1
|
Olejarz W, Sadowski K, Roszkowski P, Bielenica A, Wiśniewski M, Struga M, Szulczyk D. Design and in vitro evaluation of novel tetrazole derivatives of dianisidine as anticancer agents targeting Bcl-2 apoptosis regulator. Sci Rep 2025; 15:17634. [PMID: 40399589 DOI: 10.1038/s41598-025-02781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 05/15/2025] [Indexed: 05/23/2025] Open
Abstract
This study examines the synthesis and biological evaluation of novel tetrazole derivatives of 3,3'-dimethoxybenzidine as potential anticancer agents, focusing on their cytotoxic, apoptotic, and anti-inflammatory properties. Ten derivatives were synthesized using thioureas as precursors, characterized through spectroscopic methods, and assessed for their in silico toxicological profiles using the ADMET-AI and ProTox 3.0 platforms. In vitro cytotoxic activity was evaluated against four human cancer cell lines (HTB-140, A549, HeLa, SW620) and one normal cell line (HaCaT) using MTT and LDH assays. Mechanistic studies included apoptosis assessment via flow cytometry and interleukin-6 (IL-6) analysis using ELISA. The synthesized tetrazole derivatives demonstrated significant anticancer potential, exhibiting selective cytotoxicity against cancer cell lines, robust induction of apoptosis, and a notable reduction in IL-6 levels. Their favorable toxicity profiles, as observed in both in silico and in vitro evaluations, support their potential as promising candidates for further development. The tested compounds showed strong inhibitory activity against the apoptosis regulator Bcl-2, with binding affinities comparable to those of native ligands. Western blot analysis revealed a dramatic loss of Bcl-2 protein expression in selected cancer cells during exposure to compound 5. Additionally, this research highlights the innovative use of hazardous substrates in drug discovery, aligning with the principles of green chemistry. Future efforts should focus on optimizing the most active derivatives and conducting in vivo studies to confirm their therapeutic potential and safety.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097, Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097, Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Piotr Roszkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warszawa, Poland
| | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Maciej Wiśniewski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marta Struga
- Department of Biochemistry, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Daniel Szulczyk
- Department of Biochemistry, Medical University of Warsaw, 02-097, Warsaw, Poland.
| |
Collapse
|
2
|
Schake P, Bolz SN, Linnemann K, Schroeder M. PLIP 2025: introducing protein-protein interactions to the protein-ligand interaction profiler. Nucleic Acids Res 2025:gkaf361. [PMID: 40347107 DOI: 10.1093/nar/gkaf361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/09/2025] [Accepted: 05/09/2025] [Indexed: 05/12/2025] Open
Abstract
PLIP, the protein-ligand interaction profiler, analyses molecular interactions in protein structures. PLIP detects eight types of non-covalent interactions. Initially focused on small-molecule, DNA, and RNA interactions to a protein, the current release incorporates protein-protein interactions. We document the usefulness of this feature by comparing PLIP interactions of the cancer drug venetoclax with the native protein-protein interaction of Bcl-2 and BAX. PLIP reveals how the drug mimics the native interaction, as there is critical overlap in the interaction profiles. PLIP is available as a web server, source code with containers, and Jupyter notebook. The PLIP web server is online at https://plip-tool.biotec.tu-dresden.de.
Collapse
|
3
|
Chatzilygeroudi T, Karantanos T, Pappa V. Unraveling Venetoclax Resistance: Navigating the Future of HMA/Venetoclax-Refractory AML in the Molecular Era. Cancers (Basel) 2025; 17:1586. [PMID: 40361510 PMCID: PMC12071220 DOI: 10.3390/cancers17091586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Acute myeloid leukemia (AML) has traditionally been linked to a poor prognosis, particularly in older patients who are ineligible for intensive chemotherapy. The advent of Venetoclax, a powerful oral BH3 mimetic targeting anti-apoptotic protein BCL2, has significantly advanced AML treatment. Its combination with the hypomethylating agent azacitidine (AZA/VEN) has become a standard treatment for this group of AML patients, demonstrating a 65% overall response rate and a median overall survival of 14.7 months, compared to 22% and 8 months with azacitidine monotherapy, respectively. However, resistance and relapses remain common, representing a significant clinical challenge. Recent studies have identified molecular alterations, such as mutations in FLT3-ITD, NRAS/KRAS, TP53, and BAX, as major drivers of resistance. Additionally, other factors, including metabolic changes, anti-apoptotic protein expression, and monocytic or erythroid/megakaryocytic differentiation status, contribute to treatment failure. Clinical trials are exploring strategies to overcome venetoclax resistance, including doublet or triplet therapies targeting IDH and FLT3 mutations; novel epigenetic approaches; menin, XPO1, and MDM2 inhibitors; along with immunotherapies like monoclonal antibodies and antibody-drug conjugates. A deeper understanding of the molecular mechanisms of resistance through single-cell analysis will be crucial for developing future therapeutic strategies.
Collapse
Affiliation(s)
- Theodora Chatzilygeroudi
- Second Department of Internal Medicine and Research Unit, Hematology Unit, National and Kapodistrian University of Athens School of Medicine, Attikon University Hospital, 12462 Athens, Greece;
| | - Theodoros Karantanos
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, Hematology Unit, National and Kapodistrian University of Athens School of Medicine, Attikon University Hospital, 12462 Athens, Greece;
| |
Collapse
|
4
|
Cani L, Gupta VA, Kaufman JL. BCL2 inhibition for multiple myeloma and AL amyloidosis. Br J Haematol 2025; 206:1285-1296. [PMID: 40090369 DOI: 10.1111/bjh.20046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/28/2025] [Indexed: 03/18/2025]
Abstract
Despite the development of novel treatments, multiple myeloma (MM) and light-chain (AL) amyloidosis remain incurable diseases. BCL2 inhibitors are a class of drugs under development for plasma cell disorders, with strong data supporting their use, particularly in patients with MM and AL amyloidosis harbouring the t(11;14). Venetoclax, the most extensively studied BCL2-specific inhibitor, was initially designed and evaluated for other malignant blood disorders. However, it has since shown promising efficacy in both randomized and real-world studies for MM and AL amyloidosis, either as a monotherapy or in combination with other agents. Nonetheless, toxicity concerns have been raised, underscoring the need for careful patient selection and precise dose optimization. Additionally, other BCL2-targeting drugs are under investigation in preclinical and clinical studies. This review focuses on the current role of BCL2 inhibitors in the treatment landscape of MM and AL amyloidosis.
Collapse
Affiliation(s)
- Lorenzo Cani
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Division of Hematology, University of Torino, Torino, Italy
| | - Vikas A Gupta
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jonathan L Kaufman
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Croce CM, Vaux D, Strasser A, Opferman JT, Czabotar PE, Fesik SW. The BCL-2 protein family: from discovery to drug development. Cell Death Differ 2025:10.1038/s41418-025-01481-z. [PMID: 40204952 DOI: 10.1038/s41418-025-01481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
The landmark discovery of the BCL-2 gene and then its function marked the identification of inhibition of apoptotic cell death as a crucial novel mechanism driving cancer development and launched the quest to discover the molecular control of apoptosis. This work culminated in the generation of specific inhibitors that are now in clinical use, saving and improving tens of thousands of lives annually. Here, some of the original players of this story, describe the sequence of critical discoveries. The t(14;18) chromosomal translocation, frequently observed in follicular lymphoma, allowed the identification and the cloning of a novel oncogene (BCL-2) juxtaposed to the immunoglobulin heavy chain gene locus (IgH). Of note, BCL-2 acted in a distinct manner as compared to then already known oncogenic proteins like ABL and c-MYC. BCL-2 did not promote cell proliferation but inhibited cell death, as originally shown in growth factor dependent haematopoietic progenitor cell lines (e.g., FDC-P1) and in Eμ-Myc/Eμ-Bcl-2 double transgenic mice. Following a rapid expansion of the BCL-2 protein family, the Abbott Laboratories solved the first structure of BCL-XL and subsequently the BCL-XL/BAK peptide complex, opening the way to understanding the structures of other BCL-2 family members and, finally, to the generation of inhibitors of the different pro-survival BCL-2 proteins, thanks to the efforts of Servier/Norvartis, Genentech/WEHI, AbbVie, Amgen, Prelude and Gilead. Although the BCL-2 inhibitor Venetoclax is in clinical use and inhibitors of BCL-XL and MCL-1 are undergoing clinical trials, several questions remain on whether therapeutic windows can be achieved and what other agents should be used in combination with BH3 mimetics to achieve optimal therapeutic impact for cancer therapy. Finally, the control of the expression of BH3-only proteins and pro-survival BCL-2 family members needs to be better understood as this may identify novel targets for cancer therapy. This story is still not concluded!
Collapse
Affiliation(s)
- Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - David Vaux
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Stephen W Fesik
- Department of Biochemistry, Pharmacology and Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Fahim C, Abdollah MRA, Labib RM, Ibrahim N, Swilam N. Phytochemical Analysis and In Vivo Anticancer Effect of Becium grandiflorum: Isolation and Characterization of a Promising Cytotoxic Diterpene. Nutrients 2025; 17:1164. [PMID: 40218923 PMCID: PMC11990180 DOI: 10.3390/nu17071164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Background:Becium grandiflorum is a fragrant perennial shrub of the Lamiaceae family. Objectives: The current study aimed to explore the cytotoxic potential of the n-hexane fraction from Becium grandiflorum aerial parts and, further, isolate its major diterpene and conduct in vitro and in vivo anticancer activities along with its molecular mechanism and synergy with doxorubicin. Methods: The hydroalcoholic extract of Becium grandiflorum aerial parts was fractionated, and the n-hexane fraction was analyzed via GC-MS. The major isolated diterpene, 18-epoxy-pimara-8(14),15-diene (epoxy-pimaradiene), was quantified using UPLC-PDA. Cytotoxicity assays were conducted on HCT-116, MCF-7, MDA-MB-231, and HepG2 cell lines. The synergistic effect with doxorubicin was tested on HepG2 cells. In vivo anticancer activity was evaluated using the Ehrlich ascites carcinoma model, and molecular docking analyzed Bax-Bcl2 interactions. Results: The n-hexane fraction contained 21 compounds, mainly oxygenated diterpenes, and the major isolated compound was epoxy-pimaradiene, with a quantity of 0.3027 mg/mg. N-Hexane fraction and epoxy-pimaradiene exhibited strong cytotoxicity against HepG2 cells, induced apoptosis, and G2/M arrest. The combination of epoxy-pimaradiene with doxorubicin lowered the IC50 of doxorubicin from 4 µM to 1.78 µM. In vivo, both reduced tumor growth and increased necrotic tumor areas. Molecular docking revealed disruption of Bax-Bcl2. Conclusions: The findings suggest that B. grandiflorum and its major diterpene, epoxy-pimaradiene, exhibit potent anticancer activity, particularly against liver cancer cells. Epoxy-pimaradiene enhances doxorubicin's efficacy, induces apoptosis, and inhibits tumor progression. Further studies are needed to explore their therapeutic potential.
