1
|
Liu Q, Yang F, Zhang Y, Liu Q, Ma W, Wang Y. Glycosyltransferases: Pioneering roles in agriculture and medicine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112520. [PMID: 40280492 DOI: 10.1016/j.plantsci.2025.112520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/12/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Glycosyltransferases (GTs) belong to a diverse family of enzymes that catalyze the transfer of sugar moieties from activated donor sugars to specific acceptors, thus playing a crucial roles in various biological processes. This review explores the pioneering roles of uridine diphosphate-dependent GTs (UGTs), which use uridine diphosphate glucose as donors. UGTs have also been extensively studied in agricultural and medical fields, emphasizing their potential to revolutionize these sectors. In the agricultural sector, the genetic engineering of UGTs has demonstrate potential in developing crops with enhanced stress tolerance, regulated plant development, and increased resistance to pests and diseases. These advancements not only contribute to sustainable farming practices but also address global food security challenges by facilitating the production of more resilient plant varieties. Furthermore, UGTs facilitate the synthesis of complex carbohydrates and glycoconjugates in plants, which are critical for developing drugs and therapeutic strategies targeting various ailments, including cancer and infectious diseases. Thus, this review explored the functions and synthesis methods of flavonoid glycosides, terpenoid glycosides, and polyketosides in detail. Moreover, owing to the functional diversity of UGTs, numerous research methods were reviewed, and novel, more valuable UGTs will be obtained. In summary, this study synthesizes the current research findings and discusses future perspectives to underscore the transgenic technology and synthetic biological impact of UGTs on agriculture and medicine and bridge the gap between fundamental science and practical applications.
Collapse
Affiliation(s)
- Qian Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Fabin Yang
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Yanan Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Qingli Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China.
| | - Wenjian Ma
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Ying Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China.
| |
Collapse
|
2
|
Gao X, Sun Y, Yang Y, Yang X, Liu Q, Guo X, Wu L, Wang Q. Directed evolution of hydroxylase XcP4H for enhanced 5-HTP production in engineered probiotics to treat depression. Int J Biol Macromol 2025; 307:142250. [PMID: 40113000 DOI: 10.1016/j.ijbiomac.2025.142250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Depression exhibits a complex and multifaceted pathophysiology, accompanied by high rates of relapse and disability with current medication treatments. 5-Hydroxytryptophan (5-HTP) is a promising candidate for depression therapy, but its poor pharmacokinetics hinders its clinical application. To address this limitation, we introduced the hydroxylase XcP4H into Escherichia coli Nissle 1917 (EcN) to biosynthesize 5-HTP in vivo. To create a high-yielding EcN strain for 5-HTP production, we engineered XcP4H through enzyme-directed evolution using a novel genetic code expansion-based high-throughput screening method. The most effective XcP4H variant achieved a 22-fold increase in 5-HTP production, and molecular dynamic simulations elucidated the underlying mechanisms. After pathway engineering and gene editing, we further improved the 5-HTP yield in EcN. When the most robust strain, EcN@5-HTP, was employed as a live therapeutic, it alleviated depressive-like behaviors in mice by increasing 5-HT levels in both the gut and brain, repairing neurological abnormalities, inhibiting inflammation, elevating SCFAs concentrations, and modulating gut microbiota dysbiosis. By integrating synthetic biology with enzyme-directed evolution, we successfully addressed the pharmacokinetic limitations of 5-HTP through a live therapeutic approach. This proof-of-concept design clearly demonstrates that combining synthetic biology with probiotics has the potential to significantly revolutionize our strategies for disease detection, prevention, and treatment.
Collapse
Affiliation(s)
- Xiaowei Gao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China.
| | - Yingjie Sun
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yanhong Yang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiu Yang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qiuyu Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiurong Guo
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lijuan Wu
- Department of Endocrinology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Qin Wang
- Dazhou Vocational College of Chinese Medicine, Dazhou 635000, China.
| |
Collapse
|
3
|
Li Y, Li J, Zhang M, Liao Y, Wang F, Qiao M. Heterologous production of caffeic acid in microbial hosts: current status and perspectives. Front Microbiol 2025; 16:1570406. [PMID: 40365059 PMCID: PMC12069361 DOI: 10.3389/fmicb.2025.1570406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Caffeic acid, a plant-derived phenolic compound, has attracted much attention in the fields of medicines and cosmetics due to its remarkable physiological activities including antioxidant, anti-inflammation, antibacteria, antivirus and hemostasis. However, traditional plant extraction and chemical synthesis methods exist some problems such as high production costs, low extraction efficiency and environmental pollution. In recent years, the construction of microbial cell factories for the biosynthesis of caffeic acid has attracted much attention due to its potential to offer an efficient and environmentally-friendly alternative for caffeic acid production. This review introduces the caffeic acid biosynthesis pathway first, after which the characteristics of microbial hosts for caffeic acid production are analyzed. Then, the main strategies for caffeic acid production in microbial hosts, including selection and optimization of heterologous enzymes, enhancement of the metabolic flux to caffeic acid, supply and recycling of cofactor, and optimization of the production process, are summarized and discussed. Finally, the future prospects and perspectives of microbial caffeic acid production are discussed. Recent breakthroughs have achieved caffeic acid titers of up to 6.17 g/L, demonstrating the potential of microbial biosynthesis. Future research can focus on the enhancement of metabolic flux to caffeic acid biosynthesis pathway, the development of robust microbial hosts with improved tolerance to caffeic acid and its precursors, and the establishment of cost-effective industrial production processes.
Collapse
Affiliation(s)
- Yuanzi Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jiaxin Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Miao Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yonghong Liao
- School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Fenghuan Wang
- School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- College of Life Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
4
|
Khan A, Kanwal F, Ullah S, Fahad M, Tariq L, Altaf MT, Riaz A, Zhang G. Plant Secondary Metabolites-Central Regulators Against Abiotic and Biotic Stresses. Metabolites 2025; 15:276. [PMID: 40278405 PMCID: PMC12029941 DOI: 10.3390/metabo15040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
As global climates shift, plants are increasingly exposed to biotic and abiotic stresses that adversely affect their growth and development, ultimately reducing agricultural productivity. To counter these stresses, plants produce secondary metabolites (SMs), which are critical biochemical and essential compounds that serve as primary defense mechanisms. These diverse compounds, such as alkaloids, flavonoids, phenolic compounds, and nitrogen/sulfur-containing compounds, act as natural protectants against herbivores, pathogens, and oxidative stress. Despite the well-documented protective roles of SMs, the precise mechanisms by which environmental factors modulate their accumulation under different stress conditions are not fully understood. This review provides comprehensive insights into the recent advances in understanding the functions of SMs in plant defense against abiotic and biotic stresses, emphasizing their regulatory networks and biosynthetic pathways. Furthermore, we explored the unique contributions of individual SM classes to stress responses while integrating the findings across the entire spectrum of SM diversity, providing a comprehensive understanding of their roles in plant resilience under multiple stress conditions. Finally, we highlight the emerging strategies for harnessing SMs to improve crop resilience through genetic engineering and present novel solutions to enhance agricultural sustainability in a changing climate.
Collapse
Affiliation(s)
- Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China;
| | - Farah Kanwal
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China;
| | - Sana Ullah
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Muhammad Fahad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Leeza Tariq
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Muhammad Tanveer Altaf
- Department of Field Crops, Faculty of Agriculture, Recep Tayyip Erdoğan University, Pazar, Rize 53300, Turkey;
| | - Asad Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China;
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan;
| |
Collapse
|
5
|
Smith R, Davenport PW, Lakin MR. A Study of CRISPR Ribonucleoprotein Displacement in Cell-Free Systems. ACS OMEGA 2025; 10:9154-9164. [PMID: 40092787 PMCID: PMC11904657 DOI: 10.1021/acsomega.4c09275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025]
Abstract
CRISPR/Cas-based transcription factors are a powerful tool for controlling gene expression in living cells and cell-free systems, as their programmable DNA-binding activity makes them a powerful tool for building and scaling up engineered genetic networks. The use of guide RNAs for targeting Cas proteins to desired binding sites opens up the possibility of using RNA engineering techniques to achieve programmable and dynamic control of CRISPR/Cas-based transcription factor activity and hence of gene expression. In this work, we investigate the use of RNA strand displacement systems to remove bound CRISPR/Cas ribonucleoprotein complexes from target DNA in cell-free systems. The binding of catalytically inactive dCas9 is monitored by using CRISPR interference to repress the expression of a reporter protein. We express an antisense RNA complementary to an extended toehold on an engineered guide RNA in an E. coli-based cell-free expression system with the goal of rapidly removing bound CRISPR/Cas ribonucleoproteins via strand displacement. We find that dCas9 appears to be surprisingly resistant to removal via this mechanism, which indicates that other strategies for dynamic removal of bound Cas proteins may prove to be more effective.
Collapse
Affiliation(s)
- Randi
L. Smith
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque, New Mexico 87131, United States
| | - Peter W. Davenport
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque, New Mexico 87131, United States
- Department
of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Matthew R. Lakin
- Department
of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department
of Chemical & Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
6
|
Chen H, Guo G, Li Q, Liu Z. Designing a microbial factory suited for plant chloroplast-derived enzymes to efficiently and green synthesize natural products: Capsanthin and capsorubin as examples. Metab Eng 2025; 88:215-227. [PMID: 39826674 DOI: 10.1016/j.ymben.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Specific cellular microenvironment, multi-enzyme complex and expensive essential cofactor make the biological manufacturing of plant chloroplast natural products (PCNPs) extremely challenging. The above difficulties have hampered the biosynthesis of capsanthin and capsorubin in the past 30 years. Here, we take capsanthin and capsorubin as examples to design an innovative microbial factory to promote the heterologous synthesis of PCPNs. Our main strategy is mimicking the microenvironment of chloroplasts in microbial factory. First, accumulation of violaxanthin, which is the key precursor, was increased by 587.9%, through introducing oxidative microenvironment and thioredoxin. The initial capsanthin-producing strain with 0.28 mg g-1 DCW were obtained by introducing capsanthin/capsorubin synthase (CCS). Subsequently, chloroplast-derived chaperones Cpn60α, Cpn60β and Cpn20 created a folding-promoting microenvironment for CCS. At the same time, by imitating the quasi-natural CCS, an artificial homotrimer was constructed and obtained 5.15 mg g-1 DCW capsanthin, and 1.62 mg g-1 DCW capsorubin. Finally, sufficient FADH2 was provided for CCS by feeding 20 mM formate. This process was realized by the continuous catalysis of formate dehydrogenase and flavin reductase. The engineered strain accumulated 6.77 mg g-1 DCW of capsanthin and 2.18 mg g-1 DCW of capsorubin. Compared with the initial strain, the yield of capsanthin was increased by 24.18 times, and 13.54 times of the highest yield reported so far. Artificially designed microbial cell factory and low-cost cofactor supply methods are in line with the current sustainable and green wave of biochemicals. This work not only provides a platform strain for low-cost and sustainable biosynthesis, but also provides a paradigm for heterologous expression of chloroplast-derived enzymes.
