1
|
Haydak J, Azeloglu EU. Automated atomic force microscopy analysis using convolutional and recurrent neural networks. Biophys J 2025:S0006-3495(25)00283-8. [PMID: 40346801 DOI: 10.1016/j.bpj.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/25/2025] [Accepted: 05/02/2025] [Indexed: 05/12/2025] Open
Abstract
Atomic force microscope (AFM) indentation allows high-resolution spatial characterization of biomechanical properties of cells and tissues. Rapid, reproducible, and quantitative analysis of AFM force curves has been challenging due to several technical limitations, such as excessive noise and uncertainty associated with contact-point determination. Here, we propose a novel machine-learning algorithm composed of convolutional bidirectional long short-term memory neural networks called Convolutional Bidirectional Recurrent Architecture (COBRA) that can reliably process raw AFM elastography data, triage poor-quality curves, and accurately identify the contact point without any a priori knowledge of underlying material properties. Using over 5000 manually curated force curves on seven different healthy and diseased cell types, we trained several regression and classification algorithms to compare their utility. In contrast to classical analytical or semi-quantitative techniques and other machine-learning methods, the COBRA approach identified low-quality or anomalous indentation events better, with an area under the curve of 0.92, and it estimated the contact point with the minimal absolute error of 28 ± 3 nm and pointwise elastic modulus with mean absolute percentage error of 5.3% ± 0.7%. The method was also successful in identifying the contact point in independently acquired AFM data from the literature with divergent probes and substrates. In conclusion, our method can rapidly filter low-quality AFM force curves and automatically process raw indentation data with the lowest error levels, allowing high-throughput analyses with increased precision and reproducibility.
Collapse
Affiliation(s)
- Jonathan Haydak
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Evren U Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
2
|
Benkhadra M, Ghasoub R, Hajeomar R, Alshurafa A, Qasem NM, Saglio G, Cortes J, Elkonaissi I, Kaddoura R, Yassin MA. Caught in the Crossfire: Unmasking the Silent Renal Threats of Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia. Cancers (Basel) 2024; 17:92. [PMID: 39796721 PMCID: PMC11720497 DOI: 10.3390/cancers17010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Renal adverse drug reactions (ADRs) associated with tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML) are relatively rare, and there is currently no standardized protocol for their management. Therefore, this study aimed to summarize renal ADRs related to TKIs use in CML and propose an evidence-based approach to monitor and manage these ADRs. METHODS A systematic literature review was performed to identify renal ADRs associated with TKIs in CML. Two authors screened the search results and extracted data from 37 eligible studies. These findings were then used to develop a scheme for clinicians to monitor and manage these ADRs. RESULTS Overall, imatinib seemed to be significantly linked to renal adverse events compared to other TKIs, and switching to dasatinib or nilotinib significantly improved renal function. Similar events were reported with bosutinib, although they were not statistically significant. However, most of the renal events reported on dasatinib were described as nephrotic syndrome that resolved with switching to imatinib. Few cases were reported with nilotinib that described tumor lysis syndrome (TLS)-related kidney injury. CONCLUSIONS Recommendations include monitoring for progressive decline in the estimated glomerular filtration rate with imatinib, nephrotic syndrome with dasatinib, and TLS with nilotinib. Additionally, holding the offending TKI and managing renal ADRs according to local guidelines were adopted more frequently than reducing the TKI dose.
Collapse
Affiliation(s)
- Maria Benkhadra
- Department of Pharmacy, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Rola Ghasoub
- Department of Pharmacy, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Reem Hajeomar
- College of Pharmacy, Qatar University, Doha P.O. Box 2713, Qatar
| | - Awni Alshurafa
- Department of Hematology and Bone Marrow Transplant, National Center for Cancer Care and Research, Doha P.O. Box 3050, Qatar
| | - Nabeel Mohammad Qasem
- Department of Hematology and Bone Marrow Transplant, National Center for Cancer Care and Research, Doha P.O. Box 3050, Qatar
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy
| | - Jorge Cortes
- Division of Hematology and SCT, Georgia Cancer Center, Augusta, GA 30912, USA
| | - Islam Elkonaissi
- Shaikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Rasha Kaddoura
- Pharmacy Department, Heart Hospital, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Mohamed A. Yassin
- Department of Hematology and Bone Marrow Transplant, National Center for Cancer Care and Research, Doha P.O. Box 3050, Qatar
| |
Collapse
|
3
|
Yoon J, Liu Z, Alaba M, Bruggeman LA, Janmey PA, Arana CA, Ayenuyo O, Medeiros I, Eddy S, Kretzler M, Henderson JM, Nair V, Naik AS, Chang AN, Miller RT. Glomerular Elasticity and Gene Expression Patterns Define Two Phases of Alport Nephropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582201. [PMID: 38948788 PMCID: PMC11212921 DOI: 10.1101/2024.02.26.582201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objectives To understand the early stages if Alport nephropathy, we characterize the structural, functional, and biophysical properties of glomerular capillaries and podocytes in Col4α3 -/- mice, analyze kidney cortex transcriptional profiles at three time points, and investigate the effects of the ER stress mitigation by TUDCA on these parameters. We use human FSGS associated genes to identify molecular pathways rescued by TUDCA. Findings We define a disease progression timeline in Col4α3 -/- mice. Podocyte injury is evident by 3 months, with glomeruli reaching maximum deformability at 4 months, associated with 40% podocytes loss, followed by progressive capillary stiffening, increasing proteinuria, reduced renal function, inflammatory infiltrates, and fibrosis from months 4 to 7. RNA sequencing at 2, 4, and 7 months reveals increased cytokine and chemokine signaling, matrix and cell injury, and activation of the TNF pathway genes by 7 months, similar to NEPTUNE FSGS cohorts. These features are suppressed by TUDCA. Conclusions We define two phases of Col4α3 -/- nephropathy. The first is characterized by podocytopathy, increased glomerular capillary deformability and accelerated podocyte loss, and the second by increased capillary wall stiffening and renal inflammatory and profibrotic pathway activation. Disease suppression by TUDCA treatment identifies potential therapeutic targets for treating Alport and related nephropathies.
Collapse
|
4
|
Lu X, Zhang W, Yang X, Yan X, Hussain Z, Wu Q, Zhao J, Yuan B, Yao K, Dong Z, Liu K, Jiang Y. Dronedarone hydrochloride inhibits gastric cancer proliferation in vitro and in vivo by targeting SRC. Transl Oncol 2024; 50:102136. [PMID: 39369581 PMCID: PMC11491965 DOI: 10.1016/j.tranon.2024.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a significant global concern, ranking as the fifth most prevalent cancer. Unfortunately, the five-year survival rate is less than 30 %. Additionally, approximately 50 % of patients experience a recurrence or metastasis. As a result, finding new drugs to prevent relapse is of utmost importance. METHODS The inhibitory effect of Dronedarone hydrochloride (DH) on gastric cancer cells was examined using proliferation assays and anchorage-dependent assays. The binding of DH with SRC was detected by molecular docking, pull-down assays, and cellular thermal shift assays (CETSA). DH's inhibition of Src kinase activity was confirmed through in vitro kinase assays. The SRC knockout cells, established using the CRISPR-Cas9 system, were used to verify Src's role in GC cell proliferation. Patient-derived xenograft (PDX) models were employed to elucidate that DH suppressed tumor growth in vivo. RESULTS Our research discovered DH inhibited GC cell proliferation in vitro and in vivo. DH bound to the SRC protein to inhibit the SRC/AKT1 signaling pathway in gastric cancer. Additionally, we observed a decrease in the sensitivity of gastric cancer cells to DH upon down-regulation of SRC. Notably, we demonstrated DH's anti-tumor effects were similar to those of Dasatinib, a well-known SRC inhibitor, in GC patient-derived xenograft models. CONCLUSION Our research has revealed that Dronedarone hydrochloride, an FDA-approved drug, is an SRC inhibitor that can suppress the growth of GC cells by blocking the SRC/AKT1 signaling pathway. It provides a scientific basis for use in the clinical treatment of GC.
Collapse
Affiliation(s)
- Xuebo Lu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450000 Henan, China
| | - Weizhe Zhang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450000 Henan, China
| | - Xiaoxiao Yang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450000 Henan, China
| | - Xiao Yan
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Zubair Hussain
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Qiong Wu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450000 Henan, China
| | - Jinmin Zhao
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Baoyin Yuan
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Ke Yao
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450000 Henan, China
| | - Zigang Dong
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450000, Henan, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, Henan, China
| | - Kangdong Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450000, Henan, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University 450000, Zhengzhou, Henan, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, Henan, China
| | - Yanan Jiang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450000, Henan, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University 450000, Zhengzhou, Henan, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, Henan, China.
| |
Collapse
|
5
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Bhattacharya S, Ettela A, Haydak J, Hobson CM, Stern A, Yoo M, Chew TL, Gusella GL, Gallagher EJ, Hone JC, Azeloglu EU. A high-throughput microfabricated platform for rapid quantification of metastatic potential. SCIENCE ADVANCES 2024; 10:eadk0015. [PMID: 39151003 PMCID: PMC11328906 DOI: 10.1126/sciadv.adk0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/12/2024] [Indexed: 08/18/2024]
Abstract
Assays that measure morphology, proliferation, motility, deformability, and migration are used to study the invasiveness of cancer cells. However, native invasive potential of cells may be hidden from these contextual metrics because they depend on culture conditions. We created a micropatterned chip that mimics the native environmental conditions, quantifies the invasive potential of tumor cells, and improves our understanding of the malignancy signatures. Unlike conventional assays, which rely on indirect measurements of metastatic potential, our method uses three-dimensional microchannels to measure the basal native invasiveness without chemoattractants or microfluidics. No change in cell death or proliferation is observed on our chips. Using six cancer cell lines, we show that our system is more sensitive than other motility-based assays, measures of nuclear deformability, or cell morphometrics. In addition to quantifying metastatic potential, our platform can distinguish between motility and invasiveness, help study molecular mechanisms of invasion, and screen for targeted therapeutics.
Collapse
Affiliation(s)
- Smiti Bhattacharya
- Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Abora Ettela
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Haydak
- Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Alan Stern
- Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miran Yoo
- Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - G. Luca Gusella
- Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily J. Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C. Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Evren U. Azeloglu
- Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Rangaswamy D, Nagaraju SP, Bhojaraja MV, Swaminathan SM, Prabhu RA, Rao IR, Shenoy SV. Ocular and systemic vascular endothelial growth factor ligand inhibitor use and nephrotoxicity: an update. Int Urol Nephrol 2024; 56:2635-2644. [PMID: 38498275 PMCID: PMC11266217 DOI: 10.1007/s11255-024-03990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Tumor growth is intricately linked to the process of angiogenesis, with a key role played by vascular endothelial growth factor (VEGF) and its associated signaling pathways. Notably, these pathways also play a pivotal "housekeeping" role in renal physiology. Over the past decade, the utilization of VEGF signaling inhibitors has seen a substantial rise in the treatment of diverse solid organ tumors, diabetic retinopathy, age-related macular degeneration, and various ocular diseases. However, this increased use of such agents has led to a higher frequency of encountering renal adverse effects in clinical practice. This review comprehensively addresses the incidence, pathophysiological mechanisms, and current evidence concerning renal adverse events associated with systemic and intravitreal antiangiogenic therapies targeting VEGF-A and its receptors (VEGFR) and their associated signaling pathways. Additionally, we briefly explore strategies for mitigating potential risks linked to the use of these agents and effectively managing various renal adverse events, including but not limited to hypertension, proteinuria, renal dysfunction, and electrolyte imbalances.