Collapse
Affiliation(s)
- Christeen Fahim
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City 11837, Egypt;
| | - Maha R. A. Abdollah
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City 11837, Egypt;
| | - Rola M. Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (R.M.L.); (N.I.)
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (R.M.L.); (N.I.)
| | - Noha Swilam
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City 11837, Egypt;
| |
Collapse
|
7
|
Vogler M, Braun Y, Smith VM, Westhoff MA, Pereira RS, Pieper NM, Anders M, Callens M, Vervliet T, Abbas M, Macip S, Schmid R, Bultynck G, Dyer MJ. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther 2025; 10:91. [PMID: 40113751 PMCID: PMC11926181 DOI: 10.1038/s41392-025-02176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The B cell lymphoma 2 (BCL2) protein family critically controls apoptosis by regulating the release of cytochrome c from mitochondria. In this cutting-edge review, we summarize the basic biology regulating the BCL2 family including canonical and non-canonical functions, and highlight milestones from basic research to clinical applications in cancer and other pathophysiological conditions. We review laboratory and clinical development of BH3-mimetics as well as more recent approaches including proteolysis targeting chimeras (PROTACs), antibody-drug conjugates (ADCs) and tools targeting the BH4 domain of BCL2. The first BCL2-selective BH3-mimetic, venetoclax, showed remarkable efficacy with manageable toxicities and has transformed the treatment of several hematologic malignancies. Following its success, several chemically similar BCL2 inhibitors such as sonrotoclax and lisaftoclax are currently under clinical evaluation, alone and in combination. Genetic analysis highlights the importance of BCL-XL and MCL1 across different cancer types and the possible utility of BH3-mimetics targeting these proteins. However, the development of BH3-mimetics targeting BCL-XL or MCL1 has been more challenging, with on-target toxicities including thrombocytopenia for BCL-XL and cardiac toxicities for MCL1 inhibitors precluding clinical development. Tumor-specific BCL-XL or MCL1 inhibition may be achieved by novel targeting approaches using PROTACs or selective drug delivery strategies and would be transformational in many subtypes of malignancy. Taken together, we envision that the targeting of BCL2 proteins, while already a success story of translational research, may in the foreseeable future have broader clinical applicability and improve the treatment of multiple diseases.
Collapse
Affiliation(s)
- Meike Vogler
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Yannick Braun
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Victoria M Smith
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Raquel S Pereira
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Nadja M Pieper
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Marius Anders
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Manon Callens
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Tim Vervliet
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Maha Abbas
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Salvador Macip
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Martin Js Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
Spiegel M. Fisetin as a Blueprint for Senotherapeutic Agents - Elucidating Geroprotective and Senolytic Properties with Molecular Modeling. Chemistry 2025; 31:e202403755. [PMID: 39688310 PMCID: PMC11914956 DOI: 10.1002/chem.202403755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
Targeting senescent cells and the factors that accelerate this pathological state has recently emerged as a novel field in medicinal chemistry. As attention shifts to synthetic substances, studies on natural agents are often overlooked. In this paper, we present a detailed computational modeling study that encompasses quantum mechanics and molecular dynamics to elucidate the senotherapeutic activity of fisetin, a natural flavonoid. The mitochondrial environment, serving as a proxy for senescence, received special attention. Throughout the study, fisetin's outstanding geroprotective properties-exhibiting significant potential against ⋅OOH, O2⋅-, and ⋅OH radicals, surpassing those of Trolox or ascorbate-were identified. Furthermore, fisetin demonstrated a high capacity to restore oxidatively damaged biomolecules to their pristine forms, thereby renewing the functionality of proteins and amino acids. The senolytic properties were examined in terms of Bcl-2 and Bcl-xL inhibition. The results indicated that fisetin not only binds effectively to these proteins but also, with appropriate modifications, may exhibit specific selectivity toward either target. This study highlights fisetin's remarkable activity in these areas and provides a molecular description of the underlying processes, paving the way for future research.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Organic Chemistry and Pharmaceutical TechnologyFaculty of PharmacyWroclaw Medical UniversityBorowska 211A50–556WroclawPoland
| |
Collapse
|
9
|
Sun Y, Houde D, Iacob RE, Baird J, Swift RV, Holliday M, Shi X, Sidoli S, Brenowitz M. Hydrogen/Deuterium Exchange and Protein Oxidative Footprinting with Mass Spectrometry Collectively Discriminate the Binding of Small-Molecule Therapeutics to Bcl-2. Anal Chem 2025; 97:4329-4340. [PMID: 39969248 PMCID: PMC11887655 DOI: 10.1021/acs.analchem.4c04516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025]
Abstract
Characterizing protein-ligand interactions is crucial to understanding cellular metabolism and guiding drug discovery and development. Herein, we explore complementing hydrogen/deuterium exchange mass spectrometry (HDX-MS) with a recently developed Fenton chemistry-based approach to protein oxidative footprinting mass spectrometry (OX-MS) to discriminate the binding of small-molecule therapeutics. Using drug-dependent perturbation as the experimental report, this combination of techniques more clearly differentiates the in-solution binding profiles of Venetoclax (ABT-199, GDC-0199-AbbVie and Genentech) and a drug candidate S55746 (Servier) to the apoptotic regulatory protein Bcl-2 than either technique alone. These results highlight the value of combining these methods to compare compounds in drug discovery and development. To better understand the structural context of the HDX-MS and OX-MS drug-dependent perturbations, we mapped these data on Bcl-2-Venetoclax and Bcl-2-S55746 cocrystal structures and compared these results with the structure of apo Bcl-2. HDX-MS shows that Venetoclax more strongly impacts the protein backbone compared to S55746. OX-MS reveals oxidation perturbations rationalized by direct side-chain protection as well as by crystallographically observed drug-induced protein restructuring. Both methods report the perturbation of some, but not all, residues mapped within 4 Å of the bound drugs in the crystal structures. Concordant characterization of backbone and side-chain accessibility will enhance our understanding of in-solution protein structure dynamics and protein-ligand interactions during drug discovery, development, and characterization, particularly when high-resolution structures are lacking.
Collapse
Affiliation(s)
- Yan Sun
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Damian Houde
- Relay
Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Roxana E. Iacob
- Relay
Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Jason Baird
- Relay
Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Robert V. Swift
- Relay
Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Michael Holliday
- Relay
Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Xuyan Shi
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Simone Sidoli
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Michael Brenowitz
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
- Department
of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
10
|
Ma X, Xu J, Wang Y, Fleishman JS, Bing H, Yu B, Li Y, Bo L, Zhang S, Chen ZS, Zhao L. Research progress on gene mutations and drug resistance in leukemia. Drug Resist Updat 2025; 79:101195. [PMID: 39740374 DOI: 10.1016/j.drup.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Leukemia is a type of blood cancer characterized by the uncontrolled growth of abnormal cells in the bone marrow, which replace normal blood cells and disrupt normal blood cell function. Timely and personalized interventions are crucial for disease management and improving survival rates. However, many patients experience relapse following conventional chemotherapy, and increasing treatment intensity often fails to improve outcomes due to mutated gene-induced drug resistance in leukemia cells. This article analyzes the association of gene mutations and drug resistance in leukemia. It explores genetic abnormalities in leukemia, highlighting recently identified mutations affecting signaling pathways, cell apoptosis, epigenetic regulation, histone modification, and splicing mechanisms. Additionally, the article discusses therapeutic strategies such as molecular targeting of gene mutations, alternative pathway targeting, and immunotherapy in leukemia. These approaches aim to combat specific drug-resistant mutations, providing potential avenues to mitigate leukemia relapse. Future research with these strategies holds promise for advancing leukemia treatment and addressing the challenges of drug-resistant mutations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jiamin Xu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yanan Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Hao Bing
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Boran Yu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Yanming Li
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Shaolong Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | - Libo Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
11
|
Angel-Lerma LE, Carrillo-Campos J, Siañez-Estrada LI, Siqueiros-Cendón TS, León-Flores DB, Espinoza-Sánchez EA, Arévalo-Gallegos S, Iglesias-Figueroa BF, Rascón-Cruz Q. Molecular Docking of Lactoferrin with Apoptosis-Related Proteins Insights into Its Anticancer Mechanism. Int J Mol Sci 2025; 26:2023. [PMID: 40076649 PMCID: PMC11899785 DOI: 10.3390/ijms26052023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Human Lactoferrin (hLf), a multifunctional glycoprotein, has been analyzed through molecular docking to evaluate its role in apoptosis regulation and its potential as an anticancer agent. The docking results highlight XIAP (X-linked Inhibitor of Apoptosis Protein) and Caspase-3 as the most reliable targets, where hLf disrupts XIAP's inhibition of Caspase-3 and Caspase-9, potentially restoring apoptotic signaling; hLf also stabilizes Caspase-3, enhancing its activation in intrinsic and extrinsic pathways. Weaker interactions were observed with Fas, Bcl-2, and Akt. hLf's role in Fas signaling is likely due to expression upregulation rather than direct binding. In contrast, its binding to Bcl-2 may disrupt anti-apoptotic function, and its interaction with Akt suggests interference with pro-survival signaling. These findings suggest that hLf may promote apoptosis by enhancing caspase activation and modulating key apoptotic regulators, supporting its potential use in cancer treatment. However, further experimental validation is needed to confirm these interactions and their therapeutic implications.