Collapse
Affiliation(s)
- Huibin Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Guiping Guo
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Qiaoyue Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Zhen Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China.
| |
Collapse
|
7
|
Jeung K, Kim M, Jang E, Shon YJ, Jung GY. Cell-free systems: A synthetic biology tool for rapid prototyping in metabolic engineering. Biotechnol Adv 2025; 79:108522. [PMID: 39863189 DOI: 10.1016/j.biotechadv.2025.108522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Microbial cell factories provide sustainable alternatives to petroleum-based chemical production using cost-effective substrates. A deep understanding of their metabolism is essential to harness their potential along with continuous efforts to improve productivity and yield. However, the construction and evaluation of numerous genetic variants are time-consuming and labor-intensive. Cell-free systems (CFSs) serve as powerful platforms for rapid prototyping of genetic circuits, metabolic pathways, and enzyme functionality. They offer numerous advantages, including minimizing unwanted metabolic interference, precise control of reaction conditions, reduced labor, and shorter Design-Build-Test-Learn cycles. Additionally, the introduction of in vitro compartmentalization strategies in CFSs enables ultra-high-throughput screening in physically separated spaces, which significantly enhances prototyping efficiency. This review highlights the latest examples of using CFS to overcome prototyping limitations in living cells with a focus on rapid prototyping, particularly regarding gene regulation, enzymes, and multienzymatic reactions in bacteria. Finally, this review evaluates CFSs as a versatile prototyping platform and discusses its future applications, emphasizing its potential for producing high-value chemicals through microbial biosynthesis.
Collapse
Affiliation(s)
- Kumyoung Jeung
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minsun Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-Ro, Jung-Gu, Ulsan 44429, Republic of Korea
| | - Eunsoo Jang
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yang Jun Shon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
8
|
Niraula A, Danesh A, Merindol N, Meddeb-Mouelhi F, Desgagné-Penix I. Aromatic Amino Acids: Exploring Microalgae as a Potential Biofactory. BIOTECH 2025; 14:6. [PMID: 39982273 PMCID: PMC11843938 DOI: 10.3390/biotech14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
In recent times, microalgae have emerged as powerful hosts for biotechnological applications, ranging from the production of lipids and specialized metabolites (SMs) of pharmaceutical interest to biofuels, nutraceutical supplements, and more. SM synthesis through bioengineered pathways relies on the availability of aromatic amino acids (AAAs) as an essential precursor. AAAs, phenylalanine, tyrosine, and tryptophan are also the building blocks of proteins, maintaining the structural and functional integrity of cells. Hence, they are crucial intermediates linking the primary and specialized metabolism. The biosynthesis pathway of AAAs in microbes and plants has been studied for decades, but not much is known about microalgae. The allosteric control present in this pathway has been targeted for metabolic engineering in microbes. This review focuses on the biosynthesis of AAAs in eukaryotic microalgae and engineering techniques for enhanced production. All the putative genes involved in AAA pathways in the model microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum are listed in this review.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada; (A.N.); (A.D.); (N.M.); (F.M.-M.)
| |
Collapse
|
9
|
Dong Y, Wei W, Li M, Qian T, Xu J, Chu X, Ye BC. De novo biosynthesis of quercetin in Yarrowia Lipolytica through systematic metabolic engineering for enhanced yield. BIORESOUR BIOPROCESS 2025; 12:5. [PMID: 39841399 PMCID: PMC11754545 DOI: 10.1186/s40643-024-00825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/13/2024] [Indexed: 01/23/2025] Open
Abstract
Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids. We designed a kaempferol biosynthetic pathway by integrating multiple-copy fusion enzyme expression modules, F3H-(GGGGS)2-FLS, into the genome with an optimized linker (GGGGS)2 to enhance kaempferol production from naringenin. To synthesize quercetin de novo, we introduced the FMOCPR gene into the kaempferol-synthesizing strain using the optimized pFBAin promoter. Notably, increasing glucose concentration effectively boosted the production of both flavonoids. Our results demonstrated kaempferol and quercetin titers reaching 194.30 ± 7.69 and 278.92 ± 11.58 mg/L, respectively, in shake-flask cultures. These findings suggest that Y. lipolytica is a promising platform for the efficient production of flavonoid-derived products.
Collapse
Affiliation(s)
- Yuxing Dong
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Mengfan Li
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Tao Qian
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jiayun Xu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiaohe Chu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
10
|
Zhang F, Hao X, Liu J, Hou H, Chen S, Wang C. Herbal Multiomics Provide Insights into Gene Discovery and Bioproduction of Triterpenoids by Engineered Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:47-65. [PMID: 39666531 DOI: 10.1021/acs.jafc.4c08372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Triterpenoids are natural products found in plants that exhibit industrial and agricultural importance. Triterpenoids are typically synthesized through two main pathways: the mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathways. They then undergo structural diversification with the help of squalene cyclases (OSCs), cytochrome P450 monooxygenases (P450s), UDP glycosyltransferases (UGTs), and acyltransferases (ATs). Advances in multiomics technologies for herbal plants have led to the identification of novel triterpenoid biosynthetic pathways. The application of various analytical techniques facilitates the qualitative and quantitative analysis of triterpenoids. Progress in synthetic biology and metabolic engineering has also facilitated the heterologous production of triterpenoids in microorganisms, such as Escherichia coli and Saccharomyces cerevisiae. This review summarizes recent advances in biotechnological approaches aimed at elucidating the complex pathway of triterpenoid biosynthesis. It also discusses the metabolic engineering strategies employed to increase the level of triterpenoid production in chassis cells.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuemi Hao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongping Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, Sichuan China
| | - Caixia Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
11
|
Jin CZ, Park SY, Kim CJ, Shin KS, Lee JM. Sphingomonas arvum sp. nov.: A promising microbial chassis for high-yield and sustainable zeaxanthin biomanufacturing. Microbiol Res 2025; 290:127938. [PMID: 39509922 DOI: 10.1016/j.micres.2024.127938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
The yield of natural products from plants is currently insufficient and cannot be considered a sustainable and secure source of supply, especially given the challenges posed by global climate change. Therefore, a biofoundry that can quickly and accurately produce desired materials from microorganisms based on synthetic biology is urgently needed. Moreover, it is important to find new microbial and genetic chassis to meet the rapidly growing global market for high-value-added zeaxanthin. In this study, we aimed to identify the zeaxanthin biosynthetic gene cluster, crtZ-crtB-crtI-crtY, and confirm zeaxanthin production (11,330 μg g-1 dry biomass weight) through genome mining and liquid chromatography/mass spectrometry profiling using the novel zeaxanthin-producing bacteria Sphingomonas sp. strain BN140010T isolated from the subsurface soil of arable land. We report the highest yield among zeaxanthin-producing Sphingomonas strains to date. Moreover, we determined the taxonomic position of BN140010T using a polyphasic approach based on phylogenetic, physiological and chemotaxonomic characteristics, and we proposed Sphingomonas arvum strain BN140010T as a novel strain. Our results provide a zeaxanthin-producing chassis and diverse genetic tools for microbiological zeaxanthin production. Therefore, this research advances our progress towards the goal of lowering the unit cost of zeaxanthin production, making it more accessible for industrial applications.
Collapse
Affiliation(s)
- Chun-Zhi Jin
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - So Young Park
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Chang-Jin Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kee-Sun Shin
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Jong-Min Lee
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
12
|
Chamas A, Svensson CM, Maneira C, Sporniak M, Figge MT, Lackner G. Engineering Adhesion of the Probiotic Strain Escherichia coli Nissle to the Fungal Pathogen Candida albicans. ACS Synth Biol 2024; 13:4027-4039. [PMID: 39265099 DOI: 10.1021/acssynbio.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Engineering live biotherapeutic products against fungal pathogens such as Candida albicans has been suggested as a means to tackle the increasing threat of fungal infections and the development of resistance to classical antifungal treatments. One important challenge in the design of live therapeutics is to control their localization inside the human body. The specific binding capability to target organisms or tissues would greatly increase their effectiveness by increasing the local concentration of effector molecules at the site of infection. In this study, we utilized surface display of carbohydrate binding domains to enable the probiotic E. coli Nissle 1917 to adhere specifically to the pathogenic yeast Candida albicans. Binding was quantified using a newly developed method based on the automated analysis of microscopic images. In addition to a rationally selected chitin binding domain, a synthetic peptide of identical length but distinct sequence also conferred binding. Efficient binding was specific to fungal hyphae, the invasive form of C. albicans, while the yeast form, as well as abiotic cellulose and PET particles, was only weakly recognized.
Collapse
Affiliation(s)
- Alexandre Chamas
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
| | - Carla Maneira
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Jena 07743, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food Nutrition and Health, University of Bayreuth, Bayreuth 95447, Germany
| | - Marta Sporniak
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Jena 07743, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food Nutrition and Health, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
13
|
Sun D, Li HH, Wu J, Wu J, Lin WQ, He RL, Liu DF, Li WW. Antibiotics-Free Steady Bioproduction of Valuable Chemicals from Organic Wastes by Engineered Vibrio natriegens through Targeted Gene Integration. ACS Synth Biol 2024; 13:4233-4244. [PMID: 39628126 DOI: 10.1021/acssynbio.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Bioproduction of chemicals by using engineered bacteria is promising for a circular economy but challenged the instability of the introduced plasmid by conventional methods. Here, we developed a two-plasmid INTEGRET system to reliably integrate the targeted gene into the Vibrio natriegens genome, making it a powerful strain for efficient and steady bioproduction without requiring antibiotic addition. The INTEGRET system allows for gene insertion at over 75% inserting efficiency and flexibly controllable gene dosages. Additionally, simultaneous gene insertion at four genomic sites was achieved at 54.3% success rate while maintaining stable inheritance of exogenous sequences across multiple generations. The engineered strain could efficiently synthesize PHB from the fermentation of diverse organic wastes, with an efficiency comparable to those with overexpressed plasmid. When the mixture of seawater and molasses was used as the feedstock, it achieved a high PHB yield of 39.41 wt %. An extended application of the INTEGRET system for imparting the riboflavin production ability to the bacterium was also demonstrated. Our work presents a reliable and efficient genomic editing tool to facilitate the development of sustainable and environmentally benign biological platforms for converting biomass wastes into valuable chemicals.