Collapse
Affiliation(s)
- Dharshan Rangaswamy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ravindra A Prabhu
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Indu Ramachandra Rao
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Vinayak Shenoy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
8
|
Shao M, Qiu Y, Shen M, Liu W, Feng D, Luo Z, Zhou Y. Procyanidin C1 inhibits bleomycin-induced pulmonary fibrosis in mice by selective clearance of senescent myofibroblasts. FASEB J 2024; 38:e23749. [PMID: 38953707 DOI: 10.1096/fj.202302547rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Pulmonary fibrosis is a formidable challenge in chronic and age-related lung diseases. Myofibroblasts secrete large amounts of extracellular matrix and induce pro-repair responses during normal wound healing. Successful tissue repair results in termination of myofibroblast activity via apoptosis; however, some myofibroblasts exhibit a senescent phenotype and escape apoptosis, causing over-repair that is characterized by pathological fibrotic scarring. Therefore, the removal of senescent myofibroblasts using senolytics is an important method for the treatment of pulmonary fibrosis. Procyanidin C1 (PCC1) has recently been discovered as a senolytic compound with very low toxicity and few side effects. This study aimed to determine whether PCC1 could improve lung fibrosis by promoting apoptosis in senescent myofibroblasts and to investigate the mechanisms involved. The results showed that PCC1 attenuates bleomycin (BLM)-induced pulmonary fibrosis in mice. In addition, we found that PCC1 inhibited extracellular matrix deposition and promoted the apoptosis of senescent myofibroblasts by increasing PUMA expression and activating the BAX signaling pathway. Our findings represent a new method of pulmonary fibrosis management and emphasize the potential of PCC1 as a senotherapeutic agent for the treatment of pulmonary fibrosis, providing hope for patients with pulmonary fibrosis worldwide. Our results advance our understanding of age-related diseases and highlight the importance of addressing cellular senescence in treatment.
Collapse
Affiliation(s)
- Min Shao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yujia Qiu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengxia Shen
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Liu
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
9
|
Haydak J, Azeloglu EU. Role of biophysics and mechanobiology in podocyte physiology. Nat Rev Nephrol 2024; 20:371-385. [PMID: 38443711 PMCID: PMC12103212 DOI: 10.1038/s41581-024-00815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.
Collapse
Affiliation(s)
- Jonathan Haydak
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Garnier AS, Laubacher H, Briet M. Drug-induced glomerular diseases. Therapie 2024; 79:271-281. [PMID: 37973491 DOI: 10.1016/j.therap.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
Drug-induced kidney diseases represent a wide range of diseases that are responsible for a significant proportion of all acute kidney injuries and chronic kidney diseases. In the present review, we focused on drug-induced glomerular diseases, more precisely podocytopathies - minimal change diseases (MCD), focal segmental glomerulosclerosis (FSGS) - and membranous nephropathies (MN), from a physiological and a pharmacological point of view. The glomerular filtration barrier is composed of podocytes that form foot processes tightly connected and directly in contact with the basal membrane and surrounding capillaries. The common clinical feature of these diseases is represented by the loss of the ability of the filtration barrier to retain large proteins, leading to massive proteinuria and nephrotic syndrome. Drugs such as non-steroidal anti-inflammatory drugs (NSAIDs), D-penicillamine, tiopronin, trace elements, bisphosphonate, and interferons have been historically associated with the occurrence of MCD, FSGS, and MN. In the last ten years, the development of new anti-cancer agents, including tyrosine kinase inhibitors and immune checkpoint inhibitors, and research into their renal adverse effects highlighted these issues and have improved our comprehension of these diseases.
Collapse
Affiliation(s)
- Anne-Sophie Garnier
- Service de néphrologie-dialyse-transplantation, CHU d'Angers, 49000 Angers, France; UFR Santé, université d'Angers, 49000 Angers, France; Université d'Angers, UMR CNRS 6015, Inserm U1083, unité MitoVasc, Team Carme, SFR ICAT, 49000 Angers, France; Laboratoire MitoVasc, UMR Inserm 1083 CNRS 6215, 49000 Angers, France
| | - Hélène Laubacher
- UFR Santé, université d'Angers, 49000 Angers, France; Laboratoire MitoVasc, UMR Inserm 1083 CNRS 6215, 49000 Angers, France
| | - Marie Briet
- UFR Santé, université d'Angers, 49000 Angers, France; Université d'Angers, UMR CNRS 6015, Inserm U1083, unité MitoVasc, Team Carme, SFR ICAT, 49000 Angers, France; Laboratoire MitoVasc, UMR Inserm 1083 CNRS 6215, 49000 Angers, France; Service de pharmacologie - toxicologie et pharmacovigilance, CHU d'Angers, 49000 Angers, France.
| |
Collapse
|
11
|
Fallon TK, Zuvin M, Stern AD, Anandakrishnan N, Daehn IS, Azeloglu EU. Open-Source System for Real-Time Functional Assessment of In Vitro Filtration Barriers. Ann Biomed Eng 2024; 52:327-341. [PMID: 37899379 PMCID: PMC10808466 DOI: 10.1007/s10439-023-03378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
The integrity of the barrier between blood and the selective filtrate of solutes is important for homeostasis and its disruption contributes to many diseases. Microphysiological systems that incorporate synthetic or natural membranes with human cells can mimic biological filtration barriers, such as the glomerular filtration barrier in the kidney, and they can readily be used to study cellular filtration processes as well as drug effects and interactions. We present an affordable, open-source platform for the real-time monitoring of functional filtration status in engineered microphysiological systems. Using readily available components, our assay can linearly detect real-time concentrations of two target molecules, FITC-labeled inulin and Texas Red-labeled human-serum albumin, within clinically relevant ranges, and it can be easily modified for different target molecules of varying sizes and tags. We demonstrate the platform's ability to determine the concentration of our target molecules automatically and consistently. We show through an acellular context that the platform enables real-time tracking of size-dependent diffusion with minimal fluid volume loss and without manual extraction of media, making it suitable for continuous operational monitoring of filtration status in microphysiological system applications. The platform's affordability and integrability with microphysiological systems make it ideal for many precision medicine applications, including evaluation of drug nephrotoxicity and other forms of drug discovery.
Collapse
Affiliation(s)
- Tess K Fallon
- Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1243, New York, NY, 10029, USA
- Department of Electrical Engineering, Columbia University, 500 W. 120th St, New York, NY, 10027, USA
| | - Merve Zuvin
- Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1243, New York, NY, 10029, USA
| | - Alan D Stern
- Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1243, New York, NY, 10029, USA
| | - Nanditha Anandakrishnan
- Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1243, New York, NY, 10029, USA
| | - Ilse S Daehn
- Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1243, New York, NY, 10029, USA
| | - Evren U Azeloglu
- Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1243, New York, NY, 10029, USA.
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1243, New York, NY, 10029, USA.
| |
Collapse
|
12
|
Muto S, Matsubara T, Inoue T, Kitamura H, Yamamoto K, Ishii T, Yazawa M, Yamamoto R, Okada N, Mori K, Yamada H, Kuwabara T, Yonezawa A, Fujimaru T, Kawano H, Yokoi H, Doi K, Hoshino J, Yanagita M. Chapter 1: Evaluation of kidney function in patients undergoing anticancer drug therapy, from clinical practice guidelines for the management of kidney injury during anticancer drug therapy 2022. Int J Clin Oncol 2023; 28:1259-1297. [PMID: 37382749 DOI: 10.1007/s10147-023-02372-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
The prevalence of CKD may be higher in patients with cancer than in those without due to the addition of cancer-specific risk factors to those already present for CKD. In this review, we describe the evaluation of kidney function in patients undergoing anticancer drug therapy. When anticancer drug therapy is administered, kidney function is evaluated to (1) set the dose of renally excretable drugs, (2) detect kidney disease associated with the cancer and its treatment, and (3) obtain baseline values for long-term monitoring. Owing to some requirements for use in clinical practice, a GFR estimation method such as the Cockcroft-Gault, MDRD, CKD-EPI, and the Japanese Society of Nephrology's GFR estimation formula has been developed that is simple, inexpensive, and provides rapid results. However, an important clinical question is whether they can be used as a method of GFR evaluation in patients with cancer. When designing a drug dosing regimen in consideration of kidney function, it is important to make a comprehensive judgment, recognizing that there are limitations regardless of which estimation formula is used or if GFR is directly measured. Although CTCAEs are commonly used as criteria for evaluating kidney disease-related adverse events that occur during anticancer drug therapy, a specialized approach using KDIGO criteria or other criteria is required when nephrologists intervene in treatment. Each drug is associated with the different disorders related to the kidney. And various risk factors for kidney disease associated with each anticancer drug therapy.
Collapse
Affiliation(s)
- Satoru Muto
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| | - Takeshi Matsubara
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takamitsu Inoue
- Department of Renal and Urologic Surgery, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Hiroshi Kitamura
- Department of Urology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | - Taisuke Ishii
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masahiko Yazawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Ryohei Yamamoto
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoto Okada
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Pharmacy Department, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Kiyoshi Mori
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Hiroyuki Yamada
- Department of Primary Care and Emergency Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Takuya Fujimaru
- Department of Nephrology, St Luke's International Hospital, Tokyo, Japan
| | - Haruna Kawano
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Paranjpe I, Wang X, Anandakrishnan N, Haydak JC, Van Vleck T, DeFronzo S, Li Z, Mendoza A, Liu R, Fu J, Forrest I, Zhou W, Lee K, O'Hagan R, Dellepiane S, Menon KM, Gulamali F, Kamat S, Gusella GL, Charney AW, Hofer I, Cho JH, Do R, Glicksberg BS, He JC, Nadkarni GN, Azeloglu EU. Deep learning on electronic medical records identifies distinct subphenotypes of diabetic kidney disease driven by genetic variations in the Rho pathway. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.06.23295120. [PMID: 37732187 PMCID: PMC10508814 DOI: 10.1101/2023.09.06.23295120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Kidney disease affects 50% of all diabetic patients; however, prediction of disease progression has been challenging due to inherent disease heterogeneity. We use deep learning to identify novel genetic signatures prognostically associated with outcomes. Using autoencoders and unsupervised clustering of electronic health record data on 1,372 diabetic kidney disease patients, we establish two clusters with differential prevalence of end-stage kidney disease. Exome-wide associations identify a novel variant in ARHGEF18, a Rho guanine exchange factor specifically expressed in glomeruli. Overexpression of ARHGEF18 in human podocytes leads to impairments in focal adhesion architecture, cytoskeletal dynamics, cellular motility, and RhoA/Rac1 activation. Mutant GEF18 is resistant to ubiquitin mediated degradation leading to pathologically increased protein levels. Our findings uncover the first known disease-causing genetic variant that affects protein stability of a cytoskeletal regulator through impaired degradation, a potentially novel class of expression quantitative trait loci that can be therapeutically targeted.