Collapse
Affiliation(s)
- Lidia Esmeralda Angel-Lerma
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Javier Carrillo-Campos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada km 1, Chihuahua 31453, Mexico;
| | - Luis Ignacio Siañez-Estrada
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Tania Samanta Siqueiros-Cendón
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Dyada Blanca León-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Edward Alexander Espinoza-Sánchez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Sigifredo Arévalo-Gallegos
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Blanca Flor Iglesias-Figueroa
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| | - Quintín Rascón-Cruz
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico; (L.E.A.-L.); (L.I.S.-E.); (T.S.S.-C.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.); (B.F.I.-F.)
| |
Collapse
|
12
|
Markouli M, Pagoni MN, Diamantopoulos P. BCL-2 inhibitors in hematological malignancies: biomarkers that predict response and management strategies. Front Oncol 2025; 14:1501950. [PMID: 39906657 PMCID: PMC11790632 DOI: 10.3389/fonc.2024.1501950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Apoptosis is an essential characteristic of cancer and its dysregular promotes tumor growth, clonal evolution, and treatment resistance. B-cell lymphoma-2 (BCL-2) protein family members are key to the intrinsic, mitochondrial apoptotic pathway. The inhibition of the BCL-2 family pro-survival proteins, which are frequently overexpressed in B-cell malignancies and pose a fundamental carcinogenic mechanism has been proposed as a promising therapeutic option, with venetoclax (ABT-199) being the first FDA-approved BCL-2 inhibitor. Unfortunately, although BCL-2 inhibition has shown remarkable results in a range of B-cell lymphoid cancers as well as acute myeloid leukemia (AML), the development of resistance significantly reduces response rates in specific tumor subtypes. In this article, we explain the role of BCL-2 family proteins in apoptosis and their mechanism of action that justifies their inhibition as a potential treatment target in B-cell malignancies, including chronic lymphocytic leukemia, multiple myeloma, B-cell lymphomas, but also AML. We further analyze the tumor characteristics that result in the development of intrinsic or inherited resistance to BCL-2 inhibitors. Finally, we focus on the biomarkers that can be used to predict responses to treatment in the name of personalized medicine, with the goal of exploring alternative strategies to overcome resistance.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Internal Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - Maria N. Pagoni
- Department of Hematology-Lymphomas and BMT Unit, Evangelismos Hospital, Athens, Greece
| | - Panagiotis Diamantopoulos
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Brown FC, Wang X, Birkinshaw R, Chua CC, Morley T, Kasapgil S, Pomilio G, Blombery P, Huang DCS, Czabotar P, Priore SF, Yang G, Carroll M, Wei AH, Perl AE. Acquired BCL2 variants associated with venetoclax resistance in acute myeloid leukemia. Blood Adv 2025; 9:127-131. [PMID: 39374584 PMCID: PMC11742564 DOI: 10.1182/bloodadvances.2024014446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 10/09/2024] Open
Affiliation(s)
- Fiona C. Brown
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Xin Wang
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Richard Birkinshaw
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Chong Chyn Chua
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Thomas Morley
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Sila Kasapgil
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Giovanna Pomilio
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Sir Peter Maccallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Haematology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - David C. S. Huang
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Peter Czabotar
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Salvatore F. Priore
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Guang Yang
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Martin Carroll
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Leukemia Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Andrew H. Wei
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Hematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Alexander E. Perl
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Leukemia Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
14
|
Elamin G, Zhang Z, Dwarka D, Kasumbwe K, Mellem J, Mkhwanazi NP, Madlala P, Soliman MES. Integrative genomic analyses combined with molecular dynamics simulations reveal the impact of deleterious mutations of Bcl-2 gene on the apoptotic machinery and implications in carcinogenesis. Front Genet 2025; 15:1502152. [PMID: 39840282 PMCID: PMC11747654 DOI: 10.3389/fgene.2024.1502152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Unlike other diseases, cancer is not just a genome disease but should broadly be viewed as a disease of the cellular machinery. Therefore, integrative multifaceted approaches are crucial to understanding the complex nature of cancer biology. Bcl-2 (B-cell lymphoma 2), encoded by the human BCL-2 gene, is an anti-apoptotic molecule that plays a key role in apoptosis and genetic variation of Bcl-2 proteins and is vital in disrupting the apoptotic machinery. Single nucleotide polymorphisms (SNPs) are considered viable diagnostic and therapeutic biomarkers for various cancers. Therefore, this study explores the association between SNPs in Bcl-2 and the structural, functional, protein-protein interactions (PPIs), drug binding and dynamic characteristics. Methods Comprehensive cross-validated bioinformatics tools and molecular dynamics (MD) simulations. Multiple sequence, genetic, structural and disease phenotype analyses were applied in this study. Results Analysis revealed that out of 130 mutations, approximately 8.5% of these mutations were classified as pathogenic. Furthermore, two particular variants, namely, Bcl-2G101V and Bcl-2F104L, were found to be the most deleterious across all analyses. Following 500 ns, MD simulations showed that these mutations caused a significant distortion in the protein conformational, protein-protein interactions (PPIs), and drug binding landscape compared to Bcl-2WT. Conclusion Despite being a predictive study, the findings presented in this report would offer a perspective insight for further experimental investigation, rational drug design, and cancer gene therapy.
Collapse
Affiliation(s)
- Ghazi Elamin
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
- Department of Pharmaceutical Chemistry, College of Pharmacy, Karary University, Khartoum, Sudan
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Depika Dwarka
- Ezintsha, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kabange Kasumbwe
- Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - John Mellem
- Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Nompumelelo P. Mkhwanazi
- HIV Pathogenesis Programme, School of Laboratory Medicine and Medical Science, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Paradise Madlala
- HIV Pathogenesis Programme, School of Laboratory Medicine and Medical Science, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E. S. Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
15
|
Moyer A, Tanaka K, Cheng EH. Apoptosis in Cancer Biology and Therapy. ANNUAL REVIEW OF PATHOLOGY 2025; 20:303-328. [PMID: 39854189 DOI: 10.1146/annurev-pathmechdis-051222-115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Since its inception, the study of apoptosis has been intricately linked to the field of cancer. The term apoptosis was coined more than five decades ago following its identification in both healthy tissues and malignant neoplasms. The subsequent elucidation of its molecular mechanisms has significantly enhanced our understanding of how cancer cells hijack physiological processes to evade cell death. Moreover, it has shed light on the pathways through which most anticancer therapeutics induce tumor cell death, including targeted therapy and immunotherapy. These mechanistic studies have paved the way for the development of therapeutics directly targeting either pro- or antiapoptotic proteins. Notably, the US Food and Drug Administration (FDA) approved the BCL-2 inhibitor venetoclax in 2016, with additional agents currently undergoing clinical trials. Recent research has brought to the forefront both the anti- and proinflammatory effects of individual apoptotic pathways. This underscores the ongoing imperative to deepen our comprehension of apoptosis, particularly as we navigate the evolving landscape of immunotherapy.
Collapse
Affiliation(s)
- Allison Moyer
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Kosuke Tanaka
- Division of Cancer Immunology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
Cierpicki T, Grembecka J. Targeting Protein-Protein Interactions in Hematologic Malignancies. ANNUAL REVIEW OF PATHOLOGY 2025; 20:275-301. [PMID: 39854187 DOI: 10.1146/annurev-pathmechdis-031521-033231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Over the last two decades, there have been extensive efforts to develop small-molecule inhibitors of protein-protein interactions (PPIs) as novel therapeutics for cancer, including hematologic malignancies. Despite the numerous challenges associated with developing PPI inhibitors, a significant number of them have advanced to clinical studies in hematologic patients in recent years. The US Food and Drug Administration approval of the very first PPI inhibitor, venetoclax, demonstrated the real clinical value of blocking protein-protein interfaces. In this review, we discuss the most successful examples of PPI inhibitors that have reached clinical studies in patients with hematologic malignancies. We also describe the challenges of blocking PPIs with small molecules, clinical resistance to such compounds, and the lessons learned from the development of successful PPI inhibitors. Overall, this review highlights the remarkable success and substantial promise of blocking PPIs in hematologic malignancies.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
17
|
Zarrin P, Ates-Alagoz Z. Targeting Bcl-2 with Indole Scaffolds: Emerging Drug Design Strategies for Cancer Treatment. Mini Rev Med Chem 2025; 25:293-318. [PMID: 39385424 DOI: 10.2174/0113895575306176240925094457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/01/2024] [Accepted: 07/15/2024] [Indexed: 10/12/2024]
Abstract
The B-cell lymphoma-2 (Bcl-2) protein family plays a crucial role as a regulator in the process of apoptosis. There is a substantial body of evidence indicating that the upregulation of antiapoptotic Bcl-2 proteins is prevalent in several cancer cell lines and original tumour tissue samples. This phenomenon plays a crucial role in enabling tumour cells to avoid apoptosis, hence facilitating the development of resistant cells against chemotherapy. Therefore, the success rate of chemotherapy for cancer can be enhanced by the down-regulation of anti-apoptotic Bcl-2 proteins. Furthermore, the indole structural design is commonly found in a variety of natural substances and biologically active compounds, particularly those that possess anti-cancer properties. Due to its distinctive physicochemical and biological characteristics, it has been highly regarded as a fundamental framework in the development and production of anti-cancer drugs. As a result, a considerable range of indole derivatives, encompassing both naturally occurring and developed compounds, have been identified as potential candidates for the treatment of cancer. Several of these derivatives have advanced to clinical trials, while others are already being used in clinical settings. This emphasizes the significant role of indole in the field of research and development of anti-cancer therapeutics. This study provides an overview of apoptosis and the structural characteristics of Bcl-2 family proteins, and mainly examines the present stage and recent developments in Bcl-2 inhibitors with an indole scaffold embedded in their structure.
Collapse
Affiliation(s)
- Pouria Zarrin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
18
|
Sobczyńska-Konefał A, Jasek M, Karabon L, Jaskuła E. Insights into genetic aberrations and signalling pathway interactions in chronic lymphocytic leukemia: from pathogenesis to treatment strategies. Biomark Res 2024; 12:162. [PMID: 39732734 DOI: 10.1186/s40364-024-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is prevalent in adults and is characterized by the accumulation of mature B cells in the blood, bone marrow, lymph nodes, and spleens. Recent progress in therapy and the introduction of targeted treatments [inhibitors of Bruton's tyrosine kinase (BTKi) or inhibitor of anti-apoptotic B-cell lymphoma-2 (Bcl-2i) protein (venetoclax)] in place of chemoimmunotherapy have significantly improved the outcomes of patients with CLL. These advancements have shifted the importance of traditional predictive markers, leading to a greater focus on resistance genes and reducing the significance of mutations, such as TP53 and del(17p). Despite the significant progress in CLL treatment, some patients still experience disease relapse. This is due to the substantial heterogeneity of CLL as well as the interconnected genetic resistance mechanisms and pathway adaptive resistance mechanisms to targeted therapies in CLL. Although the knowledge of the pathomechanism of CLL has expanded significantly in recent years, the precise origins of CLL and the interplay between various genetic factors remain incompletely understood, necessitating further research. This review enhances the molecular understanding of CLL by describing how BCR signalling, NF-κB PI3K/AKT, and ROR1 pathways sustain CLL cell survival, proliferation, and resistance to apoptosis. It also presents genetic and pathway-adaptive resistance mechanisms in CLL. Identifying B-cell receptor (BCR) signalling as a pivotal driver of CLL progression, the findings advocate personalized treatment strategies based on molecular profiling, emphasizing the need for further research to unravel the complex interplay between BCR signalling and its associated pathways to improve patient outcomes.
