyribonuclease (SD + DNase), in preserving the composition and bioactive substances within the aligned ECM scaffold while maximumly removing cellular components. The decellularization effects were evaluated by characterizing the ECM morphology, quantifying key structural biomacromolecules, and measuring preserved growth factors. Results showed that both treatments met the standard of cell removal (less than 50 ng/mg ECM dry weight) and substantially preserved major ECM biomacromolecules and growth factors. The EDTA + SDS treatment was more time-efficient and has been determined to be a more efficient method for generating an anisotropic ECM scaffold from aligned hiPSC-CFs. Moreover, this cardiac-specific ECM has demonstrated effectiveness in supporting the alignment of hiPSC-CMs and their expression of mature structural and functional proteins in in vitro cultures, which is crucial for cardiac tissue engineering.
Collapse
Affiliation(s)
- Te-An Chen
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Donggi Ha
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Jianhua Zhang
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Yuxiao Zhou
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy J. Kamp
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
35
|
Lo EKW, Velazquez JJ, Peng D, Kwon C, Ebrahimkhani MR, Cahan P. Platform-agnostic CellNet enables cross-study analysis of cell fate engineering protocols. Stem Cell Reports 2023; 18:1721-1742. [PMID: 37478860 PMCID: PMC10444577 DOI: 10.1016/j.stemcr.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
Optimization of cell engineering protocols requires standard, comprehensive quality metrics. We previously developed CellNet, a computational tool to quantitatively assess the transcriptional fidelity of engineered cells compared with their natural counterparts, based on bulk-derived expression profiles. However, this platform and others were limited in their ability to compare data from different sources, and no current tool makes it easy to compare new protocols with existing state-of-the-art protocols in a standardized manner. Here, we utilized our prior application of the top-scoring pair transformation to build a computational platform, platform-agnostic CellNet (PACNet), to address both shortcomings. To demonstrate the utility of PACNet, we applied it to thousands of samples from over 100 studies that describe dozens of protocols designed to produce seven distinct cell types. We performed an in-depth examination of hepatocyte and cardiomyocyte protocols to identify the best-performing methods, characterize the extent of intra-protocol and inter-lab variation, and identify common off-target signatures, including a surprising neural/neuroendocrine signature in primary liver-derived organoids. We have made PACNet available as an easy-to-use web application, allowing users to assess their protocols relative to our database of reference engineered samples, and as open-source, extensible code.
Collapse
Affiliation(s)
- Emily K W Lo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeremy J Velazquez
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Peng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
36
|
Allan A, Creech J, Hausner C, Krajcarski P, Gunawan B, Poulin N, Kozlowski P, Clark CW, Dow R, Saraithong P, Mair DB, Block T, Monteiro da Rocha A, Kim DH, Herron TJ. High-throughput longitudinal electrophysiology screening of mature chamber-specific hiPSC-CMs using optical mapping. iScience 2023; 26:107142. [PMID: 37416454 PMCID: PMC10320609 DOI: 10.1016/j.isci.2023.107142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
hiPSC-CMs are being considered by the Food and Drug Administration and other regulatory agencies for in vitro cardiotoxicity screening to provide human-relevant safety data. Widespread adoption of hiPSC-CMs in regulatory and academic science is limited by the immature, fetal-like phenotype of the cells. Here, to advance the maturation state of hiPSC-CMs, we developed and validated a human perinatal stem cell-derived extracellular matrix coating applied to high-throughput cell culture plates. We also present and validate a cardiac optical mapping device designed for high-throughput functional assessment of mature hiPSC-CM action potentials using voltage-sensitive dye and calcium transients using calcium-sensitive dyes or genetically encoded calcium indicators (GECI, GCaMP6). We utilize the optical mapping device to provide new biological insight into mature chamber-specific hiPSC-CMs, responsiveness to cardioactive drugs, the effect of GCaMP6 genetic variants on electrophysiological function, and the effect of daily β-receptor stimulation on hiPSC-CM monolayer function and SERCA2a expression.