Collapse
|
14
|
Adegbite BO, Abramson MH, Gutgarts V, Musteata FM, Chauhan K, Muwonge AN, Meliambro KA, Salvatore SP, El Ghaity-Beckley S, Kremyanskaya M, Marcellino B, Mascarenhas JO, Campbell KN, Chan L, Coca SG, Berman EM, Jaimes EA, Azeloglu EU. Patient-Specific Pharmacokinetics and Dasatinib Nephrotoxicity. Clin J Am Soc Nephrol 2023; 18:1175-1185. [PMID: 37382967 PMCID: PMC10564352 DOI: 10.2215/cjn.0000000000000219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Dasatinib has been associated with nephrotoxicity. We sought to examine the incidence of proteinuria on dasatinib and determine potential risk factors that may increase dasatinib-associated glomerular injury. METHODS We examined glomerular injury through urine albumin-creatinine ratio (UACR) in 82 patients with chronic myelogenous leukemia who were on tyrosine-kinase inhibitor therapy for at least 90 days. t tests were used to compare mean differences in UACR, while regression analysis was used to assess the effects of drug parameters on proteinuria development while on dasatinib. We assayed plasma dasatinib pharmacokinetics using tandem mass spectroscopy and further described a case study of a patient who experienced nephrotic-range proteinuria while on dasatinib. RESULTS Participants treated with dasatinib ( n =32) had significantly higher UACR levels (median 28.0 mg/g; interquartile range, 11.5-119.5) than participants treated with other tyrosine-kinase inhibitors ( n =50; median 15.0 mg/g; interquartile range, 8.0-35.0; P < 0.001). In total, 10% of dasatinib users exhibited severely increased albuminuria (UACR >300 mg/g) versus zero in other tyrosine-kinase inhibitors. Average steady-state concentrations of dasatinib were positively correlated with UACR ( ρ =0.54, P = 0.03) and duration of treatment ( P = 0.003). There were no associations with elevated BP or other confounding factors. In the case study, kidney biopsy revealed global glomerular damage with diffuse foot process effacement that recovered on termination of dasatinib treatment. CONCLUSIONS Exposure to dasatinib was associated with a significant chance of developing proteinuria compared with other similar tyrosine-kinase inhibitors. Dasatinib plasma concentration significantly correlated with higher risk of developing proteinuria while receiving dasatinib. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_09_08_CJN0000000000000219.mp3.
Collapse
Affiliation(s)
- Benjamin O. Adegbite
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Internal Medicine, Mount Sinai Morningside/West, New York, New York
| | - Matthew H. Abramson
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Victoria Gutgarts
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Florin M. Musteata
- Department of Pharmaceutical Sciences, Albany College of Pharmacy & Health Sciences, Albany, New York
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alecia N. Muwonge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristin A. Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Steven P. Salvatore
- Clinical Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Sebastian El Ghaity-Beckley
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marina Kremyanskaya
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bridget Marcellino
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John O. Mascarenhas
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N. Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lili Chan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Steven G. Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ellin M. Berman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edgar A. Jaimes
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Evren U. Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
15
|
Elshani M, Um IH, Leung S, Reynolds PA, Chapman A, Kudsy M, Harrison DJ. Transcription Factor NFE2L1 Decreases in Glomerulonephropathies after Podocyte Damage. Cells 2023; 12:2165. [PMID: 37681897 PMCID: PMC10487238 DOI: 10.3390/cells12172165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Podocyte cellular injury and detachment from glomerular capillaries constitute a critical factor contributing to kidney disease. Notably, transcription factors are instrumental in maintaining podocyte differentiation and homeostasis. This study explores the hitherto uninvestigated expression of Nuclear Factor Erythroid 2-related Factor 1 (NFE2L1) in podocytes. We evaluated the podocyte expression of NFE2L1, Nuclear Factor Erythroid 2-related Factor 2 (NFE2L2), and NAD(P)H:quinone Oxidoreductase (NQO1) in 127 human glomerular disease biopsies using multiplexed immunofluorescence and image analysis. We found that both NFE2L1 and NQO1 expressions were significantly diminished across all observed renal diseases. Furthermore, we exposed human immortalized podocytes and ex vivo kidney slices to Puromycin Aminonucleoside (PAN) and characterized the NFE2L1 protein isoform expression. PAN treatment led to a reduction in the nuclear expression of NFE2L1 in ex vivo kidney slices and podocytes.
Collapse
Affiliation(s)
- Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
- Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 6NA, UK
- NuCana plc, 3 Lochside Way, Edinburgh EH12 9DT, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - Steve Leung
- Urology Department, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Paul A. Reynolds
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - Alex Chapman
- Urology Department, Victoria Hospital, Hayfield Road, Kirkcaldy KY2 5AH, UK
| | - Mary Kudsy
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
- Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 6NA, UK
| |
Collapse
|
16
|
Chen M, Menon MC, Wang W, Fu J, Yi Z, Sun Z, Liu J, Li Z, Mou L, Banu K, Lee SW, Dai Y, Anandakrishnan N, Azeloglu EU, Lee K, Zhang W, Das B, He JC, Wei C. HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy. Nat Commun 2023; 14:4297. [PMID: 37463911 PMCID: PMC10354075 DOI: 10.1038/s41467-023-40086-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Renal inflammation and fibrosis are the common pathways leading to progressive chronic kidney disease (CKD). We previously identified hematopoietic cell kinase (HCK) as upregulated in human chronic allograft injury promoting kidney fibrosis; however, the cellular source and molecular mechanisms are unclear. Here, using immunostaining and single cell sequencing data, we show that HCK expression is highly enriched in pro-inflammatory macrophages in diseased kidneys. HCK-knockout (KO) or HCK-inhibitor decreases macrophage M1-like pro-inflammatory polarization, proliferation, and migration in RAW264.7 cells and bone marrow-derived macrophages (BMDM). We identify an interaction between HCK and ATG2A and CBL, two autophagy-related proteins, inhibiting autophagy flux in macrophages. In vivo, both global or myeloid cell specific HCK-KO attenuates renal inflammation and fibrosis with reduces macrophage numbers, pro-inflammatory polarization and migration into unilateral ureteral obstruction (UUO) kidneys and unilateral ischemia reperfusion injury (IRI) models. Finally, we developed a selective boron containing HCK inhibitor which can reduce macrophage pro-inflammatory activity, proliferation, and migration in vitro, and attenuate kidney fibrosis in the UUO mice. The current study elucidates mechanisms downstream of HCK regulating macrophage activation and polarization via autophagy in CKD and identifies that selective HCK inhibitors could be potentially developed as a new therapy for renal fibrosis.
Collapse
Affiliation(s)
- Man Chen
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Madhav C Menon
- Division of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Wenlin Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeguo Sun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lingyun Mou
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Khadija Banu
- Division of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Sui-Wan Lee
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying Dai
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Renal Section, James J. Peters VAMC, Bronx, NY, USA.
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Adegbite BO, Abramson MH, Gutgarts V, Musteata MF, Chauhan K, Muwonge AN, Meliambro KA, Salvatore SP, Ghaity-Beckley SE, Kremyanskaya M, Marcellino B, Mascarenhas JO, Campbell KN, Chan L, Coca SG, Berman EM, Jaimes EA, Azeloglu EU. Dasatinib nephrotoxicity correlates with patient-specific pharmacokinetics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.09.23288333. [PMID: 37131844 PMCID: PMC10153335 DOI: 10.1101/2023.04.09.23288333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Introduction Dasatinib has been associated with nephrotoxicity. We sought to examine the incidence of proteinuria on dasatinib and determine potential risk factors that may increase dasatinib-associated glomerular injury. Methods We examine glomerular injury via urine albumin-to-creatinine ratio (UACR) in 101 chronic myelogenous leukemia patients who were on tyrosine-kinase inhibitor (TKI) therapy for at least 90 days. We assay plasma dasatinib pharmacokinetics using tandem mass spectroscopy, and further describe a case study of a patient who experienced nephrotic-range proteinuria while on dasatinib. Results Patients treated with dasatinib (n= 32) had significantly higher UACR levels (median 28.0 mg/g, IQR 11.5 - 119.5) than patients treated with other TKIs (n=50; median 15.0 mg/g, IQR 8.0 - 35.0; p < 0.001). In total, 10% of dasatinib users exhibited severely increased albuminuria (UACR > 300 mg/g) versus zero in other TKIs. Average steady state concentrations of dasatinib were positively correlated with UACR (ρ = 0.54, p = 0.03) as well as duration of treatment ( p =0.003). There were no associations with elevated blood pressure or other confounding factors. In the case study, kidney biopsy revealed global glomerular damage with diffuse foot process effacement that recovered upon termination of dasatinib treatment. Conclusions Exposure to dasatinib is associated a significant chance of developing proteinuria compared to other similar TKIs. Dasatinib plasma concentration significantly correlates with increased risk of developing proteinuria while receiving dasatinib. Screening for renal dysfunction and proteinuria is strongly advised for all dasatinib patients.
Collapse
|
18
|
Cellier M, Bourneau-Martin D, Abbara C, Crosnier A, Lagarce L, Garnier AS, Briet M. Renal Safety Profile of BCR-ABL Tyrosine Kinase Inhibitors in a Real-Life Setting: A Study Based on Vigibase®, the WHO Pharmacovigilance Database. Cancers (Basel) 2023; 15:cancers15072041. [PMID: 37046701 PMCID: PMC10093506 DOI: 10.3390/cancers15072041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
Background: Alongside their BCR-ABL specificity, TKIs used in chronic myeloid leukemia also target other tyrosine kinases expressed in the kidney such as PDGFR, c-KIT, SRC, and VEGFR, which may result in specific renal adverse drug reaction (ADR). To evaluate the renal safety profile in real-life conditions, a case/non-case study was performed on VigiBase®, the WHO global safety database. Methods: From 7 November 2001 to 2 June 2021, all cases in which the involvement of imatinib, dasatinib, nilotinib, bosutinib, and ponatinib was suspected in the occurrence of renal ADR were extracted from VigiBase®. Disproportionality analyses were assessed using the reporting odds ratio. Results: A total of 1409 cases were included. Imatinib accounts for half of the reported cases. A signal of disproportionate reporting (SDR) of renal failure and fluid retention was found for the five TKIs. Only dasatinib and nilotinib were related to an SDR for nephrotic syndrome. Nilotinib and ponatinib were related to an SDR for renal artery stenosis, while dasatinib was related to an SDR for thrombotic microangiopathy. No SDR for tubulointerstitial nephritis was observed. Conclusion: This study identified a new safety signal, nephrotic syndrome, for nilotinib and highlights the importance of post-marketing safety surveillance.