Collapse
Affiliation(s)
- Anna Sobczyńska-Konefał
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland
| | - Monika Jasek
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Lidia Karabon
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Emilia Jaskuła
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland.
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland.
| |
Collapse
|
19
|
Bollino D, Ma X, Tighe KM, Casildo A, Richard K, Passaniti A, Carter-Cooper B, Strovel ET, Emadi A. Calaspargase-Pegol-Mknl Combined with BCL-2 and MCL-1 Inhibition for Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:13091. [PMID: 39684800 DOI: 10.3390/ijms252313091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Our previous studies have demonstrated that pegcrisantaspase (PegC), a long-acting Erwinia asparaginase, synergizes with the BCL-2 inhibitor Venetoclax (Ven) in vitro and in vivo; however, the anti-leukemic activity of E. coli-derived asparaginases in combination with BCL-2 inhibition, and potential synergy with inhibitors of MCL-1, a key resistance factor of BCL-2 inhibition, has yet to be determined. Using a combination of human AML cells lines, primary samples, and in vivo xenograft mouse models, we established the anti-leukemic activity of the BCL-2 inhibitor S55746 and the MCL-1 inhibitor S63845, alone and in combination with the long-acting E. coli asparaginase calaspargase pegol-mknl (CalPegA). We report that CalPegA enhances the anti-leukemic effect of S55746 but does not impact the activity of S63845. The S55746-CalPegA combination inhibited protein synthesis and increased eIF4E/4EBP1 interaction, suggesting an inhibition of translational complex formation. These results support the clinical evaluation of CalPegA in combination with BCL-2 inhibition for AML.
Collapse
Affiliation(s)
- Dominique Bollino
- Department of Medical Oncology, Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Medical Oncology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Xinrong Ma
- The Biology Department, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Kayla M Tighe
- The Biology Department, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Andrea Casildo
- The Biology Department, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Katharina Richard
- The Biology Department, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Antonino Passaniti
- The Biology Department, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brandon Carter-Cooper
- The Biology Department, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Erin T Strovel
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ashkan Emadi
- Department of Medical Oncology, Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Medical Oncology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
20
|
Li WF, Atalla E, Dong J, Konopleva M. BCL2i-Based Therapies and Emerging Resistance in Chronic Lymphocytic Leukemia. Cells 2024; 13:1922. [PMID: 39594670 PMCID: PMC11592612 DOI: 10.3390/cells13221922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Overexpression of the anti-apoptotic protein BCL-2 is a key factor in the pathogenesis of chronic lymphocytic leukemia (CLL) and is associated with poor clinical outcomes. Therapeutic activation of apoptosis in cancer cells using the BCL-2 inhibitor (BCL2i) venetoclax has shown remarkable efficacy in clinical trials, both as monotherapy and combination regimens. However, patients with CLL experience a highly variable clinical course, facing significant challenges in advanced stages due to disease relapse and the emergence of resistant clones. Resistance mechanisms include acquired BCL-2 mutations, alteration of pro-apoptotic and anti-apoptotic proteins, metabolic reprogramming, epigenetic changes, and aberrant signaling pathways. To address this complex disease and improve progression-free survival, strategies targeting multiple signaling pathways and mechanisms have been explored. Randomized clinical trials of venetoclax in combination with Bruton tyrosine kinase (BTK) inhibitors or CD20 monoclonal antibodies have significantly outperformed traditional chemoimmunotherapy in both treatment-naïve and relapsed patients, achieving undetectable minimal residual disease (uMRD) and durable remissions. This review explores the intricate balance between BCL-2 family proteins and their role in the intrinsic apoptosis pathway, discusses venetoclax resistance mechanisms, and highlights the evolving role of venetoclax and other BCL2i-based combination therapies in CLL treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Drug Resistance, Neoplasm/drug effects
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Sulfonamides/therapeutic use
- Sulfonamides/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Wing Fai Li
- Department of Internal Medicine, Jacobi Medical Center, Bronx, NY 10461, USA;
| | - Eleftheria Atalla
- Department of Hematology and Oncology, The University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Jiaxin Dong
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Marina Konopleva
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
21
|
Philadelpho BO, Santiago VG, dos Santos JEM, Silva MBDCE, De Grandis RA, Cilli EM, Pavan FR, Castilho MS, Scarafoni A, de Souza CO, Ferreira EDS. Soybean β-Conglycinin and Cowpea β-Vignin Peptides Inhibit Breast and Prostate Cancer Cell Growth: An In Silico and In Vitro Approach. Foods 2024; 13:3508. [PMID: 39517292 PMCID: PMC11545662 DOI: 10.3390/foods13213508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
B-cell lymphoma 2 protein (Bcl-2) is an important regulator of cell apoptosis. Inhibitors that mirror the structural domain 3 (BH3) of Bcl-2 can activate apoptosis in cancer cells, making them a promising target for anticancer treatment. Hence, the present study aimed to investigate potential BH3-mimetic peptides from two vicilin-derived legume proteins from soybean and cowpea bean. The proteins were isolated and sequentially hydrolyzed with pepsin/pancreatin. Peptides < 3 kDa from vicilin-derived proteins from soybean and cowpea beans experimentally inhibited the growth of cultivated breast and prostate cancer cells. In silico analysis allowed the identification of six potential candidates, all predicted to be able to interact with the BH3 domain. The VIPAAY peptide from the soybean β-conglycinin β subunit showed the highest potential to interact with Bcl-2, comparable to Venetoclax, a well-known anticancer drug. Further experiments are needed to confirm this study's findings.
Collapse
Affiliation(s)
- Biane Oliveira Philadelpho
- School of Pharmacy, Federal University of Bahia, Barão de Jeremoabo Street, Salvador 40170-115, BA, Brazil; (B.O.P.); (V.G.S.); (J.E.M.d.S.); (M.S.C.); (C.O.d.S.)
| | - Victória Guimarães Santiago
- School of Pharmacy, Federal University of Bahia, Barão de Jeremoabo Street, Salvador 40170-115, BA, Brazil; (B.O.P.); (V.G.S.); (J.E.M.d.S.); (M.S.C.); (C.O.d.S.)
| | - Johnnie Elton Machado dos Santos
- School of Pharmacy, Federal University of Bahia, Barão de Jeremoabo Street, Salvador 40170-115, BA, Brazil; (B.O.P.); (V.G.S.); (J.E.M.d.S.); (M.S.C.); (C.O.d.S.)
| | | | - Rone Aparecido De Grandis
- School of Pharmacy, São Paulo State University (UNESP), Araraquara-Jaú Road, Araraquara 14800-903, SP, Brazil; (R.A.D.G.); (F.R.P.)
| | - Eduardo Maffud Cilli
- Institute of Chemistry, São Paulo State University (UNESP), Prof. Francisco Swgni Street, Araraquara 14800-060, SP, Brazil;
| | - Fernando Rogério Pavan
- School of Pharmacy, São Paulo State University (UNESP), Araraquara-Jaú Road, Araraquara 14800-903, SP, Brazil; (R.A.D.G.); (F.R.P.)
| | - Marcelo Santos Castilho
- School of Pharmacy, Federal University of Bahia, Barão de Jeremoabo Street, Salvador 40170-115, BA, Brazil; (B.O.P.); (V.G.S.); (J.E.M.d.S.); (M.S.C.); (C.O.d.S.)
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy;
| | - Carolina Oliveira de Souza
- School of Pharmacy, Federal University of Bahia, Barão de Jeremoabo Street, Salvador 40170-115, BA, Brazil; (B.O.P.); (V.G.S.); (J.E.M.d.S.); (M.S.C.); (C.O.d.S.)
| | - Ederlan de Souza Ferreira
- School of Pharmacy, Federal University of Bahia, Barão de Jeremoabo Street, Salvador 40170-115, BA, Brazil; (B.O.P.); (V.G.S.); (J.E.M.d.S.); (M.S.C.); (C.O.d.S.)
| |
Collapse
|
22
|
Wu D, Li M, Hong Y, Jin L, Liu Q, Sun C, Li L, Han X, Deng S, Feng Y, Shen Y, Kai G. Integrated stress response activation induced by usnic acid alleviates BCL-2 inhibitor ABT-199 resistance in acute myeloid leukemia. J Adv Res 2024:S2090-1232(24)00436-3. [PMID: 39384125 DOI: 10.1016/j.jare.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION ABT-199 (venetoclax) is a BCL-2 suppressor with pronounced effects on acute myeloid leukemia (AML). However, its usefulness as a monotherapy or in combination with hypomethylating medicines like azacitidine is debatable due to acquired resistance. Usnic acid, a dibenzofuran extracted from lichen Usnea diffracta Vain, exhibits anticancer properties and may counteract multidrug resistance in leukemia cells. OBJECTIVE This study investigated whether usnic acid at low-cytotoxicity level could enhance sensitivity of AML cells with acquired resistance to ABT-199 by targeting the integrated stress response pathways. METHODS To investigate the combined effects on AML cells, we used a cell viability test, flow cytometry to quantify apoptosis, cell cycle analysis, and mitochondrial membrane potential measurement. RNA-seq and immunoblot were used to determine the potential mechanisms of ABT-199 + usnic acid combination. RESULTS Usnic acid, at a low cytotoxicity level, successfully restored ABT-199 sensitivity in AML cell lines that had developed ABT-199 resistance and increased ABT-199's antileukemic activity in a xenograft model. Mechanistically, the combination of usnic acid and ABT-199 cooperated to boost the expression of the integrated stress response (ISR)-associated genes ATF4, CHOP, and NOXA through the heme-regulated inhibitor kinase (HRI), while also promoting the degradation of the anti-apoptotic protein MCL-1. ISRIB, a compound that blocks the ISR, was able to reverse the growth suppression and cell death, the increase in expression of genes related with the ISR, and the inhibition of MCL-1 protein caused by combination therapy. Additionally, the downregulation of MCL-1 was linked to an increase in MCL-1 phosphorylation at serine 159 and subsequent destruction by the proteasome. CONCLUSION In summary, usnic acid improves chemosensitivity to ABT-199 by triggering the integrated stress response, leading to decreased levels of MCL-1 protein, suggesting a potential treatment for AML cases resistant to Bcl-2 inhibitors.
