1
|
Lee JH, Park SY, Roh JH, Kim BJ, Kang K. Active Armoring of Protocell Condensates with Metal-Phenolic Networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503077. [PMID: 40351056 DOI: 10.1002/smll.202503077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/01/2025] [Indexed: 05/14/2025]
Abstract
This study presents the use of metal-phenolic networks (MPNs) for the removable membranization of peptide-based condensates, providing a powerful strategy for stabilizing and protecting condensates from chemically harmful agents. It is demonstrated that the redox-active properties of MPNs allow for controlled membrane formation and disassembly, offering tunable regulation of membrane thickness and permeability. Using ferric ion (Fe3⁺) and tannic acid, poly-L-lysine and adenosine triphosphate condensates are successfully coated with MPN membranes, which significantly enhances their structural stability and resistance to fusion. Additionally, it is observed that when exposed to Tris(2-carboxyethyl)phosphine (TCEP), a reducing agent, the MPN membrane acts as a sacrificial layer, preserving the integrity of the encapsulated condensates, whereas non-membranized condensates dissolve. Nuclear magnetic resonance spectroscopy reveals that TCEP is oxidized within the MPN-protected condensates, rendering it non-harmful. By adjusting membrane thickness through varying reagent concentrations, selective permeability is achieved, demonstrating the ability of MPN membranes to mimic key features of biological membranes. These results highlight the potential of MPN membranization for developing stable, functional protocell models that are protected from external chemical threats, offering promising applications in synthetic biology and prebiotic chemistry. This work provides a versatile platform for controlling condensate behavior and improving its utility in various scientific applications.
Collapse
Affiliation(s)
- Joo Hyung Lee
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, Republic of Korea
| | - Seong Yun Park
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, Republic of Korea
| | - Jihun H Roh
- Department of Chemistry, University of Ulsan, Ulsan, 44776, Republic of Korea
| | - Beom Jin Kim
- Department of Chemistry, University of Ulsan, Ulsan, 44776, Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, Republic of Korea
| |
Collapse
|
2
|
Cao S, Fan W, Yuan C, Yan X. Peptide nanoarchitectonics beyond long-range ordering. Adv Colloid Interface Sci 2025; 343:103556. [PMID: 40359868 DOI: 10.1016/j.cis.2025.103556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Long-range disordered structures are ubiquitous in biological organisms and hold crucial significance for their unique structure and function. Inspired by these natural architectures, much attention has been devoted to constructing long-range disordered materials based on biomolecules in vitro. Peptides, especially short peptides consisting of several to dozens of amino acids, have emerged as ideal building blocks due to their versatile structural and functional diversity, along with their notable biocompatibility and biodegradability. As a result, significant efforts have been made to develop short peptide nanoarchitectonics with long-range disorder (SPNLRD). Understanding the fundamental mechanisms underlying the formation of SPNLRD is crucial for the precise design and construction of these architectures with specific functionalities. This review summarizes the latest advancements in the construction and application of SPNLRD. We place particular emphasis on the design principles for SPNLRD construction and stabilization, based on a comprehensive discussion from the perspectives of thermodynamics, kinetics and intermolecular interactions. Finally, we assess the critical challenges currently facing SPNLRD and highlight the future directions in the field, proposing research strategies aimed at enhancing the stability and improving the precision of control over these materials.
Collapse
Affiliation(s)
- Shuai Cao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Fan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengqian Yuan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
3
|
Chen C, Love CM, Carnahan CF, Ganar KA, Parikh AN, Deshpande S. Regulating Biocondensates within Synthetic Cells via Segregative Phase Separation. ACS NANO 2025. [PMID: 40293809 DOI: 10.1021/acsnano.4c18971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Living cells orchestrate a myriad of biological reactions within a highly complex and crowded environment. A major factor responsible for such seamless assembly is the preferential interactions between the constituent macromolecules, that can drive demixing to produce coexisting phases and thus provide dynamic intracellular compartmentalization. However, the way multiple-phase separation phenomena, occurring simultaneously within the cytoplasmic space, influence each other is still largely unknown. Here, we show that the interplay between segregative and associative phase separation within cell-mimicking confinements can lead to rich dynamics between multiple phases and the lipid boundary. Using on-chip microfluidic systems, we encapsulate the associative and segregative components and externally trigger their phase separation within cell-sized vesicles. We find that segregative phases create microdomains and tend to dictate the fate of associative components by acting as molecular recruiters, membrane-targeting agents, and initiators of condensation. The obtained multiphase architecture provides an isolated microenvironment for condensates, restricting their molecular communication as well as diffusive motion, and can further lead to global shape transformation of the confinement itself in the form of wetted, hierarchical domains at the lipid membrane. In conclusion, we propose segregative phase separation as a universal condensation regulation strategy by managing their molecular distribution, process initiation, and spatial localization, including membrane interaction. The presented interplay between the two phase separation systems suggests a distinct design principle in constructing complex synthetic cells and controlling the behavior of artificial membraneless organelles within.
Collapse
Affiliation(s)
- Chang Chen
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Caroline M Love
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
| | - Christopher F Carnahan
- Biophysics Graduate Group, University of California, Davis, Davis, California 95616, United States
| | - Ketan A Ganar
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Atul N Parikh
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
- Biophysics Graduate Group, University of California, Davis, Davis, California 95616, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 636921 Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 637551 Singapore
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
4
|
Runser JY, More SH, Weiss R, Contal C, Bigo-Simon A, Masquelier M, Ball V, Senger B, Bertagnolli C, Schaaf P, Jierry L. Surface Localized Coacervation Controlled by Bioactive Nanoarchitectonic Polyelectrolyte Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501673. [PMID: 40296319 DOI: 10.1002/smll.202501673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules is increasingly studied in bulk conditions mainly because of its expected implication in the emergence of life. However, in living systems, the LLPS occurs also at interfaces through a precise spatiotemporal localization-induction way. Based on enzymatically active nanoarchitectured polyelectrolyte multilayer (PEM) films, a tunable stimuli-responsive surface controlling coacervation processes specifically at the solid-liquid interface is developed. Urease, embedded in multilayers, is used as a trigger to increase locally the pH near the surface in the presence of urea. The deprotonation of a short peptide synthon FFssFF occurs in close vicinity of the surface and induces the formation of FFssFF coacervate droplets at, and in, the vicinity of the surface. The variation of i) the number of enzyme layers in the PEM film, the concentration of ii) urea, or iii) coacervator impacts the kinetic, the size, and the surface density of the droplets which can result in a quasi-full covering of the surface. Based on optical and fluorescence microscopy images using a fluorescently labelled FFssFFK-Bodipy coacervator, a mechanism of the droplet's formation is established explaining the spatial localization and the control of the coacervation process.
Collapse
Affiliation(s)
- Jean-Yves Runser
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1121, Centre National de la Recherche Scientifique (CNRS) EMR 7003, Université de Strasbourg, CRBS, 1 rue Eugène Boeckel, CS 60026, Strasbourg Cedex, 67000, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Strasbourg, 67000, France
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP84047, Strasbourg Cedex 2, 67034, France
| | - Shahaji H More
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1121, Centre National de la Recherche Scientifique (CNRS) EMR 7003, Université de Strasbourg, CRBS, 1 rue Eugène Boeckel, CS 60026, Strasbourg Cedex, 67000, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Strasbourg, 67000, France
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP84047, Strasbourg Cedex 2, 67034, France
| | - Robin Weiss
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP84047, Strasbourg Cedex 2, 67034, France
| | - Christophe Contal
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP84047, Strasbourg Cedex 2, 67034, France
| | - Alexis Bigo-Simon
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP84047, Strasbourg Cedex 2, 67034, France
| | - Maximilien Masquelier
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP84047, Strasbourg Cedex 2, 67034, France
- Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien (UMR 7178), Batiment 27, BP28, 67037Cedex 2, 23 Rue du Loess, Strasbourg, 67200, France
| | - Vincent Ball
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1121, Centre National de la Recherche Scientifique (CNRS) EMR 7003, Université de Strasbourg, CRBS, 1 rue Eugène Boeckel, CS 60026, Strasbourg Cedex, 67000, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Strasbourg, 67000, France
| | - Bernard Senger
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1121, Centre National de la Recherche Scientifique (CNRS) EMR 7003, Université de Strasbourg, CRBS, 1 rue Eugène Boeckel, CS 60026, Strasbourg Cedex, 67000, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Strasbourg, 67000, France
| | - Caroline Bertagnolli
- Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien (UMR 7178), Batiment 27, BP28, 67037Cedex 2, 23 Rue du Loess, Strasbourg, 67200, France
| | - Pierre Schaaf
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1121, Centre National de la Recherche Scientifique (CNRS) EMR 7003, Université de Strasbourg, CRBS, 1 rue Eugène Boeckel, CS 60026, Strasbourg Cedex, 67000, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Strasbourg, 67000, France
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP84047, Strasbourg Cedex 2, 67034, France
| |
Collapse
|
5
|
Edwards CR, Zhang H, Wang G, Helgeson ME. Spontaneous Formation of Core-Shell Microdroplets during Conventional Coacervate Phase Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8510-8523. [PMID: 40132010 PMCID: PMC11984101 DOI: 10.1021/acs.langmuir.4c04201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
We report the single-step formation and stability of protocell-like, core-shell coacervate droplets comprising a polyelectrolyte-rich shell and a solvent-rich vacuole core from the poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) system. These double emulsion (DE) coacervate droplets coexist with single emulsion (SE) droplets, suggesting a kinetic mechanism of formation. We use high-throughput microscopy and machine learning to classify droplet morphologies across various final compositions (polyelectrolyte ratios and salt concentrations) and processing routes (mixing rate and thermodynamic path). We find that DE droplets form preferentially over SE droplets at a wide range of compositions using a slow injection mixing rate. DE droplet formation is enhanced at lower salt (NaCl) levels and near 1:1 charge stoichiometry, showing a preference for polycation excess. DE droplets are stable to the micron scale and retain their core-shell structure even after coalescence. Nevertheless, they are metastable; direct observations of various coarsening phenomena suggest that they are primarily stabilized by the viscoelasticity and high viscosity of the polymer-rich shell. Overall, the scalable, simple mixing process used herein offers a novel mechanism to produce multiphase coacervate droplets that is orthogonal to existing routes, which require either dropwise synthesis or thermodynamic tuning.
