1
|
Song M, Wang H, Tian X, Gao J, Song C, Zhao Y, Jiang S, Lu W, Guo C, Lv Y, Zhao P, Li C, Song X, Chang T, Lou Y, Wang H. TIPE2 protein restrains invariant NKT activation and protects against immune-mediated hepatitis in mice. Hepatology 2025; 81:1671-1684. [PMID: 39325944 DOI: 10.1097/hep.0000000000001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS Concanavalin A (ConA) administration induces rapid and severe liver injury in mice, and invariant natural killer T (iNKT) cells are recognized to be the key effector cells in this process. However, the underlying regulatory mechanisms are not well defined. APPROACH AND RESULTS We found that iNKT cells constitutively expressed TIPE2 (tumor necrosis factor-α-induced protein 8-like 2, or TNFAIPL2). Genetic TIPE2 ablation strongly sensitized mice to ConA-induced hepatitis, accompanied by hyperactivation of iNKT cells. Moreover, Tipe2-/- mice were also more susceptible to α-galactosylceramide-induced liver injury, with elevated serum ALT levels and enhanced proinflammatory cytokine production. CD1d signaling blockade or iNKT cell elimination through antibodies reduced the effect of TIPE2 deficiency on liver injury. Mechanistic studies revealed that TIPE2 in iNKT cells functioned as a negative regulator, limiting iNKT cell activity and cytokine production through PIP3- AKT/mTOR pathway. TIPE2-mediated protection from liver injury was further validated by the administration of adeno-associated viruses expressing TIPE2, which effectively ameliorated ConA-induced hepatic injury. However, TIPE2 was dispensable in 2 other liver injury models, including D-GalN/LPS and acetaminophen-induced hepatitis. CONCLUSIONS Our findings reveal a new role of TIPE2 in the attenuation of iNKT cell-mediated hepatic injury. We propose that TIPE2 serves as an important regulator of immune homeostasis in the liver and might be exploited for the therapeutic treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
- Miaomiao Song
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Han Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xueqin Tian
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jingtao Gao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chen Song
- Department of Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuxin Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shan Jiang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wei Lu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Cun Guo
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yang Lv
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, Shandong, China
| | - Chuang Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiangfeng Song
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tingmin Chang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Jiang C, Liang J, Hu K, Ye Y, Yang J, Zhang X, Ye G, Zhang J, Zhang D, Zhong B, Yu P, Wang L, Zeng B. Identification of tryptophan metabolism-related biomarkers for nonalcoholic fatty liver disease through network analysis. Endocr Connect 2025; 14:e240470. [PMID: 40183447 PMCID: PMC12023734 DOI: 10.1530/ec-24-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/20/2025] [Accepted: 04/04/2025] [Indexed: 04/05/2025]
Abstract
Background Increasing evidence demonstrates that tryptophan metabolism is closely related to the development of nonalcoholic fatty liver disease (NAFLD). This study aimed to identify specific biomarkers of NAFLD associated with tryptophan metabolism and research its functional mechanism. Methods We downloaded NAFLD RNA-sequencing data from GSE89632 and GSE24807, and obtained tryptophan metabolism-related genes (TMRGs) from the MsigDB database. The R package limma and WGCNA were used to identify TMRGs-DEGs, and GO, KEGG and Cytoscape were used to analyze and visualize the data. Immune cell infiltration analysis was used to explore the immune mechanism of NAFLD and the biomarkers. We also validated extended levels of biomarkers. Results We identified 375 NAFLD differentially expressed genes (DEGs) and 85 TMRGs-DEGs. GO/KEGG analysis revealed that TMRGs-DEGs were mainly enriched in triglyceride and cholesterol metabolism. ROC curves identified CCL20 (AUC = 0.917), CD160 (AUC = 0.933) and CYP7A1 (AUC = 1) as biomarkers of NAFLD. Immune infiltration analysis showed significant differences in ten immune cells, and the activation of dendritic cells and mast cells were highly positively correlated with NAFLD. CCL20, CD160 and CYP7A1 were highly correlated with M2 macrophage, neutrophil and mast cells activation, respectively. Twenty-seven TMRGs correlated with hub genes, and gene set enrichment analysis demonstrated their function in tryptophan- and lysine-containing metabolic process. We identified 41 therapeutic drug matches which corresponded to two hub genes and four drugs which co-targeted CCL20 and CYP7A1. Finally, three hub genes were validated in our mouse model. Conclusions CCL20, CD160 and CYP7A1 are tryptophan metabolism-related biomarkers of NAFLD, related to glycerol ester and cholesterol metabolism. We screened four compounds which co-target CCL29 and CYP7A1 to provide potential experimental drugs for NAFLD.
Collapse
Affiliation(s)
- Cuihua Jiang
- Department of Pain Management, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Jianqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Ye
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiajia Yang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiaozhi Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Guilin Ye
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Bin Zhong
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liefeng Wang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
- China Medical University, Shenyang, China
| | - Bin Zeng
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- China Medical University, Shenyang, China
| |
Collapse
|
3
|
Liang J, Cheng G, Qiu L, Xue L, Xu H, Qiao X, Guo N, Xiang H, Chen Y, Ding H. Activatable Sulfur Dioxide Nanosonosensitizer Enables Precisely Controllable Sono-Gaseous Checkpoint Trimodal Therapy for Orthotopic Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409442. [PMID: 39679828 PMCID: PMC11791957 DOI: 10.1002/advs.202409442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Indexed: 12/17/2024]
Abstract
Immune checkpoint blockade (ICB) is combined with sonodynamic therapy (SDT) to increase response rates and enhance anticancer efficacy. However, the "always on" property of most sonosensitizers in reducing tumor microenvironment (TME) compromises the therapeutic outcome of sonoimmunotherapy and exacerbates adverse side effects. Precisely controllable strategies combining sulfur dioxide (SO2) gas therapy with cancer immunotherapy can address these issues but remain lacking. Herein an "activatable SO2 nanosonosensitizer" for precise sono-gaseous checkpoint trimodal therapy of orthotopic hepatocellular carcinoma (HCC) is reported, whose full activity is initiated by ultrasound (US) irradiation in the reducing TME. This "activatable SO2 nanosonosensitizer," Aza-DNBS nanoparticles (NPs), are established by self-assembling Aza-boron-dipyrromethene based sonosensitizer molecules and 2,4-dinitrobenzenesulfonate (DNBS)-caged SO2 prodrug. The activity of Aza-DNBS NPs is initially silenced, and the sonodynamic, gaseous, and immunosuppressive TME reprogramming activities are precisely awakened under US irradiation. Due to the glutathione-responsiveness of Aza-DNBS NPs, Aza-DNBS NPs can generate large amounts of SO2 for gas therapy-enhanced SDT, which triggers robust immunogenic cell death activation and reprogramming of the immunosuppressive TME, thereby significantly suppressing orthotopic tumor growth and delaying lung metastasis. Thus, this study represents a strategy for designing a generic nanoplatform for precisely combined immunotherapy of orthotopic HCC.