Collapse
Affiliation(s)
- Dan Sun
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Hui-Hui Li
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Jing Wu
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230000, China
| | - Wei-Qiang Lin
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230000, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- SEEM Innovation Center, Suzhou Institute for Advance Research of USTC, Suzhou 215123, China
| |
Collapse
|
14
|
Lee SB, Lee SE, Lee H, Kim JS, Choi H, Lee S, Kim BG. Engineering Nicotiana benthamiana for chrysoeriol production using synthetic biology approaches. FRONTIERS IN PLANT SCIENCE 2024; 15:1458916. [PMID: 39741678 PMCID: PMC11685227 DOI: 10.3389/fpls.2024.1458916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025]
Abstract
Flavonoids are prevalent plant secondary metabolites with a broad range of biological activities. Their antioxidant, anti-inflammatory, and anti-cancer activities make flavonoids widely useful in a variety of industries, including the pharmaceutical and health food industries. However, many flavonoids occur at only low concentrations in plants, and they are difficult to synthesize chemically due to their structural complexity. To address these difficulties, new technologies have been employed to enhance the production of flavonoids in vivo. In this study, we used synthetic biology techniques to produce the methylated flavone chrysoeriol in Nicotiana benthamiana leaves. The chrysoeriol biosynthetic pathway consists of eight catalytic steps. However, using an Agrobacterium-mediated transient expression assay to examine the in planta activities of genes of interest, we shortened this pathway to four steps catalyzed by five enzymes. Co-expression of these five enzymes in N. benthamiana leaves resulted in de novo chrysoeriol production. Chrysoeriol production was unaffected by the Agrobacterium cell density used for agroinfiltration and increased over time, peaking at 10 days after infiltration. Chrysoeriol accumulation in agroinfiltrated N. benthamiana leaves was associated with increased antioxidant activity, a typical property of flavones. Taken together, our results demonstrate that synthetic biology represents a practical method for engineering plants to produce substantial amounts of flavonoids and flavonoid derivatives without the need for exogenous substrates.
Collapse
Affiliation(s)
- Saet Buyl Lee
- Metabolic Engineering Division, National Institute of Agricultural Science, Rural Development Administration, JeonJu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Sandoval Hurtado CP, Kelly SP, Shende V, Perez M, Curtis BJ, Newmister SA, Ott K, Pereira F, Sherman DH. Engineering a Biosynthetic Pathway for the Production of (+)-Brevianamides A and B in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627567. [PMID: 39713314 PMCID: PMC11661150 DOI: 10.1101/2024.12.10.627567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The privileged fused-ring system comprising the bicyclo[2.2.2]diazaoctane (BDO) core is prevalent in diketopiperazine (DKP) natural products with potent and diverse biological activities, with some being explored as drug candidates. Typically, only low yields of these compounds can be extracted from native fungal producing strains and the available synthetic routes remain challenging due to their structural complexity. BDO-containing DKPs including (+)-brevianamides A and B are assembled via multi-component biosynthetic pathways incorporating non-ribosomal peptide synthetases, prenyltransferases, flavin monooxygenases, cytochrome P450s and semi-pinacolases. To simplify access to this class of alkaloids, we designed an engineered biosynthetic pathway in Escherichia coli , composed of six enzymes sourced from different kingdoms of life. The pathway includes a cyclodipeptide synthase (NascA), a cyclodipeptide oxidase (DmtD2/DmtE2), a prenyltransferase (NotF), a flavin-dependent monooxygenase (BvnB), and kinases (PhoN and IPK). Cultivated in glycerol supplemented with prenol, the engineered E. coli strain produces 5.3 mg/L of (-)-dehydrobrevianamide E ( 4 ), which undergoes a terminal, ex vivo lithium hydroxide catalyzed rearrangement reaction to yield (+)-brevianamides A and B with a 46% yield and a 92:8 diastereomeric ratio. Additionally, titers of 4 were increased eight-fold by enhancing NADPH pools in the engineered E. coli strain. Our study combines synthetic biology, biocatalysis and synthetic chemistry approaches to provide a five-step engineered biosynthetic pathway for producing complex indole alkaloids in E. coli . Abstract Figure
Collapse
|
16
|
Eilers T, Legein M, Temmermans J, Dillen J, Vandendriessche I, Sandra K, Bron PA, Wittouck S, Lebeer S. Distribution of C30 carotenoid biosynthesis genes suggests habitat adaptation function in insect-adapted and nomadic Lactobacillaceae. Commun Biol 2024; 7:1610. [PMID: 39627396 PMCID: PMC11615344 DOI: 10.1038/s42003-024-07291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Carotenoids are membrane-bound pigments that are essential for photosynthesizing plants and algae, widely applied in food, feed and cosmetics due to their antioxidant and anti-inflammatory properties. The production of carotenoids, particularly C30 forms, has been documented in some non-photosynthetic prokaryotes. However, their function, distribution and ecology beyond photosynthesizing organisms remains understudied. In this study, we performed an eco-evolutionary analysis of terpenoid biosynthetic gene clusters in the Lactobacillaceae family, screening 4203 dereplicated genomes for terpenoid biosynthesis genes, and detected crtMN genes in 28/361 (7.7%) species across 14/34 (41.2%) genera. These genes encode key enzymes for producing the C30 carotenoid 4,4'-diaponeurosporene. crtMN genes appeared to be convergently gained within Fructilactobacillus and horizontally transferred across species and genera, including Lactiplantibacillus to Levilactobacillus. The phenotype was confirmed in 87% of the predicted crtMN gene carriers (27/31). Nomadic and insect-adapted species, particularly those isolated from vegetable fermentations, e.g., Lactiplantibacillus, and floral habitats, e.g., Fructilactobacillus, contained crtMN genes, while vertebrate-associated species, including vaginal associated species, lacked this trait. This habitat association aligned with the observations that C30 carotenoid-producing strains were more resistant to UV-stress. In summary, C30 carotenoid biosynthesis plays a role in habitat adaptation and is scattered across Lactobacillaceae in line with this habitat adaptation.
Collapse
Affiliation(s)
- Tom Eilers
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Marie Legein
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Jari Temmermans
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Jelle Dillen
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | | | - Koen Sandra
- RIC BV, President Kennedypark 6, 8500, Kortrijk, Belgium
| | - Peter A Bron
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Stijn Wittouck
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Sarah Lebeer
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
| |
Collapse
|
17
|
Schwarz NA, Stratton MT, Colquhoun RJ, Manganti AM, Sherbourne M, Mourey F, White CC, Day H, Dusseault MC, Hudson GM, Vickery CR, Schachner HC, Kasprzyk PG, Weng JK. Salidroside and exercise performance in healthy active young adults - an exploratory, randomized, double-blind, placebo-controlled study. J Int Soc Sports Nutr 2024; 21:2433744. [PMID: 39601362 PMCID: PMC11610317 DOI: 10.1080/15502783.2024.2433744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Rhodiola rosea extract is purported to improve physical performance and support resilience to stress. Salidroside is considered to be one of the main constituents responsible for the ergogenic actions of R. rosea. However, R. rosea extract contains relatively little salidroside and cultivation of R. rosea is challenging as it is mainly found in high-altitude, cold regions. Additionally, the R. rosea plant is subject to conservation concerns because of its growing popularity. The purpose of this exploratory study was to evaluate the short-term effects of pure, biosynthetic salidroside supplementation on exercise performance, mood state, and markers of inflammation and muscle damage in healthy active young adults. METHODS Fifty participants (30 M, 20F; 21 ± 4 yrs; 173 ± 8 cm; 74 ± 13 kg) were randomly assigned to either salidroside (60 mg/day for 16 days) or placebo supplementation and underwent peak oxygen uptake (VO2 peak), intermittent time-to-exhaustion (TTE), and local muscular endurance assessments, along with mood state evaluations using the Profile of Mood States (POMS). Blood samples were analyzed for erythropoietin, myoglobin, creatine kinase-MM, and C-reactive protein. RESULTS Salidroside supplementation enhanced overall percent predicted oxygen uptake during high-intensity intermittent exercise (p < 0.01). An increase in serum myoglobin was observed 24 hours following exercise in the placebo group (p = 0.02) compared with baseline whereas no statistically significant increase was observed for the salidroside group indicating reduced exercise-induced muscle damage. Placebo group experienced a decrease in number of intervals performed during the TTE test (p = 0.03), and a decrease in friendliness (p < 0.01) and an increase in fatigue-inertia (p < 0.01) as reported by POMS. The salidroside group exhibited stable mood states and maintained performance levels during the time-to-exhaustion test. CONCLUSION Salidroside supplementation may enhance oxygen utilization and mitigate exercise-induced muscle damage and fatigue, warranting further research on its long-term effects and potential as an adaptogen for active individuals.
Collapse
Affiliation(s)
- Neil A. Schwarz
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
- University of South Alabama, Department of Physiology and Cell Biology, Frederick C. Whiddon College of Medicine, Mobile, AL, USA
| | - Matthew T. Stratton
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
| | - Ryan J. Colquhoun
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
- University of South Alabama, Department of Physiology and Cell Biology, Frederick C. Whiddon College of Medicine, Mobile, AL, USA
| | - Alexia M. Manganti
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
| | - Margaux Sherbourne
- Department of Research and Applications, Gnosis by Lesaffre, Lesaffre Group, Marcq-en-Baroeul, France
| | - Florian Mourey
- Department of Research and Applications, Gnosis by Lesaffre, Lesaffre Group, Marcq-en-Baroeul, France
| | - Caitlyn C. White
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
| | - Heather Day
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
| | - Micaela C. Dusseault
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
| | - Geoffrey M. Hudson
- University of South Alabama, Exercise and Nutrition Research Group (ENRG), Department of Health, Kinesiology, and Sport, Mobile, AL, USA
| | | | | | | | - Jing-Ke Weng
- DoubleRainbow Biosciences Inc., Lexington, MA, USA
- Northeastern University, Institute for Plant-Human Interface, Boston, MA, USA
- Northeastern University, Department of Chemistry and Chemical Biology, Department of Bioengineering, and Department of Chemical Engineering, Boston, MA, USA
| |
Collapse
|
18
|
Wolters FC, Del Pup E, Singh KS, Bouwmeester K, Schranz ME, van der Hooft JJJ, Medema MH. Pairing omics to decode the diversity of plant specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102657. [PMID: 39527852 DOI: 10.1016/j.pbi.2024.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Plants have evolved complex bouquets of specialized natural products that are utilized in medicine, agriculture, and industry. Untargeted natural product discovery has benefitted from growing plant omics data resources. Yet, plant genome complexity limits the identification and curation of biosynthetic pathways via single omics. Pairing multi-omics types within experiments provides multiple layers of evidence for biosynthetic pathway mining. The extraction of paired biological information facilitates connecting genes to transcripts and metabolites, especially when captured across time points, conditions and chemotypes. Experimental design requires specific adaptations to enable effective paired-omics analysis. Ultimately, metadata standards are required to support the integration of paired and unpaired public datasets and to accelerate collaborative efforts for natural product discovery in the plant research community.