Collapse
Affiliation(s)
- Chelsea
E. R. Edwards
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106-9010, United
States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-9010, United
States
| | - Hongyi Zhang
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106-9010, United
States
| | - Ginny Wang
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106-9010, United
States
| | - Matthew E. Helgeson
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106-9010, United
States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-9010, United
States
| |
Collapse
|
6
|
Mukwaya V, Yu X, Yang S, Mann S, Dou H. Adaptive ATP-induced molecular condensation in membranized protocells. Proc Natl Acad Sci U S A 2025; 122:e2419507122. [PMID: 40127264 PMCID: PMC12002177 DOI: 10.1073/pnas.2419507122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) has been achieved in various cytomimetic (protocell) models, but controlling molecular condensation using noninert crowders to systematically alter protocell function remains challenging. Intracellular ATP levels influence protein-protein interactions, and dysregulation of ATP can alter cellular crowding dynamics, thereby disrupting the normal formation or dissolution of condensates. Here, we develop a membranized protocell model capable of endogenous LLPS and liquid-gel-like phase separation through precise manipulation of intermolecular interactions within semipermeable polysaccharide-based microcapsules (polysaccharidosomes, P-somes), prepared using microtemplate-guided assembly. We demonstrate that intraprotocellular diffusion-mediated LLPS can be extended into the liquid-gel-like domain by the uptake of the biologically active crowder ATP, resulting in a range of modalities dependent on the fine-tuning of molecular condensation. Endogenous enzyme activity in these crowded polysaccharidosomes is enhanced compared to free enzymes in solution, though this enhancement diminishes at higher levels of intraprotocellular condensation. Additionally, increased molecular crowding inhibits intraprotocell DNA strand displacement reactions. Our findings introduce an expedient and optimized approach to the batch construction of membranized protocell models with controllable molecular crowding and functional diversity. Our mix-incubate-wash protocol for inducing endogenous LLPS in membranized protocells offers potential applications in microreactor technology, environmental sensing, and the delivery and sustained release of therapeutics.
Collapse
Affiliation(s)
- Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| |
Collapse
|
7
|
Nair KS, Radhakrishnan S, Bajaj H. Dynamic Duos: Coacervate-Lipid Membrane Interactions in Regulating Membrane Transformation and Condensate Size. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501470. [PMID: 40159770 DOI: 10.1002/smll.202501470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Indexed: 04/02/2025]
Abstract
Biomolecular condensates interfacing with lipid membranes is crucial for several key cellular functions. However, the role of lipid membranes in regulating condensates in cells remains obscure. Here, in-depth interactions between condensates and lipid membranes are probed and unraveled by employing cell-mimetic systems like Giant unilamellar vesicles (GUVs). An unprecedented influence of the coacervate size and their electrostatic interaction with lipid membranes is revealed on the membrane properties and deformation. Importantly, these findings demonstrate that the large relative size of coacervates and minimal electrostatic interaction strength with membranes allow for budding transitions at the interface. Membranes act as nucleation site for coacervates when the charge-charge interaction is high, giving a wrinkled vesicle surface appearance. Molecular diffusion property of lipids, quantified using Fluorescence recovery after photobleaching (FRAP), is modulated at the coacervate-membrane interaction site restricting the coarsening of coacervates. Notably, these results reveal coacervate droplets are intertwined in between membrane folds and invaginations discerned using Transmission electron microscopy (TEM) and high-resolution imaging, which further controls the dimension of droplets resembling size distributions observed in cells. Finally, these findings provide mechanistic insights of lipid bilayers controlling condensate sizes that play a prominent role in comprehending nucleation and localization of cellular condensates.
Collapse
Affiliation(s)
- Karthika S Nair
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sreelakshmi Radhakrishnan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
Cao S, Zhou P, Shen G, Ivanov T, Yan X, Landfester K, Caire da Silva L. Binary peptide coacervates as an active model for biomolecular condensates. Nat Commun 2025; 16:2407. [PMID: 40069227 PMCID: PMC11897134 DOI: 10.1038/s41467-025-57772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Biomolecular condensates formed by proteins and nucleic acids are critical for cellular processes. Macromolecule-based coacervate droplets formed by liquid-liquid phase separation serve as synthetic analogues, but are limited by complex compositions and high molecular weights. Recently, short peptides have emerged as an alternative component of coacervates, but tend to form metastable microdroplets that evolve into rigid nanostructures. Here we present programmable coacervates using binary mixtures of diphenylalanine-based short peptides. We show that the presence of different short peptides stabilizes the coacervate phase and prevents the formation of rigid structures, allowing peptide coacervates to be used as stable adaptive compartments. This approach allows fine control of droplet formation and dynamic morphological changes in response to physiological triggers. As compartments, short peptide coacervates sequester hydrophobic molecules and enhance bio-orthogonal catalysis. In addition, the incorporation of coacervates into model synthetic cells enables the design of Boolean logic gates. Our findings highlight the potential of short peptide coacervates for creating adaptive biomimetic systems and provide insight into the principles of phase separation in biomolecular condensates.
Collapse
Affiliation(s)
- Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, PR China
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Peng Zhou
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, PR China
| | - Guizhi Shen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, PR China
| | - Tsvetomir Ivanov
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, PR China.
| | | | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany.
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada.
| |
Collapse
|
9
|
Minagawa Y, Yabuta M, Su'etsugu M, Noji H. Self-growing protocell models in aqueous two-phase system induced by internal DNA replication reaction. Nat Commun 2025; 16:1522. [PMID: 40011432 PMCID: PMC11865487 DOI: 10.1038/s41467-025-56172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025] Open
Abstract
The bottom-up reconstitution of self-growing artificial cells is a critical milestone toward realizing autonomy and evolvability. However, building artificial cells that exhibit self-growth coupled with internal replication of gene-encoding DNA has not been achieved yet. Here, we report self-growing artificial cell models based on dextran-rich droplets in an aqueous two-phase system of poly(ethylene glycol) (PEG) and dextran (DEX). Motivated by the finding that DNA induces the generation of DEX-rich droplets, we integrate DNA amplification system with DEX-rich droplets, which exhibited active self-growth. We implement the protocells with cell-free transcription-translation systems coupled with DNA amplification/replication, which also show active self-growth. Considering the simplicities in terms of the chemical composition and the mechanism, these results underscore the potential of DEX droplets as a foundational platform for engineering protocells, giving implications for the emergence of protocells under prebiotic conditions.
Collapse
Affiliation(s)
- Yoshihiro Minagawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Moe Yabuta
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
- UT7 Next Life Research Group, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Zhu M, Li Z, Li J, Lin Y, Chen H, Qiao X, Wang X, Liu X, Huang X. Organelle-like structural evolution of coacervate droplets induced by photopolymerization. Nat Commun 2025; 16:1783. [PMID: 39971992 PMCID: PMC11839979 DOI: 10.1038/s41467-025-57069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
The dynamic study of coacervates in vitro contributes our understanding of phase separation mechanisms in cells due to complex intracellular physiology. However, current researches mainly involve the use of exogenous auxiliary agents to form multi-compartmental coacervates with short-term stability. Herein, we report the endogenous self-organizing of multi-component coacervates (HA/PDDA/BSA/DMAEMA) induced by a dynamic stimulation process of protein-mediated photopolymerization. As polymerization proceeds, the cycled structural evolution and maturation from coacervate droplets into multi-compartmental coacervates, coacervate vesicles and coacervate droplets are revealed, which are driven by electrostatic interaction and osmotic pressure difference supported by dynamic and thermodynamic control. Specially, by regulating the light stimulation time, a type of multi-compartmental coacervates can be widely obtained with high structural stability over 300 days. Being a promising artificial cell model, it shows the special characteristic of compartmentalized encapsulation of substrates, efficiently improving enzymatic interfacial catalytic efficiency of organelle-like communication. Our study holds great potential for advancing the understanding of the structural evolution mechanism of membraneless organelles and provides an instructive technique for constructing multi-compartmental coacervates with long-term stability.