Collapse
|
19
|
Matsubara T, Yokoi H, Yamada H, Yanagita M. Nephrotoxicity associated with anticancer agents: perspective on onconephrology from nephrologists. Int J Clin Oncol 2023; 28:625-636. [PMID: 36872414 DOI: 10.1007/s10147-023-02307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 03/07/2023]
Abstract
Nephrotoxicity is one of the most important complications in cancer patients. In particular, acute kidney injury (AKI) is known to be associated with discontinuing effective oncological treatments, longer hospitalizations, increased costs, and a higher risk of death. In addition to acute kidney injury, clinical signs associated with nephrotoxicity during treatment with anticancer agents include chronic kidney disease, proteinuria, hypertension, electrolyte abnormalities, and other characteristic manifestations. Many of these signs are caused both by cancer treatment as well as by cancer itself. Therefore, it is important to carefully recognize whether the underlying causes of renal impairment in cancer patients are cancer-related, treatment-related, or both. This review describes the epidemiology and pathophysiology of anticancer agent-induced acute kidney injury, proteinuria, hypertension, and other characteristic manifestations.
Collapse
Affiliation(s)
- Takeshi Matsubara
- Department of Nephrology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroyuki Yamada
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Cheng F, Xu Q, Li Q, Cui Z, Li W, Zeng F. Adverse reactions after treatment with dasatinib in chronic myeloid leukemia: Characteristics, potential mechanisms, and clinical management strategies. Front Oncol 2023; 13:1113462. [PMID: 36814818 PMCID: PMC9939513 DOI: 10.3389/fonc.2023.1113462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Dasatinib, a second-generation tyrosine kinase inhibitor, is recommended as first-line treatment for patients newly diagnosed with chronic myeloid leukemia (CML) and second-line treatment for those who are resistant or intolerant to therapy with imatinib. Dasatinib is superior to imatinib in terms of clinical response; however, the potential pulmonary toxicities associated with dasatinib, such as pulmonary arterial hypertension and pleural effusion, may limit its clinical use. Appropriate management of dasatinib-related severe events is important for improving the quality of life and prognosis of patients with CML. This review summarizes current knowledge regarding the characteristics, potential mechanisms, and clinical management of adverse reactions occurring after treatment of CML with dasatinib.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Qiling Xu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Zheng Cui
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Weiming Li, ; Fang Zeng,
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China,*Correspondence: Weiming Li, ; Fang Zeng,
| |
Collapse
|
21
|
Hagmann H, Khayyat NH, Matin M, Oezel C, Chen H, Schauss A, Schell C, Benzing T, Dryer S, Brinkkoetter PT. Capsazepine (CPZ) Inhibits TRPC6 Conductance and Is Protective in Adriamycin-Induced Nephropathy and Diabetic Glomerulopathy. Cells 2023; 12:cells12020271. [PMID: 36672207 PMCID: PMC9856956 DOI: 10.3390/cells12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Reactive oxygen species (ROS), which excessively arise in diabetes and systemic inflammatory diseases, modify cellular lipids and cellular lipid composition leading to altered biophysical properties of cellular membranes. The impact of lipid peroxidation on transmembrane signaling routes is not yet well studied. The canonical transient receptor potential channel 6 (TRPC6) is implicated in the pathogenesis of several forms of glomerular diseases. TRPC6 is sensitive to membrane stretch and relies on a distinct lipid environment. This study investigates the effect of oxidative alterations to plasma membrane lipids on TRPC6 activity and the function of the glomerular filter. Knockout of the anti-oxidative, lipid modifying enzyme paraoxonase 2 (PON2) leads to altered biophysical properties of glomerular epithelial cells, which are called podocytes. Cortical stiffness, quantified by atomic force microscopy, was largely increased in PON2-deficient cultured podocytes. PON2 deficiency markedly enhanced TRPC6 channel currents and channel recovery. Treatment with the amphiphilic substance capsazepine in micromolar doses reduced cortical stiffness and abrogated TRPC6 conductance. In in vivo studies, capsazepine reduced the glomerular phenotype in the model of adriamycin-induced nephropathy in PON2 knockout mice and wildtype littermates. In diabetic AKITA mice, the progression of albuminuria and diabetic kidney disease was delayed. In summary, we provide evidence that the modification of membrane characteristics affects TRPC6 signaling. These results could spur future research to investigate modification of the direct lipid environment of TRPC6 as a future therapeutic strategy in glomerular disease.
Collapse
Affiliation(s)
- Henning Hagmann
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Correspondence:
| | | | - Mahsa Matin
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Cem Oezel
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - He Chen
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Astrid Schauss
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), 50931 Cologne, Germany
- Systems Biology of Ageing Cologne (Sybacol), 50931 Cologne, Germany
| | - Stuart Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204, USA
| | - Paul T. Brinkkoetter
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
22
|
Burt MA, Kalejaiye TD, Bhattacharya R, Dimitrakakis N, Musah S. Adriamycin-Induced Podocyte Injury Disrupts the YAP-TEAD1 Axis and Downregulates Cyr61 and CTGF Expression. ACS Chem Biol 2022; 17:3341-3351. [PMID: 34890187 DOI: 10.1021/acschembio.1c00678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The most severe forms of kidney diseases are often associated with irreversible damage to the glomerular podocytes, the highly specialized epithelial cells that encase glomerular capillaries and regulate the removal of toxins and waste from the blood. Several studies revealed significant changes to podocyte cytoskeletal structure during disease onset, suggesting possible roles of cellular mechanosensing in podocyte responses to injury. Still, this topic remains underexplored partly due to the lack of appropriate in vitro models that closely recapitulate human podocyte biology. Here, we leveraged our previously established method for the derivation of mature podocytes from human induced pluripotent stem cells (hiPSCs) to help uncover the roles of yes-associated protein (YAP), a transcriptional coactivator and mechanosensor, in podocyte injury response. We found that while the total expression levels of YAP remain relatively unchanged during Adriamycin (ADR)-induced podocyte injury, the YAP target genes connective tissue growth factor (CTGF) and cysteine-rich angiogenic inducer 61 (Cyr61) are significantly downregulated. Intriguingly, TEAD1 is significantly downregulated in podocytes injured with ADR. By examining multiple independent modes of cellular injury, we found that CTGF and Cyr61 expression are downregulated only when podocytes were exposed to molecules known to disrupt the cell's mechanical integrity or cytoskeletal structure. To our knowledge, this is the first report that the YAP-TEAD1 signaling axis is disrupted when stem cell-derived human podocytes experience biomechanical injury. Together, these results could help improve the understanding of kidney disease mechanisms and highlight CTGF and Cyr61 as potential therapeutic targets or biomarkers for patient stratification.
Collapse
Affiliation(s)
- Morgan A Burt
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Titilola D Kalejaiye
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Rohan Bhattacharya
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Nikolaos Dimitrakakis
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Samira Musah
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
23
|
Clinical features, diagnosis, and management of dasatinib-induced nephrotic syndrome. Invest New Drugs 2022; 40:1153-1159. [PMID: 35867286 DOI: 10.1007/s10637-022-01288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
Knowledge of dasatinib-induced nephrotic syndrome is largely based on case reports. The clinical features of dasatinib-induced nephrotic syndrome are unknown. We collected case reports of 25 patients with nephrotic syndrome and analyzed their clinical characteristics. Overall, the onset of nephrotic syndrome ranged from 10 days to 5 years after dasatinib administration. Nine patients (36.0%) had clinical symptoms, mainly periorbital edema and lower-extremity edema. Serum albumin ranged from 1.2 g/dL to 3.7 g/dL in 10 patients (38.5%). The 24-h urine protein values ranged from 3.54 g/day to 118 g/day. Kidney biopsy of 13 patients (52.0%) mainly showed focal foot process effacement, mesangial hyperplasia, endothelial cell damage and focal segmental glomerulosclerosis. Proteinuria resolved or recovered after dasatinib discontinuation or dose reduction or switching to other tyrosine kinase inhibitors (TKIs).
Collapse
|
24
|
Hansen J, Sealfon R, Menon R, Eadon MT, Lake BB, Steck B, Anjani K, Parikh S, Sigdel TK, Zhang G, Velickovic D, Barwinska D, Alexandrov T, Dobi D, Rashmi P, Otto EA, Rivera M, Rose MP, Anderton CR, Shapiro JP, Pamreddy A, Winfree S, Xiong Y, He Y, de Boer IH, Hodgin JB, Barisoni L, Naik AS, Sharma K, Sarwal MM, Zhang K, Himmelfarb J, Rovin B, El-Achkar TM, Laszik Z, He JC, Dagher PC, Valerius MT, Jain S, Satlin LM, Troyanskaya OG, Kretzler M, Iyengar R, Azeloglu EU, Kidney Precision Medicine Project. A reference tissue atlas for the human kidney. SCIENCE ADVANCES 2022; 8:eabn4965. [PMID: 35675394 PMCID: PMC9176741 DOI: 10.1126/sciadv.abn4965] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/20/2022] [Indexed: 05/08/2023]
Abstract
Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.
Collapse
Affiliation(s)
- Jens Hansen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Sealfon
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | - Rajasree Menon
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Blue B. Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Becky Steck
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kavya Anjani
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Samir Parikh
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Tara K. Sigdel
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Guanshi Zhang
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | | | - Daria Barwinska
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Dejan Dobi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Priyanka Rashmi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Edgar A. Otto
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Miguel Rivera
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Michael P. Rose
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Christopher R. Anderton
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - John P. Shapiro
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Annapurna Pamreddy
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Seth Winfree
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuguang Xiong
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yongqun He
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ian H. de Boer
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | | | | | - Abhijit S. Naik
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kumar Sharma
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Minnie M. Sarwal
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jonathan Himmelfarb
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | - Brad Rovin
- Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Zoltan Laszik
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | | | | | - M. Todd Valerius
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Sanjay Jain
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| | - Lisa M. Satlin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga G. Troyanskaya
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | | | - Ravi Iyengar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kidney Precision Medicine Project
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
- University of Michigan School of Medicine, Ann Arbor, MI, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- University of California San Francisco School of Medicine, San Francisco, CA, USA
- Ohio State University College of Medicine, Columbus, OH, USA
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
- European Molecular Biology Laboratory, Heidelberg, Germany
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
- Duke University School of Medicine, Durham, NC, USA
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| |
Collapse
|
25
|
Ravaglia F, Melica ME, Angelotti ML, De Chiara L, Romagnani P, Lasagni L. The Pathology Lesion Patterns of Podocytopathies: How and why? Front Cell Dev Biol 2022; 10:838272. [PMID: 35281116 PMCID: PMC8907833 DOI: 10.3389/fcell.2022.838272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Podocytopathies are a group of proteinuric glomerular disorders driven by primary podocyte injury that are associated with a set of lesion patterns observed on kidney biopsy, i.e., minimal changes, focal segmental glomerulosclerosis, diffuse mesangial sclerosis and collapsing glomerulopathy. These unspecific lesion patterns have long been considered as independent disease entities. By contrast, recent evidence from genetics and experimental studies demonstrated that they represent signs of repeated injury and repair attempts. These ongoing processes depend on the type, length, and severity of podocyte injury, as well as on the ability of parietal epithelial cells to drive repair. In this review, we discuss the main pathology patterns of podocytopathies with a focus on the cellular and molecular response of podocytes and parietal epithelial cells.