Collapse
Affiliation(s)
- Andrew Allan
- Cairn Research, Graveney Road, Faversham, Kent ME13 8UP UK
| | - Jeffery Creech
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Christian Hausner
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Peyton Krajcarski
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Bianca Gunawan
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Noah Poulin
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Paul Kozlowski
- Michigan Medicine, Internal Medicine-Cardiology, Ann Arbor, MI 48109, USA
| | - Christopher Wayne Clark
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI 48109, USA
| | - Rachel Dow
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Prakaimuk Saraithong
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
- Michigan Medicine, Internal Medicine-Cardiology, Ann Arbor, MI 48109, USA
| | - Devin B. Mair
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Travis Block
- StemBioSys, Inc, 3463 Magic Drive, Suite 110, San Antonio, TX 78229, USA
| | - Andre Monteiro da Rocha
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
- Michigan Medicine, Internal Medicine-Cardiology, Ann Arbor, MI 48109, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Todd J. Herron
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
- Michigan Medicine, Internal Medicine-Cardiology, Ann Arbor, MI 48109, USA
- Michigan Medicine, Molecular & Integrative Physiology, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications—Are We on the Road to Success? Cells 2023; 12:1727. [DOI: https:/doi.org/10.3390/cells12131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
38
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications-Are We on the Road to Success? Cells 2023; 12:1727. [PMID: 37443761 PMCID: PMC10341347 DOI: 10.3390/cells12131727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
39
|
Patino-Guerrero A, Esmaeili H, Migrino RQ, Nikkhah M. Nanoengineering of gold nanoribbon-embedded isogenic stem cell-derived cardiac organoids. RSC Adv 2023; 13:16985-17000. [PMID: 37288383 PMCID: PMC10243308 DOI: 10.1039/d3ra01811c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023] Open
Abstract
Cardiac tissue engineering is an emerging field providing tools to treat and study cardiovascular diseases (CVDs). In the past years, the integration of stem cell technologies with micro- and nanoengineering techniques has enabled the creation of novel engineered cardiac tissues (ECTs) with potential applications in disease modeling, drug screening, and regenerative medicine. However, a major unaddressed limitation of stem cell-derived ECTs is their immature state, resembling a neonatal phenotype and genotype. The modulation of the cellular microenvironment within the ECTs has been proposed as an efficient mechanism to promote cellular maturation and improve features such as cellular coupling and synchronization. The integration of biological and nanoscale cues in the ECTs could serve as a tool for the modification and control of the engineered tissue microenvironment. Here we present a proof-of-concept study for the integration of biofunctionalized gold nanoribbons (AuNRs) with hiPSC-derived isogenic cardiac organoids to enhance tissue function and maturation. We first present extensive characterization of the synthesized AuNRs, their PEGylation and cytotoxicity evaluation. We then evaluated the functional contractility and transcriptomic profile of cardiac organoids fabricated with hiPSC-derived cardiomyocytes (mono-culture) as well as with hiPSC-derived cardiomyocytes and cardiac fibroblasts (co-culture). We demonstrated that PEGylated AuNRs are biocompatible and do not induce cell death in hiPSC-derived cardiac cells and organoids. We also found an improved transcriptomic profile of the co-cultured organoids indicating maturation of the hiPSC-derived cardiomyocytes in the presence of cardiac fibroblasts. Overall, we present for the first time the integration of AuNRs into cardiac organoids, showing promising results for improved tissue function.