Collapse
Affiliation(s)
- Felicia C Wolters
- Bioinformatics Group, Wageningen University & Research, Wageningen, the Netherlands; Biosystematics Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Elena Del Pup
- Bioinformatics Group, Wageningen University & Research, Wageningen, the Netherlands. https://twitter.com/elena_delpup
| | - Kumar Saurabh Singh
- Bioinformatics Group, Wageningen University & Research, Wageningen, the Netherlands; Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, the Netherlands; Faculty of Environment, Science and Economy, University of Exeter, TR10 9FE Penryn Cornwall UK; Plant Functional Genomics Group, Brightlands Future Farming Institute, Faculty of Science and Engineering, Maastricht University 5928 SX Venlo, the Netherlands. https://twitter.com/Kumar_S_Singh
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Wageningen, the Netherlands. https://twitter.com/K_Bouwmeester
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marnix H Medema
- Bioinformatics Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
19
|
Liu SC, Xu L, Sun Y, Yuan L, Xu H, Song X, Sun L. Progress in the Metabolic Engineering of Yarrowia lipolytica for the Synthesis of Terpenes. BIODESIGN RESEARCH 2024; 6:0051. [PMID: 39534575 PMCID: PMC11555184 DOI: 10.34133/bdr.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Terpenes are natural secondary metabolites with isoprene as the basic structural unit; they are widely found in nature and have potential applications as advanced fuels, pharmaceutical ingredients, and agricultural chemicals. However, traditional methods are inefficient for obtaining terpenes because of complex processes, low yields, and environmental unfriendliness. The unconventional oleaginous yeast Yarrowia lipolytica, with a clear genetic background and complete gene editing tools, has attracted increasing attention for terpenoid synthesis. Here, we review the synthetic biology tools for Y. lipolytica, including promoters, terminators, selection markers, and autonomously replicating sequences. The progress and emerging trends in the metabolic engineering of Y. lipolytica for terpenoid synthesis are further summarized. Finally, potential future research directions are envisioned.
Collapse
Affiliation(s)
- Shun-Cheng Liu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Longxing Xu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yuejia Sun
- School of Nursing and Rehabilitation,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Lijie Yuan
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Hong Xu
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
| | - Xiaoming Song
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- School of Life Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Liangdan Sun
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, Hebei, China
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei, China
- School of Public Health,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| |
Collapse
|
20
|
Yu J, Zheng Y, Song C, Chen S. New insights into the roles of fungi and bacteria in the development of medicinal plant. J Adv Res 2024; 65:137-152. [PMID: 38092299 PMCID: PMC11518954 DOI: 10.1016/j.jare.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND The interaction between microorganisms and medicinal plants is a popular topic. Previous studies consistently reported that microorganisms were mainly considered pathogens or contaminants. However, with the development of microbial detection technology, it has been demonstrated that fungi and bacteria affect beneficially the medicinal plant production chain. AIM OF REVIEW Microorganisms greatly affect medicinal plants, with microbial biosynthesis a high regarded topic in medicinal plant-microbial interactions. However, it lacks a systematic review discussing this relationship. Current microbial detection technologies also have certain advantages and disadvantages, it is essential to compare the characteristics of various technologies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the role of fungi and bacteria in various medicinal plant production procedures, discusses the development of microbial detection and identification technologies in recent years, and concludes with microbial biosynthesis of natural products. The relationship between fungi, bacteria, and medicinal plants is discussed comprehensively. We also propose a future research model and direction for further studies.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Yixuan Zheng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China.
| |
Collapse
|
21
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
22
|
Wang G, Wu Z, Li M, Liang X, Wen Y, Zheng Q, Li D, An T. Microbial production of 5- epi-jinkoheremol, a plant-derived antifungal sesquiterpene. Appl Environ Microbiol 2024; 90:e0119124. [PMID: 39283105 PMCID: PMC11497823 DOI: 10.1128/aem.01191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Synthetic biology using microbial chassis is emerging as a powerful tool for the production of natural chemicals. In the present study, we constructed a microbial platform for the high-level production of a sesquiterpene from Catharanthus roseus, 5-epi-jinkoheremol, which exhibits strong fungicidal activity. First, the mevalonate and sterol biosynthesis pathways were optimized in engineered yeast to increase the metabolic flux toward the biosynthesis of the precursor farnesyl pyrophosphate. Then, the transcription factor Hac1- and m6A writer Ime4-based metabolic engineering strategies were implemented in yeast to increase 5-epi-jinkoheremol production further. Next, protein engineering was performed to improve the catalytic activity and enhance the stability of the 5-epi-jinkoheremol synthase TPS18, resulting in the variant TPS18I21P/T414S, with the most improved properties. Finally, the titer of 5-epi-jinkoheremol was elevated to 875.25 mg/L in a carbon source-optimized medium in shake flask cultivation. To the best of our knowledge, this is the first study to construct an efficient microbial cell factory for the sustainable production of this antifungal sesquiterpene.IMPORTANCEBiofungicides represent a new and sustainable tool for the control of crop fungal diseases. However, hindered by the high cost of biofungicide production, their use is not as popular as expected. Synthetic biology using microbial chassis is emerging as a powerful tool for the production of natural chemicals. We previously identified a promising sesquiterpenoid biofungicide, 5-epi-jinkoheremol. Here, we constructed a microbial platform for the high-level production of this chemical. The metabolic engineering of the terpene biosynthetic pathway was firstly employed to increase the metabolic flux toward 5-epi-jinkoheremol production. However, the limited catalytic activity of the key enzyme, TPS18, restricted the further yield of 5-epi-jinkoheremol. By using protein engineering, we improved its catalytic efficiency, and combined with the optimization of regulation factors, the highest production of 5-epi-jinkoheremol was achieved. Our work was useful for the larger-scale efficient production of this antifungal sesquiterpene.
Collapse
Affiliation(s)
- Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Yiwei Wen
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
23
|
Li Y, Sun J, Fu Z, He Y, Chen X, Wang S, Zhang L, Jian J, Yang W, Liu C, Liu X, Yang Y, Bai Z. Engineering the L-tryptophan metabolism for efficient de novo biosynthesis of tryptophol in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:130. [PMID: 39415302 PMCID: PMC11481463 DOI: 10.1186/s13068-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Tryptophol (IET) is a metabolite derived from L-tryptophan that can be isolated from plants, bacteria, and fungi and has a wide range of biological activities in living systems. Despite the fact that IET biosynthesis pathways exist naturally in living organisms, industrial-scale production of IET and its derivatives is solely based on environmentally unfriendly chemical conversion. With diminishing petroleum reserves and a significant increase in global demand in all major commercial segments, it becomes essential to develop new technologies to produce chemicals from renewable resources and under mild conditions, such as microbial fermentation. Here we characterized and engineered the less-studied L-tryptophan pathway and IET biosynthesis in the baker's yeast Saccharomyces cerevisiae, with the goal of investigating microbial fermentation as an alternative/green strategy to produce IET. In detail, we divided the aromatic amino acids (AAAs) metabolism related to IET synthesis into the shikimate pathway, the L-tryptophan pathway, the competing L-tyrosine/L-phenylalanine pathways, and the Ehrlich pathway based on a modular engineering concept. Through stepwise engineering of these modules, we obtained a yeast mutant capable of producing IET up to 1.04 g/L through fed-batch fermentation, a ~ 650-fold improvement over the wild-type strain. Besides, our engineering process also revealed many insights about the regulation of AAAs metabolism in S. cerevisiae. Finally, during our engineering process, we also discovered yeast mutants that accumulate anthranilate and L-tryptophan, both of which are precursors of various valuable secondary metabolites from fungi and plants. These strains could be developed to the chassis for natural product biosynthesis upon introducing heterologous pathways.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Jingzhen Sun
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenhao Fu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yubing He
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaorui Chen
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Shijie Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lele Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Wuxi Tmaxtree Biotechnology Co. Ltd., Wuxi, 214072, China
| | - Jiansheng Jian
- Wuxi Tmaxtree Biotechnology Co. Ltd., Wuxi, 214072, China
| | - Weihua Yang
- Changxing Pharmaceutical Co. Ltd., Huzhou, 313100, China
| | - Chunli Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
24
|
Yang J, Yang L, Zhao F, Ye C, Han S. De novo biosynthesis of β-Arbutin in Komagataella phaffii based on metabolic engineering strategies. Microb Cell Fact 2024; 23:261. [PMID: 39350198 PMCID: PMC11440761 DOI: 10.1186/s12934-024-02525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND β-Arbutin, found in the leaves of bearberry, stands out as one of the globally acknowledged eco-friendly whitening additives in recent years. However, the natural abundance of β-Arbutin is low, and the cost-effectiveness of using chemical synthesis or plant extraction methods is low, which cannot meet the requirements. While modifying the β-Arbutin synthesis pathway of existing strains is a viable option, it is hindered by the limited synthesis capacity of these strains, which hinders further development and application. RESULTS In this study, we established a biosynthetic pathway in Komagataella phaffii for β-Arbutin production with a titer of 1.58 g/L. Through diverse metabolic strategies, including fusion protein construction, enhancing shikimate pathway flux, and augmenting precursor supplies (PEP, E4P, and UDPG), we significantly increased β-Arbutin titer to 4.32 g/L. Further optimization of methanol concentration in shake flasks led to a titer of 6.32 g/L titer after 120 h of fermentation, representing a fourfold increase over the initial titer. In fed-batch fermentation, strain UA3-10 set a record with the highest production to date, reaching 128.6 g/L in a 5 L fermenter. CONCLUSIONS This is the highest yield in the fermentation tank level of using microbial cell factories for de novo synthesis of β-Arbutin. Applying combinatorial engineering strategies has significantly improved the β-Arbutin yield in K. phaffii and is a promising approach for synthesizing functional products using a microbial cell factory. This study not only advances low-cost fermentation-based production of β-Arbutin but also establishes K. phaffii as a promising chassis cell for synthesizing other aromatic amino acid metabolites.