Collapse
Affiliation(s)
- Jing Liang
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Guangwen Cheng
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Luping Qiu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Liyun Xue
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huning Xu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Xiaohui Qiao
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Na Guo
- Department of PathologyZhejiang Cancer HospitalHangzhouZhejiang310022China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Hong Ding
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| |
Collapse
|
4
|
Jiang G, Wang Z, Cheng Z, Wang W, Lu S, Zhang Z, Anene CA, Khan F, Chen Y, Bailey E, Xu H, Dong Y, Chen P, Zhang Z, Gao D, Wang Z, Miao J, Xue X, Wang P, Zhang L, Gangeswaran R, Liu P, Chard Dunmall LS, Li J, Guo Y, Dong J, Lemoine NR, Li W, Wang J, Wang Y. The integrated molecular and histological analysis defines subtypes of esophageal squamous cell carcinoma. Nat Commun 2024; 15:8988. [PMID: 39419971 PMCID: PMC11487165 DOI: 10.1038/s41467-024-53164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is highly heterogeneous. Our understanding of full molecular and immune landscape of ESCC remains limited, hindering the development of personalised therapeutic strategies. To address this, we perform genomic-transcriptomic characterizations and AI-aided histopathological image analysis of 120 Chinese ESCC patients. Here we show that ESCC can be categorized into differentiated, metabolic, immunogenic and stemness subtypes based on bulk and single-cell RNA-seq, each exhibiting specific molecular and histopathological features based on an amalgamated deep-learning model. The stemness subgroup with signature genes, such as WFDC2, SFRP1, LGR6 and VWA2, has the poorest prognosis and is associated with downregulated immune activities, a high frequency of EP300 mutation/activation, functional mutation enrichment in Wnt signalling and the highest level of intratumoural heterogeneity. The immune profiling by transcriptomics and immunohistochemistry reveals ESCC cells overexpress natural killer cell markers XCL1 and CD160 as immune evasion. Strikingly, XCL1 expression also affects the sensitivity of ESCC cells to common chemotherapy drugs. This study opens avenues for ESCC treatment and provides a valuable public resource to better understand ESCC.
Collapse
Affiliation(s)
- Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhizhong Wang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shuangshuang Lu
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zifang Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Chinedu A Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
- Centre for Biomedical Science Research, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Faraz Khan
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Yue Chen
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Emma Bailey
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Huisha Xu
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yunshu Dong
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peinan Chen
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhongxian Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Dongling Gao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhimin Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jinxin Miao
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xia Xue
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Pengju Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Rathi Gangeswaran
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Peng Liu
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Junkuo Li
- Department of Molecular Pathology, Anyang Cancer Hospital, Anyang City, 455000, Henan Province, People's Republic of China
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| | - Jianzeng Dong
- Department of Cardiology, Centre for Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chao Yang District, Beijing, 100029, People's Republic of China
| | - Nicholas R Lemoine
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom.
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
5
|
Adegoke AO, Thangavelu G, Chou TF, Petersen MI, Kakugawa K, May JF, Joannou K, Wang Q, Ellestad KK, Boon L, Bretscher PA, Cheroutre H, Kronenberg M, Baldwin TA, Anderson CC. Internal regulation between constitutively expressed T cell co-inhibitory receptors BTLA and CD5 and tolerance in recent thymic emigrants. Open Biol 2024; 14:240178. [PMID: 39471840 PMCID: PMC11521602 DOI: 10.1098/rsob.240178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 11/01/2024] Open
Abstract
Immunologic self-tolerance involves signals from co-inhibitory receptors. Several T cell co-inhibitors, including PD-1, are expressed upon activation, whereas CD5 and BTLA are expressed constitutively. The relationship between constitutively expressed co-inhibitors and when they are needed is unknown. Deletion of Btla demonstrated BTLA regulates CD5 expression. Loss of BTLA signals, but not signalling by its ligand, HVEM, leads to increased CD5 expression. Higher CD5 expression set during thymic selection is associated with increased self-recognition, suggesting that BTLA might be needed early to establish self-tolerance. We found that BTLA and PD-1 were needed post-thymic selection in recent thymic emigrants (RTE). RTE lacking BTLA caused a CD4 T cell and MHC class II dependent multi-organ autoimmune disease. Together, our findings identify a negative regulatory pathway between two constitutively expressed co-inhibitors, calibrating their expression. Expression of constitutive and induced co-inhibitory receptors is needed early to establish tolerance in the periphery for RTE.
Collapse
Affiliation(s)
| | - Govindarajan Thangavelu
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Ting-Fang Chou
- La Jolla Institute for Immunology, La Jolla, CA92037, USA
| | - Marcos I. Petersen
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi-ku, Yokohama230-0045, Japan
| | - Julia F. May
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Kevin Joannou
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Qingyang Wang
- La Jolla Institute for Immunology, La Jolla, CA92037, USA
| | - Kristofor K. Ellestad
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | | | - Peter A. Bretscher
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hilde Cheroutre
- La Jolla Institute for Immunology, La Jolla, CA92037, USA
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi-ku, Yokohama230-0045, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA92037, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA92093, USA
| | - Troy A. Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Colin C. Anderson
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Jiang J, Xu Y, Chen D, Li J, Zhu X, Pan J, Zhang L, Cheng P, Huang J. Pan-cancer analysis of immune checkpoint receptors and ligands in various cells in the tumor immune microenvironment. Aging (Albany NY) 2024; 16:11683-11728. [PMID: 39120585 PMCID: PMC11346784 DOI: 10.18632/aging.206053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Drugs that target immune checkpoint have become the most popular weapon in cancer immunotherapy, yet only have practical benefits for a small percentage of patients. Tumor cells constantly interact with their microenvironment, which is made up of a variety of immune cells as well as endothelial cells and fibroblasts. Immune checkpoint expression and blocked signaling of immune cells in the tumor microenvironment (TME) are key to tumor progression. In this study, we perform deliberation convolution on the TCGA database for human lung, breast, and colorectal cancer to infer crosstalk between immune checkpoint receptors (ICRs) and ligands (ICLs) in TME of pan-carcinogenic solid tumor types, validated by flow cytometry. Analysis of immune checkpoints showed that there was little variation between different tumor types. It showed that CD160, LAG3, TIGIT were found to be highly expressed in CD8+ T cells instead of CD4+ T cells, PD-L1, PD-L2, CD86, LGALS9, TNFRSF14, LILRB4 and other ligands were highly expressed on macrophages, FVR, NECTIN2, FGL1 were highly expressed on Epithelial cells, CD200 was highly expressed in Endothelial cells, and CD80 was highly expressed in CD8 High expression on T cells. Overall, our study provides a new resource for the expression of immune checkpoints in TME on various types of cells. Significance: This study provides immune checkpoint expression of immune cells of multiple cancer types to infer immune mechanisms in the tumor microenvironment and provide ideas for the development of new immune checkpoint-blocking drugs.