Collapse
Affiliation(s)
| | - Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University Tempe AZ 8528 USA
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Health Care System Phoenix AZ 85012 USA
- University of Arizona College of Medicine Phoenix AZ 85004 USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University Tempe AZ 8528 USA
- Center for Personalized Diagnostics Biodesign Institute, Arizona State University Tempe AZ 85281 USA
| |
Collapse
|
40
|
Reisqs JB, Moreau A, Sleiman Y, Boutjdir M, Richard S, Chevalier P. Arrhythmogenic cardiomyopathy as a myogenic disease: highlights from cardiomyocytes derived from human induced pluripotent stem cells. Front Physiol 2023; 14:1191965. [PMID: 37250123 PMCID: PMC10210147 DOI: 10.3389/fphys.2023.1191965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized by the replacement of myocardium by fibro-fatty infiltration and cardiomyocyte loss. ACM predisposes to a high risk for ventricular arrhythmias. ACM has initially been defined as a desmosomal disease because most of the known variants causing the disease concern genes encoding desmosomal proteins. Studying this pathology is complex, in particular because human samples are rare and, when available, reflect the most advanced stages of the disease. Usual cellular and animal models cannot reproduce all the hallmarks of human pathology. In the last decade, human-induced pluripotent stem cells (hiPSC) have been proposed as an innovative human cellular model. The differentiation of hiPSCs into cardiomyocytes (hiPSC-CM) is now well-controlled and widely used in many laboratories. This hiPSC-CM model recapitulates critical features of the pathology and enables a cardiomyocyte-centered comprehensive approach to the disease and the screening of anti-arrhythmic drugs (AAD) prescribed sometimes empirically to the patient. In this regard, this model provides unique opportunities to explore and develop new therapeutic approaches. The use of hiPSC-CMs will undoubtedly help the development of precision medicine to better cure patients suffering from ACM. This review aims to summarize the recent advances allowing the use of hiPSCs in the ACM context.
Collapse
Affiliation(s)
- J. B. Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - A. Moreau
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - Y. Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - M. Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, NY, United States
- Department of Medicine, New York University School of Medicine, NY, United States
| | - S. Richard
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - P. Chevalier
- Neuromyogene Institute, Claude Bernard University, Lyon 1, Villeurbanne, France
- Service de Rythmologie, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
41
|
Rossler KJ, de Lange WJ, Mann MW, Aballo TJ, Melby JA, Zhang J, Kim G, Bayne EF, Zhu Y, Farrell ET, Kamp TJ, Ralphe JC, Ge Y. Lactate and Immunomagnetic-purified iPSC-derived Cardiomyocytes Generate Comparable Engineered Cardiac Tissue Constructs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539642. [PMID: 37205556 PMCID: PMC10187273 DOI: 10.1101/2023.05.05.539642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely-used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared to magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACs-purified hiPSC-CMs impacts the properties of resulting hiPSC-ECTs. Therefore, hiPSC-CMs were differentiated and purified using either lactate-based media or MACS. After purification, hiPSC-CMs were combined with hiPSC-cardiac fibroblasts to create 3D hiPSC-ECT constructs maintained in culture for four weeks. There were no structural differences observed, and there was no significant difference in sarcomere length between lactate and MACS hiPSC-ECTs. Assessment of isometric twitch force, Ca 2+ transients, and β-adrenergic response revealed similar functional performance between purification methods. High-resolution mass spectrometry (MS)-based quantitative proteomics showed no significant difference in any protein pathway expression or myofilament proteoforms. Taken together, this study demonstrates lactate- and MACS-purified hiPSC-CMs generate ECTs with comparable molecular and functional properties, and suggests lactate purification does not result in an irreversible change in hiPSC-CM phenotype.
Collapse
|
42
|
Lou X, Tang Y, Ye L, Pretorius D, Fast VG, Kahn-Krell AM, Zhang J, Zhang J, Qiao A, Qin G, Kamp T, Thomson JA, Zhang J. Cardiac muscle patches containing four types of cardiac cells derived from human pluripotent stem cells improve recovery from cardiac injury in mice. Cardiovasc Res 2023; 119:1062-1076. [PMID: 36647784 PMCID: PMC10153642 DOI: 10.1093/cvr/cvad004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 01/18/2023] Open
Abstract