Collapse
Affiliation(s)
- Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Man Li
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yaonan Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Li Jin
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Chengtao Sun
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liqin Li
- Key Laboratory of Traditional Chinese Medicine for the Development and Clinical Transformation of Immunomodulatory Traditional Chinese Medicine in Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| | - Xiaoxiao Han
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shengqian Deng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yue Feng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yiping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Guoyin Kai
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
La Marca JE, Kelly GL, Strasser A, Diepstraten ST. Don't fear the reaper: The role of regulated cell death in tumorigenesis and BH3-mimetics for cancer therapy. Dev Cell 2024; 59:2532-2548. [PMID: 39378839 DOI: 10.1016/j.devcel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 10/10/2024]
Abstract
From its earliest characterization, it has been recognized that there is a role for regulated (programmed) cell death in cancer. As our understanding of the different types of programmed cell death processes and their molecular control has advanced, so have the technologies that allow us to manipulate these processes to, for example, fight against cancer. In this review, we describe the roles of the different forms of regulated cell death in the development of cancer as well as their potential therapeutic exploitation. In that vein, we explore the development and use of BH3-mimetics, a unique class of drugs that can directly activate the apoptotic cell death machinery to treat cancer. Finally, we address key challenges that face the field to improve the use of these therapeutics and the efforts that are being undertaken to do so.
Collapse
Affiliation(s)
- John E La Marca
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
McKeown JP, Byrne AJ, Bright SA, Charleton CE, Kandwal S, Čmelo I, Twamley B, McElligott AM, Fayne D, O’Boyle NM, Williams DC, Meegan MJ. Synthesis and Biochemical Evaluation of Ethanoanthracenes and Related Compounds: Antiproliferative and Pro-Apoptotic Effects in Chronic Lymphocytic Leukemia (CLL). Pharmaceuticals (Basel) 2024; 17:1034. [PMID: 39204139 PMCID: PMC11359702 DOI: 10.3390/ph17081034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of mature B cells, and it is the most frequent form of leukemia diagnosed in Western countries. It is characterized by the proliferation and accumulation of neoplastic B lymphocytes in the blood, lymph nodes, bone marrow and spleen. We report the synthesis and antiproliferative effects of a series of novel ethanoanthracene compounds in CLL cell lines. Structural modifications were achieved via the Diels-Alder reaction of 9-(2-nitrovinyl)anthracene and 3-(anthracen-9-yl)-1-arylprop-2-en-1-ones (anthracene chalcones) with dienophiles, including maleic anhydride and N-substituted maleimides, to afford a series of 9-(E)-(2-nitrovinyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones, 9-(E)-3-oxo-3-phenylprop-1-en-1-yl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones and related compounds. Single-crystal X-ray analysis confirmed the structures of the novel ethanoanthracenes 23f, 23h, 24a, 24g, 25f and 27. The products were evaluated in HG-3 and PGA-1 CLL cell lines (representative of poor and good patient prognosis, respectively). The most potent compounds were identified as 20a, 20f, 23a and 25n with IC50 values in the ranges of 0.17-2.69 µM (HG-3) and 0.35-1.97 µM (PGA-1). The pro-apoptotic effects of the potent compounds 20a, 20f, 23a and 25n were demonstrated in CLL cell lines HG-3 (82-95%) and PGA-1 (87-97%) at 10 µM, with low toxicity (12-16%) observed in healthy-donor peripheral blood mononuclear cells (PBMCs) at concentrations representative of the compounds IC50 values for both the HG-3 and PGA-1 CLL cell lines. The antiproliferative effect of the selected compounds, 20a, 20f, 23a and 25n, was mediated through ROS flux with a marked increase in cell viability upon pretreatment with the antioxidant NAC. 25n also demonstrated sub-micromolar activity in the NCI 60 cancer cell line panel, with a mean GI50 value of 0.245 µM. This ethanoanthracene series of compounds offers potential for the further development of lead structures as novel chemotherapeutics to target CLL.
Collapse
Affiliation(s)
- James P. McKeown
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Andrew J. Byrne
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Sandra A. Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (D.C.W.)
| | - Clara E. Charleton
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Shubhangi Kandwal
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Ivan Čmelo
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 P3X2 Dublin, Ireland
| | - Anthony M. McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College, Dublin 8, D08 W9RT Dublin, Ireland;
| | - Darren Fayne
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - D. Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (D.C.W.)
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| |
Collapse
|
25
|
Samuel VP, Moglad E, Afzal M, Kazmi I, Alzarea SI, Ali H, Almujri SS, Abida, Imran M, Gupta G, Chinni SV, Tiwari A. Exploring Ubiquitin-specific proteases as therapeutic targets in Glioblastoma. Pathol Res Pract 2024; 260:155443. [PMID: 38981348 DOI: 10.1016/j.prp.2024.155443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Glioblastoma (GB) remains a formidable challenge and requires new treatment strategies. The vital part of the Ubiquitin-proteasome system (UPS) in cellular regulation has positioned it as a potentially crucial target in GB treatment, given its dysregulation oncolines. The Ubiquitin-specific proteases (USPs) in the UPS system were considered due to the garden role in the cellular processes associated with oncolines and their vital function in the apoptotic process, cell cycle regulation, and autophagy. The article provides a comprehensive summary of the evidence base for targeting USPs as potential factors for neoplasm treatment. The review considers the participation of the UPS system in the development, resulting in the importance of p53, Rb, and NF-κB, and evaluates specific goals for therapeutic administration using midnight proteasomal inhibitors and small molecule antagonists of E1 and E2 enzymes. Despite the slowed rate of drug creation, recent therapeutic discoveries based on USP system dynamics hold promise for specialized therapies. The review concludes with an analysis of future wanderers and the feasible effects of targeting USPs on personalized GB therapies, which can improve patient hydration in this current and unattractive therapeutic landscape. The manuscript emphasizes the possibility of USP oncogene therapy as a promising alternative treatment line for GB. It stresses the direct creation of research on the medical effectiveness of the approach.
Collapse
Affiliation(s)
- Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, the United Arab Emirates
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India.
| |
Collapse
|
26
|
Lou J, Zhou Q, Lyu X, Cen X, Liu C, Yan Z, Li Y, Tang H, Liu Q, Ding J, Lu Y, Huang H, Xie H, Zhao Y. Discovery of a Covalent Inhibitor That Overcame Resistance to Venetoclax in AML Cells Overexpressing BFL-1. J Med Chem 2024; 67:10795-10830. [PMID: 38913996 DOI: 10.1021/acs.jmedchem.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Clinical and biological studies have shown that overexpression of BFL-1 is one contributing factor to venetoclax resistance. The resistance might be overcome by a potent BFL-1 inhibitor, but such an inhibitor is rare. In this study, we show that 56, featuring an acrylamide moiety, inhibited the BFL-1/BID interaction with a Ki value of 105 nM. More interestingly, 56 formed an irreversible conjugation adduct at the C55 residue of BFL-1. 56 was a selective BFL-1 inhibitor, and its MCL-1 binding affinity was 10-fold weaker, while it did not bind BCL-2 and BCL-xL. Mechanistic studies showed that 56 overcame venetoclax resistance in isogenic AML cell lines MOLM-13-OE and MV4-11-OE, which both overexpressed BFL-1. More importantly, 56 and venetoclax combination promoted stronger apoptosis induction than either single agent. Collectively, our data show that 56 overcame resistance to venetoclax in AML cells overexpressing BFL-1. These attributes make 56 a promising candidate for future optimization.
Collapse
MESH Headings
- Humans
- Sulfonamides/pharmacology
- Sulfonamides/chemistry
- Sulfonamides/chemical synthesis
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/chemistry
- Drug Resistance, Neoplasm/drug effects
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Cell Line, Tumor
- Minor Histocompatibility Antigens/metabolism
- Apoptosis/drug effects
- Drug Discovery
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Jianfeng Lou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qianqian Zhou
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Xinyi Cen
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Yan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Haotian Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Qiupei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Jian Ding
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ye Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - He Huang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Xie
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
27
|
Palominos C, Fuentes-Retamal S, Salazar JP, Guzmán-Rivera D, Correa P, Mellado M, Araya-Maturana R, Urra FA. Mitochondrial bioenergetics as a cell fate rheostat for responsive to Bcl-2 drugs: New cues for cancer chemotherapy. Cancer Lett 2024; 594:216965. [PMID: 38788967 DOI: 10.1016/j.canlet.2024.216965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Pro-survival BCL-2 proteins prevent the initiation of intrinsic apoptosis (mitochondria-dependent pathway) by inhibiting the pro-apoptotic proteins BAX and BAK, while BH3-only proteins promote apoptosis by blocking pro-survival BCL-2 proteins. Disruptions in this delicate balance contribute to cancer cell survival and chemoresistance. Recent advances in cancer therapeutics involve a new generation of drugs known as BH3-mimetics, which are small molecules designed to mimic the action of BH3-only proteins. Promising effects have been observed in patients with hematological and solid tumors undergoing treatment with these agents. However, the rapid emergence of mitochondria-dependent resistance to BH3-mimetics has been reported. This resistance involves increased mitochondrial respiration, altered mitophagy, and mitochondria with higher and tighter cristae. Conversely, mutations in isocitrate dehydrogenase 1 and 2, catalyzing R-2-hydroxyglutarate production, promote sensitivity to venetoclax. This evidence underscores the urgency for comprehensive studies on bioenergetics-based adaptive responses in both BH3 mimetics-sensitive and -resistant cancer cells. Ongoing clinical trials are evaluating BH3-mimetics in combination with standard chemotherapeutics. In this article, we discuss the role of mitochondrial bioenergetics in response to BH3-mimetics and explore potential therapeutic opportunities through metabolism-targeting strategies.