Collapse
Affiliation(s)
- Jiahuan Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Yazhang Xu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jiaxin Li
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Xiaoling Zhu
- Department of Colorectal Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Pu Cheng
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310009, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
7
|
Zhang H, Chen S, Zhang Y, Tian C, Pan J, Wang Y, Bai S, Wu Q, Su M, Xie D, Fu S, Li S, Zhang J, Chen Y, Zhu S, Qian Y, Bai L. Antigen Priming Induces Functional Reprogramming in iNKT Cells via Metabolic and Epigenetic Regulation: An Insight into iNKT Cell-Based Antitumor Immunotherapy. Cancer Immunol Res 2023; 11:1598-1610. [PMID: 37756568 DOI: 10.1158/2326-6066.cir-23-0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Dysfunction of intratumoral invariant natural killer T (iNKT) cells hinders their antitumor efficacy, but the underlying mechanisms and the relationship with endogenous antigen priming remain to be explored. Here, we report that antigen priming leads to metabolic reprogramming and epigenetic remodeling, which causes functional reprogramming in iNKT cells, characterized by limited cytokine responses upon restimulation but constitutive high cytotoxicity. Mechanistically, impaired oxidative phosphorylation (OXPHOS) in antigen-primed iNKT cells inhibited T-cell receptor signaling, as well as elevation of glycolysis, upon restimulation via reducing mTORC1 activation, and thus led to impaired cytokine production. However, the metabolic reprogramming in antigen-primed iNKT cells was uncoupled with their enhanced cytotoxicity; instead, epigenetic remodeling explained their high expression of granzymes. Notably, intratumoral iNKT cells shared similar metabolic reprogramming and functional reprogramming with antigen-primed iNKT cells due to endogenous antigen priming in tumors, and thus recovery of OXPHOS in intratumoral iNKT cells by ZLN005 successfully enhanced their antitumor responses. Our study deciphers the influences of antigen priming-induced metabolic reprogramming and epigenetic remodeling on functionality of intratumoral iNKT cells, and proposes a way to enhance efficacy of iNKT cell-based antitumor immunotherapy by targeting cellular metabolism.
Collapse
Affiliation(s)
- Huimin Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sanwei Chen
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuwei Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenxi Tian
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun Pan
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Wang
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shiyu Bai
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qielan Wu
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Miya Su
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Di Xie
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sicheng Fu
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuhang Li
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Zhang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Yusheng Chen
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Shasha Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
| | - Yeben Qian
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Bai
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Torki E, Gharezade A, Doroudchi M, Sheikhi S, Mansury D, Sullman MJM, Fouladseresht H. The kinetics of inhibitory immune checkpoints during and post-COVID-19: the knowns and unknowns. Clin Exp Med 2023; 23:3299-3319. [PMID: 37697158 DOI: 10.1007/s10238-023-01188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
The immune system is tightly regulated to prevent immune reactions to self-antigens and to avoid excessive immune responses during and after challenges from non-self-antigens. Inhibitory immune checkpoints (IICPs), as the major regulators of immune system responses, are extremely important for maintaining the homeostasis of cells and tissues. However, the high and sustained co-expression of IICPs in chronic infections, under persistent antigenic stimulations, results in reduced immune cell functioning and more severe and prolonged disease complications. Furthermore, IICPs-mediated interactions can be hijacked by pathogens in order to evade immune induction or effector mechanisms. Therefore, IICPs can be potential targets for the prognosis and treatment of chronic infectious diseases. This is especially the case with regards to the most challenging infectious disease of recent times, coronavirus disease-2019 (COVID-19), whose long-term complications can persist long after recovery. This article reviews the current knowledge about the kinetics and functioning of the IICPs during and post-COVID-19.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Sheikhi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Zhang L, Zhang A, Zhu X, Tian X, Guo J, He Q, Zhu L, Yuan S, Zhao C, Zhang X, Xu J. CD160 Signaling Is Essential for CD8+ T Cell Memory Formation via Upregulation of 4-1BB. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1367-1375. [PMID: 37695685 DOI: 10.4049/jimmunol.2200792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
A better understanding of the regulatory mechanisms governing the development of memory CD8+ T cells could provide instructive insights into vaccination strategies and T cell-based immunotherapies. In this article, we showed that CD160 surface protein is required for CD8+ T cell memory formation. In the response to acute lymphocytic choriomeningitis virus infection in a mouse model, CD160 ablation resulted in the failure of the development of all three memory CD8+ T cell subsets (central, effective, and tissue-resident memory), concomitant with a skewed differentiation into short-lived effector T cells. Such memory-related defect was manifested by a diminished protection from viral rechallenge. Mechanistically, CD160 deficiency led to downregulation of 4-1BB in activated CD8+ T cells, which contributes to the impaired cell survival and decreased respiratory capacity. The nexus between CD160 and 4-1BB was substantiated by the observation that ectopic introduction of 4-1BB was able to largely complement the loss of CD160 in memory CD8+ T cell development. Collectively, our studies discovered that CD160, once thought to be a coinhibitor of T cell signaling, is an essential promoter of memory CD8+ T cell development via activation of the costimulatory molecule 4-1BB.
Collapse
Affiliation(s)
- Linxia Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Anli Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xinyu Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xinmei Tian
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiaohan Guo
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qian He
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lingyan Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Ruan Y, Wen Z, Chen K, Xi J, Wu B, Xu Z, Jiang M, Zhang J, Chen Y, Liu Q. Exogenous Interleukin-37 Alleviates Hepatitis with Reduced Dendritic Cells and Induced Regulatory T Cells in Acute Murine Cytomegalovirus Infection. J Immunol Res 2023; 2023:1462048. [PMID: 37215069 PMCID: PMC10198762 DOI: 10.1155/2023/1462048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection is globally distributed, and the liver is one of the major targeting organs. So far, the mechanisms for cell and organ damage have not fully been elucidated and the treatments for the infection are mainly at symptoms. IL-37 has shown a protective role in certain inflammatory diseases. In the present study, potential protective effect of exogenous IL-37 on murine cytomegalovirus- (MCMV-) infected hepatitis was evaluated through analyses of serum transaminases, the liver histopathology and cytokine expression, and functional state of dendritic cells (DCs) and regulatory T cells (Tregs). These analyses showed a significant decrease in serum transaminase levels and a lower Ishak histopathologic score at the early stage of MCMV-infected mice with exogenous IL-37 pretreatment. The frequencies of MHC-Ⅱ, CD40, CD80, and CD86 positive DCs in the liver and spleen were decreased significantly at 7 days postinfection (dpi) in MCMV-infected mice with IL-37 pretreatment when compared with those without the pretreatment, while the total number of DCs in the liver was reduced in IL-37-pretreated mice. The induction of Tregs in the spleen was enhanced at dpi 3 with IL-37 pretreatment in MCMV-infected mice. The mRNA expression levels of cytokines in the liver were decreased significantly (IL-1β, IL-6, IL-10, IL-4) or to some extent (TGF-β and TNF-α). The present study suggested that exogenous IL-37 can alleviate MCMV-infected hepatitis, likely through reduced DCs and induced Tregs with a weaker cytokine storm, demonstrating its potential value in clinical management for HCMV-infected hepatitis.