Collapse
Affiliation(s)
| | - Maria Elena Melica
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Maria Lucia Angelotti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia De Chiara
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology Unit, Meyer Children’s Hospital, Florence, Italy
| | - Laura Lasagni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
26
|
Xiong Y, Liu T, Chen T, Hansen J, Hu B, Chen Y, Jayaraman G, Schürer S, Vidovic D, Goldfarb J, Sobie EA, Birtwistle MR, Iyengar R, Li H, Azeloglu EU. Proteomic cellular signatures of kinase inhibitor-induced cardiotoxicity. Sci Data 2022; 9:18. [PMID: 35058449 PMCID: PMC8776854 DOI: 10.1038/s41597-021-01114-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
Drug Toxicity Signature Generation Center (DToxS) at the Icahn School of Medicine at Mount Sinai is one of the centers for the NIH Library of Integrated Network-Based Cellular Signatures (LINCS) program. Its key aim is to generate proteomic and transcriptomic signatures that can predict cardiotoxic adverse effects of kinase inhibitors approved by the Food and Drug Administration. Towards this goal, high throughput shotgun proteomics experiments (308 cell line/drug combinations +64 control lysates) have been conducted. Using computational network analyses, these proteomic data can be integrated with transcriptomic signatures, generated in tandem, to identify cellular signatures of cardiotoxicity that may predict kinase inhibitor-induced toxicity and enable possible mitigation. Both raw and processed proteomics data have passed several quality control steps and been made publicly available on the PRIDE database. This broad protein kinase inhibitor-stimulated human cardiomyocyte proteomic data and signature set is valuable for prediction of drug toxicities.
Collapse
Affiliation(s)
- Yuguang Xiong
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tong Liu
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - Tong Chen
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Hu
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yibang Chen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gomathi Jayaraman
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephan Schürer
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Center for Computational Science, University of Miami, Miami, FL, 33136, USA
| | - Dusica Vidovic
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Center for Computational Science, University of Miami, Miami, FL, 33136, USA
| | - Joseph Goldfarb
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric A Sobie
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marc R Birtwistle
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Hong Li
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA.
| | - Evren U Azeloglu
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
27
|
Dutta SD, Hexiu J, Kim J, Sarkar S, Mondal J, An JM, Lee YK, Moniruzzaman M, Lim KT. Two-photon excitable membrane targeting polyphenolic carbon dots for long-term imaging and pH-responsive chemotherapeutic drug delivery for synergistic tumor therapy. Biomater Sci 2022; 10:1680-1696. [DOI: 10.1039/d1bm01832a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-term dynamic tracking of cells with theranostics properties remains challenging due to difficulty in preparing and delivering drugs by the probes. Herein, we developed a highly fluorescent one- and two-photon...
Collapse
|
28
|
Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases 2022; 13:141-161. [PMID: 34138686 PMCID: PMC9707548 DOI: 10.1080/21541248.2021.1932402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
| | | | - Thierry Hauet
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
| | - Nicolas Bourmeyster
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
- Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers Cédex, France
| |
Collapse
|
29
|
Qu C, Roth R, Puapatanakul P, Loitman C, Hammad D, Genin GM, Miner JH, Suleiman HY. Three-Dimensional Visualization of the Podocyte Actin Network Using Integrated Membrane Extraction, Electron Microscopy, and Machine Learning. J Am Soc Nephrol 2022; 33:155-173. [PMID: 34758982 PMCID: PMC8763187 DOI: 10.1681/asn.2021020182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Actin stress fibers are abundant in cultured cells, but little is known about them in vivo. In podocytes, much evidence suggests that mechanobiologic mechanisms underlie podocyte shape and adhesion in health and in injury, with structural changes to actin stress fibers potentially responsible for pathologic changes to cell morphology. However, this hypothesis is difficult to rigorously test in vivo due to challenges with visualization. A technology to image the actin cytoskeleton at high resolution is needed to better understand the role of structures such as actin stress fibers in podocytes. METHODS We developed the first visualization technique capable of resolving the three-dimensional cytoskeletal network in mouse podocytes in detail, while definitively identifying the proteins that comprise this network. This technique integrates membrane extraction, focused ion-beam scanning electron microscopy, and machine learning image segmentation. RESULTS Using isolated mouse glomeruli from healthy animals, we observed actin cables and intermediate filaments linking the interdigitated podocyte foot processes to newly described contractile actin structures, located at the periphery of the podocyte cell body. Actin cables within foot processes formed a continuous, mesh-like, electron-dense sheet that incorporated the slit diaphragms. CONCLUSIONS Our new technique revealed, for the first time, the detailed three-dimensional organization of actin networks in healthy podocytes. In addition to being consistent with the gel compression hypothesis, which posits that foot processes connected by slit diaphragms act together to counterbalance the hydrodynamic forces across the glomerular filtration barrier, our data provide insight into how podocytes respond to mechanical cues from their surrounding environment.
Collapse
Affiliation(s)
- Chengqing Qu
- Department of Mechanical Engineering, National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri
| | - Robyn Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Charles Loitman
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Dina Hammad
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Guy M. Genin
- Department of Mechanical Engineering, National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri
| | - Jeffrey H. Miner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri,Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Hani Y. Suleiman
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
30
|
Chang MY, Chang SY, Su PP, Tian F, Liu ZS. The protective effect of beta-hydroxybutyric acid on renal glomerular epithelial cells in adriamycin-induced injury. Am J Transl Res 2021; 13:8847-8859. [PMID: 34539999 PMCID: PMC8430157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Beta-hydroxybutyric acid (BHB) exerts a protective effect in experimental of kidney disease models. However, the mechanisms underlying this activity are not well defined. BHB stands out for its ability to inhibit the Nε-lysine acetylation of histone and non-histone proteins, which may affect cellular processes and protein functions. In adriamycin-injured murine glomerular podocytes, BHB ameliorates podocyte damage and preserves actin cytoskeleton integrity, reminiscent of the effect of MS275, a highly selective inhibitor of lysine deacetylase. Further research found that adriamycin causes the reduced acetylation of nephrin, WT-1, and GSK3β. This process is abrogated by the lysine deacetylase inhibitor or BHB, suggesting that the acetylation of these molecules regulates their activity. In contrast, anacardic acid, a selective inhibitor of acetyltransferase, decreases the acetylation of nephrin, WT-1, and GSK3β and mitigates the podocyte protective effects of BHB. Taken together, BHB attenuates adriamycin-elicited glomerular epithelial cell injury, at least in part, by inhibiting the deacetylation of the key molecules implicated in glomerular injury.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan Province, P. R. China
| | - Si-Yuan Chang
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan Province, P. R. China
| | - Pei-Pei Su
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan Province, P. R. China
| | - Fei Tian
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan Province, P. R. China
| | - Zhang-Suo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan Province, P. R. China
| |
Collapse
|
31
|
Daehn IS, Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Discov 2021; 20:770-788. [PMID: 34262140 PMCID: PMC8278373 DOI: 10.1038/s41573-021-00242-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Loss of normal kidney function affects more than 10% of the population and contributes to morbidity and mortality. Kidney diseases are currently treated with immunosuppressive agents, antihypertensives and diuretics with partial but limited success. Most kidney disease is characterized by breakdown of the glomerular filtration barrier (GFB). Specialized podocyte cells maintain the GFB, and structure-function experiments and studies of intercellular communication between the podocytes and other GFB cells, combined with advances from genetics and genomics, have laid the groundwork for a new generation of therapies that directly intervene at the GFB. These include inhibitors of apolipoprotein L1 (APOL1), short transient receptor potential channels (TRPCs), soluble fms-like tyrosine kinase 1 (sFLT1; also known as soluble vascular endothelial growth factor receptor 1), roundabout homologue 2 (ROBO2), endothelin receptor A, soluble urokinase plasminogen activator surface receptor (suPAR) and substrate intermediates for coenzyme Q10 (CoQ10). These molecular targets converge on two key components of GFB biology: mitochondrial function and the actin-myosin contractile machinery. This Review discusses therapies and developments focused on maintaining GFB integrity, and the emerging questions in this evolving field.
Collapse
Affiliation(s)
- Ilse S Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeremy S Duffield
- Research and Development, Prime Medicine, Cambridge, MA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
32
|
Hong MH. Nephrotoxicity of cancer therapeutic drugs: Focusing on novel agents. Kidney Res Clin Pract 2021; 40:344-354. [PMID: 34233435 PMCID: PMC8476309 DOI: 10.23876/j.krcp.21.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022] Open
Abstract
Kidney injury caused by anticancer agents is a common problem that can interfere with and affect the dose intensity of anticancer therapy, thus restricting patient survival. Recent advances in targeted and immunotherapeutic agents have transformed the landscape of medical oncology, and these agents have been widely employed in clinical practice. While typically associated with favorable toxicity profiles, several novel anticancer drugs present distinctive nephrotoxicities. It remains urgent to closely monitor renal injuries associated with these agents, and medical practitioners should be familiar with general principles for managing nephrotoxicity associated with novel cancer drugs. This review provides an in-depth investigation of the literature and guidelines regarding the prevalence, clinical presentations, mechanisms, and management of nephrotoxicity for each drug.
Collapse
Affiliation(s)
- Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Ntari L, Nikolaou C, Kranidioti K, Papadopoulou D, Christodoulou-Vafeiadou E, Chouvardas P, Meier F, Geka C, Denis MC, Karagianni N, Kollias G. Combination of subtherapeutic anti-TNF dose with dasatinib restores clinical and molecular arthritogenic profiles better than standard anti-TNF treatment. J Transl Med 2021; 19:165. [PMID: 33892739 PMCID: PMC8063445 DOI: 10.1186/s12967-021-02764-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND New medications for Rheumatoid Arthritis (RA) have emerged in the last decades, including Disease Modifying Antirheumatic Drugs (DMARDs) and biologics. However, there is no known cure, since a significant proportion of patients remain or become non-responders to current therapies. The development of new mode-of-action treatment schemes involving combination therapies could prove successful for the treatment of a greater number of RA patients. METHODS We investigated the effect of the Tyrosine Kinase inhibitors (TKIs) dasatinib and bosutinib, on the human TNF-dependent Tg197 arthritis mouse model. The inhibitors were administered either as a monotherapy or in combination with a subtherapeutic dose of anti-hTNF biologics and their therapeutic effect was assessed clinically, histopathologically as well as via gene expression analysis and was compared to that of an efficient TNF monotherapy. RESULTS Dasatinib and, to a lesser extent, bosutinib inhibited the production of TNF and proinflammatory chemokines from arthritogenic synovial fibroblasts. Dasatinib, but not bosutinib, also ameliorated significantly and in a dose-dependent manner both the clinical and histopathological signs of Tg197 arthritis. Combination of dasatinib with a subtherapeutic dose of anti-hTNF biologic agents, resulted in a synergistic inhibitory effect abolishing all arthritis symptoms. Gene expression analysis of whole joint tissue of Tg197 mice revealed that the combination of dasatinib with a low subtherapeutic dose of Infliximab most efficiently restores the pathogenic gene expression profile to that of the healthy state compared to either treatment administered as a monotherapy. CONCLUSION Our findings show that dasatinib exhibits a therapeutic effect in TNF-driven arthritis and can act in synergy with a subtherapeutic anti-hTNF dose to effectively treat the clinical and histopathological signs of the pathology. The combination of dasatinib and anti-hTNF exhibits a distinct mode of action in restoring the arthritogenic gene signature to that of a healthy profile. Potential clinical applications of combination therapies with kinase inhibitors and anti-TNF agents may provide an interesting alternative to high-dose anti-hTNF monotherapy and increase the number of patients responding to treatment.