Collapse
Affiliation(s)
- Jiashuo Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Liu Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Fengguang Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Chunting Ye
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
25
|
Yamada Y, Urui M, Shitan N. Integration of co-culture and transport engineering for enhanced metabolite production. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:195-202. [PMID: 40115766 PMCID: PMC11921134 DOI: 10.5511/plantbiotechnology.24.0312b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2025]
Abstract
Microbial production of valuable plant metabolites is feasible. However, constructing all pathways in a single cell is a formidable challenge, and the extended biosynthetic pathways within cells often result in reduced productivity. To address these challenges, a co-culture system that divides biosynthetic pathways into several host cells and co-cultures has been developed. Various combinations of host cells, along with the optimal conditions for each co-culture, have been documented, leading to the successful production of valuable metabolites. In addition, efficient biosynthesis frequently involves metabolite movement, encompassing substrate uptake, intracellular intermediate transport, and end-product efflux. Recent advances in plant transporters of specialized metabolites have enhanced productivity by harnessing these transporters. This review summarizes the latest findings on co-culture systems and transport engineering and provides insights into the future of valuable metabolite production through the integration of co-culture and transport engineering.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Miya Urui
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Nobukazu Shitan
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| |
Collapse
|
26
|
Fuji Y, Matsufuji H, Hirai MY. Distribution, biosynthesis, and synthetic biology of phenylethanoid glycosides in the order Lamiales. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:231-241. [PMID: 40115775 PMCID: PMC11921133 DOI: 10.5511/plantbiotechnology.24.0720a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/20/2024] [Indexed: 03/23/2025]
Abstract
Phenylethanoid glycosides (PhGs), with a C6-C2 glucoside unit as the basic skeleton, are specialized (secondary) metabolites found in several medicinal plants. As PhGs exhibit various pharmacological activities, they are expected to be used as lead compounds in drug discovery. However, mass-production systems have not yet been established even for acteoside, a typical PhG that is widely distributed in nature (more than 150 species). This review focuses on recent studies on the accumulation and distribution of PhGs in plants, biosynthetic pathways of PhGs, and the bioproduction of PhGs.
Collapse
Affiliation(s)
- Yushiro Fuji
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiroshi Matsufuji
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
27
|
Luo G, Ye H, Xu M, Li X, Zhu J, Dai J. PpFab: An efficient promoter toolkit in Physcomitrium Patens. PLANT PHYSIOLOGY 2024; 196:2-6. [PMID: 38865446 PMCID: PMC11376402 DOI: 10.1093/plphys/kiae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024]
Affiliation(s)
- Guangyu Luo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hao Ye
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Mengxuan Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaofang Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jianxuan Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
28
|
Van Gelder K, Lindner SN, Hanson AD, Zhou J. Strangers in a foreign land: 'Yeastizing' plant enzymes. Microb Biotechnol 2024; 17:e14525. [PMID: 39222378 PMCID: PMC11368087 DOI: 10.1111/1751-7915.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Expressing plant metabolic pathways in microbial platforms is an efficient, cost-effective solution for producing many desired plant compounds. As eukaryotic organisms, yeasts are often the preferred platform. However, expression of plant enzymes in a yeast frequently leads to failure because the enzymes are poorly adapted to the foreign yeast cellular environment. Here, we first summarize the current engineering approaches for optimizing performance of plant enzymes in yeast. A critical limitation of these approaches is that they are labour-intensive and must be customized for each individual enzyme, which significantly hinders the establishment of plant pathways in cellular factories. In response to this challenge, we propose the development of a cost-effective computational pipeline to redesign plant enzymes for better adaptation to the yeast cellular milieu. This proposition is underpinned by compelling evidence that plant and yeast enzymes exhibit distinct sequence features that are generalizable across enzyme families. Consequently, we introduce a data-driven machine learning framework designed to extract 'yeastizing' rules from natural protein sequence variations, which can be broadly applied to all enzymes. Additionally, we discuss the potential to integrate the machine learning model into a full design-build-test cycle.
Collapse
Affiliation(s)
- Kristen Van Gelder
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Steffen N. Lindner
- Department of Systems and Synthetic MetabolismMax Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Department of BiochemistryCharité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt‐UniversitätBerlinGermany
| | - Andrew D. Hanson
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Juannan Zhou
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
29
|
Winegar PH, Hudson GA, Dell LB, Astolfi MCT, Reed J, Payet RD, Ombredane HCJ, Iavarone AT, Chen Y, Gin JW, Petzold CJ, Osbourn AE, Keasling JD. Verazine biosynthesis from simple sugars in engineered Saccharomyces cerevisiae. Metab Eng 2024; 85:145-158. [PMID: 39074544 PMCID: PMC11421371 DOI: 10.1016/j.ymben.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Steroidal alkaloids are FDA-approved drugs (e.g., Zytiga) and promising drug candidates/leads (e.g., cyclopamine); yet many of the ≥697 known steroidal alkaloid natural products remain underutilized as drugs because it can be challenging to scale their biosynthesis in their producing organisms. Cyclopamine is a steroidal alkaloid produced by corn lily (Veratrum spp.) plants, and it is an inhibitor of the Hedgehog (Hh) signaling pathway. Therefore, cyclopamine is an important drug candidate/lead to treat human diseases that are associated with dysregulated Hh signaling, such as basal cell carcinoma and acute myeloid leukemia. Cyclopamine and its semi-synthetic derivatives have been studied in (pre)clinical trials as Hh inhibitor-based drugs. However, challenges in scaling the production of cyclopamine have slowed efforts to improve its efficacy and safety profile through (bio)synthetic derivatization, often limiting drug development to synthetic analogs of cyclopamine such as the FDA-approved drugs Odomzo, Daurismo, and Erivedge. If a platform for the scalable and sustainable production of cyclopamine were established, then its (bio)synthetic derivatization, clinical development, and, ultimately, widespread distribution could be accelerated. Ongoing efforts to achieve this goal include the biosynthesis of cyclopamine in Veratrum plant cell culture and the semi-/total chemical synthesis of cyclopamine. Herein, this work advances efforts towards a promising future approach: the biosynthesis of cyclopamine in engineered microorganisms. We completed the heterologous microbial production of verazine (biosynthetic precursor to cyclopamine) from simple sugars (i.e., glucose and galactose) in engineered Saccharomyces cerevisiae (S. cerevisiae) through the inducible upregulation of the native yeast mevalonate and lanosterol biosynthetic pathways, diversion of biosynthetic flux from ergosterol (i.e., native sterol in S. cerevisiae) to cholesterol (i.e., biosynthetic precursor to verazine), and expression of a refactored five-step verazine biosynthetic pathway. The engineered S. cerevisiae strain that produced verazine contains eight heterologous enzymes sourced from seven different species. Importantly, S. cerevisiae-produced verazine was indistinguishable via liquid chromatography-mass spectrometry from both a commercial standard (Veratrum spp. plant-produced) and Nicotiana benthamiana-produced verazine. To the best of our knowledge, this is the first report describing the heterologous production of a steroidal alkaloid in an engineered yeast. Verazine production was ultimately increased through design-build-test-learn cycles to a final titer of 83 ± 3 μg/L (4.1 ± 0.1 μg/g DCW). Together, this research lays the groundwork for future microbial biosynthesis of cyclopamine, (bio)synthetic derivatives of cyclopamine, and other steroidal alkaloid natural products.
Collapse
Affiliation(s)
- Peter H Winegar
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Luisa B Dell
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Maria C T Astolfi
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - James Reed
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rocky D Payet
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Anthony T Iavarone
- California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne E Osbourn
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens, Lyngby, 2800, Denmark.
| |
Collapse
|
30
|
Zhou Y, Li T, He X, Wang X, Wang F, Li X. Efficient Biosynthesis of (+)-α-Pinene and de Novo Synthesis of (+)- cis-Verbenol in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18890-18897. [PMID: 39140858 DOI: 10.1021/acs.jafc.4c05387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Bark beetles, major pests that bore into forest stems, cause significant economic damage to forests globally. (+)-α-Pinene is the precursor to (+)-cis-verbenol, a crucial component of the aggregation pheromones produced by bark beetles. This paper describes the de novo synthesis of (+)-cis-verbenol in Escherichia coli. Initially, the truncation position of (+)-α-pinene synthase (PtPS30 from Pinus taeda) and monoterpene precursor (geranyl diphosphate/neryl diphosphate) synthases were evaluated. Neryl diphosphate synthase from Solanum lycopersicum (SlNPPS1) and truncated (+)-α-pinene synthase (PtPS30-39) were selected as promising candidates. Subsequently, the titer of (+)-α-pinene was significantly increased 8.9-fold by using the fusion tag CM29, which enhanced the solubility of PtPS30-39. In addition, by optimizing expression elements (ribosomal binding sites, linkers, and up elements) and overexpressing CM29*PtPS30-39, a yield of 134.12 mg/L (+)-α-pinene was achieved. Finally, the first de novo synthesis of enantiopure (+)-cis-verbenol was achieved by introducing a cytochrome P450 mutant from Pseudomonas putida (P450camF89W,Y98F,L246A), resulting in a yield of 11.13 mg/L. This study lays the groundwork for developing verbenol-based trapping technology for controlling bark beetles.
Collapse
Affiliation(s)
- Yujunjie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tao Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xilong He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
31
|
Ahmad Z, Shareen, Ganie IB, Firdaus F, Ramakrishnan M, Shahzad A, Ding Y. Enhancing Withanolide Production in the Withania Species: Advances in In Vitro Culture and Synthetic Biology Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:2171. [PMID: 39124289 PMCID: PMC11313931 DOI: 10.3390/plants13152171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Withanolides are naturally occurring steroidal lactones found in certain species of the Withania genus, especially Withania somnifera (commonly known as Ashwagandha). These compounds have gained considerable attention due to their wide range of therapeutic properties and potential applications in modern medicine. To meet the rapidly growing demand for withanolides, innovative approaches such as in vitro culture techniques and synthetic biology offer promising solutions. In recent years, synthetic biology has enabled the production of engineered withanolides using heterologous systems, such as yeast and bacteria. Additionally, in vitro methods like cell suspension culture and hairy root culture have been employed to enhance withanolide production. Nevertheless, one of the primary obstacles to increasing the production of withanolides using these techniques has been the intricacy of the biosynthetic pathways for withanolides. The present article examines new developments in withanolide production through in vitro culture. A comprehensive summary of viable traditional methods for producing withanolide is also provided. The development of withanolide production in heterologous systems is examined and emphasized. The use of machine learning as a potent tool to model and improve the bioprocesses involved in the generation of withanolide is then discussed. In addition, the control and modification of the withanolide biosynthesis pathway by metabolic engineering mediated by CRISPR are discussed.