Collapse
Affiliation(s)
- Mei Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhenhui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| |
Collapse
|
11
|
Song S, Ivanov T, Doan-Nguyen TP, da Silva LC, Xie J, Landfester K, Cao S. Synthetic Biomolecular Condensates: Phase-Separation Control, Cytomimetic Modelling and Emerging Biomedical Potential. Angew Chem Int Ed Engl 2025; 64:e202418431. [PMID: 39575859 DOI: 10.1002/anie.202418431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 01/24/2025]
Abstract
Liquid-liquid phase separation towards the formation of synthetic coacervate droplets represents a rapidly advancing frontier in the fields of synthetic biology, material science, and biomedicine. These artificial constructures mimic the biophysical principles and dynamic features of natural biomolecular condensates that are pivotal for cellular regulation and organization. Via adapting biological concepts, synthetic condensates with dynamic phase-separation control provide crucial insights into the fundamental cell processes and regulation of complex biological pathways. They are increasingly designed with the ability to display more complex and ambitious cell-like features and behaviors, which offer innovative solutions for cytomimetic modeling and engineering active materials with sophisticated functions. In this minireview, we highlight recent advancements in the design and construction of synthetic coacervate droplets; including their biomimicry structure and organization to replicate life-like properties and behaviors, and the dynamic control towards engineering active coacervates. Moreover, we highlight the unique applications of synthetic coacervates as catalytic centers and promising delivery vehicles, so that these biomimicry assemblies can be translated into practical applications.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Tsvetomir Ivanov
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Thao P Doan-Nguyen
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, PR China
| | | | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
12
|
Yuan J, Tanaka H. Network-forming phase separation of oppositely charged polyelectrolytes forming coacervates in a solvent. Nat Commun 2025; 16:1517. [PMID: 39952921 PMCID: PMC11828884 DOI: 10.1038/s41467-025-56583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025] Open
Abstract
The formation of coacervates through phase separation of oppositely charged polyelectrolytes (PEs) is critical for understanding biological condensates and developing responsive materials. Traditionally, coacervates are viewed as spherical droplets with growth dynamics resembling liquid-liquid phase separation. However, our fluid particle dynamics simulations incorporating hydrodynamic and electrostatic interactions challenge this perspective. Here, we find that oppositely charged PEs form a percolated network even in semi-dilute solutions, coarsening with a unique growth law, ℓ ∝ t1/2. This self-similarity, absent for neutral polymers in poor solvents, arises because PEs in good solvents exhibit weaker, longer-range attractions due to spatial charge inhomogeneity under global charge neutrality. This results in a lower density of the PEs-rich phase and reduced interfacial tension. Increased charge asymmetry further slows network coarsening. Additionally, coacervate droplets initially display irregular shapes due to weak interfacial tension, transitioning slowly to spherical forms. Our research provides new insights into coacervate morphology and coarsening dynamics.
Collapse
Affiliation(s)
- Jiaxing Yuan
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha District, Guangzhou, 511453, China
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
13
|
Zhao R, Amstad E. Bio-Informed Porous Mineral-Based Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2401052. [PMID: 39221524 PMCID: PMC11840473 DOI: 10.1002/smll.202401052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Certain biominerals, such as sea sponges and echinoderm skeletons, display a fascinating combination of mechanical properties and adaptability due to the well-defined structures spanning various length scales. These materials often possess high density normalized mechanical properties because they contain well-defined pores. The density-normalized mechanical properties of synthetic minerals are often inferior because the pores are stochastically distributed, resulting in an inhomogeneous stress distribution. The mechanical properties of synthetic materials are limited by the degree of structural and compositional control currently available fabrication methods offer. In the first part of this review, examples of structural elements nature uses to impart exceptional density normalized Young's moduli to its porous biominerals are showcased. The second part highlights recent advancements in the fabrication of bio-informed mineral-based composites possessing pores with diameters that span a wide range of length scales. The influence of the processing of mineral-based composites on their structures and mechanical properties is summarized. Thereby, it is aimed at encouraging further research directed to the sustainable, energy-efficient fabrication of synthetic lightweight yet stiff mineral-based composites.
Collapse
Affiliation(s)
- Ran Zhao
- Soft Materials LaboratoryInstitute of MaterialsÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Esther Amstad
- Swiss National Center for Competence in Research (NCCR) Bio‐inspired materialsUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| |
Collapse
|
14
|
Liang J, Yao L, Liu Z, Chen Y, Lin Y, Tian T. Nanoparticles in Subunit Vaccines: Immunological Foundations, Categories, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407649. [PMID: 39501996 DOI: 10.1002/smll.202407649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Indexed: 01/11/2025]
Abstract
Subunit vaccines, significant in next-generation vaccine development, offer precise targeting of immune responses by focusing on specific antigens. However, this precision often comes at the cost of eliciting strong and durable immunity, posing a great challenge to vaccine design. To address this limitation, recent advancements in nanoparticles (NPs) are utilized to enhance antigen delivery efficiency and boost vaccine efficacy. This review examines how the physicochemical properties of NPs influence various stages of the immune response during vaccine delivery and analyzes how different NP types contribute to immune activation and enhance vaccine performance. It then explores the unique characteristics and immune activation mechanisms of these NPs, along with their recent advancements, and highlights their application in subunit vaccines targeting infectious diseases and cancer. Finally, it discusses the challenges in NP-based vaccine development and proposes future directions for innovation in this promising field.
Collapse
Affiliation(s)
- Jiale Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lan Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Taoran Tian
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| |
Collapse
|
15
|
Sun W, Xiong H, Yin J, Yao W, Liu X, Liu L, Wang X, Jiang H. Construction of Somatostatin-Based Multiphase "Core-Shell" Coacervates as Photodynamic Biomimetic Organelles. Adv Healthc Mater 2025; 14:e2403561. [PMID: 39499053 DOI: 10.1002/adhm.202403561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/26/2024] [Indexed: 11/07/2024]
Abstract
Biomimetic coacervates have recently attracted great interest in biomedical fields, especially for drug delivery and as protocells. However, these membraneless structures are easily coalesced and poorly targetable, limiting their real biomedical applications. Here multiphase "core-shell" coacervate (CSC) constructed by dsDNA and somatostatin (SST), a 14-mer cyclopeptide is designed. The CSC shows enhanced tumor targetability through SST binding to SST receptors on the tumor cells' surface. G4 quadruplex-hemin complex can be embedded in the CSC by interaction with SST, as demonstrated by molecular simulation and isothermal titration calorimetry. The G4-hemin embedded CSC can further recruit photosensitizers such as tetracarboxyphenyl porphyrin to form the CSC-GHT composite for photodynamic therapy (PDT). As photodynamic biomimetic organelles, CSC-GHT can convert oxygen to singlet oxygen (catalyzed by the catalase-mimetic activity of G4-hemin), resulting in enhanced PDT effect, which allows the inhibition of cellular migration in vitro and tumor growth in vivo. Owing to high stability, targetability, and biosafety, the proposed CSC can recruit various cargos from small dyes to large biomacromolecules (up to 430 kDa), providing promising theranostic applications.
Collapse
Affiliation(s)
- Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Jiajia Yin
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
16
|
Mirlohi K, Blocher McTigue WC. Coacervation for biomedical applications: innovations involving nucleic acids. SOFT MATTER 2024; 21:8-26. [PMID: 39641131 DOI: 10.1039/d4sm01253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Gene therapies, drug delivery systems, vaccines, and many other therapeutics, although seeing breakthroughs over the past few decades, still suffer from poor stability, biocompatibility, and targeting. Coacervation, a liquid-liquid phase separation phenomenon, is a pivotal technique increasingly employed to enhance the effectiveness of therapeutics. Through coacervation strategies, many current challenges in therapeutic formulations can be addressed due to the tunable nature of this technique. However, much remains to be explored to enhance these strategies further and scale them from the benchtop to industrial applications. In this review, we highlight the underlying mechanisms of coacervation, elucidating how factors such as pH, ionic strength, temperature, chirality, and charge patterning influence the formation of coacervates and the encapsulation of active ingredients. We then present a perspective on current strategies harnessing these systems, specifically for nucleic acid-based therapeutics. These include peptide-, protein-, and polymer-based approaches, nanocarriers, and hybrid methods, each offering unique advantages and challenges. Nucleic acid-based therapeutics are crucial for designing rapid responses to diseases, particularly in pandemics. While these exciting systems offer many advantages, they also present limitations and challenges which are explored in this work. Exploring coacervation in the biomedical frontier opens new avenues for innovative nucleic acid-based treatments, marking a significant stride towards advanced therapeutic solutions.