AIMS We have shown that human cardiac muscle patches (hCMPs) containing three different types of cardiac cells-cardiomyocytes (CMs), smooth muscle cells (SMCs), and endothelial cells (ECs), all of which were differentiated from human pluripotent stem cells (hPSCs)-significantly improved cardiac function, infarct size, and hypertrophy in a pig model of myocardial infarction (MI). However, hPSC-derived CMs (hPSC-CMs) are phenotypically immature, which may lead to arrhythmogenic concerns; thus, since hPSC-derived cardiac fibroblasts (hPSC-CFs) appear to enhance the maturity of hPSC-CMs, we compared hCMPs containing hPSC-CMs, -SMCs, -ECs, and -CFs (4TCC-hCMPs) with a second hCMP construct that lacked hPSC-CFs but was otherwise identical [hCMP containing hPSC-CMs, -AECs, and -SMCs (3TCC-hCMPs)]. METHODS AND RESULTS hCMPs were generated in a fibrin scaffold. MI was induced in severe combined immunodeficiency (SCID) mice through permanent coronary artery (left anterior descending) ligation, followed by treatment with cardiac muscle patches. Animal groups included: MI heart treated with 3TCC-hCMP; with 4TCC-hCMP; MI heart treated with no patch (MI group) and sham group. Cardiac function was evaluated using echocardiography, and cell engraftment rate and infarct size were evaluated histologically at 4 weeks after patch transplantation. The results from experiments in cultured hCMPs demonstrate that the inclusion of cardiac fibroblast in 4TCC-hCMPs had (i) better organized sarcomeres; (ii) abundant structural, metabolic, and ion-channel markers of CM maturation; and (iii) greater conduction velocities (31 ± 3.23 cm/s, P < 0.005) and action-potential durations (APD50 = 365 ms ± 2.649, P < 0.0001; APD = 408 ms ± 2.757, P < 0.0001) than those (velocity and APD time) in 3TCC-hCMPs. Furthermore, 4TCC-hCMPs transplantation resulted in better cardiac function [ejection fraction (EF) = 49.18% ± 0.86, P < 0.05], reduced infarct size (22.72% ± 0.98, P < 0.05), and better engraftment (15.99% ± 1.56, P < 0.05) when compared with 3TCC-hCMPs (EF = 41.55 ± 0.92%, infarct size = 39.23 ± 4.28%, and engraftment = 8.56 ± 1.79%, respectively). CONCLUSION Collectively, these observations suggest that the inclusion of hPSC-CFs during hCMP manufacture promotes hPSC-CM maturation and increases the potency of implanted hCMPs for improving cardiac recovery in mice model of MI.
Collapse
Affiliation(s)
- Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Yawen Tang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Vladimir G Fast
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Asher M Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jianhua Zhang
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Aijun Qiao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Timothy Kamp
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
43
|
De Lange WJ, Farrell ET, Hernandez JJ, Stempien A, Kreitzer CR, Jacobs DR, Petty DL, Moss RL, Crone WC, Ralphe JC. cMyBP-C ablation in human engineered cardiac tissue causes progressive Ca2+-handling abnormalities. J Gen Physiol 2023; 155:e202213204. [PMID: 36893011 PMCID: PMC10038829 DOI: 10.1085/jgp.202213204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
Truncation mutations in cardiac myosin binding protein C (cMyBP-C) are common causes of hypertrophic cardiomyopathy (HCM). Heterozygous carriers present with classical HCM, while homozygous carriers present with early onset HCM that rapidly progress to heart failure. We used CRISPR-Cas9 to introduce heterozygous (cMyBP-C+/-) and homozygous (cMyBP-C-/-) frame-shift mutations into MYBPC3 in human iPSCs. Cardiomyocytes derived from these isogenic lines were used to generate cardiac micropatterns and engineered cardiac tissue constructs (ECTs) that were characterized for contractile function, Ca2+-handling, and Ca2+-sensitivity. While heterozygous frame shifts did not alter cMyBP-C protein levels in 2-D cardiomyocytes, cMyBP-C+/- ECTs were haploinsufficient. cMyBP-C-/- cardiac micropatterns produced increased strain with normal Ca2+-handling. After 2 wk of culture in ECT, contractile function was similar between the three genotypes; however, Ca2+-release was slower in the setting of reduced or absent cMyBP-C. At 6 wk in ECT culture, the Ca2+-handling abnormalities became more pronounced in both cMyBP-C+/- and cMyBP-C-/- ECTs, and force production became severely depressed in cMyBP-C-/- ECTs. RNA-seq analysis revealed enrichment of differentially expressed hypertrophic, sarcomeric, Ca2+-handling, and metabolic genes in cMyBP-C+/- and cMyBP-C-/- ECTs. Our data suggest a progressive phenotype caused by cMyBP-C haploinsufficiency and ablation that initially is hypercontractile, but progresses to hypocontractility with impaired relaxation. The severity of the phenotype correlates with the amount of cMyBP-C present, with more severe earlier phenotypes observed in cMyBP-C-/- than cMyBP-C+/- ECTs. We propose that while the primary effect of cMyBP-C haploinsufficiency or ablation may relate to myosin crossbridge orientation, the observed contractile phenotype is Ca2+-mediated.