Collapse
Affiliation(s)
- Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| | - Shareen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | - Irfan Bashir Ganie
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (I.B.G.); (A.S.)
| | - Fatima Firdaus
- Chemistry Department, Lucknow University, Lucknow 226007, India;
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| | - Anwar Shahzad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (I.B.G.); (A.S.)
| | - Yulong Ding
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| |
Collapse
|
32
|
Chin WC, Zhou YZ, Wang HY, Feng YT, Yang RY, Huang ZF, Yang YL. Bacterial polyynes uncovered: a journey through their bioactive properties, biosynthetic mechanisms, and sustainable production strategies. Nat Prod Rep 2024; 41:977-989. [PMID: 38284321 DOI: 10.1039/d3np00059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: up to 2023Conjugated polyynes are natural compounds characterized by alternating single and triple carbon-carbon bonds, endowing them with distinct physicochemical traits and a range of biological activities. While traditionally sourced mainly from plants, recent investigations have revealed many compounds originating from bacterial strains. This review synthesizes current research on bacterial-derived conjugated polyynes, delving into their biosynthetic routes, underscoring the variety in their molecular structures, and examining their potential applications in biotechnology. Additionally, we outline future directions for metabolic and protein engineering to establish more robust and stable platforms for their production.
Collapse
Affiliation(s)
- Wei-Chih Chin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yang-Zhi Zhou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Hao-Yung Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Yu-Ting Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ru-Yin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Zih-Fang Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
33
|
Guan A, He Z, Wang X, Jia ZJ, Qin J. Engineering the next-generation synthetic cell factory driven by protein engineering. Biotechnol Adv 2024; 73:108366. [PMID: 38663492 DOI: 10.1016/j.biotechadv.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Synthetic cell factory offers substantial advantages in economically efficient production of biofuels, chemicals, and pharmaceutical compounds. However, to create a high-performance synthetic cell factory, precise regulation of cellular material and energy flux is essential. In this context, protein components including enzymes, transcription factor-based biosensors and transporters play pivotal roles. Protein engineering aims to create novel protein variants with desired properties by modifying or designing protein sequences. This review focuses on summarizing the latest advancements of protein engineering in optimizing various aspects of synthetic cell factory, including: enhancing enzyme activity to eliminate production bottlenecks, altering enzyme selectivity to steer metabolic pathways towards desired products, modifying enzyme promiscuity to explore innovative routes, and improving the efficiency of transporters. Furthermore, the utilization of protein engineering to modify protein-based biosensors accelerates evolutionary process and optimizes the regulation of metabolic pathways. The remaining challenges and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Jun Jia
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
34
|
Ferreira SS, Antunes MS. Genetically encoded Boolean logic operators to sense and integrate phenylpropanoid metabolite levels in plants. THE NEW PHYTOLOGIST 2024; 243:674-687. [PMID: 38752334 DOI: 10.1111/nph.19823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Synthetic biology has the potential to revolutionize biotechnology, public health, and agriculture. Recent studies have shown the enormous potential of plants as chassis for synthetic biology applications. However, tools to precisely manipulate metabolic pathways for bioproduction in plants are still needed. We used bacterial allosteric transcription factors (aTFs) that control gene expression in a ligand-specific manner and tested their ability to repress semi-synthetic promoters in plants. We also tested the modulation of their repression activity in response to specific plant metabolites, especially phenylpropanoid-related molecules. Using these aTFs, we also designed synthetic genetic circuits capable of computing Boolean logic operations. Three aTFs, CouR, FapR, and TtgR, achieved c. 95% repression of their respective target promoters. For TtgR, a sixfold de-repression could be triggered by inducing its ligand accumulation, showing its use as biosensor. Moreover, we designed synthetic genetic circuits that use AND, NAND, IMPLY, and NIMPLY Boolean logic operations and integrate metabolite levels as input to the circuit. We showed that biosensors can be implemented in plants to detect phenylpropanoid-related metabolites and activate a genetic circuit that follows a predefined logic, demonstrating their potential as tools for exerting control over plant metabolic pathways and facilitating the bioproduction of natural products.
Collapse
Affiliation(s)
- Savio S Ferreira
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Mauricio S Antunes
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
35
|
Bai Y, Liu X, Baldwin IT. Using Synthetic Biology to Understand the Function of Plant Specialized Metabolites. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:629-653. [PMID: 38424065 DOI: 10.1146/annurev-arplant-060223-013842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Plant specialized metabolites (PSMs) are variably distributed across taxa, tissues, and ecological contexts; this variability has inspired many theories about PSM function, which, to date, remain poorly tested because predictions have outpaced the available data. Advances in mass spectrometry-based metabolomics have enabled unbiased PSM profiling, and molecular biology techniques have produced PSM-free plants; the combination of these methods has accelerated our understanding of the complex ecological roles that PSMs play in plants. Synthetic biology techniques and workflows are producing high-value, structurally complex PSMs in quantities and purities sufficient for both medicinal and functional studies. These workflows enable the reengineering of PSM transport, externalization, structural diversity, and production in novel taxa, facilitating rigorous tests of long-standing theoretical predictions about why plants produce so many different PSMs in particular tissues and ecological contexts. Plants use their chemical prowess to solve ecological challenges, and synthetic biology workflows are accelerating our understanding of these evolved functions.
Collapse
Affiliation(s)
- Yuechen Bai
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Xinyu Liu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Jena, Germany;
| |
Collapse
|
36
|
Jung S, Maeda HA. Debottlenecking the L-DOPA 4,5-dioxygenase step with enhanced tyrosine supply boosts betalain production in Nicotiana benthamiana. PLANT PHYSIOLOGY 2024; 195:2456-2471. [PMID: 38498597 DOI: 10.1093/plphys/kiae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Synthetic biology provides emerging tools to produce valuable compounds in plant hosts as sustainable chemical production platforms. However, little is known about how supply and utilization of precursors is coordinated at the interface of plant primary and specialized metabolism, limiting our ability to efficiently produce high levels of target specialized metabolites in plants. L-Tyrosine is an aromatic amino acid precursor of diverse plant natural products including betalain pigments, which are used as the major natural food red colorants and more recently a visual marker for plant transformation. Here, we studied the impact of enhanced L-tyrosine supply on the production of betalain pigments by expressing arogenate dehydrogenase (TyrA) from table beet (Beta vulgaris, BvTyrAα), which has relaxed feedback inhibition by L-tyrosine. Unexpectedly, betalain levels were reduced when BvTyrAα was coexpressed with the betalain pathway genes in Nicotiana benthamiana leaves; L-tyrosine and 3,4-dihydroxy-L-phenylalanine (L-DOPA) levels were drastically elevated but not efficiently converted to betalains. An additional expression of L-DOPA 4,5-dioxygenase (DODA), but not CYP76AD1 or cyclo-DOPA 5-O-glucosyltransferase, together with BvTyrAα and the betalain pathway, drastically enhanced betalain production, indicating that DODA is a major rate-limiting step of betalain biosynthesis in this system. Learning from this initial test and further debottlenecking the DODA step maximized betalain yield to an equivalent or higher level than that in table beet. Our data suggest that balancing between enhanced supply ("push") and effective utilization ("pull") of precursor by alleviating a bottleneck step is critical in successful plant synthetic biology to produce high levels of target compounds.
Collapse
Affiliation(s)
- Soyoung Jung
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
37
|
Li J, Wang L, Zhang N, Cheng S, Wu Y, Zhao GR. Enzyme and Pathway Engineering for Improved Betanin Production in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:1916-1924. [PMID: 38861476 DOI: 10.1021/acssynbio.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Betanin is a water-soluble red-violet pigment belonging to the betacyanins family. It has become more and more attractive for its natural food colorant properties and health benefits. However, the commercial production of betanin, typically extracted from red beetroot, faces economic and sustainability challenges. Microbial heterologous production therefore offers a promising alternative. Here, we performed combinatorial engineering of plant P450 enzymes and precursor metabolisms to improve the de novo production of betanin in Saccharomyces cerevisiae. Semirational design by computer simulation and molecular docking was used to improve the catalytic activity of CYP76AD. Alanine substitution and site-directed saturation mutants were screened, with a combination mutant showing an approximately 7-fold increase in betanin titer compared to the wild type. Subsequently, betanin production was improved by enhancing the l-tyrosine pathway flux and UDP-glucose supply. Finally, after optimization of the fermentation process, the engineered strain BEW10 produced 134.1 mg/L of betanin from sucrose, achieving the highest reported titer of betanin in a shake flask by microbes. This work shows the P450 enzyme and metabolic engineering strategies for the efficient microbial production of natural complex products.
Collapse
Affiliation(s)
- Jiawei Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Yi Road, Nanshan District, Shenzhen 518055, China
| | - Lemin Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Yi Road, Nanshan District, Shenzhen 518055, China
| | - Nan Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Yi Road, Nanshan District, Shenzhen 518055, China
| | - Si Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Guang-Rong Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Yi Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
38
|
Zhu J, Zhang K, He Y, Zhang Q, Ran Y, Tan Z, Cui L, Feng Y. Metabolic engineering of Saccharomyces cerevisiae for chelerythrine biosynthesis. Microb Cell Fact 2024; 23:183. [PMID: 38902758 PMCID: PMC11191272 DOI: 10.1186/s12934-024-02448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Chelerythrine is an important alkaloid used in agriculture and medicine. However, its structural complexity and low abundance in nature hampers either bulk chemical synthesis or extraction from plants. Here, we reconstructed and optimized the complete biosynthesis pathway for chelerythrine from (S)-reticuline in Saccharomyces cerevisiae using genetic reprogramming. RESULTS The first-generation strain Z4 capable of producing chelerythrine was obtained via heterologous expression of seven plant-derived enzymes (McoBBE, TfSMT, AmTDC, EcTNMT, PsMSH, EcP6H, and PsCPR) in S. cerevisiae W303-1 A. When this strain was cultured in the synthetic complete (SC) medium supplemented with 100 µM of (S)-reticuline for 10 days, it produced up to 0.34 µg/L chelerythrine. Furthermore, efficient metabolic engineering was performed by integrating multiple-copy rate-limiting genes (TfSMT, AmTDC, EcTNMT, PsMSH, EcP6H, PsCPR, INO2, and AtATR1), tailoring the heme and NADPH engineering, and engineering product trafficking by heterologous expression of MtABCG10 to enhance the metabolic flux of chelerythrine biosynthesis, leading to a nearly 900-fold increase in chelerythrine production. Combined with the cultivation process, chelerythrine was obtained at a titer of 12.61 mg per liter in a 0.5 L bioreactor, which is over 37,000-fold higher than that of the first-generation recombinant strain. CONCLUSIONS This is the first heterologous reconstruction of the plant-derived pathway to produce chelerythrine in a yeast cell factory. Applying a combinatorial engineering strategy has significantly improved the chelerythrine yield in yeast and is a promising approach for synthesizing functional products using a microbial cell factory. This achievement underscores the potential of metabolic engineering and synthetic biology in revolutionizing natural product biosynthesis.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Kai Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yuanzhi He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Qi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yanpeng Ran
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Zaigao Tan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
39
|
Gou Y, Li D, Zhao M, Li M, Zhang J, Zhou Y, Xiao F, Liu G, Ding H, Sun C, Ye C, Dong C, Gao J, Gao D, Bao Z, Huang L, Xu Z, Lian J. Intein-mediated temperature control for complete biosynthesis of sanguinarine and its halogenated derivatives in yeast. Nat Commun 2024; 15:5238. [PMID: 38898098 PMCID: PMC11186835 DOI: 10.1038/s41467-024-49554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
While sanguinarine has gained recognition for antimicrobial and antineoplastic activities, its complex conjugated structure and low abundance in plants impede broad applications. Here, we demonstrate the complete biosynthesis of sanguinarine and halogenated derivatives using highly engineered yeast strains. To overcome sanguinarine cytotoxicity, we establish a splicing intein-mediated temperature-responsive gene expression system (SIMTeGES), a simple strategy that decouples cell growth from product synthesis without sacrificing protein activity. To debottleneck sanguinarine biosynthesis, we identify two reticuline oxidases and facilitated functional expression of flavoproteins and cytochrome P450 enzymes via protein molecular engineering. After comprehensive metabolic engineering, we report the production of sanguinarine at a titer of 448.64 mg L-1. Additionally, our engineered strain enables the biosynthesis of fluorinated sanguinarine, showcasing the biotransformation of halogenated derivatives through more than 15 biocatalytic steps. This work serves as a blueprint for utilizing yeast as a scalable platform for biomanufacturing diverse benzylisoquinoline alkaloids and derivatives.