Collapse
Affiliation(s)
| | - Christoforos Nikolaou
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming, 34 Alexander Fleming Street, 16672, Vari, Greece
| | | | - Dimitra Papadopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming, 34 Alexander Fleming Street, 16672, Vari, Greece
| | | | - Panagiotis Chouvardas
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Florian Meier
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | | | | | | | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming, 34 Alexander Fleming Street, 16672, Vari, Greece.
- Department of Physiology and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
34
|
Nephrotoxicity of Anti-Angiogenic Therapies. Diagnostics (Basel) 2021; 11:diagnostics11040640. [PMID: 33916159 PMCID: PMC8066213 DOI: 10.3390/diagnostics11040640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
The use of inhibitors of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling for the treatment of cancer has increased over the last decade. This signaling pathway plays a fundamental role in angiogenesis and also in kidney physiology. The emergence of anti-angiogenic therapies has led to adverse nephrotoxic effects, despite improving the outcomes of patients. In this review, we will present the different anti-angiogenic therapies targeting the VEGFR pathway in association with the incidence of renal manifestations during their use. In addition, we will discuss, in detail, the pathophysiological mechanisms of frequent renal diseases such as hypertension, proteinuria, renal dysfunction, and electrolyte disorders. Finally, we will outline the cellular damage described following these therapies.
Collapse
|
35
|
Jaimes EA, Zhou MS, Siddiqui M, Rezonzew G, Tian R, Seshan SV, Muwonge AN, Wong NJ, Azeloglu EU, Fornoni A, Merscher S, Raij L. Nicotine, smoking, podocytes, and diabetic nephropathy. Am J Physiol Renal Physiol 2021; 320:F442-F453. [PMID: 33459165 PMCID: PMC7988804 DOI: 10.1152/ajprenal.00194.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. Besides glycemic and blood pressure control, environmental factors such as cigarette smoking (CS) adversely affect the progression of DN. The effects of CS on DN progression have been attributed to combustion-generated molecules without consideration to the role of nicotine (NIC), responsible for the addictive properties of both CS and electronic cigarettes (ECs). Podocytes are essential to preserve the structure and function of the glomerular filtration barrier, and strong evidence indicates that early podocyte loss promotes DN progression. We performed experiments in human podocytes and in a mouse model of diabetes that develops nephropathy resembling human DN. We determined that NIC binding to podocytes in concentrations achieved with CS and ECs activated NADPH oxidase, which sets in motion a dysfunctional molecular network integrated by cyclooxygenase 2, known to induce podocyte injury; downregulation of AMP-activated protein kinase, important for maintaining cellular energy stores and antioxidation; and upregulation of CD36, which increased lipid uptake and promoted apoptosis. In diabetic mice, NIC increased proteinuria, a recognized marker of chronic kidney disease progression, accompanied by reduced glomerular podocyte synaptopodin, a crucial stabilizer of the podocyte cytoskeleton, and increased fibronectin expression. This novel study critically implicates NIC itself as a contributor to DN progression in CS and EC users.NEW & NOTEWORTHY In this study, we demonstrate that nicotine increases the production of reactive oxygen species, increases cyclooxygenase-2 expression, and upregulates Cd36 while inducing downregulation of AMP-activated protein kinase. In vivo nicotine increases proteinuria and fibronectin expression in diabetic mice. This study demonstrates that effects of nicotine on podocytes are responsible, at least in part, for the deleterious effects of smoking in the progression of chronic kidney disease, including diabetic nephropathy.
Collapse
Affiliation(s)
- Edgar A Jaimes
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical University, Shenyang, China
| | - Mohammed Siddiqui
- Renal Division, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gabriel Rezonzew
- Renal Division, University of Alabama at Birmingham, Birmingham, Alabama
| | - Runxia Tian
- Nephrology Section, Miami Veterans Affairs Medical Center, Miami, Florida
| | - Surya V Seshan
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Alecia N Muwonge
- Division of Nephrology, Department of Medicine, Icahn Mount Sinai School of Medicine, New York, New York
| | - Nicholas J Wong
- Division of Nephrology, Department of Medicine, Icahn Mount Sinai School of Medicine, New York, New York
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn Mount Sinai School of Medicine, New York, New York
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| | - Leopoldo Raij
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
36
|
Liu Z, Yoon J, Wichaidit C, Jaykumar AB, Dbouk HA, Embry AE, Liu L, Henderson JM, Chang AN, Cobb MH, Miller RT. Control of Podocyte and Glomerular Capillary Wall Structure and Elasticity by WNK1 Kinase. Front Cell Dev Biol 2021; 8:618898. [PMID: 33604334 PMCID: PMC7884762 DOI: 10.3389/fcell.2020.618898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Cytoskeletal structure and its regulation are essential for maintenance of the differentiated state of specific types of cells and their adaptation to physiologic and pathophysiologic conditions. Renal glomerular capillaries, composed of podocytes, endothelial cells, and the glomerular basement membrane, have distinct structural and biophysical properties and are the site of injury in many glomerular diseases. Calcineurin inhibitors, immunosuppressant drugs used for organ transplantation and auto-immune diseases, can protect podocytes and glomerular capillaries from injury by preserving podocyte cytoskeletal structure. These drugs cause complications including hypertension and hyperkalemia which are mediated by WNK (With No Lysine) kinases as well as vasculopathy with glomerulopathy. WNK kinases and their target kinases oxidative stress-responsive kinase 1 (OSR1) and SPS1-related proline/alanine-rich kinase (SPAK) have fundamental roles in angiogenesis and are activated by calcineurin inhibitors, but the actions of these agents on kidney vasculature, and glomerular capillaries are not fully understood. We investigated WNK1 expression in cultured podocytes and isolated mouse glomerular capillaries to determine if WNK1 contributes to calcineurin inhibitor-induced preservation of podocyte and glomerular structure. WNK1 and OSR1/SPAK are expressed in podocytes, and in a pattern similar to podocyte synaptopodin in glomerular capillaries. Calcineurin inhibitors increased active OSR1/SPAK in glomerular capillaries, the Young’s modulus (E) of glomeruli, and the F/G actin ratio, effects all blocked by WNK inhibition. In glomeruli, WNK inhibition caused reduced and irregular synaptopodin-staining, abnormal capillary and foot process structures, and increased deformability. In cultured podocytes, FK506 activated OSR1/SPAK, increased lamellipodia, accelerated cell migration, and promoted traction force. These actions of FK506 were reduced by depletion of WNK1. Collectively, these results demonstrate the importance of WNK1 in regulation of the podocyte actin cytoskeleton, biophysical properties of glomerular capillaries, and slit diaphragm structure, all of which are essential to normal kidney function.
Collapse
Affiliation(s)
- Zhenan Liu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Medicine Service, VA North Texas Health Care System, Dallas, TX, United States
| | - Joonho Yoon
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Medicine Service, VA North Texas Health Care System, Dallas, TX, United States
| | - Chonlarat Wichaidit
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ankita B Jaykumar
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hashem A Dbouk
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Addie E Embry
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Liping Liu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Audrey N Chang
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Medicine Service, VA North Texas Health Care System, Dallas, TX, United States
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Richard Tyler Miller
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Medicine Service, VA North Texas Health Care System, Dallas, TX, United States
| |
Collapse
|
37
|
Zhang L, Wang Z, Liu R, Li Z, Lin J, Wojciechowicz ML, Huang J, Lee K, Ma'ayan A, He JC. Connectivity Mapping Identifies BI-2536 as a Potential Drug to Treat Diabetic Kidney Disease. Diabetes 2021; 70:589-602. [PMID: 33067313 PMCID: PMC7881868 DOI: 10.2337/db20-0580] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Diabetic kidney disease (DKD) remains the most common cause of kidney failure, and the treatment options are insufficient. Here, we used a connectivity mapping approach to first collect 15 gene expression signatures from 11 DKD-related published independent studies. Then, by querying the Library of Integrated Network-based Cellular Signatures (LINCS) L1000 data set, we identified drugs and other bioactive small molecules that are predicted to reverse these gene signatures in the diabetic kidney. Among the top consensus candidates, we selected a PLK1 inhibitor (BI-2536) for further experimental validation. We found that PLK1 expression was increased in the glomeruli of both human and mouse diabetic kidneys and localized largely in mesangial cells. We also found that BI-2536 inhibited mesangial cell proliferation and extracellular matrix in vitro and ameliorated proteinuria and kidney injury in DKD mice. Further pathway analysis of the genes predicted to be reversed by the PLK1 inhibitor was of members of the TNF-α/NF-κB, JAK/STAT, and TGF-β/Smad3 pathways. In vitro, either BI-2536 treatment or knockdown of PLK1 dampened the NF-κB and Smad3 signal transduction and transcriptional activation. Together, these results suggest that the PLK1 inhibitor BI-2536 should be further investigated as a novel therapy for DKD.
Collapse
Affiliation(s)
- Lu Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zichen Wang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ruijie Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jennifer Lin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Megan L Wojciechowicz
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiyi Huang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, NY
| |
Collapse
|
38
|
Ersoy Yesil E, Sit D, Kayabasi H, Zerenler Gursoy F, Demirbas MB, Ocak Serin S. A case of dasatinib-induced focal segmental glomerulosclerosis in a patient with Philadelphia chromosome positive chronic myeloid leukemia. Nephrol Ther 2021; 17:53-56. [PMID: 33431310 DOI: 10.1016/j.nephro.2020.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 11/24/2022]
Abstract
Focal segmental glomerulosclerosis is a common glomerular histological lesion, which is usually characterised by non-nephrotic range proteinuria or nephrotic syndrome. It may be idiopathic or occurs secondarily to drugs, diabetes, obesity or HIV nephropathy and other infections. Dasatinib, a tyrosine kinase inhibitor that has been used for the treatment of Philadelphia chromosome-positive chronic myeloid leukemia, has a few renal adverse effects. Exceptional cases with non-nephrotic range proteinuria have been reported in relation with dasatinib. In this case, we report a patient with symptoms of nephrotic syndrome and nephrotic range proteinuria, who was diagnosed as focal segmental glomerulosclerosis by kidney biopsy after treated with dasatinib.