Collapse
Affiliation(s)
- Willem J. De Lange
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily T. Farrell
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan J. Hernandez
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alana Stempien
- Departments of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline R. Kreitzer
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Derek R. Jacobs
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Dominique L. Petty
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard L. Moss
- Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wendy C. Crone
- Departments of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
- Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - J. Carter Ralphe
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
44
|
Floy ME, Shabnam F, Givens SE, Patil VA, Ding Y, Li G, Roy S, Raval AN, Schmuck EG, Masters KS, Ogle BM, Palecek SP. Identifying molecular and functional similarities and differences between human primary cardiac valve interstitial cells and ventricular fibroblasts. Front Bioeng Biotechnol 2023; 11:1102487. [PMID: 37051268 PMCID: PMC10083504 DOI: 10.3389/fbioe.2023.1102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Fibroblasts are mesenchymal cells that predominantly produce and maintain the extracellular matrix (ECM) and are critical mediators of injury response. In the heart, valve interstitial cells (VICs) are a population of fibroblasts responsible for maintaining the structure and function of heart valves. These cells are regionally distinct from myocardial fibroblasts, including left ventricular cardiac fibroblasts (LVCFBs), which are located in the myocardium in close vicinity to cardiomyocytes. Here, we hypothesize these subpopulations of fibroblasts are transcriptionally and functionally distinct. Methods: To compare these fibroblast subtypes, we collected patient-matched samples of human primary VICs and LVCFBs and performed bulk RNA sequencing, extracellular matrix profiling, and functional contraction and calcification assays. Results: Here, we identified combined expression of SUSD2 on a protein-level, and MEOX2, EBF2 and RHOU at a transcript-level to be differentially expressed in VICs compared to LVCFBs and demonstrated that expression of these genes can be used to distinguish between the two subpopulations. We found both VICs and LVCFBs expressed similar activation and contraction potential in vitro, but VICs showed an increase in ALP activity when activated and higher expression in matricellular proteins, including cartilage oligomeric protein and alpha 2-Heremans-Schmid glycoprotein, both of which are reported to be linked to calcification, compared to LVCFBs. Conclusion: These comparative transcriptomic, proteomic, and functional studies shed novel insight into the similarities and differences between valve interstitial cells and left ventricular cardiac fibroblasts and will aid in understanding region-specific cardiac pathologies, distinguishing between primary subpopulations of fibroblasts, and generating region-specific stem-cell derived cardiac fibroblasts.
Collapse
Affiliation(s)
- Martha E. Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Fathima Shabnam
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Sophie E. Givens
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Vaidehi A. Patil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Grace Li
- Department of Chemical Engineering, University of Florida, Gainesville, FL, United States
| | - Sushmita Roy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Amish N. Raval
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Eric G. Schmuck
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
45
|
Patino-Guerrero A, Ponce Wong RD, Kodibagkar VD, Zhu W, Migrino RQ, Graudejus O, Nikkhah M. Development and Characterization of Isogenic Cardiac Organoids from Human-Induced Pluripotent Stem Cells Under Supplement Starvation Regimen. ACS Biomater Sci Eng 2023; 9:944-958. [PMID: 36583992 DOI: 10.1021/acsbiomaterials.2c01290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of cardiovascular risk factors is expected to increase the occurrence of cardiovascular diseases (CVDs) worldwide. Cardiac organoids are promising candidates for bridging the gap between in vitro experimentation and translational applications in drug development and cardiac repair due to their attractive features. Here we present the fabrication and characterization of isogenic scaffold-free cardiac organoids derived from human induced pluripotent stem cells (hiPSCs) formed under a supplement-deprivation regimen that allows for metabolic synchronization and maturation of hiPSC-derived cardiac cells. We propose the formation of coculture cardiac organoids that include hiPSC-derived cardiomyocytes and hiPSC-derived cardiac fibroblasts (hiPSC-CMs and hiPSC-CFs, respectively). The cardiac organoids were characterized through extensive morphological assessment, evaluation of cellular ultrastructures, and analysis of transcriptomic and electrophysiological profiles. The morphology and transcriptomic profile of the organoids were improved by coculture of hiPSC-CMs with hiPSC-CFs. Specifically, upregulation of Ca2+ handling-related genes, such as RYR2 and SERCA, and structure-related genes, such as TNNT2 and MYH6, was observed. Additionally, the electrophysiological characterization of the organoids under supplement deprivation shows a trend for reduced conduction velocity for coculture organoids. These studies help us gain a better understanding of the role of other isogenic cells such as hiPSC-CFs in the formation of mature cardiac organoids, along with the introduction of exogenous chemical cues, such as supplement starvation.