Collapse
Affiliation(s)
- Yufei Ruan
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China
- Department of Emergency, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhengwang Wen
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China
| | - Ke Chen
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China
| | - Jianan Xi
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China
| | - Bo Wu
- School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Zhiyong Xu
- School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Minzhi Jiang
- School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Junling Zhang
- School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Yiping Chen
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China
| | - Qi Liu
- Department of Pediatric Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China
| |
Collapse
|
11
|
Lyu L, Jiang Y, Ma W, Li H, Liu X, Li L, Shen A, Yu Y, Jiang S, Li H, Zhou P, Yin S. Single-cell sequencing of PIT1-positive pituitary adenoma highlights the pro-tumour microenvironment mediated by IFN-γ-induced tumour-associated fibroblasts remodelling. Br J Cancer 2023; 128:1117-1133. [PMID: 36631635 PMCID: PMC10006201 DOI: 10.1038/s41416-022-02126-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND PIT1-positive pituitary adenoma (PIT1-PA) is one of the most important lineages of pituitary adenoma (PA), which causes systematic endocrine disorders and a worse prognosis. Tumour-associated fibroblast (TAF) is a crucial stroma cell type in the tumour microenvironment (TME). However, cellular and functional heterogeneity of TAF and immune cells in PIT1-PA have not been fully investigated. METHODS By single-cell RNA sequencing of four PIT1-PAs and further analyses, we characterised the molecular and functional profiles of 28 different cell subtypes. RESULTS PA stem cells in PIT1/SF1-positve PA were in a hybrid epithelial/mesenchymal state, and differentiated along the PIT1- and SF- dependent branches. C1Q was overwhelmingly expressed in tumour-associated macrophages, indicating its pro-tumoral functionality. PIT1-PA progression was characterised by lower cell-cell communication strength and higher cell adhesion-associated signals, indicating the immunosuppressive but pro-invasive microenvironment. IFN-γ signal repressed functional remodelling of myofibroblastic TAF (mTAF) towards inflammatory TAF/antigen-presenting TAF. IFN-γ inhibited mTAF phenotypes and N-cadherin expression through STAT3 signal axis. CDH2 knockdown in TAFs abrogated their pro-tumour function in PAs. CONCLUSIONS Our study builds up a cellular landscape of PIT1-PA TME and highlights anti-tumour function of IFN-γ mediated TAF remodelling, which benefits clinical treatments and drug development.
Collapse
Affiliation(s)
- Liang Lyu
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
| | - Yong Jiang
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurosurgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Weichao Ma
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurosurgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haiyan Li
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
| | - Xiaoling Liu
- Departments of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ao Shen
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Yu
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shu Jiang
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huihui Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China.
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Peizhi Zhou
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China.
| | - Senlin Yin
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
del Rio ML, de Juan CYD, Roncador G, Caleiras E, Álvarez-Esteban R, Pérez-Simón JA, Rodriguez-Barbosa JI. Genetic deletion of HVEM in a leukemia B cell line promotes a preferential increase of PD-1 - stem cell-like T cells over PD-1 + T cells curbing tumor progression. Front Immunol 2023; 14:1113858. [PMID: 37033927 PMCID: PMC10076739 DOI: 10.3389/fimmu.2023.1113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION A high frequency of mutations affecting the gene encoding Herpes Virus Entry Mediator (HVEM, TNFRSF14) is a common clinical finding in a wide variety of human tumors, including those of hematological origin. METHODS We have addressed how HVEM expression on A20 leukemia cells influences tumor survival and its involvement in the modulation of the anti-tumor immune responses in a parental into F1 mouse tumor model of hybrid resistance by knocking-out HVEM expression. HVEM WT or HVEM KO leukemia cells were then injected intravenously into semiallogeneic F1 recipients and the extent of tumor dissemination was evaluated. RESULTS The loss of HVEM expression on A20 leukemia cells led to a significant increase of lymphoid and myeloid tumor cell infiltration curbing tumor progression. NK cells and to a lesser extent NKT cells and monocytes were the predominant innate populations contributing to the global increase of immune infiltrates in HVEM KO tumors compared to that present in HVEM KO tumors. In the overall increase of the adaptive T cell immune infiltrates, the stem cell-like PD-1- T cells progenitors and the effector T cell populations derived from them were more prominently present than terminally differentiated PD-1+ T cells. CONCLUSIONS These results suggest that the PD-1- T cell subpopulation is likely to be a more relevant contributor to tumor rejection than the PD-1+ T cell subpopulation. These findings highlight the role of co-inhibitory signals delivered by HVEM upon engagement of BTLA on T cells and NK cells, placing HVEM/BTLA interaction in the spotlight as a novel immune checkpoint for the reinforcement of the anti-tumor responses in malignancies of hematopoietic origin.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
| | - Carla Yago-Diez de Juan
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Ramón Álvarez-Esteban
- Section of Statistics and Operational Research, Department of Economy and Statistics, University of Leon, Leon, Spain
| | - José Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocio / Institute of Biomedicine (IBIS / CSIC), Sevilla, Spain
| | - Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
| |
Collapse
|
13
|
Ngai H, Barragan GA, Tian G, Balzeau JC, Zhang C, Courtney AN, Guo L, Xu X, Wood MS, Drabek JM, Demberg T, Sands CM, Chauvin-Fleurence CN, Di Pierro EJ, Rosen JM, Metelitsa LS. LEF1 Drives a Central Memory Program and Supports Antitumor Activity of Natural Killer T Cells. Cancer Immunol Res 2023; 11:171-183. [PMID: 36484736 PMCID: PMC9898189 DOI: 10.1158/2326-6066.cir-22-0333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Vα24-invariant natural killer T cells (NKT) possess innate antitumor properties that can be exploited for cancer immunotherapy. We have shown previously that the CD62L+ central memory-like subset of these cells drives the in vivo antitumor activity of NKTs, but molecular mediators of NKT central memory differentiation remain unknown. Here, we demonstrate that relative to CD62L- cells, CD62L+ NKTs express a higher level of the gene encoding the Wnt/β-catenin transcription factor lymphoid enhancer binding factor 1 (LEF1) and maintain active Wnt/β-catenin signaling. CRISPR/Cas9-mediated LEF1 knockout reduced CD62L+ frequency after antigenic stimulation, whereas Wnt/β-catenin activator Wnt3a ligand increased CD62L+ frequency. LEF1 overexpression promoted NKT expansion and limited exhaustion following serial tumor challenge and was sufficient to induce a central memory-like transcriptional program in NKTs. In mice, NKTs expressing a GD2-specific chimeric-antigen receptor (CAR) with LEF1 demonstrated superior control of neuroblastoma xenograft tumors compared with control CAR-NKTs. These results identify LEF1 as a transcriptional activator of the NKT central memory program and advance development of NKT cell-based immunotherapy. See related Spotlight by Van Kaer, p. 144.
Collapse
Affiliation(s)
- Ho Ngai
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030
| | - Gabriel A. Barragan
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Gengwen Tian
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Julien C. Balzeau
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Chunchao Zhang
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Amy N. Courtney
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Linjie Guo
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Xin Xu
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Michael S. Wood
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Janice M. Drabek
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Thorsten Demberg
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Caroline M. Sands
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Cynthia N. Chauvin-Fleurence
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Erica J. Di Pierro
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| | - Jeffrey M. Rosen
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030
| | - Leonid S. Metelitsa
- Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
14
|
Oumeslakht L, Aziz AI, Bensussan A, Ben Mkaddem S. CD160 receptor in CLL: Current state and future avenues. Front Immunol 2022; 13:1028013. [PMID: 36420268 PMCID: PMC9676924 DOI: 10.3389/fimmu.2022.1028013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/19/2022] [Indexed: 08/01/2023] Open
Abstract
CD160 is a glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein expressed on cytotoxic natural killer (NK) cells and T-cell subsets. It plays a crucial role in the activation of NK-cell cytotoxicity and cytokine production. It also modulates the immune system and is involved in some pathologies, such as cancer. CD160 is abnormally expressed in B-cell chronic lymphocytic leukemia (CLL) but not expressed in normal B lymphocytes. Its expression in CLL enhances tumor cell proliferation and resistance to apoptosis. CD160 is also a potential prognostic marker for the detection of minimal residual disease (MRD) in CLL, which is important for the clinical management of CLL, the prevention of disease relapse, and the achievement of complete remission. In this review, we present an overview of CD160 and its involvement in the pathophysiology of CLL. We also discuss its use as a prognostic marker for the assessment of MRD in CLL.