Collapse
Affiliation(s)
- Charlotte Palominos
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Sebastián Fuentes-Retamal
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Juan Pablo Salazar
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Daniela Guzmán-Rivera
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Pablo Correa
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Mathias Mellado
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, 3460000, Chile
| | - Félix A Urra
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Interuniversity Center for Healthy Aging (CIES), Consortium of Universities of the State of Chile (CUECH), Santiago, 8320216, Chile.
| |
Collapse
|
28
|
Dolnikova A, Kazantsev D, Klanova M, Pokorna E, Sovilj D, Kelemen CD, Tuskova L, Hoferkova E, Mraz M, Helman K, Curik N, Machova Polakova K, Andera L, Trneny M, Klener P. Blockage of BCL-XL overcomes venetoclax resistance across BCL2+ lymphoid malignancies irrespective of BIM status. Blood Adv 2024; 8:3532-3543. [PMID: 38713893 PMCID: PMC11261020 DOI: 10.1182/bloodadvances.2024012906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 05/09/2024] Open
Abstract
ABSTRACT Venetoclax (VEN), a B-cell lymphoma 2 (BCL2) inhibitor, has a promising single-agent activity in mantle cell lymphoma (MCL), acute lymphoblastic leukemia (ALL), and large BCLs, but remissions were generally short, which call for rational drug combinations. Using a panel of 21 lymphoma and leukemia cell lines and 28 primary samples, we demonstrated strong synergy between VEN and A1155463, a BCL-XL inhibitor. Immunoprecipitation experiments and studies on clones with knockout of expression or transgenic expression of BCL-XL confirmed its key role in mediating inherent and acquired VEN resistance. Of note, the VEN and A1155463 combination was synthetically lethal even in the cell lines with lack of expression of the proapoptotic BCL2L11/BIM and in the derived clones with genetic knockout of BCL2L11/BIM. This is clinically important because BCL2L11/BIM deletion, downregulation, or sequestration results in VEN resistance. Immunoprecipitation experiments further suggested that the proapoptotic effector BAX belongs to principal mediators of the VEN and A1155463 mode of action in the BIM-deficient cells. Lastly, the efficacy of the new proapoptotic combination was confirmed in vivo on a panel of 9 patient-derived lymphoma xenografts models including MCL (n = 3), B-ALL (n = 2), T-ALL (n = 1), and diffuse large BCL (n = 3). Because continuous inhibition of BCL-XL causes thrombocytopenia, we proposed and tested an interrupted 4 days on/3 days off treatment regimen, which retained the desired antitumor synergy with manageable platelet toxicity. The proposed VEN and A1155463 combination represents an innovative chemotherapy-free regimen with significant preclinical activity across diverse BCL2+ hematologic malignancies irrespective of the BCL2L11/BIM status.
Collapse
Affiliation(s)
- Alexandra Dolnikova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dmitry Kazantsev
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Magdalena Klanova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine, Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| | - Eva Pokorna
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dana Sovilj
- Institute of Biotechnology Czech Academy of Sciences/Biotechnology and Biomedicine Centre of the Czech Academy of Sciences and Charles University, Vestec, Czech Republic
| | - Cristina Daniela Kelemen
- Institute of Biotechnology Czech Academy of Sciences/Biotechnology and Biomedicine Centre of the Czech Academy of Sciences and Charles University, Vestec, Czech Republic
| | - Liliana Tuskova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine, Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| | - Eva Hoferkova
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Helman
- Faculty of Informatics and Statistics, University of Economics, Prague, Czech Republic
| | - Nikola Curik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Ladislav Andera
- Institute of Biotechnology Czech Academy of Sciences/Biotechnology and Biomedicine Centre of the Czech Academy of Sciences and Charles University, Vestec, Czech Republic
- Institute of Molecular Genetics CAS, Prague, Czech Republic
| | - Marek Trneny
- First Department of Medicine, Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine, Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| |
Collapse
|
29
|
Derippe T, Fouliard S, Decleves X, Mager DE. Quantitative systems pharmacology modeling of tumor heterogeneity in response to BH3-mimetics using virtual tumors calibrated with cell viability assays. CPT Pharmacometrics Syst Pharmacol 2024; 13:1252-1263. [PMID: 38747730 PMCID: PMC11247121 DOI: 10.1002/psp4.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 07/16/2024] Open
Abstract
Both primary and acquired resistance mechanisms that involve intra-tumoral cell heterogeneity limit the use of BH3-mimetics to trigger tumor cell apoptosis. This article proposes a new quantitative systems pharmacology (QSP)-based methodology in which cell viability assays are used to calibrate virtual tumors (VTs) made of virtual cells whose fate is determined by simulations from an apoptosis QSP model. VTs representing SU-DHL-4 and KARPAS-422 cell lines were calibrated using in vitro data involving venetoclax (anti-BCL2), A-1155463 (anti-BCLXL), and/or A-1210477 (anti-MCL1). The calibrated VTs provide insights into the combination of several BH3-mimetics, such as the distinction between cells eliminated by at least one of the drugs (monotherapies) from the cells eliminated by a pharmacological combination only. Calibrated VTs can also be used as initial conditions in an agent-based model (ABM) framework, and a minimal ABM was developed to bridge in vitro SU-DHL-4 cell viability results to tumor growth inhibition experiments in mice.
Collapse
Affiliation(s)
- Thibaud Derippe
- Institut de Recherches Internationales Servier, Suresnes, France
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Sylvain Fouliard
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Xavier Decleves
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
- Enhanced Pharmacodynamics, LLC, Buffalo, New York, USA
| |
Collapse
|
30
|
Promsut K, Sangtanoo P, Srimongkol P, Saisavoey T, Puthong S, Buakeaw A, Reamtong O, Nutho B, Karnchanatat A. A novel peptide derived from Zingiber cassumunar rhizomes exhibits anticancer activity against the colon adenocarcinoma cells (Caco-2) via the induction of intrinsic apoptosis signaling. PLoS One 2024; 19:e0304701. [PMID: 38870120 PMCID: PMC11175412 DOI: 10.1371/journal.pone.0304701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
This paper presents the initial exploration of the free radical scavenging capabilities of peptides derived from protein hydrolysates (PPH) obtained from Zingiber cassumunar rhizomes (Phlai). To replicate the conditions of gastrointestinal digestion, a combination of pepsin and pancreatin proteolysis was employed to generate these hydrolysates. Subsequently, the hydrolysate underwent fractionation using molecular weight cut-off membranes at 10, 5, 3, and 0.65 kDa. The fraction with a molecular weight less than 0.65 kDa exhibited the highest levels ABTS, DPPH, FRAP, and NO radical scavenging activity. Following this, RP-HPLC was used to further separate the fraction with a molecular weight less than 0.65 kDa into three sub-fractions. Among these, the F5 sub-fraction displayed the most prominent radical-scavenging properties. De novo peptide sequencing via quadrupole-time-of-flight-electron spin induction-mass spectrometry identified a pair of novel peptides: Asp-Gly-Ile-Phe-Val-Leu-Asn-Tyr (DGIFVLNY or DY-8) and Ile-Pro-Thr-Asp-Glu-Lys (IPTDEK or IK-6). Database analysis confirmed various properties, including biological activity, toxicity, hydrophilicity, solubility, and potential allergy concerns. Furthermore, when tested on the human adenocarcinoma colon (Caco-2) cell line, two synthetic peptides demonstrated cellular antioxidant activity in a concentration-dependent manner. These peptides were also assessed using the FITC Annexin V apoptosis detection kit with PI, confirming the induction of apoptosis. Notably, the DY-8 peptide induced apoptosis, upregulated mRNA levels of caspase-3, -8, and -9, and downregulated Bcl-2, as confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Western blot analysis indicated increased pro-apoptotic Bax expression and decreased anti-apoptotic Bcl-2 expression in Caco-2 cells exposed to the DY-8 peptide. Molecular docking analysis revealed that the DY-8 peptide exhibited binding affinity with Bcl-2, Bcl-xL, and Mcl-1, suggesting potential utility in combating colon cancer as functional food ingredients.
Collapse
Affiliation(s)
- Kitjasit Promsut
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
31
|
Bricelj A, Dora Ng YL, Gobec M, Kuchta R, Hu W, Javornik Š, Rožič M, Gütschow M, Zheng G, Krönke J, Steinebach C, Sosič I. Design, Synthesis, and Evaluation of BCL-2 Targeting PROTACs. Chemistry 2024:e202400430. [PMID: 38818652 DOI: 10.1002/chem.202400430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
BCL-2, a member of the BCL-2 protein family, is an antiapoptotic factor that regulates the intrinsic pathway of apoptosis. Due to its aberrant activity, it is frequently implicated in haematopoietic cancers and represents an attractive target for the development of therapeutics that antagonize its activity. A selective BCL-2 inhibitor, venetoclax, was approved for treating chronic lymphocytic leukaemia, acute myeloid leukemia, and other haematologic malignancies, validating BCL-2 as an anticancer target. Since then, alternative therapeutic approaches to modulate the activity of BCL-2 have been explored, such as antibody-drug conjugates and proteolysis-targeting chimeras. Despite numerous research groups focusing on developing degraders of BCL-2 family member proteins, selective BCL-2 PROTACs remain elusive, as disclosed compounds only show dual BCL-xL/BCL-2 degradation. Herein, we report our efforts to develop BCL-2 degraders by incorporating two BCL-2 binding moieties into chimeric compounds that aim to hijack one of three E3 ligases: CRBN, VHL, and IAPs. Even though our project did not result in obtaining a potent and selective BCL-2 PROTAC, our research will aid in understanding the narrow chemical space of BCL-2 degraders.
Collapse
Affiliation(s)
- Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Yuen Lam Dora Ng
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, D-12203, Berlin, Germany
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Robert Kuchta
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Wanyi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 32610, Gainesville, FL, USA
| | - Špela Javornik
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Miha Rožič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Michael Gütschow
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 32610, Gainesville, FL, USA
| | - Jan Krönke
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, D-12203, Berlin, Germany
| | - Christian Steinebach
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
32
|
Del Giudice I, Della Starza I, De Falco F, Gaidano G, Sportoletti P. Monitoring Response and Resistance to Treatment in Chronic Lymphocytic Leukemia. Cancers (Basel) 2024; 16:2049. [PMID: 38893168 PMCID: PMC11171231 DOI: 10.3390/cancers16112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The recent evolution in chronic lymphocytic leukemia (CLL) targeted therapies led to a progressive change in the way clinicians manage the goals of treatment and evaluate the response to treatment in respect to the paradigm of the chemoimmunotherapy era. Continuous therapies with BTK inhibitors achieve prolonged and sustained control of the disease. On the other hand, venetoclax and anti-CD20 monoclonal antibodies or, more recently, ibrutinib plus venetoclax combinations, given for a fixed duration, achieve undetectable measurable residual disease (uMRD) in the vast majority of patients. On these grounds, a time-limited MRD-driven strategy, a previously unexplored scenario in CLL, is being attempted. On the other side of the spectrum, novel genetic and non-genetic mechanisms of resistance to targeted treatments are emerging. Here we review the response assessment criteria, the evolution and clinical application of MRD analysis and the mechanisms of resistance according to the novel treatment strategies within clinical trials. The extent to which this novel evidence will translate in the real-life management of CLL patients remains an open issue to be addressed.