Collapse
Affiliation(s)
- Ezgi Ersoy Yesil
- Health sciences university, Umraniye training and research hospital clinic of Nephrology, Elmalikent district, Adem Yavuz Street, No: 1, 34760 Umraniye, Istanbul, Turkey
| | - Dede Sit
- Health sciences university, Umraniye training and research hospital clinic of Nephrology, Elmalikent district, Adem Yavuz Street, No: 1, 34760 Umraniye, Istanbul, Turkey.
| | - Hasan Kayabasi
- Health sciences university, Umraniye training and research hospital clinic of Nephrology, Elmalikent district, Adem Yavuz Street, No: 1, 34760 Umraniye, Istanbul, Turkey
| | - Fatima Zerenler Gursoy
- Health Sciences University, Umraniye training and research hospital clinic of Pathology Umraniye, Istanbul, Turkey
| | - Mustafa Behcet Demirbas
- Health sciences university, Umraniye training and research hospital clinic of Nephrology, Elmalikent district, Adem Yavuz Street, No: 1, 34760 Umraniye, Istanbul, Turkey
| | - Sibel Ocak Serin
- Health Sciences University, Umraniye training and research hospital clinic of Internal Medicine, Istanbul, Turkey
| |
Collapse
|
39
|
Egerman MA, Wong JS, Runxia T, Mosoyan G, Chauhan K, Reyes-Bahamonde J, Anandakrishnan N, Wong NJ, Bagiella E, Salem F, Meliambro K, Li H, Azeloglu EU, Coca SG, Campbell KN, Raij L. Plasminogenuria is associated with podocyte injury, edema, and kidney dysfunction in incident glomerular disease. FASEB J 2020; 34:16191-16204. [PMID: 33070369 PMCID: PMC7686123 DOI: 10.1096/fj.202000413r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023]
Abstract
Urinary plasminogen/plasmin, or plasmin (ogen) uria, has been demonstrated in proteinuric patients and exposure of cultured podocytes to plasminogen results in injury via oxidative stress pathways. A causative role for plasmin (ogen) as a "second hit" in kidney disease progression has yet to have been demonstrated in vivo. Additionally, association between plasmin (ogen) uria and kidney function in glomerular diseases remains unclear. We performed comparative studies in a puromycin aminonucleoside (PAN) nephropathy rat model treated with amiloride, an inhibitor of plasminogen activation, and measured changes in plasmin (ogen) uria. In a glomerular disease biorepository cohort (n = 128), we measured time-of-biopsy albuminuria, proteinuria, and plasmin (ogen) uria for correlations with kidney outcomes. In cultured human podocytes, plasminogen treatment was associated with decreased focal adhesion marker expression with rescue by amiloride. Increased glomerular plasmin (ogen) was found in PAN rats and focal segmental glomerulosclerosis (FSGS) patients. PAN nephropathy was associated with increases in plasmin (ogen) uria and proteinuria. Amiloride was protective against PAN-induced glomerular injury, reducing CD36 scavenger receptor expression and oxidative stress. In patients, we found associations between plasmin (ogen) uria and edema status as well as eGFR. Our study demonstrates a role for plasmin (ogen)-induced podocyte injury in the PAN nephropathy model, with amiloride having podocyte-protective properties. In one of the largest glomerular disease cohorts to study plasminogen, we validated previous findings while suggesting a potentially novel relationship between plasmin (ogen) uria and estimated glomerular filtration rate (eGFR). Together, these findings suggest a role for plasmin (ogen) in mediating glomerular injury and as a viable targetable biomarker for podocyte-sparing treatments.
Collapse
Affiliation(s)
- Marc A. Egerman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Jenny S. Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Tian Runxia
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine
| | - Gohar Mosoyan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | | | | | - Nicholas J. Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Emilia Bagiella
- Center for Biostatistics, Department of Population health Science and Policy, Icahn School of Medicine at Mount Sinai
| | - Fadi Salem
- Department of Pathology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School
| | - Evren U. Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai
| | - Steven G. Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kirk N. Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Leopoldo Raij
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine
| |
Collapse
|
40
|
Tian X, Inoue K, Zhang Y, Wang Y, Sperati CJ, Pedigo CE, Zhao T, Yan M, Groener M, Moledina DG, Ebenezer K, Li W, Zhang Z, Liebermann DA, Greene L, Greer P, Parikh CR, Ishibe S. Inhibiting calpain 1 and 2 in cyclin G associated kinase-knockout mice mitigates podocyte injury. JCI Insight 2020; 5:142740. [PMID: 33208557 PMCID: PMC7710277 DOI: 10.1172/jci.insight.142740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
Evidence for reduced expression of cyclin G associated kinase (GAK) in glomeruli of patients with chronic kidney disease was observed in the Nephroseq human database, and GAK was found to be associated with the decline in kidney function. To examine the role of GAK, a protein that functions to uncoat clathrin during endocytosis, we generated podocyte-specific Gak-knockout mice (Gak-KO), which developed progressive proteinuria and kidney failure with global glomerulosclerosis. We isolated glomeruli from the mice carrying the mutation to perform messenger RNA profiling and unearthed evidence for dysregulated podocyte calpain protease activity as an important contributor to progressive podocyte damage. Treatment with calpain inhibitor III specifically inhibited calpain-1/-2 activities, mitigated the degree of proteinuria and glomerulosclerosis, and led to a striking increase in survival in the Gak-KO mice. Podocyte-specific deletion of Capns1, essential for calpain-1 and calpain-2 activities, also improved proteinuria and glomerulosclerosis in Gak-KO mice. Increased podocyte calpain activity-mediated proteolysis of IκBα resulted in increased NF-κB p65-induced expression of growth arrest and DNA-damage-inducible 45 beta in the Gak-KO mice. Our results suggest that loss of podocyte-associated Gak induces glomerular injury secondary to calcium dysregulation and aberrant calpain activation, which when inhibited, can provide a protective role.
Collapse
MESH Headings
- Animals
- Calpain/antagonists & inhibitors
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/therapy
- Female
- Glomerulosclerosis, Focal Segmental/etiology
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/therapy
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Podocytes/metabolism
- Podocytes/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/physiology
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/therapy
Collapse
Affiliation(s)
- Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yan Zhang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou, China
- Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - C. John Sperati
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher E. Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tingting Zhao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Meihua Yan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marwin Groener
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dennis G. Moledina
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Karen Ebenezer
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Wei Li
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou, China
- Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dan A. Liebermann
- Fels Institute of Cancer Research and Molecular Biology and Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania USA
| | - Lois Greene
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Peter Greer
- Queen’s Cancer Research Institute, Kingston, Ontario, Canada
| | - Chirag R. Parikh
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
41
|
Rinschen MM, Saez-Rodriguez J. The tissue proteome in the multi-omic landscape of kidney disease. Nat Rev Nephrol 2020; 17:205-219. [PMID: 33028957 DOI: 10.1038/s41581-020-00348-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Kidney research is entering an era of 'big data' and molecular omics data can provide comprehensive insights into the molecular footprints of cells. In contrast to transcriptomics, proteomics and metabolomics generate data that relate more directly to the pathological symptoms and clinical parameters observed in patients. Owing to its complexity, the proteome still holds many secrets, but has great potential for the identification of drug targets. Proteomics can provide information about protein synthesis, modification and degradation, as well as insight into the physical interactions between proteins, and between proteins and other biomolecules. Thus far, proteomics in nephrology has largely focused on the discovery and validation of biomarkers, but the systematic analysis of the nephroproteome can offer substantial additional insights, including the discovery of mechanisms that trigger and propagate kidney disease. Moreover, proteome acquisition might provide a diagnostic tool that complements the assessment of a kidney biopsy sample by a pathologist. Such applications are becoming increasingly feasible with the development of high-throughput and high-coverage technologies, such as versatile mass spectrometry-based techniques and protein arrays, and encourage further proteomics research in nephrology.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. .,Department of Chemistry, Scripps Center for Metabolomics and Mass Spectrometry, Scripps Research, La Jolla, CA, USA.
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| |
Collapse
|
42
|
Liu Y, Dai Y, Xu H, Zhou Q, Li F, Yu B, Zhang Y, Kou J. YQFM Alleviates Side Effects Caused by Dasatinib through the ROCK/MLC Pathway in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:4646029. [PMID: 32908560 PMCID: PMC7475753 DOI: 10.1155/2020/4646029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022]
Abstract
Dasatinib, as a second-generation broad-spectrum tyrosine kinase inhibitor, presents an antitumor effect by inhibiting tyrosine kinases. However, dasatinib causes serious side effects, such as gastrointestinal bleeding and liver toxicity, possibly through the activation of ROCK kinase and MLC phosphorylation. At present, there is no effective prevention and treatment method. Previous research studies have shown that YQFM (YiQiFuMai powder injection) protects the blood-brain barrier by inhibiting the ROCK/MLC signaling pathway; whether YQFM can alleviate the side effects of dasatinib is unknown. In this study, dasatinib was injected (i.p. 70 mg/kg) and YQFM (i.p. 0.336 g/kg, 0.672 g/kg, 1.342 g/kg) was given in advance for 3 days to mice, to explore the effect of YQFM on side effects induced by Dasatinib. The results confirmed that YQFM significantly decreased Evans blue leakage in the small intestine and increased intestinal blood flow, increased the expression of ZO-1, Occludin, and VE-cadherin, and reduced the contents of D-lactic acid, s-VE-cadherin, Alanine aminotransferase (ALT), and Aspartate aminotransferase (AST) in serum. Finally, YQFM inhibited the expression of ROCK-1 and phosphorylation of MLC induced by Dasatinib. These findings suggested that YQFM could improve the side effects caused by Dasatinib linked with the ROCK/MLC signaling pathway, as shown in the graphical abstract.
Collapse
Affiliation(s)
- Yuankai Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Yujie Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Han Xu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Qianliu Zhou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| |
Collapse
|
43
|
Maddala R, Rao PV. Global phosphotyrosinylated protein profile of cell-matrix adhesion complexes of trabecular meshwork cells. Am J Physiol Cell Physiol 2020; 319:C288-C299. [PMID: 32432933 PMCID: PMC7500213 DOI: 10.1152/ajpcell.00537.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
Dysregulation of the mechanical properties and cell adhesive interactions of trabecular meshwork (TM) are known to impair aqueous humor drainage and elevate intraocular pressure in glaucoma patients. The identity of regulatory mechanisms underlying TM mechanotransduction, however, remains elusive. Here we analyzed the phosphotyrosine proteome of human TM cell-extracellular matrix (ECM) adhesion complexes, which play a key role in sensing and transducing extracellular chemical and mechanical cues into intracellular activities, using a two-level affinity pull-down (phosphotyrosine antibody and titanium dioxide beads) method and mass spectrometry. This analysis identified ~1,000 tyrosine-phosphorylated proteins of TM cell-ECM adhesion complexes. Many consensus adhesome proteins were found to be tyrosine phosphorylated. Interestingly, several of the phosphotyrosinylated proteins found in TM cell-ECM adhesion complexes are known to be required for podocyte glomerular filtration, indicating the existence of molecular parallels that are likely relevant to the shared fluid barrier and filtration functions of the two mechanosensitive cell types.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
44
|
Ge X, Zhang T, Yu X, Muwonge AN, Anandakrishnan N, Wong NJ, Haydak JC, Reid JM, Fu J, Wong JS, Bhattacharya S, Cuttitta CM, Zhong F, Gordon RE, Salem F, Janssen W, Hone JC, Zhang A, Li H, He JC, Gusella GL, Campbell KN, Azeloglu EU. LIM-Nebulette Reinforces Podocyte Structural Integrity by Linking Actin and Vimentin Filaments. J Am Soc Nephrol 2020; 31:2372-2391. [PMID: 32737144 DOI: 10.1681/asn.2019121261] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Maintenance of the intricate interdigitating morphology of podocytes is crucial for glomerular filtration. One of the key aspects of specialized podocyte morphology is the segregation and organization of distinct cytoskeletal filaments into different subcellular components, for which the exact mechanisms remain poorly understood. METHODS Cells from rats, mice, and humans were used to describe the cytoskeletal configuration underlying podocyte structure. Screening the time-dependent proteomic changes in the rat puromycin aminonucleoside-induced nephropathy model correlated the actin-binding protein LIM-nebulette strongly with glomerular function. Single-cell RNA sequencing and immunogold labeling were used to determine Nebl expression specificity in podocytes. Automated high-content imaging, super-resolution microscopy, atomic force microscopy (AFM), live-cell imaging of calcium, and measurement of motility and adhesion dynamics characterized the physiologic role of LIM-nebulette in podocytes. RESULTS Nebl knockout mice have increased susceptibility to adriamycin-induced nephropathy and display morphologic, cytoskeletal, and focal adhesion abnormalities with altered calcium dynamics, motility, and Rho GTPase activity. LIM-nebulette expression is decreased in diabetic nephropathy and FSGS patients at both the transcript and protein level. In mice, rats, and humans, LIM-nebulette expression is localized to primary, secondary, and tertiary processes of podocytes, where it colocalizes with focal adhesions as well as with vimentin fibers. LIM-nebulette shRNA knockdown in immortalized human podocytes leads to dysregulation of vimentin filament organization and reduced cellular elasticity as measured by AFM indentation. CONCLUSIONS LIM-nebulette is a multifunctional cytoskeletal protein that is critical in the maintenance of podocyte structural integrity through active reorganization of focal adhesions, the actin cytoskeleton, and intermediate filaments.