Collapse
Affiliation(s)
- Loubna Oumeslakht
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Abdel-ilah Aziz
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Armand Bensussan
- INSERM U976, Université de Paris, Hôpital Saint Louis, Paris, France
- Institut Jean Godinot, Centre de Lutte Contre le Cancer, Reims, France
| | - Sanae Ben Mkaddem
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
15
|
Wu L, Zhong Y, Wu D, Xu P, Ruan X, Yan J, Liu J, Li X. Immunomodulatory Factor TIM3 of Cytolytic Active Genes Affected the Survival and Prognosis of Lung Adenocarcinoma Patients by Multi-Omics Analysis. Biomedicines 2022; 10:biomedicines10092248. [PMID: 36140350 PMCID: PMC9496572 DOI: 10.3390/biomedicines10092248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
[Objective] Using multi-omics research methods to explore cytolytic activity-related genes through the immunoregulatory factors HAVCR2 (TIM3) affecting the survival and prognosis of lung adenocarcinoma. [Methods] We combined Cox single factor regression and lasso regression feature selection algorithm to screen out the key genes of cytolytic activity in lung adenocarcinoma, and applied multi-omics research to explore the clinical predictive value of the model, including onset risk, independent prognosis, clinical relevance, signal transduction pathways, drug sensitivity, and the correlation of immune regulatory factors, etc. TCGA data are used as the experimental group, and GEO data is used as the external data control group to verify the stability of the model. The survival curve was generated by the Kaplan–Meier method and compared by log-rank, and the Cox proportional hazard model was used for multivariate analysis. In this study, 10 fresh tissue samples of lung adenocarcinoma were collected for cellular immunohistochemical experiments to analyze the expression of immunoregulatory factors in cancer tissues, and the key immunoregulatory factors were verified and screened out. [Results] A total of 450 genes related to cytolytic activity were differentially expressed, of which 273 genes were up-regulated and 177 genes were down-regulated. A total of 91 key genes related to cytolytic activity related to the prognosis of lung adenocarcinoma were screened through Cox single factor regression. The ROC curve results showed that the AUC values of 1, 3, and 5 years in the training set and test set were all greater than 0.7, indicating that the model has a valid verification. The level of risk score is significantly related to the sensitivity of patients to AKT inhibitor VIII, Lenalidomide, and Tipifarnib. In addition, our study also found that receptor and MHC genes related to immunomodulatory, and chemokines, including HAVCR2, are more highly expressed in the low-risk group. [Conclusions] HAVCR2 (TIM3) immunoregulatory factors affect the expression of key genes that affect cytolytic activity in lung adenocarcinoma cells, and to some extent indirectly affect the survival and prognosis of patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Liusheng Wu
- Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Tsinghua university, Shenzhen 518036, China
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yanfeng Zhong
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Dingwang Wu
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Pengcheng Xu
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xin Ruan
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jun Yan
- Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Tsinghua university, Shenzhen 518036, China
- Correspondence: (J.Y.); (J.L.); (X.L.)
| | - Jixian Liu
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (J.Y.); (J.L.); (X.L.)
| | - Xiaoqiang Li
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (J.Y.); (J.L.); (X.L.)
| |
Collapse
|
16
|
Battin C, Leitner J, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Olive D, Steinberger P. BTLA inhibition has a dominant role in the cis-complex of BTLA and HVEM. Front Immunol 2022; 13:956694. [PMID: 36081508 PMCID: PMC9446882 DOI: 10.3389/fimmu.2022.956694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
The engagement of the herpesvirus entry mediator (HVEM, TNFRSF14) by the B and T lymphocyte attenuator (BTLA) represents a unique interaction between an activating receptor of the TNFR-superfamily and an inhibitory receptor of the Ig-superfamily. BTLA and HVEM have both been implicated in the regulation of human T cell responses, but their role is complex and incompletely understood. Here, we have used T cell reporter systems to dissect the complex interplay of HVEM with BTLA and its additional ligands LIGHT and CD160. Co-expression with LIGHT or CD160, but not with BTLA, induced strong constitutive signaling via HVEM. In line with earlier reports, we observed that in cis interaction of BTLA and HVEM prevented HVEM co-stimulation by ligands on surrounding cells. Intriguingly, our data indicate that BTLA mediated inhibition is not impaired in this heterodimeric complex, suggesting a dominant role of BTLA co-inhibition. Stimulation of primary human T cells in presence of HVEM ligands indicated a weak costimulatory capacity of HVEM potentially owed to its in cis engagement by BTLA. Furthermore, experiments with T cell reporter cells and primary T cells demonstrate that HVEM antibodies can augment T cell responses by concomitantly acting as checkpoint inhibitors and co-stimulation agonists.
Collapse
Affiliation(s)
- Claire Battin
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068; Centre National de la Recherche Scientifique (CNRS), UMR7258; Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Wang X, Bai H, Ma J, Qin H, Zeng Q, Hu F, Jiang T, Mao W, Zhao Y, Chen X, Qi X, Li M, Xu J, Hao J, Wang Y, Ding X, Liu Y, Huang T, Fang C, Ge C, Li D, Hu K, Ren X, Zhang B, Zhang B, Shi B, Zhang C. Identification of Distinct Immune Cell Subsets Associated With Asymptomatic Infection, Disease Severity, and Viral Persistence in COVID-19 Patients. Front Immunol 2022; 13:812514. [PMID: 35281000 PMCID: PMC8905648 DOI: 10.3389/fimmu.2022.812514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
The cell-mediated protective and pathogenic immune responses to SARS-CoV-2 infection remain largely elusive. Here we identified 76 distinct cell subsets in the PBMC samples that were associated with various clinical presentations of COVID-19 using scRNA-seq technology coupled with a deep and comprehensive analysis of unique cell surface markers and differentially expressed genes. We revealed that (TRAV1-2+CD8+)MAIT cells and (NCAM1hiCD160+)NK cells significantly enriched in the asymptomatic subjects whereas (LAG3+CD160+CD8+)NKT cells increased in the symptomatic patients. We also observed that (CD68-CSF1R-IL1BhiCD14+)classical monocytes were positively correlated with the disease severity. Moreover, (CD33-HLA-DMA-CD14+)classical monocytes and (CLEC10A-S100A9lo)pDC were associated with the viral persistence. The GO and KEGG analyses identified enriched pathways related to immune responses, inflammation, and apoptosis. These findings may enhance our understanding of the immunopathogenesis of COVID-19 and help develop novel strategies against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiaorui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Han Bai
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junpeng Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyu Qin
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiqi Zeng
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fang Hu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Weikang Mao
- LC-Bio Technologies, Co., Ltd., Hangzhou, China
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaobei Chen
- Department of Infectious Diseases, The Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengyang Li
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingcan Hao
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yankui Wang
- Dialysis Center, The Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Ding
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuanrui Liu
- LC-Bio Technologies, Co., Ltd., Hangzhou, China
| | | | - Chao Fang
- LC-Bio Technologies, Co., Ltd., Hangzhou, China
| | - Changli Ge
- LC-Bio Technologies, Co., Ltd., Hangzhou, China
| | - Dong Li
- Department of Clinical Laboratory, The Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | | | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengsheng Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| |
Collapse
|
18
|