Collapse
Affiliation(s)
- Alejandra Patino-Guerrero
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona8528, United States
| | | | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona8528, United States
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona85259, United States
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona85012, United States.,University of Arizona College of Medicine, Phoenix, Arizona85004, United States
| | - Oliver Graudejus
- BMSEED, Mesa, Arizona85201, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona85287, United States
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona8528, United States.,Center for Personalized Diagnostics Biodesign Institute, Arizona State University, Tempe, Arizona85281, United States
| |
Collapse
|
46
|
Alexanian M, Padmanabhan A, Nishino T, Travers JG, Ye L, Lee CY, Sadagopan N, Huang Y, Pelonero A, Auclair K, Zhu A, Teran BG, Flanigan W, Kim CKS, Lumbao-Conradson K, Costa M, Jain R, Charo I, Haldar SM, Pollard KS, Vagnozzi RJ, McKinsey TA, Przytycki PF, Srivastava D. Chromatin Remodeling Drives Immune-Fibroblast Crosstalk in Heart Failure Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.522937. [PMID: 36711864 PMCID: PMC9881961 DOI: 10.1101/2023.01.06.522937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic inflammation and tissue fibrosis are common stress responses that worsen organ function, yet the molecular mechanisms governing their crosstalk are poorly understood. In diseased organs, stress-induced changes in gene expression fuel maladaptive cell state transitions and pathological interaction between diverse cellular compartments. Although chronic fibroblast activation worsens dysfunction of lung, liver, kidney, and heart, and exacerbates many cancers, the stress-sensing mechanisms initiating the transcriptional activation of fibroblasts are not well understood. Here, we show that conditional deletion of the transcription co-activator Brd4 in Cx3cr1-positive myeloid cells ameliorates heart failure and is associated with a dramatic reduction in fibroblast activation. Analysis of single-cell chromatin accessibility and BRD4 occupancy in vivo in Cx3cr1-positive cells identified a large enhancer proximal to Interleukin-1 beta (Il1b), and a series of CRISPR deletions revealed the precise stress-dependent regulatory element that controlled expression of Il1b in disease. Secreted IL1B functioned non-cell autonomously to activate a p65/RELA-dependent enhancer near the transcription factor MEOX1, resulting in a profibrotic response in human cardiac fibroblasts. In vivo, antibody-mediated IL1B neutralization prevented stress-induced expression of MEOX1, inhibited fibroblast activation, and improved cardiac function in heart failure. The elucidation of BRD4-dependent crosstalk between a specific immune cell subset and fibroblasts through IL1B provides new therapeutic strategies for heart disease and other disorders of chronic inflammation and maladaptive tissue remodeling.