Collapse
Affiliation(s)
- Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy;
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy;
- AIL Roma, ODV, 00161 Rome, Italy
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncological Research, University of Perugia, 06129 Perugia, Italy;
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncological Research, University of Perugia, 06129 Perugia, Italy;
| |
Collapse
|
33
|
Guo Y, Xue H, Hu N, Liu Y, Sun H, Yu D, Qin L, Shi G, Wang F, Xin L, Sun W, Zhang F, Song X, Li S, Wei Q, Guo Y, Li Y, Liu X, Chen S, Zhang T, Wu Y, Su D, Zhu Y, Xu A, Xu H, Yang S, Zheng Z, Liu J, Yang X, Yuan X, Hong Y, Sun X, Guo Y, Zhou C, Liu X, Wang L, Wang Z. Discovery of the Clinical Candidate Sonrotoclax (BGB-11417), a Highly Potent and Selective Inhibitor for Both WT and G101V Mutant Bcl-2. J Med Chem 2024; 67:7836-7858. [PMID: 38695063 PMCID: PMC11129194 DOI: 10.1021/acs.jmedchem.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024]
Abstract
The approval of venetoclax, a B-cell lymphoma-2 (Bcl-2) selective inhibitor, for the treatment of chronic lymphocytic leukemia demonstrated that the antiapoptotic protein Bcl-2 is a druggable target for B-cell malignancies. However, venetoclax's limited potency cannot produce a strong, durable clinical benefit in other Bcl-2-mediated malignancies (e.g., diffuse large B-cell lymphomas) and multiple recurrent Bcl-2 mutations (e.g., G101V) have been reported to mediate resistance to venetoclax after long-term treatment. Herein, we described novel Bcl-2 inhibitors with increased potency for both wild-type (WT) and mutant Bcl-2. Comprehensive structure optimization led to the clinical candidate BGB-11417 (compound 12e, sonrotoclax), which exhibits strong in vitro and in vivo inhibitory activity against both WT Bcl-2 and the G101V mutant, as well as excellent selectivity over Bcl-xL without obvious cytochrome P450 inhibition. Currently, BGB-11417 is undergoing phase II/III clinical assessments as monotherapy and combination treatment.
Collapse
Affiliation(s)
- Yunhang Guo
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Hai Xue
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Nan Hu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Ye Liu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Hanzi Sun
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Desheng Yu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Ling Qin
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Gongyin Shi
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Fan Wang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Lei Xin
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Weihua Sun
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Fan Zhang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xiaomin Song
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Shuran Li
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Qiang Wei
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Ying Guo
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yong Li
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xiaoxin Liu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Shuaishuai Chen
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Taichang Zhang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yue Wu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Dan Su
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yutong Zhu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Aiying Xu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Haipeng Xu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Shasha Yang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Zhijun Zheng
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Junhua Liu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xuefei Yang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xi Yuan
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yuan Hong
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xuebing Sun
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yin Guo
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Changyou Zhou
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xuesong Liu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Lai Wang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Zhiwei Wang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| |
Collapse
|
34
|
Liu J, Li S, Wang Q, Feng Y, Xing H, Yang X, Guo Y, Guo Y, Sun H, Liu X, Yang S, Mei Z, Zhu Y, Cheng Z, Chen S, Xu M, Zhang W, Wan N, Wang J, Ma Y, Zhang S, Luan X, Xu A, Li L, Wang H, Yang X, Hong Y, Xue H, Yuan X, Hu N, Song X, Wang Z, Liu X, Wang L, Liu Y. Sonrotoclax overcomes BCL2 G101V mutation-induced venetoclax resistance in preclinical models of hematologic malignancy. Blood 2024; 143:1825-1836. [PMID: 38211332 PMCID: PMC11076911 DOI: 10.1182/blood.2023019706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT Venetoclax, the first-generation inhibitor of the apoptosis regulator B-cell lymphoma 2 (BCL2), disrupts the interaction between BCL2 and proapoptotic proteins, promoting the apoptosis in malignant cells. Venetoclax is the mainstay of therapy for relapsed chronic lymphocytic leukemia and is under investigation in multiple clinical trials for the treatment of various cancers. Although venetoclax treatment can result in high rates of durable remission, relapse has been widely observed, indicating the emergence of drug resistance. The G101V mutation in BCL2 is frequently observed in patients who relapsed treated with venetoclax and sufficient to confer resistance to venetoclax by interfering with compound binding. Therefore, the development of next-generation BCL2 inhibitors to overcome drug resistance is urgently needed. In this study, we discovered that sonrotoclax, a potent and selective BCL2 inhibitor, demonstrates stronger cytotoxic activity in various hematologic cancer cells and more profound tumor growth inhibition in multiple hematologic tumor models than venetoclax. Notably, sonrotoclax effectively inhibits venetoclax-resistant BCL2 variants, such as G101V. The crystal structures of wild-type BCL2/BCL2 G101V in complex with sonrotoclax revealed that sonrotoclax adopts a novel binding mode within the P2 pocket of BCL2 and could explain why sonrotoclax maintains stronger potency than venetoclax against the G101V mutant. In summary, sonrotoclax emerges as a potential second-generation BCL2 inhibitor for the treatment of hematologic malignancies with the potential to overcome BCL2 mutation-induced venetoclax resistance. Sonrotoclax is currently under investigation in multiple clinical trials.
Collapse
Affiliation(s)
- Jiuyang Liu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shuran Li
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Qin Wang
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yingcai Feng
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Haimei Xing
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xuefei Yang
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Ying Guo
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yunhang Guo
- Department of Medicinal Chemistry, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Hanzi Sun
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xiaoxin Liu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shasha Yang
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Zhu Mei
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yutong Zhu
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Zhenzhen Cheng
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shuaishuai Chen
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Min Xu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Wenjing Zhang
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Nanyan Wan
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Jia Wang
- Department of Bioinformatics, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yanwen Ma
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shuo Zhang
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xudong Luan
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Aiying Xu
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Lin Li
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Haitao Wang
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xiaolong Yang
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yuan Hong
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Hai Xue
- Department of Medicinal Chemistry, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xi Yuan
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Nan Hu
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xiaomin Song
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Zhiwei Wang
- Department of Medicinal Chemistry, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xuesong Liu
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Lai Wang
- Research and Clinical Development, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Ye Liu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| |
Collapse
|
35
|
Forsberg M, Konopleva M. AML treatment: conventional chemotherapy and emerging novel agents. Trends Pharmacol Sci 2024; 45:430-448. [PMID: 38643058 DOI: 10.1016/j.tips.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Acute myeloid leukemia (AML) is driven by complex mutations and cytogenetic abnormalities with profound tumoral heterogeneity, making it challenging to treat. Ten years ago, the 5-year survival rate of patients with AML was only 29% with conventional chemotherapy and stem cell transplantation. All attempts to improve conventional therapy over the previous 40 years had failed. Now, new genomic, immunological, and molecular insights have led to a renaissance in AML therapy. Improvements to standard chemotherapy and a wave of new targeted therapies have been developed. However, how best to incorporate these advances into frontline therapy and sequence them in relapse is not firmly established. In this review, we highlight current treatments of AML, targeted agents, and pioneering attempts to synthesize these developments into a rational standard of care (SoC).