Collapse
Affiliation(s)
- Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Dongfang Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Minghui Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Mengxin Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiaojiao Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yilian Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Feng Xiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Gaofei Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Haote Ding
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Chenfan Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chang Dong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jucan Gao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Di Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zehua Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
40
|
Takenaka M, Kamasaka K, Daryong K, Tsuchikane K, Miyazawa S, Fujihana S, Hori Y, Vavricka CJ, Hosoyama A, Kawasaki H, Shirai T, Araki M, Nakagawa A, Minami H, Kondo A, Hasunuma T. Integrated pathway mining and selection of an artificial CYP79-mediated bypass to improve benzylisoquinoline alkaloid biosynthesis. Microb Cell Fact 2024; 23:178. [PMID: 38879464 PMCID: PMC11179272 DOI: 10.1186/s12934-024-02453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Computational mining of useful enzymes and biosynthesis pathways is a powerful strategy for metabolic engineering. Through systematic exploration of all conceivable combinations of enzyme reactions, including both known compounds and those inferred from the chemical structures of established reactions, we can uncover previously undiscovered enzymatic processes. The application of the novel alternative pathways enables us to improve microbial bioproduction by bypassing or reinforcing metabolic bottlenecks. Benzylisoquinoline alkaloids (BIAs) are a diverse group of plant-derived compounds with important pharmaceutical properties. BIA biosynthesis has developed into a prime example of metabolic engineering and microbial bioproduction. The early bottleneck of BIA production in Escherichia coli consists of 3,4-dihydroxyphenylacetaldehyde (DHPAA) production and conversion to tetrahydropapaveroline (THP). Previous studies have selected monoamine oxidase (MAO) and DHPAA synthase (DHPAAS) to produce DHPAA from dopamine and oxygen; however, both of these enzymes produce toxic hydrogen peroxide as a byproduct. RESULTS In the current study, in silico pathway design is applied to relieve the bottleneck of DHPAA production in the synthetic BIA pathway. Specifically, the cytochrome P450 enzyme, tyrosine N-monooxygenase (CYP79), is identified to bypass the established MAO- and DHPAAS-mediated pathways in an alternative arylacetaldoxime route to DHPAA with a peroxide-independent mechanism. The application of this pathway is proposed to result in less formation of toxic byproducts, leading to improved production of reticuline (up to 60 mg/L at the flask scale) when compared with that from the conventional MAO pathway. CONCLUSIONS This study showed improved reticuline production using the bypass pathway predicted by the M-path computational platform. Reticuline production in E. coli exceeded that of the conventional MAO-mediated pathway. The study provides a clear example of the integration of pathway mining and enzyme design in creating artificial metabolic pathways and suggests further potential applications of this strategy in metabolic engineering.
Collapse
Affiliation(s)
- Musashi Takenaka
- Bacchus Bio innovation Co. Ltd, 6-3-7-505 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Kouhei Kamasaka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kim Daryong
- National Institute of Technology and Evaluation, 2-49-10 Nishihara, Shibuya-ku, Tokyo, 1510066, Japan
| | - Keiko Tsuchikane
- National Institute of Technology and Evaluation, 2-49-10 Nishihara, Shibuya-ku, Tokyo, 1510066, Japan
| | - Seiha Miyazawa
- National Institute of Technology and Evaluation, 2-49-10 Nishihara, Shibuya-ku, Tokyo, 1510066, Japan
| | - Saeko Fujihana
- Bacchus Bio innovation Co. Ltd, 6-3-7-505 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Yoshimi Hori
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Christopher J Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Akira Hosoyama
- National Institute of Technology and Evaluation, 2-49-10 Nishihara, Shibuya-ku, Tokyo, 1510066, Japan
| | - Hiroko Kawasaki
- National Institute of Technology and Evaluation, 2-49-10 Nishihara, Shibuya-ku, Tokyo, 1510066, Japan
| | - Tomokazu Shirai
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Michihiro Araki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606- 8501, Japan
- National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Akira Nakagawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi city, Ishikawa, Japan
| | - Hiromichi Minami
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi city, Ishikawa, Japan
| | - Akihiko Kondo
- Bacchus Bio innovation Co. Ltd, 6-3-7-505 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
41
|
Han J, Miller EP, Li S. Cutting-edge plant natural product pathway elucidation. Curr Opin Biotechnol 2024; 87:103137. [PMID: 38677219 PMCID: PMC11192039 DOI: 10.1016/j.copbio.2024.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Plant natural products (PNPs) play important roles in plant physiology and have been applied across diverse fields of human society. Understanding their biosynthetic pathways informs plant evolution and meanwhile enables sustainable production through metabolic engineering. However, the discovery of PNP biosynthetic pathways remains challenging due to the diversity of enzymes involved and limitations in traditional gene mining approaches. In this review, we will summarize state-of-the-art strategies and recent examples for predicting and characterizing PNP biosynthetic pathways, respectively, with multiomics-guided tools and heterologous host systems and share our perspectives on the systematic pipelines integrating these various bioinformatic and biochemical approaches.
Collapse
Affiliation(s)
- Jianing Han
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Emma Parker Miller
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
42
|
Wang L, Mei Z, Jin G, Liu H, Lv S, Fu R, Li M, Yao C. In situ sustained release hydrogel system delivering GLUT1 inhibitor and chemo-drug for cancer post-surgical treatment. Bioact Mater 2024; 36:541-550. [PMID: 39072288 PMCID: PMC11276927 DOI: 10.1016/j.bioactmat.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Systematic administration of small molecular drugs often suffered from the low efficacy and systemic toxicity in cancer therapy. In addition, application of single mode drug usually leads to unsatisfactory therapeutic outcomes. Currently, developing multimodal-drug combination strategy that acts on different pathways without increasing side effects remains great challenge. Here, we developed a hydrogel system that co-delivered glycolysis inhibitor apigenin and chemo-drug gemcitabine to realize combination strategy for combating cancer with minimal systemic toxicity. We demonstrated that this system can not only eliminate tumor cells in situ, but also induce abscopal effect on various tumor models. These results showed that our study provided a safe and effective strategy for clinical cancer treatment.
Collapse
Affiliation(s)
- Lanqing Wang
- Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zi Mei
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Guanyu Jin
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Hao Liu
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Shixian Lv
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Runjia Fu
- Department of Oncology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Muxing Li
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Cuiping Yao
- Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
43
|
Chen Y, Huang JP, Wang YJ, Tu ML, Li J, Xu B, Peng G, Yang J, Huang SX. Identification and characterization of camptothecin tailoring enzymes in Nothapodytes tomentosa. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1158-1169. [PMID: 38517054 DOI: 10.1111/jipb.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Camptothecin is a complex monoterpenoid indole alkaloid with remarkable antitumor activity. Given that two C-10 modified camptothecin derivatives, topotecan and irinotecan, have been approved as potent anticancer agents, there is a critical need for methods to access other aromatic ring-functionalized congeners (e.g., C-9, C-10, etc.). However, contemporary methods for chemical oxidation are generally harsh and low-yielding when applied to the camptothecin scaffold, thereby limiting the development of modified derivatives. Reported herein, we have identified four tailoring enzymes responsible for C-9 modifications of camptothecin from Nothapodytes tomentosa, via metabolomic and transcriptomic analysis. These consist of a cytochrome P450 (NtCPT9H) which catalyzes the regioselective oxidation of camptothecin to 9-hydroxycamptothecin, as well as two methyltransferases (NtOMT1/2, converting 9-hydroxycamptothecin to 9-methoxycamptothecin), and a uridine diphosphate-glycosyltransferase (NtUGT5, decorating 9-hydroxycamptothecin to 9-β-D-glucosyloxycamptothecin). Importantly, the critical residues that contribute to the specific catalytic activity of NtCPT9H have been elucidated through molecular docking and mutagenesis experiments. This work provides a genetic basis for producing camptothecin derivatives through metabolic engineering. This will hasten the discovery of novel C-9 modified camptothecin derivatives, with profound implications for pharmaceutical manufacture.
Collapse
Affiliation(s)
- Yin Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yong-Jiang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Meng-Ling Tu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Junheng Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bingyan Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqing Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
44
|
He J, Liu X, Li C. Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules 2024; 29:2480. [PMID: 38893355 PMCID: PMC11173547 DOI: 10.3390/molecules29112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cytochrome P450s (P450s), a superfamily of heme-containing enzymes, existed in animals, plants, and microorganisms. P450s can catalyze various regional and stereoselective oxidation reactions, which are widely used in natural product biosynthesis, drug metabolism, and biotechnology. In a typical catalytic cycle, P450s use redox proteins or domains to mediate electron transfer from NAD(P)H to heme iron. Therefore, the main factors determining the catalytic efficiency of P450s include not only the P450s themselves but also their redox-partners and electron transfer pathways. In this review, the electron transfer pathway engineering strategies of the P450s catalytic system are reviewed from four aspects: cofactor regeneration, selection of redox-partners, P450s and redox-partner engineering, and electrochemically or photochemically driven electron transfer.