Collapse
Affiliation(s)
- Michael Alexanian
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco; San Francisco, CA, USA
| | - Arun Padmanabhan
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco; San Francisco CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Tomohiro Nishino
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
| | - Joshua G. Travers
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Lin Ye
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
| | - Clara Youngna Lee
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco; San Francisco CA, USA
| | - Nandhini Sadagopan
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco; San Francisco CA, USA
| | - Yu Huang
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
| | - Angelo Pelonero
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
| | - Kirsten Auclair
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
| | - Ada Zhu
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
| | - Barbara Gonzalez Teran
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
| | - Will Flanigan
- Gladstone Institutes; San Francisco, CA, USA
- UC Berkeley-UCSF Joint Program in Bioengineering; Berkeley, CA, USA
| | - Charis Kee-Seon Kim
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
| | - Koya Lumbao-Conradson
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Mauro Costa
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
| | - Rajan Jain
- Cardiovascular Institute, Epigenetics Institute, and Department of Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | | | - Saptarsi M. Haldar
- Gladstone Institutes; San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco; San Francisco CA, USA
- Amgen Research, Cardiometabolic Disorders; South San Francisco, CA, USA
| | - Katherine S. Pollard
- Gladstone Institutes; San Francisco, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
- Institute for Computational Health Sciences, University of California, San Francisco; San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Ronald J. Vagnozzi
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Pawel F. Przytycki
- Gladstone Institutes; San Francisco, CA, USA
- Faculty of Computing & Data Sciences, Boston University; Boston, MA, USA
| | - Deepak Srivastava
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes; San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco; San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
47
|
Min S, Cho SW. Engineered human cardiac tissues for modeling heart diseases. BMB Rep 2023; 56:32-42. [PMID: 36443005 PMCID: PMC9887099 DOI: 10.5483/bmbrep.2022-0185] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 07/30/2023] Open
Abstract
Heart disease is one of the major life-threatening diseases with high mortality and incidence worldwide. Several model systems, such as primary cells and animals, have been used to understand heart diseases and establish appropriate treatments. However, they have limitations in accuracy and reproducibility in recapitulating disease pathophysiology and evaluating drug responses. In recent years, three-dimensional (3D) cardiac tissue models produced using tissue engineering technology and human cells have outperformed conventional models. In particular, the integration of cell reprogramming techniques with bioengineering platforms (e.g., microfluidics, scaffolds, bioprinting, and biophysical stimuli) has facilitated the development of heart-ona- chip, cardiac spheroid/organoid, and engineered heart tissue (EHT) to recapitulate the structural and functional features of the native human heart. These cardiac models have improved heart disease modeling and toxicological evaluation. In this review, we summarize the cell types for the fabrication of cardiac tissue models, introduce diverse 3D human cardiac tissue models, and discuss the strategies to enhance their complexity and maturity. Finally, recent studies in the modeling of various heart diseases are reviewed. [BMB Reports 2023; 56(1): 32-42].
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
| |
Collapse
|
48
|
Martyniak A, Jeż M, Dulak J, Stępniewski J. Adaptation of cardiomyogenesis to the generation and maturation of cardiomyocytes from human pluripotent stem cells. IUBMB Life 2023; 75:8-29. [PMID: 36263833 DOI: 10.1002/iub.2685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2022]
Abstract
The advent of methods for efficient generation and cardiac differentiation of pluripotent stem cells opened new avenues for disease modelling, drug testing, and cell therapies of the heart. However, cardiomyocytes (CM) obtained from such cells demonstrate an immature, foetal-like phenotype that involves spontaneous contractions, irregular morphology, expression of embryonic isoforms of sarcomere components, and low level of ion channels. These and other features may affect cellular response to putative therapeutic compounds and the efficient integration into the host myocardium after in vivo delivery. Therefore, novel strategies to increase the maturity of pluripotent stem cell-derived CM are of utmost importance. Several approaches have already been developed relying on molecular changes that occur during foetal and postnatal maturation of the heart, its electromechanical activity, and the cellular composition. As a better understanding of these determinants may facilitate the generation of efficient protocols for in vitro acquisition of an adult-like phenotype by immature CM, this review summarizes the most important molecular factors that govern CM during embryonic development, postnatal changes that trigger heart maturation, as well as protocols that are currently used to generate mature pluripotent stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alicja Martyniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Jeż
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
49
|
Berg Luecke L, Waas M, Littrell J, Wojtkiewicz M, Castro C, Burkovetskaya M, Schuette EN, Buchberger AR, Churko JM, Chalise U, Waknitz M, Konfrst S, Teuben R, Morrissette-McAlmon J, Mahr C, Anderson DR, Boheler KR, Gundry RL. Surfaceome mapping of primary human heart cells with CellSurfer uncovers cardiomyocyte surface protein LSMEM2 and proteome dynamics in failing hearts. NATURE CARDIOVASCULAR RESEARCH 2023; 2:76-95. [PMID: 36950336 PMCID: PMC10030153 DOI: 10.1038/s44161-022-00200-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/29/2022] [Indexed: 01/19/2023]
Abstract
Cardiac cell surface proteins are drug targets and useful biomarkers for discriminating among cellular phenotypes and disease states. Here we developed an analytical platform, CellSurfer, that enables quantitative cell surface proteome (surfaceome) profiling of cells present in limited quantities, and we apply it to isolated primary human heart cells. We report experimental evidence of surface localization and extracellular domains for 1,144 N-glycoproteins, including cell-type-restricted and region-restricted glycoproteins. We identified a surface protein specific for healthy cardiomyocytes, LSMEM2, and validated an anti-LSMEM2 monoclonal antibody for flow cytometry and imaging. Surfaceome comparisons among pluripotent stem cell derivatives and their primary counterparts highlighted important differences with direct implications for drug screening and disease modeling. Finally, 20% of cell surface proteins, including LSMEM2, were differentially abundant between failing and non-failing cardiomyocytes. These results represent a rich resource to advance development of cell type and organ-specific targets for drug delivery, disease modeling, immunophenotyping and in vivo imaging.