Collapse
Affiliation(s)
- Xuhua Ge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tao Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xiaoxia Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alecia N Muwonge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas J Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan C Haydak
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jordan M Reid
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jenny S Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Smiti Bhattacharya
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Mechanical Engineering, Columbia University, New York, New York
| | - Christina M Cuttitta
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William Janssen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - G Luca Gusella
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
45
|
Blaine J, Dylewski J. Regulation of the Actin Cytoskeleton in Podocytes. Cells 2020; 9:cells9071700. [PMID: 32708597 PMCID: PMC7408282 DOI: 10.3390/cells9071700] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Podocytes are an integral part of the glomerular filtration barrier, a structure that prevents filtration of large proteins and macromolecules into the urine. Podocyte function is dependent on actin cytoskeleton regulation within the foot processes, structures that link podocytes to the glomerular basement membrane. Actin cytoskeleton dynamics in podocyte foot processes are complex and regulated by multiple proteins and other factors. There are two key signal integration and structural hubs within foot processes that regulate the actin cytoskeleton: the slit diaphragm and focal adhesions. Both modulate actin filament extension as well as foot process mobility. No matter what the initial cause, the final common pathway of podocyte damage is dysregulation of the actin cytoskeleton leading to foot process retraction and proteinuria. Disruption of the actin cytoskeleton can be due to acquired causes or to genetic mutations in key actin regulatory and signaling proteins. Here, we describe the major structural and signaling components that regulate the actin cytoskeleton in podocytes as well as acquired and genetic causes of actin dysregulation.
Collapse
Affiliation(s)
- Judith Blaine
- Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - James Dylewski
- Renal Division, University of Colorado Anschutz Medical Campus and Denver Health Medical Center, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +303-724-4841
| |
Collapse
|
46
|
Piscitani L, Sirolli V, Di Liberato L, Morroni M, Bonomini M. Nephrotoxicity Associated with Novel Anticancer Agents (Aflibercept, Dasatinib, Nivolumab): Case Series and Nephrological Considerations. Int J Mol Sci 2020; 21:E4878. [PMID: 32664269 PMCID: PMC7402330 DOI: 10.3390/ijms21144878] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer patients have an incidence of about 60% kidney disease development and are at elevated risk of acute renal damage. Kidney disease in these patients is frequently associated with nephrotoxicity from the ongoing oncological treatment. New anticancer therapeutic strategies, such as targeted therapies and immunotherapies, offer substantial benefits in the treatment of many neoplasms. However, their use is associated with significant nephrotoxicity, which qualitatively differs from that seen with traditional cytotoxic chemotherapy, while the underlying mechanisms are complex and still to be clearly defined. Nephrologists need to be knowledgeable about the array of such renal toxicities for effective collaboration with the oncologist in the prevention and management of kidney involvement. Renal adverse effects may range from asymptomatic proteinuria to renal failure, and their prompt identification and timely treatment is essential for optimal and safe care of the patient. In this article, after presenting clinical cases we discuss the differing renal toxicity of three novel anticancer agents (aflibercept, dasatinib, and nivolumab) and possible measures to counter it.
Collapse
Affiliation(s)
- Luca Piscitani
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (L.P.); (V.S.); (L.D.L.)
| | - Vittorio Sirolli
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (L.P.); (V.S.); (L.D.L.)
| | - Lorenzo Di Liberato
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (L.P.); (V.S.); (L.D.L.)
| | - Manrico Morroni
- Department of Experimental and Clinical Medicine-Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy;
| | - Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (L.P.); (V.S.); (L.D.L.)
| |
Collapse
|
47
|
Koinuma K, Sakairi T, Watanabe Y, IIzuka A, Watanabe M, Hamatani H, Nakasatomi M, Ishizaki T, Ikeuchi H, Kaneko Y, Hiromura K. A case of long-term dasatinib-induced proteinuria and glomerular injury. CEN Case Rep 2020; 9:359-364. [PMID: 32388829 DOI: 10.1007/s13730-020-00484-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
A 52-year-old woman was diagnosed with chronic myeloid leukemia. Treatment with dasatinib, a second-generation Bcr-Abl tyrosine kinase inhibitor, was initiated, and complete cytogenetic remission was achieved. Two years later, proteinuria occurred, and the urinary protein level increased gradually in the next 3 years. Moreover, the serum creatinine level increased mildly during this period. The urinary protein level reached 2.18 g/gCr; hence, a renal biopsy was conducted. Light microscopy revealed mild proliferation of mesangial cells, and immunofluorescence analysis revealed IgG and C3 depositions in the mesangial area. Electron microscopy revealed electron-dense deposition in the paramesangial area, partial podocyte foot process effacement, and segmental endothelial cell swelling with a slight expansion of the subendothelial space. Dasatinib was discontinued, and within 3 weeks, the proteinuria disappeared, with improvements in her renal function. After switching to bosutinib, a new second-generation of tyrosine kinase inhibitor, the proteinuria remained negative. The rapid cessation of proteinuria following dasatinib discontinuation indicated that proteinuria was induced by the long-term administration of dasatinib. Proteinuria and renal function should be regularly monitored during dasatinib therapy.
Collapse
Affiliation(s)
- Kana Koinuma
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Toru Sakairi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan.
| | - Yoshikazu Watanabe
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Azusa IIzuka
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Mitsuharu Watanabe
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Hiroko Hamatani
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Masao Nakasatomi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Takuma Ishizaki
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hidekazu Ikeuchi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Yoriaki Kaneko
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| | - Keiju Hiromura
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
48
|
Santos MLC, Brito BBD, da Silva FAF, Botelho ACDS, Melo FFD. Nephrotoxicity in cancer treatment: An overview. World J Clin Oncol 2020; 11:190-204. [PMID: 32355641 PMCID: PMC7186234 DOI: 10.5306/wjco.v11.i4.190] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023] Open
Abstract
Anticancer drug nephrotoxicity is an important and increasing adverse drug event that limits the efficacy of cancer treatment. The kidney is an important elimination pathway for many antineoplastic drugs and their metabolites, which occurs by glomerular filtration and tubular secretion. Chemotherapeutic agents, both conventional cytotoxic agents and molecularly targeted agents, can affect any segment of the nephron including its microvasculature, leading to many clinical manifestations such as proteinuria, hypertension, electrolyte disturbances, glomerulopathy, acute and chronic interstitial nephritis, acute kidney injury and at times chronic kidney disease. The clinician should be alert to recognize several factors that may maximize renal dysfunction and contribute to the increased incidence of nephrotoxicity associated with these drugs, such as intravascular volume depletion, the associated use of nonchemotherapeutic nephrotoxic drugs (analgesics, antibiotics, proton pump inhibitors, and bone-targeted therapies), radiographic ionic contrast media or radiation therapy, urinary tract obstruction, and intrinsic renal disease. Identification of patients at higher risk for nephrotoxicity may allow the prevention or at least reduction in the development and severity of this adverse effect. Therefore, the aim of this brief review is to provide currently available evidences on oncologic drug-related nephrotoxicity.
Collapse
Affiliation(s)
- Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029094, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029094, Bahia, Brazil
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029094, Bahia, Brazil
| |
Collapse
|
49
|
Wu D, Bai J, Cui S, Fu B, Yin Z, Cai G, Chen X. Renal progenitor cells modulated by angiotensin II receptor blocker (ARB) medication and differentiation towards podocytes in anti-thy1.1 nephritis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:355. [PMID: 32355799 PMCID: PMC7186716 DOI: 10.21037/atm.2020.02.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Mesangial proliferative glomerulonephritis (MsPGN) is an epidemic disease with increasing occurrence. As important as mesangial cells, podocytes are key innate cells for MsPGN prognosis and recovery. Renal progenitor cells, located at the urinary pole (UP) of Bowman’s capsule (BC), could alleviate kidney injury through their capacity to differentiate into podocytes. Methods Seventy-two male rats were categorized randomly into the sham (n=24), untreated Thy-1 (n=24) and losartan-treated (n=24) groups. We administered vehicle or losartan (50 mg/kg by gavage) daily to treat rats with anti-thy1.1 nephritis, an ideal model to simulate human MsPGN. Two weeks after the intravenous injection of antibody, urinary protein and blood samples were analyzed, pathological changes were examined, the number of podocytes was determined, and renal progenitor cells were studied. Results Anti-thy1.1 nephritis was significantly alleviated after losartan treatment, as reported previously and as expected. Compared with the untreated Thy-1 group, the number of podocytes in the losartan group increased, and the area of renal progenitor cells significantly increased. The protein expression of components of the p-ERK pathway was determined during the development of renal progenitor cells differentiating into podocytes. Conclusions The data in this paper show the direct glomerular cell action of angiotensin II receptor blocker (ARB) treatment in improving outcomes in anti-thy1.1 nephritis. The positive effects of ARB medication on anti-thy1.1 nephritis were due to an increase in the number of renal epithelial progenitor cells (defined as PECs that expressed only stem cell markers without podocyte proteins).
Collapse
Affiliation(s)
- Di Wu
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Jiuxu Bai
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Shaoyuan Cui
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Bo Fu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Zhiwei Yin
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xiangmei Chen
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| |
Collapse
|
50
|
Nicolaysen A. Nephrotoxic Chemotherapy Agents: Old and New. Adv Chronic Kidney Dis 2020; 27:38-49. [PMID: 32147000 DOI: 10.1053/j.ackd.2019.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
In the last several decades, advancements in chemotherapy have improved the overall survival of cancer patients. These agents, however, are associated with adverse effects, including various kidney lesions. This review summarizes the nephrotoxic potential of chemotherapy agents, old and new, as well as the different factors that contribute to kidney injury. Provided for each class of chemotherapy agent is the associated kidney lesion and a brief discussion of clinical manifestation, mechanism of action, and possible treatment when available. Understanding the nephrotoxic potential of these agents have on the kidneys is imperative for both the oncologist and the nephrologist to properly care for cancer patients and ensure their best outcomes.
Collapse
|