Collapse
Affiliation(s)
- Kimiasadat Mirlohi
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
17
|
Sharma S, Belluati A, Kumar M, Dhiman S. Enzymatic Reaction Network-Driven Polymerization-Induced Transient Coacervation. Angew Chem Int Ed Engl 2024:e202421620. [PMID: 39655501 DOI: 10.1002/anie.202421620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
A living cell has a highly complex microenvironment whereas numerous enzyme-driven processes are active at once. These procedures are incredibly accurate and efficient, although comparable control has not yet been established in vitro. Here, we design an enzymatic reaction network (ERN) that combines antagonistic and orthogonal enzymatic networks to produce adjustable dynamics of ATP-fueled transient coacervation. Using horseradish peroxidase (HRP)-mediated Biocatalytic Atom Transfer Radical Polymerization (BioATRP), we synthesized poly(dimethylaminoethyl methacrylate), which subsequently formed coacervates with ATP. We rationally explored enzymatic control over coacervation and dissolution, using orthogonal and antagonistic enzyme pairs viz., alkaline phosphatase, Creatine phosphokinase, hexokinase, esterase, and urease. ATP-fuelled coacervates also demonstrate the enzymatic catalysis to prove its potential to be exploited as a cellular microreactor. Additionally, we developed ERN-polymerization-induced transient coacervation (ERN-PIC), with complete control over the system, polymerization, coacervation, and dissolution. Notably, the coacervation process itself determines functional properties, as seen in selective cargo uptake. The strategy offers cutting-edge biomimetic applications, and insights into cellular compartmentalization by bridging the gap between synthetic and biological systems. The development of temporally programmed coacervation is promising for the spatial arrangement of multienzyme cascades, and offers novel ideas on the architecture of artificial cells.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, 55122, Germany
| | - Andrea Belluati
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Mohit Kumar
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, 55122, Germany
| | - Shikha Dhiman
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, 55122, Germany
| |
Collapse
|
18
|
van Haren MHI, Helmers NS, Verploegen L, Beckers VAC, Spruijt E. Shape transformations in peptide-DNA coacervates driven by enzyme-catalyzed deacetylation. SOFT MATTER 2024; 20:9493-9502. [PMID: 39575590 PMCID: PMC11582960 DOI: 10.1039/d4sm01091d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) are important organizers of biochemistry in living cells. Condensate formation can be dynamically regulated, for example, by protein binding or enzymatic processes. However, how enzymatic reactions can influence condensate shape and control shape transformations is less well understood. Here, we design a model condensate that can be formed by the enzymatic deacetylation of a small peptide by sirtuin-3 in the presence of DNA. Interestingly, upon nucleation condensates initially form gel-like aggregates that gradually transform into spherical droplets, displaying fusion and wetting. This process is governed by sirtuin-3 concentration, as more enzyme results in a faster aggregate-to-liquid transformation of the condensates. The counterintuitive transformation of gel-like to liquid-like condensates with increasing interaction strength between the peptide and DNA is recapitulated by forming condensates with different peptides and nucleic acids at increasing salt concentrations. Close to the critical point where coacervates dissolve, gel-like aggregates are formed with short double stranded DNA, but not with single stranded DNA or weakly binding peptides, even though the coacervate salt resistance is similar. At lower salt concentrations the interaction strength increases, and spherical, liquid-like condensates are formed. We attribute this behavior to bending of the DNA by oppositely charged peptides, which becomes stronger as the system moves further into the two-phase region. Overall, this work shows that enzymes can induce shape transformations of condensates and that condensate material properties do not necessarily reveal their stability.
Collapse
Affiliation(s)
- Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands.
| | - Nienke S Helmers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands.
| | - Luuk Verploegen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands.
| | - Viveca A C Beckers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands.
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Ivanov T, Doan-Nguyen TP, Belahouane MA, Dai Z, Cao S, Landfester K, Caire da Silva L. Coacervate Droplets as Biomimetic Models for Designing Cell-Like Microreactors. Macromol Rapid Commun 2024; 45:e2400626. [PMID: 39588807 DOI: 10.1002/marc.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Coacervates are versatile compartments formed by liquid-liquid phase separation. Their dynamic behavior and molecularly crowded microenvironment make them ideal materials for creating cell-like systems such as synthetic cells and microreactors. Recently, combinations of synthetic and natural molecules have been exploited via simple or complex coacervation to create compartments that can be used to build hierarchical chemical systems with life-like properties. This review highlights recent advances in the design of coacervate compartments and their application as biomimetic compartments for the design of cell-like chemical reactors and cell mimicking systems. It first explores the variety of materials used for coacervation and the influence of their chemical structure on their controlled dynamic behavior. Then, the applications of coacervates as cell-like systems are reviewed, focusing on how they can be used as cell-like microreactors through their ability to sequester molecules and provide a distinct and regulatory microenvironment for chemical reactions in aqueous media.
Collapse
Affiliation(s)
- Tsvetomir Ivanov
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thao P Doan-Nguyen
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | | | - Zhen Dai
- Department of Chemistry, McGill University, H3A 0B8, Montreal, Canada
| | - Shoupeng Cao
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lucas Caire da Silva
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Chemistry, McGill University, H3A 0B8, Montreal, Canada
| |
Collapse
|
20
|
Bucci J, Malouf L, Tanase DA, Farag N, Lamb JR, Rubio-Sánchez R, Gentile S, Del Grosso E, Kaminski CF, Di Michele L, Ricci F. Enzyme-Responsive DNA Condensates. J Am Chem Soc 2024; 146:31529-31537. [PMID: 39503320 PMCID: PMC11583213 DOI: 10.1021/jacs.4c08919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Membrane-less compartments and organelles are widely acknowledged for their role in regulating cellular processes, and there is an urgent need to harness their full potential as both structural and functional elements of synthetic cells. Despite rapid progress, synthetically recapitulating the nonequilibrium, spatially distributed responses of natural membrane-less organelles remains elusive. Here, we demonstrate that the activity of nucleic-acid cleaving enzymes can be localized within DNA-based membrane-less compartments by sequestering the respective DNA or RNA substrates. Reaction-diffusion processes lead to complex nonequilibrium patterns, dependent on enzyme concentration. By arresting similar dynamic patterns, we spatially organize different substrates in concentric subcompartments, which can be then selectively addressed by different enzymes, demonstrating spatial distribution of enzymatic activity. Besides expanding our ability to engineer advanced biomimetic functions in synthetic membrane-less organelles, our results may facilitate the deployment of DNA-based condensates as microbioreactors or platforms for the detection and quantitation of enzymes and nucleic acids.
Collapse
Affiliation(s)
- Juliette Bucci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Layla Malouf
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Diana A Tanase
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Nada Farag
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Jacob R Lamb
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Roger Rubio-Sánchez
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Serena Gentile
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| |
Collapse
|
21
|
Song S, Ivanov T, Yuan D, Wang J, da Silva LC, Xie J, Cao S. Peptide-Based Biomimetic Condensates via Liquid-Liquid Phase Separation as Biomedical Delivery Vehicles. Biomacromolecules 2024; 25:5468-5488. [PMID: 39178343 DOI: 10.1021/acs.biomac.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Biomolecular condensates are dynamic liquid droplets through intracellular liquid-liquid phase separation that function as membraneless organelles, which are highly involved in various complex cellular processes and functions. Artificial analogs formed via similar pathways that can be integrated with biological complexity and advanced functions have received tremendous research interest in the field of synthetic biology. The coacervate droplet-based compartments can partition and concentrate a wide range of solutes, which are regarded as attractive candidates for mimicking phase-separation behaviors and biophysical features of biomolecular condensates. The use of peptide-based materials as phase-separating components has advantages such as the diversity of amino acid residues and customized sequence design, which allows for programming their phase-separation behaviors and the physicochemical properties of the resulting compartments. In this Perspective, we highlight the recent advancements in the design and construction of biomimicry condensates from synthetic peptides relevant to intracellular phase-separating protein, with specific reference to their molecular design, self-assembly via phase separation, and biorelated applications, to envisage the use of peptide-based droplets as emerging biomedical delivery vehicles.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
| | | | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianqiang Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | | | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Chen C, Ganar KA, de Haas RJ, Jarnot N, Hogeveen E, de Vries R, Deshpande S. Elastin-like polypeptide coacervates as reversibly triggerable compartments for synthetic cells. Commun Chem 2024; 7:198. [PMID: 39232074 PMCID: PMC11374812 DOI: 10.1038/s42004-024-01270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Compartmentalization is a vital aspect of living cells to orchestrate intracellular processes. In a similar vein, constructing dynamic and responsive sub-compartments is key to synthetic cell engineering. In recent years, liquid-liquid phase separation via coacervation has offered an innovative avenue for creating membraneless organelles (MOs) within artificial cells. Here, we present a lab-on-a-chip system to reversibly trigger peptide-based coacervates within cell-mimicking confinements. We use double emulsion droplets (DEs) as our synthetic cell containers while pH-responsive elastin-like polypeptides (ELPs) act as the coacervate system. We first present a high-throughput microfluidic DE production enabling efficient encapsulation of the ELPs. The DEs are then harvested to perform multiple MO formation-dissolution cycles using pH as well as temperature variation. For controlled long-term visualization and modulation of the external environment, we developed an integrated microfluidic device for trapping and environmental stimulation of DEs, with negligible mechanical force, and demonstrated a proof-of-principle osmolyte-based triggering to induce multiple MO formation-dissolution cycles. In conclusion, our work showcases the use of DEs and ELPs in designing membraneless reversible compartmentalization within synthetic cells via physicochemical triggers. Additionally, presented on-chip platform can be applied over a wide range of phase separation and vesicle systems for applications in synthetic cells and beyond.