Collapse
Affiliation(s)
- Linda Berg Luecke
- CardiOmics Program, Center for Heart and Vascular Research and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA
| | - Matthew Waas
- CardiOmics Program, Center for Heart and Vascular Research and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE USA
- Present Address: Princess Margaret Cancer Centre, University Health Network, Toronto, ON Canada
| | - Jack Littrell
- CardiOmics Program, Center for Heart and Vascular Research and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE USA
| | - Melinda Wojtkiewicz
- CardiOmics Program, Center for Heart and Vascular Research and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE USA
| | - Chase Castro
- CardiOmics Program, Center for Heart and Vascular Research and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE USA
| | - Maria Burkovetskaya
- CardiOmics Program, Center for Heart and Vascular Research and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE USA
| | - Erin N. Schuette
- CardiOmics Program, Center for Heart and Vascular Research and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE USA
| | - Amanda Rae Buchberger
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA
- Present Address: Department of Chemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Jared M. Churko
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ USA
| | - Upendra Chalise
- CardiOmics Program, Center for Heart and Vascular Research and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE USA
| | - Michelle Waknitz
- CardiOmics Program, Center for Heart and Vascular Research and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE USA
| | - Shelby Konfrst
- CardiOmics Program, Center for Heart and Vascular Research and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE USA
| | - Roald Teuben
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD USA
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD USA
| | - Claudius Mahr
- Department of Mechanical Engineering, Division of Cardiology, University of Washington, Seattle, WA USA
| | - Daniel R. Anderson
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE USA
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD USA
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD USA
| | - Rebekah L. Gundry
- CardiOmics Program, Center for Heart and Vascular Research and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE USA
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE USA
| |
Collapse
|
50
|
Min S, Cho SW. Engineered human cardiac tissues for modeling heart diseases. BMB Rep 2023; 56:32-42. [PMID: 36443005 PMCID: PMC9887099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 01/28/2023] Open
Abstract
Heart disease is one of the major life-threatening diseases with high mortality and incidence worldwide. Several model systems, such as primary cells and animals, have been used to understand heart diseases and establish appropriate treatments. However, they have limitations in accuracy and reproducibility in recapitulating disease pathophysiology and evaluating drug responses. In recent years, three-dimensional (3D) cardiac tissue models produced using tissue engineering technology and human cells have outperformed conventional models. In particular, the integration of cell reprogramming techniques with bioengineering platforms (e.g., microfluidics, scaffolds, bioprinting, and biophysical stimuli) has facilitated the development of heart-ona- chip, cardiac spheroid/organoid, and engineered heart tissue (EHT) to recapitulate the structural and functional features of the native human heart. These cardiac models have improved heart disease modeling and toxicological evaluation. In this review, we summarize the cell types for the fabrication of cardiac tissue models, introduce diverse 3D human cardiac tissue models, and discuss the strategies to enhance their complexity and maturity. Finally, recent studies in the modeling of various heart diseases are reviewed. [BMB Reports 2023; 56(1): 32-42].
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
| |
Collapse
|