Collapse
Affiliation(s)
- Jingting He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi 832003, China;
| | - Xin Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Naik B, Kumar V, Rizwanuddin S, Mishra S, Kumar V, Saris PEJ, Khanduri N, Kumar A, Pandey P, Gupta AK, Khan JM, Rustagi S. Biofortification as a solution for addressing nutrient deficiencies and malnutrition. Heliyon 2024; 10:e30595. [PMID: 38726166 PMCID: PMC11079288 DOI: 10.1016/j.heliyon.2024.e30595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Malnutrition, defined as both undernutrition and overnutrition, is a major global health concern affecting millions of people. One possible way to address nutrient deficiency and combat malnutrition is through biofortification. A comprehensive review of the literature was conducted to explore the current state of biofortification research, including techniques, applications, effectiveness and challenges. Biofortification is a promising strategy for enhancing the nutritional condition of at-risk populations. Biofortified varieties of basic crops, including rice, wheat, maize and beans, with elevated amounts of vital micronutrients, such as iron, zinc, vitamin A and vitamin C, have been successfully developed using conventional and advanced technologies. Additionally, the ability to specifically modify crop genomes to improve their nutritional profiles has been made possible by recent developments in genetic engineering, such as CRISPR-Cas9 technology. The health conditions of people have been shown to improve and nutrient deficiencies were reduced when biofortified crops were grown. Particularly in environments with limited resources, biofortification showed considerable promise as a long-term and economical solution to nutrient shortages and malnutrition. To fully exploit the potential of biofortified crops to enhance public health and global nutrition, issues such as consumer acceptance, regulatory permitting and production and distribution scaling up need to be resolved. Collaboration among governments, researchers, non-governmental organizations and the private sector is essential to overcome these challenges and promote the widespread adoption of biofortification as a key part of global food security and nutrition strategies.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
- School of Agriculture, Graphic Hill University, Clement Town, Dehradun, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Sheikh Rizwanuddin
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00100, Helsinki, Finland
| | - Naresh Khanduri
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Akhilesh Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Piyush Pandey
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchur, 788011, Assam, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
46
|
Zhang N, Li X, Zhou Q, Zhang Y, Lv B, Hu B, Li C. Self-controlled in silico gene knockdown strategies to enhance the sustainable production of heterologous terpenoid by Saccharomyces cerevisiae. Metab Eng 2024; 83:172-182. [PMID: 38648878 DOI: 10.1016/j.ymben.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Microbial bioengineering is a growing field for producing plant natural products (PNPs) in recent decades, using heterologous metabolic pathways in host cells. Once heterologous metabolic pathways have been introduced into host cells, traditional metabolic engineering techniques are employed to enhance the productivity and yield of PNP biosynthetic routes, as well as to manage competing pathways. The advent of computational biology has marked the beginning of a novel epoch in strain design through in silico methods. These methods utilize genome-scale metabolic models (GEMs) and flux optimization algorithms to facilitate rational design across the entire cellular metabolic network. However, the implementation of in silico strategies can often result in an uneven distribution of metabolic fluxes due to the rigid knocking out of endogenous genes, which can impede cell growth and ultimately impact the accumulation of target products. In this study, we creatively utilized synthetic biology to refine in silico strain design for efficient PNPs production. OptKnock simulation was performed on the GEM of Saccharomyces cerevisiae OA07, an engineered strain for oleanolic acid (OA) bioproduction that has been reported previously. The simulation predicted that the single deletion of fol1, fol2, fol3, abz1, and abz2, or a combined knockout of hfd1, ald2 and ald3 could improve its OA production. Consequently, strains EK1∼EK7 were constructed and cultivated. EK3 (OA07△fol3), EK5 (OA07△abz1), and EK6 (OA07△abz2) had significantly higher OA titers in a batch cultivation compared to the original strain OA07. However, these increases were less pronounced in the fed-batch mode, indicating that gene deletion did not support sustainable OA production. To address this, we designed a negative feedback circuit regulated by malonyl-CoA, a growth-associated intermediate whose synthesis served as a bypass to OA synthesis, at fol3, abz1, abz2, and at acetyl-CoA carboxylase-encoding gene acc1, to dynamically and autonomously regulate the expression of these genes in OA07. The constructed strains R_3A, R_5A and R_6A had significantly higher OA titers than the initial strain and the responding gene-knockout mutants in either batch or fed-batch culture modes. Among them, strain R_3A stand out with the highest OA titer reported to date. Its OA titer doubled that of the initial strain in the flask-level fed-batch cultivation, and achieved at 1.23 ± 0.04 g L-1 in 96 h in the fermenter-level fed-batch mode. This indicated that the integration of optimization algorithm and synthetic biology approaches was efficiently rational for PNP-producing strain design.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China
| | - Xiaohan Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China
| | - Qiang Zhou
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China
| | - Ying Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China
| | - Bing Hu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China; Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
47
|
Guo Q, Peng QQ, Li YW, Yan F, Wang YT, Ye C, Shi TQ. Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene. Crit Rev Biotechnol 2024; 44:337-351. [PMID: 36779332 DOI: 10.1080/07388551.2023.2166809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/20/2022] [Accepted: 12/08/2022] [Indexed: 02/14/2023]
Abstract
β-Carotene is one kind of the most important carotenoids. The major functions of β-carotene include the antioxidant and anti-cardiovascular properties, which make it a growing market. Recently, the use of metabolic engineering to construct microbial cell factories to synthesize β-carotene has become the latest model for its industrial production. Among these cell factories, yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica have attracted the most attention because of the: security, mature genetic manipulation tools, high flux toward carotenoids using the native mevalonate pathway and robustness for large-scale fermentation. In this review, the latest strategies for β-carotene biosynthesis, including protein engineering, promoters engineering and morphological engineering are summarized in detail. Finally, perspectives for future engineering approaches are proposed to improve β-carotene production.
Collapse
Affiliation(s)
- Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Fang Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
48
|
Gao Q, Zhang J, Cao J, Xiang C, Yuan C, Li X, Wang J, Zhou P, Li L, Liu J, Xie H, Li R, Huang G, Li C, Zhang G, Yang S, Zhao Y. MetaDb: a database for metabolites and their regulation in plants with an emphasis on medicinal plants. MOLECULAR HORTICULTURE 2024; 4:17. [PMID: 38679729 PMCID: PMC11057126 DOI: 10.1186/s43897-024-00095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Affiliation(s)
- Qingqing Gao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
- College of Agricultural, Honghe Vocational and Technical College, Honghe, 661199, China
| | - Jiajin Zhang
- College of Big Data, Yunnan Agricultural University, Kunming, 650201, China
| | - Juntao Cao
- College of Big Data, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chengxiao Yuan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Juan Wang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Pinhan Zhou
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Lesong Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jia Liu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongchun Xie
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Ruolan Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guilin Huang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chaohui Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanghui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China.
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
| | - Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China.
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
49
|
Yuan X, Li R, He W, Xu W, Xu W, Yan G, Xu S, Chen L, Feng Y, Li H. Progress in Identification of UDP-Glycosyltransferases for Ginsenoside Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:1246-1267. [PMID: 38449105 DOI: 10.1021/acs.jnatprod.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Ginsenosides, the primary pharmacologically active constituents of the Panax genus, have demonstrated a variety of medicinal properties, including anticardiovascular disease, cytotoxic, antiaging, and antidiabetes effects. However, the low concentration of ginsenosides in plants and the challenges associated with their extraction impede the advancement and application of ginsenosides. Heterologous biosynthesis represents a promising strategy for the targeted production of these natural active compounds. As representative triterpenoids, the biosynthetic pathway of the aglycone skeletons of ginsenosides has been successfully decoded. While the sugar moiety is vital for the structural diversity and pharmacological activity of ginsenosides, the mining of uridine diphosphate-dependent glycosyltransferases (UGTs) involved in ginsenoside biosynthesis has attracted a lot of attention and made great progress in recent years. In this paper, we summarize the identification and functional study of UGTs responsible for ginsenoside synthesis in both plants, such as Panax ginseng and Gynostemma pentaphyllum, and microorganisms including Bacillus subtilis and Saccharomyces cerevisiae. The UGT-related microbial cell factories for large-scale ginsenoside production are also mentioned. Additionally, we delve into strategies for UGT mining, particularly potential rapid screening or identification methods, providing insights and prospects. This review provides insights into the study of other unknown glycosyltransferases as candidate genetic elements for the heterologous biosynthesis of rare ginsenosides.
Collapse
Affiliation(s)
- Xiaoxuan Yuan
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruiqiong Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weishen He
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wen Xu
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Guohong Yan
- Pharmacy Department, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, China
| | - Shaohua Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Lixia Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yaqian Feng
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
50
|
Lee SJ, Kim DM. Cell-Free Synthesis: Expediting Biomanufacturing of Chemical and Biological Molecules. Molecules 2024; 29:1878. [PMID: 38675698 PMCID: PMC11054211 DOI: 10.3390/molecules29081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing demand for sustainable alternatives underscores the critical need for a shift away from traditional hydrocarbon-dependent processes. In this landscape, biomanufacturing emerges as a compelling solution, offering a pathway to produce essential chemical materials with significantly reduced environmental impacts. By utilizing engineered microorganisms and biomass as raw materials, biomanufacturing seeks to achieve a carbon-neutral footprint, effectively counteracting the carbon dioxide emissions associated with fossil fuel use. The efficiency and specificity of biocatalysts further contribute to lowering energy consumption and enhancing the sustainability of the production process. Within this context, cell-free synthesis emerges as a promising approach to accelerate the shift towards biomanufacturing. Operating with cellular machinery in a controlled environment, cell-free synthesis offers multiple advantages: it enables the rapid evaluation of biosynthetic pathways and optimization of the conditions for the synthesis of specific chemicals. It also holds potential as an on-demand platform for the production of personalized and specialized products. This review explores recent progress in cell-free synthesis, highlighting its potential to expedite the transformation of chemical processes into more sustainable biomanufacturing practices. We discuss how cell-free techniques not only accelerate the development of new bioproducts but also broaden the horizons for sustainable chemical production. Additionally, we address the challenges of scaling these technologies for commercial use and ensuring their affordability, which are critical for cell-free systems to meet the future demands of industries and fully realize their potential.
Collapse
Affiliation(s)
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-Ro, Daejeon 34134, Republic of Korea;
| |
Collapse
|