Collapse
Affiliation(s)
- Chang Chen
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ketan A Ganar
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Robbert J de Haas
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Nele Jarnot
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Erwin Hogeveen
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Renko de Vries
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
23
|
Ioannou IA, Monck C, Ceroni F, Brooks NJ, Kuimova MK, Elani Y. Nucleated synthetic cells with genetically driven intercompartment communication. Proc Natl Acad Sci U S A 2024; 121:e2404790121. [PMID: 39186653 PMCID: PMC11388312 DOI: 10.1073/pnas.2404790121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Eukaryotic cells are characterized by multiple chemically distinct compartments, one of the most notable being the nucleus. Within these compartments, there is a continuous exchange of information, chemicals, and signaling molecules, essential for coordinating and regulating cellular activities. One of the main goals of bottom-up synthetic biology is to enhance the complexity of synthetic cells by establishing functional compartmentalization. There is a need to mimic autonomous signaling between compartments, which in living cells, is often regulated at the genetic level within the nucleus. This advancement is key to unlocking the potential of synthetic cells as cell models and as microdevices in biotechnology. However, a technological bottleneck exists preventing the creation of synthetic cells with a defined nucleus-like compartment capable of genetically programmed intercompartment signaling events. Here, we present an approach for creating synthetic cells with distinct nucleus-like compartments that can encapsulate different biochemical mixtures in discrete compartments. Our system enables in situ protein expression of membrane proteins, enabling autonomous chemical communication between nuclear and cytoplasmic compartments, leading to downstream activation of enzymatic pathways within the cell.
Collapse
Affiliation(s)
- Ion A Ioannou
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
| | - Carolina Monck
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
24
|
Cochereau R, Voisin H, Solé-Jamault V, Novales B, Davy J, Jamme F, Renard D, Boire A. Influence of pH and lipid membrane on the liquid-liquid phase separation of wheat γ-gliadin in aqueous conditions. J Colloid Interface Sci 2024; 668:252-263. [PMID: 38678881 DOI: 10.1016/j.jcis.2024.04.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Protein body (PB) formation in wheat seeds is a critical process influencing seed content and nutritional quality. In this study, we investigate the potential mechanisms governing PB formation through an in vitro approach, focusing on γ-gliadin, a key wheat storage protein. We used a microfluidic technique to encapsulate γ-gliadin within giant unilamellar vesicles (GUVs) and tune the physicochemical conditions in a controlled and rapid way. We examined the influence of pH and protein concentration on LLPS and protein-membrane interactions using various microscopy and spectroscopy techniques. We showed that γ-gliadin encapsulated in GUVs can undergo a pH-triggered liquid-liquid phase separation (LLPS) by two distinct mechanisms depending on the γ-gliadin concentration. At low protein concentrations, γ-gliadins phase separate by a nucleation and growth-like process, while, at higher protein concentration and pH above 6.0, γ-gliadin formed a bi-continuous phase suggesting a spinodal decomposition-like mechanism. Fluorescence and microscopy data suggested that γ-gliadin dense phase exhibited affinity for the GUV membrane, forming a layer at the interface and affecting the reversibility of the phase separation.
Collapse
Affiliation(s)
| | | | | | - Bruno Novales
- INRAE, UR 1268 BIA, F-44300 Nantes, France; INRAE, PROBE/CALIS Research Infrastructures, BIBS Facility, F-44300 Nantes, France
| | | | - Frédéric Jamme
- DISCO Beamline, SOLEIL Synchrotron, 91192 Gif-sur-Yvette, France
| | | | | |
Collapse
|
25
|
Ngocho K, Yang X, Wang Z, Hu C, Yang X, Shi H, Wang K, Liu J. Synthetic Cells from Droplet-Based Microfluidics for Biosensing and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400086. [PMID: 38563581 DOI: 10.1002/smll.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Synthetic cells function as biological mimics of natural cells by mimicking salient features of cells such as metabolism, response to stimuli, gene expression, direct metabolism, and high stability. Droplet-based microfluidic technology presents the opportunity for encapsulating biological functional components in uni-lamellar liposome or polymer droplets. Verified by its success in the fabrication of synthetic cells, microfluidic technology is widely replacing conventional labor-intensive, expensive, and sophisticated techniques justified by its ability to miniaturize and perform batch production operations. In this review, an overview of recent research on the preparation of synthetic cells through droplet-based microfluidics is provided. Different synthetic cells including lipid vesicles (liposome), polymer vesicles (polymersome), coacervate microdroplets, and colloidosomes, are systematically discussed. Efforts are then made to discuss the design of a variety of microfluidic chips for synthetic cell preparation since the combination of microfluidics with bottom-up synthetic biology allows for reproductive and tunable construction of batches of synthetic cell models from simple structures to higher hierarchical structures. The recent advances aimed at exploiting them in biosensors and other biomedical applications are then discussed. Finally, some perspectives on the challenges and future developments of synthetic cell research with microfluidics for biomimetic science and biomedical applications are provided.
Collapse
Affiliation(s)
- Kleins Ngocho
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xilei Yang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Zefeng Wang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Cunjie Hu
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xiaohai Yang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Hui Shi
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Kemin Wang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
26
|
Schvartzman C, Ibarboure E, Martin A, Garanger E, Mutschler A, Lecommandoux S. Protocells Featuring Membrane-Bound and Dynamic Membraneless Organelles. Biomacromolecules 2024; 25:4087-4094. [PMID: 38828905 DOI: 10.1021/acs.biomac.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Living cells, especially eukaryotic ones, use multicompartmentalization to regulate intra- and extracellular activities, featuring membrane-bound and membraneless organelles. These structures govern numerous biological and chemical processes spatially and temporally. Synthetic cell models, primarily utilizing lipidic and polymeric vesicles, have been developed to carry out cascade reactions within their compartments. However, these reconstructions often segregate membrane-bound and membraneless organelles, neglecting their collaborative role in cellular regulation. To address this, we propose a structural design incorporating microfluidic-produced liposomes housing synthetic membrane-bound organelles made from self-assembled poly(ethylene glycol)-block-poly(trimethylene carbonate) nanovesicles and synthetic membraneless organelles formed via temperature-sensitive elastin-like polypeptide phase separation. This architecture mirrors natural cellular organization, facilitating a detailed examination of the interactions for a comprehensive understanding of cellular dynamics.
Collapse
Affiliation(s)
- Clémence Schvartzman
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Emmanuel Ibarboure
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Anouk Martin
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Elisabeth Garanger
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Angela Mutschler
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
27
|
Zhou T, Liu Z, Ma X, Cen C, Huang Z, Lu Y, Kong T, Qi C. Thermally-resilient, phase-invertible, ultra-stable all-aqueous compartments by pH-modulated protein colloidal particles. J Colloid Interface Sci 2024; 665:413-421. [PMID: 38537589 DOI: 10.1016/j.jcis.2024.03.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
The essence of compartmentalization in cells is the inspiration behind the engineering of synthetic counterparts, which has emerged as a significant engineering theme. Here, we report the formation of ultra-stable water-in-water (W/W) emulsion droplets. These W/W droplets demonstrate previously unattained stability across a broad pH spectrum and exhibit resilience at temperatures up to 80℃, overcoming the challenge of insufficient robustness in dispersed droplets of aqueous two-phase systems (ATPS). The exceptional robustness is attributed to the strong anchoring of micelle-like casein colloidal particles at the PEO/DEX interface, which maintains stability under varying environmental conditions. The increased surface hydrophobicity of these particles at high temperatures contributes to the formation of thermally-stable droplets, enduring temperatures as high as 80℃. Furthermore, our study illustrates the adaptable affinity of micelle-like casein colloidal particles towards the PEO/DEX-rich phase, enabling the formation of stable DEX-in-PEO emulsions at lower pH levels, and PEO-in-DEX emulsions as the pH rises above the isoelectric point. The robust nature of these W/W emulsions unlocks new possibilities for exploring various biochemical reactions within synthetic subcellular modules and lays a solid foundation for the development of novel biomimetic materials.
Collapse
Affiliation(s)
- Tao Zhou
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Xudong Ma
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China
| | - Chaofeng Cen
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Zhangwei Huang
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China
| | - Yi Lu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China; Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, China.
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China.
| |
Collapse
|
28
|
Abstract
Biomolecular condensates are highly versatile membraneless organelles involved in a plethora of cellular processes. Recent years have witnessed growing evidence of the interaction of these droplets with membrane-bound cellular structures. Condensates' adhesion to membranes can cause their mutual molding and regulation, and their interaction is of fundamental relevance to intracellular organization and communication, organelle remodeling, embryogenesis, and phagocytosis. In this article, we review advances in the understanding of membrane-condensate interactions, with a focus on in vitro models. These minimal systems allow the precise characterization and tuning of the material properties of both membranes and condensates and provide a workbench for visualizing the resulting morphologies and quantifying the interactions. These interactions can give rise to diverse biologically relevant phenomena, such as molecular-level restructuring of the membrane, nano- to microscale ruffling of the condensate-membrane interface, and coupling of the protein and lipid phases.