Del Rio ML, Nguyen TH, Tesson L, Heslan JM, Gutierrez-Adan A, Fernandez-Gonzalez R, Gutierrez-Arroyo J, Buhler L, Pérez-Simón JA, Anegon I, Rodriguez-Barbosa JI. The impact of CD160 deficiency on alloreactive CD8 T cell responses and allograft rejection. Transl Res 2022; 239:103-123. [PMID: 34461306 DOI: 10.1016/j.trsl.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
CD160 is a member of the immunoglobulin superfamily with a pattern of expression mainly restricted to cytotoxic cells. To assess the functional relevance of the HVEM/CD160 signaling pathway in allogeneic cytotoxic responses, exon 2 of the CD160 gene was targeted by CRISPR/Cas9 to generate CD160 deficient mice. Next, we evaluated the impact of CD160 deficiency in the course of an alloreactive response. To that aim, parental donor WT (wild-type) or CD160 KO (knock-out) T cells were adoptively transferred into non-irradiated semiallogeneic F1 recipients, in which donor alloreactive CD160 KO CD4 T cells and CD8 T cells clonally expanded less vigorously than in WT T cell counterparts. This differential proliferative response rate at the early phase of T cell expansion influenced the course of CD8 T cell differentiation and the composition of the effector T cell pool that led to a significant decreased of the memory precursor effector cells (MPECs) / short-lived effector cells (SLECs) ratio in CD160 KO CD8 T cells compared to WT CD8 T cells. Despite these differences in T cell proliferation and differentiation, allogeneic MHC class I mismatched (bm1) skin allograft survival in CD160 KO recipients was comparable to that of WT recipients. However, the administration of CTLA-4.Ig showed an enhanced survival trend of bm1 skin allografts in CD160 KO with respect to WT recipients. Finally, CD160 deficient NK cells were as proficient as CD160 WT NK cells in rejecting allogeneic cellular allografts or MHC class I deficient tumor cells. CD160 may represent a CD28 alternative costimulatory molecule for the modulation of allogeneic CD8 T cell responses either in combination with costimulation blockade or by direct targeting of alloreactive CD8 T cells that upregulate CD160 expression in response to alloantigen stimulation.
Collapse
MESH Headings
- 4-1BB Ligand/metabolism
- Allografts
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CRISPR-Cas Systems
- Cell Differentiation
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gene Expression Regulation
- Genes, MHC Class I
- Graft Rejection/etiology
- Graft Rejection/immunology
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Mice, Inbred Strains
- Mice, Knockout
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Skin Transplantation
- Thymocytes/immunology
- Mice
Collapse
Affiliation(s)
- Maria-Luisa Del Rio
- Transplantation Immunobiology and Immunotherapy Section. Institute of Molecular Biology, Genomics and Proteomics, University of Leon, Leon, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480.
| | - Tuan H Nguyen
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Laurent Tesson
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Jean-Marie Heslan
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Alfonso Gutierrez-Adan
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Raul Fernandez-Gonzalez
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Julia Gutierrez-Arroyo
- Department of Animal Reproduction, National Institute of Agricultural Research (INIA), Madrid, Spain
| | - Leo Buhler
- Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - José-Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocio / Institute of Biomedicine (IBIS / CSIC / CIBERONC), Sevilla, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480
| | - Ignacio Anegon
- INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; SFR Bonamy, GenoCellEdit Platform, CNRS UMS3556, Nantes, France
| | - Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology and Immunotherapy Section. Institute of Molecular Biology, Genomics and Proteomics, University of Leon, Leon, Spain; CIBERONC Consortium, Accion Estrategica en Salud, Grant # CB16/12/00480.
| |
Collapse
|
19
|
Liu W, Chou TF, Garrett-Thomson SC, Seo GY, Fedorov E, Ramagopal UA, Bonanno JB, Wang Q, Kim K, Garforth SJ, Kakugawa K, Cheroutre H, Kronenberg M, Almo SC. HVEM structures and mutants reveal distinct functions of binding to LIGHT and BTLA/CD160. J Exp Med 2021; 218:e20211112. [PMID: 34709351 PMCID: PMC8558838 DOI: 10.1084/jem.20211112] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
HVEM is a TNF (tumor necrosis factor) receptor contributing to a broad range of immune functions involving diverse cell types. It interacts with a TNF ligand, LIGHT, and immunoglobulin (Ig) superfamily members BTLA and CD160. Assessing the functional impact of HVEM binding to specific ligands in different settings has been complicated by the multiple interactions of HVEM and HVEM binding partners. To dissect the molecular basis for multiple functions, we determined crystal structures that reveal the distinct HVEM surfaces that engage LIGHT or BTLA/CD160, including the human HVEM-LIGHT-CD160 ternary complex, with HVEM interacting simultaneously with both binding partners. Based on these structures, we generated mouse HVEM mutants that selectively recognized either the TNF or Ig ligands in vitro. Knockin mice expressing these muteins maintain expression of all the proteins in the HVEM network, yet they demonstrate selective functions for LIGHT in the clearance of bacteria in the intestine and for the Ig ligands in the amelioration of liver inflammation.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Crystallography, X-Ray
- Drosophila/cytology
- Drosophila/genetics
- Female
- GPI-Linked Proteins/chemistry
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/metabolism
- Mutation
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 14/chemistry
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Yersinia Infections/genetics
- Yersinia Infections/pathology
- Mice
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | - Elena Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Udupi A. Ramagopal
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | | | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, CA
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hilde Cheroutre
- La Jolla Institute for Immunology, La Jolla, CA
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
20
|
Cao H, Wu L, Tian X, Zheng W, Yuan M, Li X, Tian X, Wang Y, Song H, Shen Z. HO-1/BMMSC perfusion using a normothermic machine perfusion system reduces the acute rejection of DCD liver transplantation by regulating NKT cell co-inhibitory receptors in rats. Stem Cell Res Ther 2021; 12:587. [PMID: 34819139 PMCID: PMC8611848 DOI: 10.1186/s13287-021-02647-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/31/2021] [Indexed: 01/14/2023] Open
Abstract
Background Liver transplantation (LT) is required in many end-stage liver diseases. Donation after cardiac death (DCD) livers are often used, and treatment of acute rejection (ACR) requires the use of immunosuppressive drugs that are associated with complications. Bone marrow mesenchymal stem cells (BMMSCs) are used in treatment following LT; however, they have limitations, including low colonization in the liver. An optimized BMMSC application method is required to suppress ACR. Methods BMMSCs were isolated and modified with the heme oxygenase 1 (HO-1) gene. HO-1/BMMSCs were perfused into donor liver in vitro using a normothermic machine perfusion (NMP) system, followed by LT into rats. The severity of ACR was evaluated based on liver histopathology. Gene chip technology was used to detect differential gene expression, and flow cytometry to analyze changes in natural killer (NK) T cells. Results NMP induced BMMSCs to colonize the donor liver during in vitro preservation. The survival of HO-1/BMMSCs in liver grafts was significantly longer than that of unmodified BMMSCs. When the donor liver contained HO-1/BMMSCs, the local immunosuppressive effect was improved and prolonged, ACR was controlled, and survival time was significantly prolonged. The application of HO-1/BMMSCs reduced the number of NKT cells in liver grafts, increased the expression of NKT cell co-inhibitory receptors, and reduced NKT cell expression of interferon-γ. Conclusions NK cell and CD8+ T cell activation was inhibited by application of HO-1/BMMSCs, which reduced ACR of transplanted liver. This approach could be developed to enhance the success rate of LT. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02647-5.