Collapse
Affiliation(s)
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany;
| |
Collapse
|
29
|
Huynh TP, Wittig NKL, Andersen A, Bach-Gansmo FL, Birkedal H. Underwater Fabrication of Carbon Nanotube/Coacervate Composites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13010-13016. [PMID: 38858173 DOI: 10.1021/acs.langmuir.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Soft conductive materials are of interest for a wide range of applications, but their syntheses have remained difficult. Herein, we present a convenient route for underwater fabrication of a composite made of carbon nanotubes (CNTs) and mussel-inspired complex coacervates. The key to success of this method is that CNTs were solubilized very effectively in protocoacervates, which are high-concentration solutions of polyelectrolytes at a pH where only one of them is charged, thereby impeding coacervate formation. Composite materials were formed by the simple injection of CNT-dispersed protocoacervate solutions into water under ambient conditions. The method is simple, fast, and ecofriendly, and composites of CNT-complex coacervate in the form of films or bulk materials were obtained. The composites demonstrated electrical conductivity and tunable mechanical properties, which depended on the concentration of polyelectrolytes and the CNT:protocoacervate ratio. Hence, the composites can be manipulated to attain diverse properties, for examples, tunable reduced modulus (15 to 32 GPa) and hardness (0.3 to 0.7 GPa) as well as an electrical conductivity of up to 4 × 103 S m-1.
Collapse
Affiliation(s)
- Tan-Phat Huynh
- Department of Chemistry & iNANO, Aarhus University, 14 Gustav Wieds Vej, Aarhus 8000, Denmark
| | - Nina Ko Lln Wittig
- Department of Chemistry & iNANO, Aarhus University, 14 Gustav Wieds Vej, Aarhus 8000, Denmark
| | - Amanda Andersen
- Department of Chemistry & iNANO, Aarhus University, 14 Gustav Wieds Vej, Aarhus 8000, Denmark
| | | | - Henrik Birkedal
- Department of Chemistry & iNANO, Aarhus University, 14 Gustav Wieds Vej, Aarhus 8000, Denmark
| |
Collapse
|
30
|
Seo H, Lee H. Programmable Enzymatic Reaction Network in Artificial Cell-Like Polymersomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305760. [PMID: 38627986 PMCID: PMC11200095 DOI: 10.1002/advs.202305760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/14/2024] [Indexed: 06/27/2024]
Abstract
The ability to precisely control in vitro enzymatic reactions in synthetic cells plays a crucial role in the bottom-up design of artificial cell models that can recapitulate the key cellular features and functions such as metabolism. However, integration of enzymatic reactions has been limited to bulk or microfluidic emulsions without a membrane, lacking the ability to design more sophisticated higher-order artificial cell communities for reconstituting spatiotemporal biological information at multiple length scales. Herein, droplet microfluidics is utilized to synthesize artificial cell-like polymersomes with distinct molecular permeability for spatiotemporal control of enzymatic reactions driven by external signals and fuels. The presence of a competing reverse enzymatic reaction that depletes the active substrates is shown to enable demonstration of fuel-driven formation of sub-microcompartments within polymersomes as well as realization of out-of-equilibrium systems. In addition, the different permeability characteristics of polymersome membranes are exploited to successfully construct a programmable enzymatic reaction network that mimics cellular communication within a heterogeneous cell community through selective molecular transport.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673South Korea
| | - Hyomin Lee
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673South Korea
| |
Collapse
|
31
|
Harris R, Veretnik S, Dewan S, Baruch Leshem A, Lampel A. Regulation of enzymatic reactions by chemical composition of peptide biomolecular condensates. Commun Chem 2024; 7:90. [PMID: 38643237 PMCID: PMC11032315 DOI: 10.1038/s42004-024-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/09/2024] [Indexed: 04/22/2024] Open
Abstract
Biomolecular condensates are condensed intracellular phases that are formed by liquid-liquid phase separation (LLPS) of proteins, either in the absence or presence of nucleic acids. These condensed phases regulate various biochemical reactions by recruitment of enzymes and substrates. Developments in the field of LLPS facilitated new insights on the regulation of compartmentalized enzymatic reactions. Yet, the influence of condensate chemical composition on enzymatic reactions is still poorly understood. Here, by using peptides as minimalistic condensate building blocks and β-galactosidase as a simple enzymatic model we show that the reaction is restricted in homotypic peptide condensates, while product formation is enhanced in peptide-RNA condensates. Our findings also show that condensate composition affects the recruitment of substrate, the spatial distribution, and the kinetics of the reaction. Thus, these findings can be further employed for the development of microreactors for biotechnological applications.
Collapse
Affiliation(s)
- Rif Harris
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shirel Veretnik
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Simran Dewan
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avigail Baruch Leshem
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Center for Nanoscience and Nanotechnology Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol Center for Regenerative Biotechnology Tel Aviv University, Tel Aviv, 69978, Israel.
- Center for the Physics and Chemistry of Living Systems Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
32
|
Wilcox K, Yamagami KR, Roopnarine BK, Linscott A, Morozova S. Effect of Polymer Gel Elasticity on Complex Coacervate Phase Behavior. ACS POLYMERS AU 2024; 4:109-119. [PMID: 38618006 PMCID: PMC11010254 DOI: 10.1021/acspolymersau.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 04/16/2024]
Abstract
Gels are key materials in biological systems such as tissues and may control biocondensate formation and structure. To further understand the effects of elastic environments on biomacromolecular assembly, we have investigated the phase behavior and radii of complex coacervate droplets in polyacrylamide (PAM) networks as a function of gel modulus. Poly-l-lysine (PLL) and sodium hyaluronate (HA) complex coacervate phases were prepared in PAM gels with moduli varying from 0.035 to 15.0 kPa. The size of the complex coacervate droplets is reported from bright-field microscopy and confocal fluorescence microscopy. Overall, the complex coacervate droplet volume decreases inversely with the modulus. Fluorescence microscopy is also used to determine the phase behavior and concentration of fluorescently tagged HA in the complex coacervate phases as a function of ionic strength (100-270 mM). We find that the critical ionic strength and complex coacervate stability are nonmonotonic as a function of the network modulus and that the local gel concentration can be used to control phase behavior and complex coacervate droplet size scale. By understanding how elastic environments influence simple electrostatic assembly, we can further understand how biomacromolecules exist in complex, crowded, and elastic cellular environments.
Collapse
Affiliation(s)
- Kathryn
G. Wilcox
- Department of Macromolecular
Science and Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| | - Kai R. Yamagami
- Department of Macromolecular
Science and Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| | - Brittany K. Roopnarine
- Department of Macromolecular
Science and Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| | - Adam Linscott
- Department of Macromolecular
Science and Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| | - Svetlana Morozova
- Department of Macromolecular
Science and Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| |
Collapse
|
33
|
Naz M, Zhang L, Chen C, Yang S, Dou H, Mann S, Li J. Self-assembly of stabilized droplets from liquid-liquid phase separation for higher-order structures and functions. Commun Chem 2024; 7:79. [PMID: 38594355 PMCID: PMC11004187 DOI: 10.1038/s42004-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Dynamic microscale droplets produced by liquid-liquid phase separation (LLPS) have emerged as appealing biomaterials due to their remarkable features. However, the instability of droplets limits the construction of population-level structures with collective behaviors. Here we first provide a brief background of droplets in the context of materials properties. Subsequently, we discuss current strategies for stabilizing droplets including physical separation and chemical modulation. We also discuss the recent development of LLPS droplets for various applications such as synthetic cells and biomedical materials. Finally, we give insights on how stabilized droplets can self-assemble into higher-order structures displaying coordinated functions to fully exploit their potentials in bottom-up synthetic biology and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Naz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Lin Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Chong Chen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland
| | - Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland.
| |
Collapse
|
34
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
35
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|
36
|
Mu W, Jia L, Zhou M, Wu J, Lin Y, Mann S, Qiao Y. Superstructural ordering in self-sorting coacervate-based protocell networks. Nat Chem 2024; 16:158-167. [PMID: 37932411 DOI: 10.1038/s41557-023-01356-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Bottom-up assembly of higher-order cytomimetic systems capable of coordinated physical behaviours, collective chemical signalling and spatially integrated processing is a key challenge in the study of artificial multicellularity. Here we develop an interactive binary population of coacervate microdroplets that spontaneously self-sort into chain-like protocell networks with an alternating sequence of structurally and compositionally dissimilar microdomains with hemispherical contact points. The protocell superstructures exhibit macromolecular self-sorting, spatially localized enzyme/ribozyme biocatalysis and interdroplet molecular translocation. They are capable of topographical reconfiguration using chemical or light-mediated stimuli and can be used as a micro-extraction system for macroscale biomolecular sorting. Our methodology opens a pathway towards the self-assembly of multicomponent protocell networks based on selective processes of coacervate droplet-droplet adhesion and fusion, and provides a step towards the spontaneous orchestration of protocell models into artificial tissues and colonies with ordered architectures and collective functions.
Collapse
Affiliation(s)
- Wenjing Mu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Musen Zhou
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China.
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
37
|
Zhang K, Zhou Y, Moreno S, Schwarz S, Boye S, Voit B, Appelhans D. Reversible crowdedness of pH-responsive and host-guest active polymersomes: Mimicking µm-sized cell structures. J Colloid Interface Sci 2024; 654:1469-1482. [PMID: 37858368 DOI: 10.1016/j.jcis.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
The structure-function characteristics of isolated artificial organelles (AOs) in protocells are mainly known, but there are few reports on clustered or aggregated AOs. To imitate µm-sized complex and heterogeneous cell structures, approaches are needed that enable reversible changes in the aggregation state of colloidal structures in response to chemical, biological, and external stimuli. To construct adaptive organelle-like or cell-like reorganization characteristics, we present an advanced crosslinking strategy to fabricate clustered polymersomes as a platform based on host-guest interactions between azobenzene-containing polymersomes (Azo-Psomes) and a β-cyclodextrin-modified polymer (β-CD polymer) as a crosslinker. First, the reversible (dis)assembly of clustered Azo-Psomes is carried out by the alternating input of crosslinker and adamantane-PEG3000 as a decrosslinker. Moreover, cluster size dependence is demonstrated by environmental pH. These offer the controlled fabrication of various homogeneous and heterogeneous Azo-Psomes structures, including the size regulation and visualization of clustered AOs through a fluorescent enzymatic cascade reaction. Finally, a temperature-sensitive crosslinking agent with β-CD units can promote the coaggregation of Azo-Psomes mediated by temperature changes. Overall, these (co-)clustered Azo-Psomes and their successful transformation in AOs may provide new features for modelling biological systems for eukaryotic cells and systems biology.
Collapse
Affiliation(s)
- Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| | - Simona Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| |
Collapse
|
38
|
Cao S, Ivanov T, Heuer J, Ferguson CTJ, Landfester K, Caire da Silva L. Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis. Nat Commun 2024; 15:39. [PMID: 38169470 PMCID: PMC10761997 DOI: 10.1038/s41467-023-44278-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Artificial organelles can manipulate cellular functions and introduce non-biological processes into cells. Coacervate droplets have emerged as a close analog of membraneless cellular organelles. Their biomimetic properties, such as molecular crowding and selective partitioning, make them promising components for designing cell-like materials. However, their use as artificial organelles has been limited by their complex molecular structure, limited control over internal microenvironment properties, and inherent colloidal instability. Here we report the design of dipeptide coacervates that exhibit enhanced stability, biocompatibility, and a hydrophobic microenvironment. The hydrophobic character facilitates the encapsulation of hydrophobic species, including transition metal-based catalysts, enhancing their efficiency in aqueous environments. Dipeptide coacervates carrying a metal-based catalyst are incorporated as active artificial organelles in cells and trigger an internal non-biological chemical reaction. The development of coacervates with a hydrophobic microenvironment opens an alternative avenue in the field of biomimetic materials with applications in catalysis and synthetic biology.
Collapse
Affiliation(s)
- Shoupeng Cao
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Tsvetomir Ivanov
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Julian Heuer
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Calum T J Ferguson
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany.
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada.
| |
Collapse
|
39
|
Wang J, Abbas M, Wang J, Spruijt E. Selective amide bond formation in redox-active coacervate protocells. Nat Commun 2023; 14:8492. [PMID: 38129391 PMCID: PMC10739716 DOI: 10.1038/s41467-023-44284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Coacervate droplets are promising protocell models because they sequester a wide range of guest molecules and may catalyze their conversion. However, it remains unclear how life's building blocks, including peptides, could be synthesized from primitive precursor molecules inside such protocells. Here, we develop a redox-active protocell model formed by phase separation of prebiotically relevant ferricyanide (Fe(CN)63-) molecules and cationic peptides. Their assembly into coacervates can be regulated by redox chemistry and the coacervates act as oxidizing hubs for sequestered metabolites, like NAD(P)H and gluthathione. Interestingly, the oxidizing potential of Fe(CN)63- inside coacervates can be harnessed to drive the formation of new amide bonds between prebiotically relevant amino acids and α-amidothioacids. Aminoacylation is enhanced in Fe(CN)63-/peptide coacervates and selective for amino acids that interact less strongly with the coacervates. We finally use Fe(CN)63--containing coacervates to spatially control assembly of fibrous networks inside and at the surface of coacervate protocells. These results provide an important step towards the prebiotically relevant integration of redox chemistry in primitive cell-like compartments.
Collapse
Affiliation(s)
- Jiahua Wang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Manzar Abbas
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| |
Collapse
|
40
|
Perin GB, Moreno S, Zhou Y, Günther M, Boye S, Voit B, Felisberti MI, Appelhans D. Construction of Membraneless and Multicompartmentalized Coacervate Protocells Controlling a Cell Metabolism-like Cascade Reaction. Biomacromolecules 2023; 24:5807-5822. [PMID: 37984848 DOI: 10.1021/acs.biomac.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, there has been growing attention to designing synthetic protocells, capable of mimicking micrometric and multicompartmental structures and highly complex physicochemical and biological processes with spatiotemporal control. Controlling metabolism-like cascade reactions in coacervate protocells is still challenging since signal transduction has to be involved in sequential and parallelized actions mediated by a pH change. Herein, we report the hierarchical construction of membraneless and multicompartmentalized protocells composed of (i) a cytosol-like scaffold based on complex coacervate droplets stable under flow conditions, (ii) enzyme-active artificial organelles and a substrate nanoreservoir capable of triggering a cascade reaction between them in response to a pH increase, and (iii) a signal transduction component based on the urease enzyme capable of the conversion of an exogenous biological fuel (urea) into an endogenous signal (ammonia and pH increase). Overall, this strategy allows a synergistic communication between their components within the membraneless and multicompartment protocells and, thus, metabolism-like enzymatic cascade reactions. This signal communication is transmitted through a scaffold protocell from an "inactive state" (nonfluorescent protocell) to an "active state" (fluorescent protocell capable of consuming stored metabolites).
Collapse
Affiliation(s)
- Giovanni B Perin
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Markus Günther
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Maria I Felisberti
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
41
|
Dai S, Xie Z, Wang B, Ye R, Ou X, Wang C, Yu N, Huang C, Zhao J, Cai C, Zhang F, Buratto D, Khan T, Qiao Y, Hua Y, Zhou R, Tian B. An inorganic mineral-based protocell with prebiotic radiation fitness. Nat Commun 2023; 14:7699. [PMID: 38052788 PMCID: PMC10698201 DOI: 10.1038/s41467-023-43272-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Protocell fitness under extreme prebiotic conditions is critical in understanding the origin of life. However, little is known about protocell's survival and fitness under prebiotic radiations. Here we present a radioresistant protocell model based on assembly of two types of coacervate droplets, which are formed through interactions of inorganic polyphosphate (polyP) with divalent metal cation and cationic tripeptide, respectively. Among the coacervate droplets, only the polyP-Mn droplet is radiotolerant and provides strong protection for recruited proteins. The radiosensitive polyP-tripeptide droplet sequestered with both proteins and DNA could be encapsulated inside the polyP-Mn droplet, and form into a compartmentalized protocell. The protocell protects the inner nucleoid-like condensate through efficient reactive oxygen species' scavenging capacity of intracellular nonenzymic antioxidants including Mn-phosphate and Mn-peptide. Our results demonstrate a radioresistant protocell model with redox reaction system in response to ionizing radiation, which might enable the protocell fitness to prebiotic radiation on the primitive Earth preceding the emergence of enzyme-based fitness. This protocell might also provide applications in synthetic biology as bioreactor or drug delivery system.
Collapse
Affiliation(s)
- Shang Dai
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China
| | - Zhenming Xie
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Binqiang Wang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rui Ye
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Xinwen Ou
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Chen Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Ning Yu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cheng Huang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chunhui Cai
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Furong Zhang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Damiano Buratto
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Taimoor Khan
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Yan Qiao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Ruhong Zhou
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Bing Tian
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
42
|
Gao R, Yu X, Kumar BVVSP, Tian L. Hierarchical Structuration in Protocellular System. SMALL METHODS 2023; 7:e2300422. [PMID: 37438327 DOI: 10.1002/smtd.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Spatial control is one of the ubiquitous features in biological systems and the key to the functional complexity of living cells. The strategies to achieve such precise spatial control in protocellular systems are crucial to constructing complex artificial living systems with functional collective behavior. Herein, the authors review recent advances in the spatial control within a single protocell or between different protocells and discuss how such hierarchical structured protocellular system can be used to understand complex living systems or to advance the development of functional microreactors with the programmable release of various biomacromolecular payloads, or smart protocell-biological cell hybrid system.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Ultrasound, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
43
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
44
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
45
|
Lu T, Javed S, Bonfio C, Spruijt E. Interfacing Coacervates with Membranes: From Artificial Organelles and Hybrid Protocells to Intracellular Delivery. SMALL METHODS 2023; 7:e2300294. [PMID: 37354057 DOI: 10.1002/smtd.202300294] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Compartmentalization is crucial for the functioning of cells. Membranes enclose and protect the cell, regulate the transport of molecules entering and exiting the cell, and organize cellular machinery in subcompartments. In addition, membraneless condensates, or coacervates, offer dynamic compartments that act as biomolecular storage centers, organizational hubs, or reaction crucibles. Emerging evidence shows that phase-separated membraneless bodies in the cell are involved in a wide range of functional interactions with cellular membranes, leading to transmembrane signaling, membrane remodeling, intracellular transport, and vesicle formation. Such functional and dynamic interplay between phase-separated droplets and membranes also offers many potential benefits to artificial cells, as shown by recent studies involving coacervates and liposomes. Depending on the relative sizes and interaction strength between coacervates and membranes, coacervates can serve as artificial membraneless organelles inside liposomes, as templates for membrane assembly and hybrid artificial cell formation, as membrane remodelers for tubulation and possibly division, and finally, as cargo containers for transport and delivery of biomolecules across membranes by endocytosis or direct membrane crossing. Here, recent experimental examples of each of these functions are reviewed and the underlying physicochemical principles and possible future applications are discussed.