Collapse
Affiliation(s)
- Huan Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Longlong Wu
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Xuan Tian
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.,NHC Key Laboratory of Critical Care Medicine, Tianjin, 300192, People's Republic of China
| | - Mengshu Yuan
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiang Li
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiaorong Tian
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yuxin Wang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China. .,Tianjin Key Laboratory of Organ Transplantation, Tianjin, People's Republic of China.
| | - Zhongyang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China. .,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, People's Republic of China.
| |
Collapse
|
21
|
Shrestha R, Garrett-Thomson S, Liu W, Almo SC, Fiser A. Allosteric regulation of binding specificity of HVEM for CD160 and BTLA ligands upon G89F mutation. Curr Res Struct Biol 2021; 3:337-345. [PMID: 34917954 PMCID: PMC8666650 DOI: 10.1016/j.crstbi.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Molecular interactions mediated by engagement of the Herpes virus entry mediator (HVEM) with members of TNF and Ig superfamily generate distinct signals in T cell activation pathways that modulate inflammatory and inhibitory responses. HVEM interacts with CD160 and B and T lymphocyte attenuator (BTLA), both members of the immunoglobulin (Ig) superfamily, which share a common binding site that is unique from that of LIGHT, a TNF ligand. BTLA or CD160 engagement with HVEM deliver inhibitory or stimulatory signals to the host immune response in a context dependent fashion, whereas HVEM engagement with LIGHT results in pro-inflammatory responses. We identified a mutation in human HVEM, G89F, which directly interferes with the human LIGHT interaction, but interestingly, also differentially modulates the binding of human BTLA and CD160 via an apparent allosteric mechanism involving recognition surfaces remote from the site of the mutation. Specifically, the G89F mutation enhances binding of CD160, while decreasing that of BTLA to HVEM in cell-based assays. Molecular dynamics simulations for wild-type and G89F mutant HVEM, bound to different sets of ligands, were performed to define the molecular basis of this unexpected allosteric effect. These results were leveraged to design additional human HVEM mutants with altered binding specificities.
Collapse
Affiliation(s)
- Rojan Shrestha
- Department of Systems and Computational Biology, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Sarah Garrett-Thomson
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
22
|
Liu J, You M, Yao Y, Ji C, Wang Z, Wang F, Wang D, Qi Z, Yu G, Sun Z, Guo W, Liu J, Li S, Jin Y, Zhao T, Xue HH, Xue Y, Yu S. SRSF1 plays a critical role in invariant natural killer T cell development and function. Cell Mol Immunol 2021; 18:2502-2515. [PMID: 34522020 PMCID: PMC8545978 DOI: 10.1038/s41423-021-00766-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are highly conserved innate-like T lymphocytes that originate from CD4+CD8+ double-positive (DP) thymocytes. Here, we report that serine/arginine splicing factor 1 (SRSF1) intrinsically regulates iNKT cell development by directly targeting Myb and balancing the abundance of short and long isoforms. Conditional ablation of SRSF1 in DP cells led to a substantially diminished iNKT cell pool due to defects in proliferation, survival, and TCRα rearrangement. The transition from stage 0 to stage 1 of iNKT cells was substantially blocked, and the iNKT2 subset was notably diminished in SRSF1-deficient mice. SRSF1 deficiency resulted in aberrant expression of a series of regulators that are tightly correlated with iNKT cell development and iNKT2 differentiation, including Myb, PLZF, Gata3, ICOS, and CD5. In particular, we found that SRSF1 directly binds and regulates pre-mRNA alternative splicing of Myb and that the expression of the short isoform of Myb is substantially reduced in SRSF1-deficient DP and iNKT cells. Strikingly, ectopic expression of the Myb short isoform partially rectified the defects caused by ablation of SRSF1. Furthermore, we confirmed that the SRSF1-deficient mice exhibited resistance to acute liver injury upon α-GalCer and Con A induction. Our findings thus uncovered a previously unknown role of SRSF1 as an essential post-transcriptional regulator in iNKT cell development and functional differentiation, providing new clinical insights into iNKT-correlated disease.
Collapse
Affiliation(s)
- Jingjing Liu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Menghao You
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingpeng Yao
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ce Ji
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhao Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fang Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Di Wang
- grid.9227.e0000000119573309Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhihong Qi
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guotao Yu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Sun
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenhui Guo
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Juanjuan Liu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shumin Li
- grid.22935.3f0000 0004 0530 8290Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- grid.22935.3f0000 0004 0530 8290Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tianyan Zhao
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hai-Hui Xue
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ USA
| | - Yuanchao Xue
- grid.9227.e0000000119573309Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shuyang Yu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Piotrowska M, Spodzieja M, Kuncewicz K, Rodziewicz-Motowidło S, Orlikowska M. CD160 protein as a new therapeutic target in a battle against autoimmune, infectious and lifestyle diseases. Analysis of the structure, interactions and functions. Eur J Med Chem 2021; 224:113694. [PMID: 34273660 DOI: 10.1016/j.ejmech.2021.113694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022]
Abstract
The glycosylphosphatidylinositol-anchored transmembrane glycoprotein CD160 (cluster of differentiation 160) is a member of the immunoglobulin superfamily. Four isoforms, which differ by the presence or absence of an immunoglobulin-like domain and the mode of anchoring in the cell membrane, have been identified. CD160 has a significant impact on the proper functioning of the immune system by activating natural killer cells and inhibiting T cells. CD160 is a natural ligand for herpes virus entry mediator (HVEM), a member of the tumor necrosis factor superfamily. The CD160-HVEM complex is a rare example of direct interaction between the two different superfamilies. The interaction of these two proteins leads to the inhibition of CD4+ T cells which, in consequence, leads to the inhibition of the correct response of the immune system. Available research articles indicate that CD160 plays a role in various types of cancer, chronic viral diseases, malaria, paroxysmal nocturnal hemoglobinuria, atherosclerosis, autoimmune diseases, skin inflammation, acute liver damage and retinal vascular disease. We present here an overview of the CD160 protein, the general characteristics of the receptor and its isoforms, details of structural studies of CD160 and the CD160-HVEM complex, as well as a description of the role of this protein in selected human diseases.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Kuncewicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Sylwia Rodziewicz-Motowidło
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
24
|
Ectopic Expression of Human Thymosin β4 Confers Resistance to Legionella pneumophila during Pulmonary and Systemic Infection in Mice. Infect Immun 2021; 89:IAI.00735-20. [PMID: 33468581 DOI: 10.1128/iai.00735-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
Thymosin beta-4 (Tβ4) is an actin-sequestering peptide that plays important roles in regeneration and remodeling of injured tissues. However, its function in a naturally occurring pathogenic bacterial infection model has remained elusive. We adopted Tβ4-overexpressing transgenic (Tg) mice to investigate the role of Tβ4 in acute pulmonary infection and systemic sepsis caused by Legionella pneumophila Upon infection, Tβ4-Tg mice demonstrated significantly lower bacterial loads in the lung, less hyaline membranes and necrotic abscess, with lower interstitial infiltration of neutrophils, CD4+, and CD8+ T cells. Bronchoalveolar lavage fluid of Tβ4-Tg mice possessed higher bactericidal activity against exogenously added L. pneumophila, suggesting that constitutive expression of Tβ4 could efficiently control L. pneumophila Furthermore, qPCR analysis of lung homogenates demonstrated significant reduction of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), which primarily originate from lung macrophages, in Tβ4-Tg mice after pulmonary infection. Upon L. pneumophila challenge of bone marrow-derived macrophages (BMDM) in vitro, secretion of IL-1β and TNF-α proteins was also reduced in Tβ4-Tg macrophages, without affecting their survival. The anti-inflammatory effects of BMDM in Tβ4-Tg mice on each cytokine were affected when triggering with tlr2, tlr4, tlr5, or tlr9 ligands, suggesting that anti-inflammatory effects of Tβ4 are likely mediated by the reduced activation of Toll-like receptors (TLR). Finally, Tβ4-Tg mice in a systemic sepsis model were protected from L. pneumophila-induced lethality compared to wild-type controls. Therefore, Tβ4 confers effective resistance against L. pneumophila via two pathways, a bactericidal and an anti-inflammatory pathway, which can be harnessed to treat acute pneumonia and septic conditions caused by L. pneumophila in humans.