Collapse
Affiliation(s)
- Tiemei Lu
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Sadaf Javed
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Claudia Bonfio
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, Strasbourg, 67083, France
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
46
|
Ivanov T, Cao S, Bohra N, de Souza Melchiors M, Caire da Silva L, Landfester K. Polymeric Microreactors with pH-Controlled Spatial Localization of Cascade Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50755-50764. [PMID: 37903081 PMCID: PMC10636718 DOI: 10.1021/acsami.3c09196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Lipid and polymer vesicles provide versatile means of creating systems that mimic the architecture of cells. However, these constructs cannot mimic the adaptive compartmentalization observed in cells, where the assembly and disassembly of subcompartments are dynamically modulated by environmental cues. Here, we describe a fully polymeric microreactor with a coacervate-in-vesicle architecture that exhibits an adaptive response to pH. The system was fabricated by microfluidic generation of semipermeable biomimetic polymer vesicles within 1 min using oleyl alcohol as the oil phase. The polymersomes allowed for the diffusion of protons and substrates acting as external signals. Using this method, we were able to construct adaptive microreactors containing internal polyelectrolyte-based catalytic organelles capable of sequestering and localizing enzymes and reaction products in a dynamic process driven by an external stimulus. This approach provides a platform for the rapid and efficient construction of robust adaptive microreactors that can be used in catalysis, biosensing, and cell mimicry.
Collapse
Affiliation(s)
- Tsvetomir Ivanov
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shoupeng Cao
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Nitin Bohra
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marina de Souza Melchiors
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lucas Caire da Silva
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
47
|
de Haas R, Ganar KA, Deshpande S, de Vries R. pH-Responsive Elastin-Like Polypeptide Designer Condensates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45336-45344. [PMID: 37707425 PMCID: PMC10540133 DOI: 10.1021/acsami.3c11314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Biomolecular condensates are macromolecular complexes formed by liquid-liquid phase separation. They regulate key biological functions by reversibly compartmentalizing molecules in cells, in a stimulus-dependent manner. Designing stimuli-responsive synthetic condensates is crucial for engineering compartmentalized synthetic cells that are able to mimic spatiotemporal control over the biochemical reactions. Here, we design and test a family of condensate-forming, pH-responsive elastin-like polypeptides (ELPs) that form condensates above critical pH values ranging between 4 and 7, for temperatures between 20 and at 37 °C. We show that the condensation occurs rapidly, in sharp pH intervals (ΔpH < 0.3). For eventual applications in engineering synthetic cell compartments, we demonstrate that multiple types of pH-responsive ELPs can form mixed condensates inside micron-sized vesicles. When genetically fused with enzymes, receptors, and signaling molecules, these pH-responsive ELPs could be potentially used as pH-switchable functional condensates for spatially controlling biochemistry in engineered synthetic cells.
Collapse
Affiliation(s)
- Robbert
J. de Haas
- Department of Physical Chemistry
and Soft Matter, Wageningen University and
Research, 6708 WE Wageningen, The Netherlands
| | - Ketan A. Ganar
- Department of Physical Chemistry
and Soft Matter, Wageningen University and
Research, 6708 WE Wageningen, The Netherlands
| | - Siddharth Deshpande
- Department of Physical Chemistry
and Soft Matter, Wageningen University and
Research, 6708 WE Wageningen, The Netherlands
| | - Renko de Vries
- Department of Physical Chemistry
and Soft Matter, Wageningen University and
Research, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
48
|
Kubota R, Hiroi T, Ikuta Y, Liu Y, Hamachi I. Visualizing Formation and Dynamics of a Three-Dimensional Sponge-like Network of a Coacervate in Real Time. J Am Chem Soc 2023; 145:18316-18328. [PMID: 37562059 DOI: 10.1021/jacs.3c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Coacervates, which are formed by liquid-liquid phase separation, have been extensively explored as models for synthetic cells and membraneless organelles, so their in-depth structural analysis is crucial. However, both the inner structure dynamics and formation mechanism of coacervates remain elusive. Herein, we demonstrate real-time confocal observation of a three-dimensional sponge-like network in a dipeptide-based coacervate. In situ generation of the dipeptide allowed us to capture the emergence of the sponge-like network via unprecedented membrane folding of vesicle-shaped intermediates. We also visualized dynamic fluctuation of the network, including reversible engagement/disengagement of cross-links and a stochastic network kissing event. Photoinduced transient formation of a multiphase coacervate was achieved with a thermally responsive phase transition. Our findings expand the fundamental understanding of synthetic coacervates and provide opportunities to manipulate their physicochemical properties by engineering the inner network for potential applications in development of artificial cells and life-like material fabrication.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Taro Hiroi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuriki Ikuta
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuchong Liu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Nishikyo-ku, Katsura 615-8530, Japan
| |
Collapse
|
49
|
Nair KS, Bajaj H. Advances in giant unilamellar vesicle preparation techniques and applications. Adv Colloid Interface Sci 2023; 318:102935. [PMID: 37320960 DOI: 10.1016/j.cis.2023.102935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Giant unilamellar vesicles (GUVs) are versatile and promising cell-sized bio-membrane mimetic platforms. Their applications range from understanding and quantifying membrane biophysical processes to acting as elementary blocks in the bottom-up assembly of synthetic cells. Definite properties and requisite goals in GUVs are dictated by the preparation techniques critical to the success of their applications. Here, we review key advances in giant unilamellar vesicle preparation techniques and discuss their formation mechanisms. Developments in lipid hydration and emulsion techniques for GUV preparation are described. Novel microfluidic-based techniques involving lipid or surfactant-stabilized emulsions are outlined. GUV immobilization strategies are summarized, including gravity-based settling, covalent linking, and immobilization by microfluidic, electric, and magnetic barriers. Moreover, some of the key applications of GUVs as biomimetic and synthetic cell platforms during the last decade have been identified. Membrane interface processes like phase separation, membrane protein reconstitution, and membrane bending have been deciphered using GUVs. In addition, vesicles are also employed as building blocks to construct synthetic cells with defined cell-like functions comprising compartments, metabolic reactors, and abilities to grow and divide. We critically discuss the pros and cons of preparation technologies and the properties they confer to the GUVs and identify potential techniques for dedicated applications.
Collapse
Affiliation(s)
- Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India.
| |
Collapse
|
50
|
Schvartzman C, Zhao H, Ibarboure E, Ibrahimova V, Garanger E, Lecommandoux S. Control of Enzyme Reactivity in Response to Osmotic Pressure Modulation Mimicking Dynamic Assembly of Intracellular Organelles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301856. [PMID: 37149761 DOI: 10.1002/adma.202301856] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Indexed: 05/08/2023]
Abstract
In response to variations in osmotic stress, in particular to hypertonicity associated with biological dysregulations, cells have developed complex mechanisms to release their excess water, thus avoiding their bursting and death. When water is expelled, cells shrink and concentrate their internal bio(macro)molecular content, inducing the formation of membraneless organelles following a liquid-liquid phase separation (LLPS) mechanism. To mimic this intrinsic property of cells, functional thermo-responsive elastin-like polypeptide (ELP) biomacromolecular conjugates are herein encapsulated into self-assembled lipid vesicles using a microfluidic system, together with polyethylene glycol (PEG) to mimic cells' interior crowded microenvironment. By inducing a hypertonic shock onto the vesicles, expelled water induces a local increase in concentration and a concomitant decrease in the cloud point temperature (Tcp ) of ELP bioconjugates that phase separate and form coacervates mimicking cellular stress-induced membraneless organelle assemblies. Horseradish peroxidase (HRP), as a model enzyme, is bioconjugated to ELPs and is locally confined in coacervates as a response to osmotic stress. This consequently increases local HRP and substrate concentrations and accelerates the kinetics of the enzymatic reaction. These results illustrate a unique way to fine-tune enzymatic reactions dynamically as a response to a physiological change in isothermal conditions.
Collapse
Affiliation(s)
- Clémence Schvartzman
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Hang Zhao
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Emmanuel Ibarboure
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Vusala Ibrahimova
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Elisabeth Garanger
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Sébastien Lecommandoux
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| |
Collapse
|