Collapse
|
25
|
Kushnareva Y, Mathews IT, Andreyev AY, Altay G, Lindestam Arlehamn CS, Pandurangan V, Nilsson R, Jain M, Sette A, Peters B, Sharma S. Functional Analysis of Immune Signature Genes in Th1* Memory Cells Links ISOC1 and Pyrimidine Metabolism to IFN-γ and IL-17 Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1181-1193. [PMID: 33547171 PMCID: PMC7946769 DOI: 10.4049/jimmunol.2000672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
CCR6+CXCR3+CCR4-CD4+ memory T cells, termed Th1*, are important for long-term immunity to Mycobacterium tuberculosis and the pathogenesis of autoimmune diseases. Th1* cells express a unique set of lineage-specific transcription factors characteristic of both Th1 and Th17 cells and display distinct gene expression profiles compared with other CD4+ T cell subsets. To examine molecules and signaling pathways important for the effector function of Th1* cells, we performed loss-of-function screening of genes selectively enriched in the Th1* subset. The genetic screen yielded candidates whose depletion significantly impaired TCR-induced IFN-γ production. These included genes previously linked to IFN-γ or M. tuberculosis susceptibility and novel candidates, such as ISOC1, encoding a metabolic enzyme of unknown function in mammalian cells. ISOC1-depleted T cells, which produced less IFN-γ and IL-17, displayed defects in oxidative phosphorylation and glycolysis and impairment of pyrimidine metabolic pathway. Supplementation with extracellular pyrimidines rescued both bioenergetics and IFN-γ production in ISOC1-deficient T cells, indicating that pyrimidine metabolism is a key driver of effector functions in CD4+ T cells and Th1* cells. Results provide new insights into the immune-stimulatory function of ISOC1 as well as the particular metabolic requirements of human memory T cells, providing a novel resource for understanding long-term T cell-driven responses.
Collapse
Affiliation(s)
| | - Ian T Mathews
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Alexander Y Andreyev
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
- The Scripps Research Institute, La Jolla, CA 92037; and
| | - Gokmen Altay
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | | | | | | | - Mohit Jain
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Sonia Sharma
- La Jolla Institute for Immunology, La Jolla, CA 92037;
| |
Collapse
|
26
|
O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 2020; 21:585-606. [PMID: 32457507 PMCID: PMC7249041 DOI: 10.1038/s41580-020-0251-y] [Citation(s) in RCA: 1159] [Impact Index Per Article: 231.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.
Collapse
Affiliation(s)
- Killian O'Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefano Ughetto
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Zhang L, Zhang A, Xu J, Qiu C, Zhu L, Qiu C, Fu W, Wang Y, Ye L, Fu YX, Zhao C, Zhang X, Xu J. CD160 Plays a Protective Role During Chronic Infection by Enhancing Both Functionalities and Proliferative Capacity of CD8+ T Cells. Front Immunol 2020; 11:2188. [PMID: 33072082 PMCID: PMC7533580 DOI: 10.3389/fimmu.2020.02188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/11/2020] [Indexed: 11/23/2022] Open
Abstract
The understanding of protective immunity during HIV infection remains elusive. Here we showed that CD160 defines a polyfunctional and proliferative CD8+ T cell subset with a protective role during chronic HIV-1 infection. CD160+ CD8+ T cells derived from HIV+ patients correlated with slow progressions both in a cross-sectional study and in a 60-month longitudinal cohort, displaying enhanced cytotoxicity and proliferative capacity in response to HIV Gag stimulation; triggering CD160 promoted their functionalities through MEK-ERK and PI3K-AKT pathways. These observations were corroborated by studying chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. The genetic ablation of CD160 severely impaired LCMV-specific CD8+ T cell functionalities and thereby resulted in loss of virus control. Interestingly, transcriptional profiling showed multiple costimulatory and survival pathways likely to be involved in CD160+ T cell development. Our data demonstrated that CD160 acts as a costimulatory molecule positively regulating CD8+ T cells during chronic viral infections, thus representing a potential target for immune intervention.
Collapse
Affiliation(s)
- Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anli Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jun Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyan Zhu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenli Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weihui Fu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Wang
- Department of AIDS/STD, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lilin Ye
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Yang-xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J Autoimmun 2019; 104:102333. [DOI: 10.1016/j.jaut.2019.102333] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
|
29
|
Rodriguez-Barbosa JI, Schneider P, Weigert A, Lee KM, Kim TJ, Perez-Simon JA, Del Rio ML. HVEM, a cosignaling molecular switch, and its interactions with BTLA, CD160 and LIGHT. Cell Mol Immunol 2019; 16:679-682. [PMID: 31160757 DOI: 10.1038/s41423-019-0241-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jose Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology Section, Research Institutes of the University of Leon, Campus of Vegazana s/n, 24071, Leon, Spain. .,Leon Regional Transplantation Coordination Center, Leon University Hospital, Leon, Spain. .,Acción Estratégica en Salud, Consorcio CIBER-ONC, Seville, Spain.
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt, Germany
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.,Department of Biomedical Engineering, Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Tae-Jin Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.,Department of Biomedical Engineering, Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Jose-Antonio Perez-Simon
- Acción Estratégica en Salud, Consorcio CIBER-ONC, Seville, Spain.,Department of Hematology, Virgen del Rocio University Hospital, Biomedical Institute of Sevilla, Sevilla, Spain
| | - Maria-Luisa Del Rio
- Transplantation Immunobiology Section, Research Institutes of the University of Leon, Campus of Vegazana s/n, 24071, Leon, Spain. .,Leon Regional Transplantation Coordination Center, Leon University Hospital, Leon, Spain. .,Acción Estratégica en Salud, Consorcio CIBER-ONC, Seville, Spain.
| |
Collapse
|