Collapse
Affiliation(s)
- Mark Forsberg
- Montefiore Einstein Cancer Center, Department of Oncology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Marina Konopleva
- Montefiore Einstein Cancer Center, Department of Oncology, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
36
|
Sun H, Liao F, Tian Y, Lei Y, Fu Y, Wang J. Molecular-Scale Investigations Reveal the Effect of Natural Polyphenols on BAX/Bcl-2 Interactions. Int J Mol Sci 2024; 25:2474. [PMID: 38473728 DOI: 10.3390/ijms25052474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Apoptosis signaling controls the cell cycle through the protein-protein interactions (PPIs) of its major B-cell lymphoma 2-associated x protein (BAX) and B-cell lymphoma 2 protein (Bcl-2). Due to the antagonistic function of both proteins, apoptosis depends on a properly tuned balance of the kinetics of BAX and Bcl-2 activities. The utilization of natural polyphenols to regulate the binding process of PPIs is feasible. However, the mechanism of this modulation has not been studied in detail. Here, we utilized atomic force microscopy (AFM) to evaluate the effects of polyphenols (kaempferol, quercetin, dihydromyricetin, baicalin, curcumin, rutin, epigallocatechin gallate, and gossypol) on the BAX/Bcl-2 binding mechanism. We demonstrated at the molecular scale that polyphenols quantitatively affect the interaction forces, kinetics, thermodynamics, and structural properties of BAX/Bcl-2 complex formation. We observed that rutin, epigallocatechin gallate, and baicalin reduced the binding affinity of BAX/Bcl-2 by an order of magnitude. Combined with surface free energy and molecular docking, the results revealed that polyphenols are driven by multiple forces that affect the orientation freedom of PPIs, with hydrogen bonding, hydrophobic interactions, and van der Waals forces being the major contributors. Overall, our work provides valuable insights into how molecules tune PPIs to modulate their function.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Fenghui Liao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
37
|
Li F, Liu J, Liu C, Liu Z, Peng X, Huang Y, Chen X, Sun X, Wang S, Chen W, Xiong D, Diao X, Wang S, Zhuang J, Wu C, Wu D. Cyclic peptides discriminate BCL-2 and its clinical mutants from BCL-X L by engaging a single-residue discrepancy. Nat Commun 2024; 15:1476. [PMID: 38368459 PMCID: PMC10874388 DOI: 10.1038/s41467-024-45848-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Overexpressed pro-survival B-cell lymphoma-2 (BCL-2) family proteins BCL-2 and BCL-XL can render tumor cells malignant. Leukemia drug venetoclax is currently the only approved selective BCL-2 inhibitor. However, its application has led to an emergence of resistant mutations, calling for drugs with an innovative mechanism of action. Herein we present cyclic peptides (CPs) with nanomolar-level binding affinities to BCL-2 or BCL-XL, and further reveal the structural and functional mechanisms of how these CPs target two proteins in a fashion that is remarkably different from traditional small-molecule inhibitors. In addition, these CPs can bind to the venetoclax-resistant clinical BCL-2 mutants with similar affinities as to the wild-type protein. Furthermore, we identify a single-residue discrepancy between BCL-2 D111 and BCL-XL A104 as a molecular "switch" that can differently engage CPs. Our study suggests that CPs may inhibit BCL-2 or BCL-XL by delicately modulating protein-protein interactions, potentially benefiting the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Fengwei Li
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Junjie Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Liu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ziyan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiangda Peng
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Yinyue Huang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoyu Chen
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiangnan Sun
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sen Wang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wei Chen
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, 200127, China
| | - Dan Xiong
- Xiamen Lifeint Technology Company Ltd., Xiamen, 361005, China
| | - Xiaotong Diao
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Jingjing Zhuang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Marine College, Shandong University, Weihai, 264209, China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
38
|
Bruzzese A, Martino EA, Labanca C, Mendicino F, Lucia E, Olivito V, Neri A, Morabito F, Vigna E, Gentile M. Potential of BGB-11417, a BCL2 inhibitor, in hematological malignancies. Expert Opin Investig Drugs 2024; 33:73-77. [PMID: 38264792 DOI: 10.1080/13543784.2024.2309873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Affiliation(s)
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | | | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
39
|
sofi S, Mehraj U, Jan N, Almilaibary A, Ahmad I, Ahmad F, Ahmad Mir M. Clinicopathological Significance and Expression Pattern of Bcl2 in Breast Cancer: A Comprehensive in silico and in vitro Study. Saudi J Biol Sci 2024; 31:103916. [PMID: 38223131 PMCID: PMC10787292 DOI: 10.1016/j.sjbs.2023.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
B-cell lymphoma/leukemia gene-2 (Bcl-2) is the primary proto-oncogene that has been shown to work by preventing apoptosis/programmed cell death. Bcl-2 combines a variety of cell-generated signals associated to the survival and death of cells. In glioma, lung, and breast cancer, Bcl-2 over-expression has been linked to an increase in invasion and migration. Many treatment regimens that target Bcl2 have been established and approved, and thus increasing the survival rates of the patients. The primary goal of this research was to recognize new therapeutic compounds that target Bcl2 and assess Bcl2 expression pattern in BC patients. We used various bioinformatic tools as well as several in vitro assays to look out the expression and inhibition of Bcl2 in BC. Our study depicted that Bcl2 had a strong connection with tumour stroma, notably with suppressor cells originating from myeloid tissues. Moreover, in vitro and in silico research identified Paclitaxel as a promising natural substance that targets Bcl2. Overall, this work shows that Bcl2 overexpression accelerates the development of BC, and that targeting Bcl2 in combination with other drugs will dramatically improve BC patient's response to treatment and prevent the emergence of drug resistance.
Collapse
Affiliation(s)
- Shazia sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Umar Mehraj
- Department of pathology, Duke University, Durham, NC 27708, United States
| | - Nusrat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Abdullah Almilaibary
- Department of Family & Community Medicine, Faculty of Medicine, Al Baha University, Albaha 65511, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, CAMS, King Khalid University, Abha, Saudi Arabia
| | - Fuzail Ahmad
- College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
40
|
Zygmunciak P, Robak T, Puła B. Treatment of Double-Refractory Chronic Lymphocytic Leukemia-An Unmet Clinical Need. Int J Mol Sci 2024; 25:1589. [PMID: 38338868 PMCID: PMC10855898 DOI: 10.3390/ijms25031589] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Recent years have seen significant improvement in chronic lymphocytic leukemia (CLL) management. Targeting B-cell lymphoma (BCL-2) and Bruton's kinase (BTK) have become the main strategies to restrain CLL activity. These agents are generally well tolerated, but the discontinuation of these therapies happens due to resistance, adverse effects, and Richter's transformation. A growing population of patients who have previously used both BTK inhibitors and BCL2 suffer from the constriction of the following regimens. This review explores the resistance mechanisms for both ibrutinib and venetoclax. Moreover, we present innovative approaches evaluated for treating double-refractory CLL.
Collapse
Affiliation(s)
- Przemysław Zygmunciak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (P.Z.); (B.P.)
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| | - Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (P.Z.); (B.P.)
| |
Collapse
|
41
|
Poongavanam V, Wieske LHE, Peintner S, Erdélyi M, Kihlberg J. Molecular chameleons in drug discovery. Nat Rev Chem 2024; 8:45-60. [PMID: 38123688 DOI: 10.1038/s41570-023-00563-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Molecular chameleons possess a flexibility that allows them to dynamically shield or expose polar functionalities in response to the properties of the environment. Although the concept of molecular chameleons was introduced already in 1970, interest in them has grown considerably since the 2010s, when drug discovery has focused to an increased extent on new chemical modalities. Such modalities include cyclic peptides, macrocycles and proteolysis-targeting chimeras, all of which reside in a chemical space far from that of traditional small-molecule drugs. Both cell permeability and aqueous solubility are required for the oral absorption of drugs. Engineering these properties, and potent target binding, into the larger new modalities is a more daunting task than for traditional small-molecule drugs. The ability of chameleons to adapt to different environments may be essential for success. In this Review, we provide both general and theoretical insights into the realm of molecular chameleons. We discuss why chameleons have come into fashion and provide a do-it-yourself toolbox for their design; we then provide a glimpse of how advanced in silico methods can support molecular chameleon design.
Collapse
Affiliation(s)
| | | | - Stefan Peintner
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Máté Erdélyi
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
42
|
Abd El-Hameed RH, Mohamed MS, Awad SM, Hassan BB, Khodair MAEF, Mansour YE. Novel benzo chromene derivatives: design, synthesis, molecular docking, cell cycle arrest, and apoptosis induction in human acute myeloid leukemia HL-60 cells. J Enzyme Inhib Med Chem 2023; 38:405-422. [DOI: 10.1080/14756366.2022.2151592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Rania H. Abd El-Hameed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mosaad S. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Bardes B. Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Yara E. Mansour
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
43
|
Sánchez Suárez MDM, Martín Roldán A, Alarcón-Payer C, Rodríguez-Gil MÁ, Poquet-Jornet JE, Puerta Puerta JM, Jiménez Morales A. Treatment of Chronic Lymphocytic Leukemia in the Personalized Medicine Era. Pharmaceutics 2023; 16:55. [PMID: 38258066 PMCID: PMC10818903 DOI: 10.3390/pharmaceutics16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Chronic lymphocytic leukemia is a lymphoproliferative disorder marked by the expansion of monoclonal, mature CD5+CD23+ B cells in peripheral blood, secondary lymphoid tissues, and bone marrow. The disease exhibits significant heterogeneity, with numerous somatic genetic alterations identified in the neoplastic clone, notably mutated TP53 and immunoglobulin heavy chain mutational statuses. Recent studies emphasize the pivotal roles of genetics and patient fragility in treatment decisions. This complexity underscores the need for a personalized approach, tailoring interventions to individual genetic profiles for heightened efficacy. The era of personalized treatment in CLL signifies a transformative shift, holding the potential for improved outcomes in the conquest of this intricate hematologic disorder. This review plays a role in elucidating the evolving CLL treatment landscape, encompassing all reported genetic factors. Through a comprehensive historical analysis, it provides insights into the evolution of CLL management. Beyond its retrospective nature, this review could be a valuable resource for clinicians, researchers, and stakeholders, offering a window into the latest advancements. In essence, it serves as a dynamic exploration of our current position and the promising prospects on the horizon.
Collapse
Affiliation(s)
- María Del Mar Sánchez Suárez
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.D.M.S.S.); (A.M.R.); (A.J.M.)
| | - Alicia Martín Roldán
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.D.M.S.S.); (A.M.R.); (A.J.M.)
| | - Carolina Alarcón-Payer
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.D.M.S.S.); (A.M.R.); (A.J.M.)
| | - Miguel Ángel Rodríguez-Gil
- Unidad de Gestión Clínica Hematología y Hemoterapia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.Á.R.-G.); (J.M.P.P.)
| | | | - José Manuel Puerta Puerta
- Unidad de Gestión Clínica Hematología y Hemoterapia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.Á.R.-G.); (J.M.P.P.)
| | - Alberto Jiménez Morales
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.D.M.S.S.); (A.M.R.); (A.J.M.)
| |
Collapse
|
44
|
Abu-Elfotuh K, Darwish A, Elsanhory HMA, Alharthi HH, Hamdan AME, Hamdan AM, Masoud RAE, Abd El-Rhman RH, Reda E. In silico and in vivo analysis of the relationship between ADHD and social isolation in pups rat model: Implication of redox mechanisms, and the neuroprotective impact of Punicalagin. Life Sci 2023; 335:122252. [PMID: 37935275 DOI: 10.1016/j.lfs.2023.122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) has high incidence rate among children which may be due to excessive monosodium glutamate (MSG) consumption and social isolation (SI). AIM We aimed to explore the relationships between MSG, SI, and ADHD development and to evaluate the neuroprotective potential of Punicalagin (PUN). METHODS Eighty male rat pups randomly distributed into eight groups. Group I is the control, and Group II is socially engaged rats treated with PUN. Groups III to VII were exposed to ADHD-inducing factors: Group III to SI, Group IV to MSG, and Group V to both SI and MSG. Furthermore, Groups VI to VIII were the same Groups III to V but additionally received PUN treatment. KEY FINDINGS Exposure to MSG and/or SI led to pronounced behavioral anomalies, histological changes and indicative of ADHD-like symptoms in rat pups which is accompanied by inhibition of the nuclear factor erythroid 2-related factor 2 (Nrf2)/Heme-oxygenase 1 (HO-1)/Glutathione (GSH) pathway, decline of the brain-derived neurotrophic factor (BDNF) expression and activation of the Toll-like receptor 4 (TLR4)/Nuclear factor kappa B (NF-kB)/NLR Family Pyrin Domain Containing 3 (NLRP3) pathway. This resulted in elevated inflammatory biomarker levels, neuronal apoptosis, and disrupted neurotransmitter equilibrium. Meanwhile, pretreatment with PUN protected against all the previous alterations. SIGNIFICANCE We established compelling associations between MSG consumption, SI, and ADHD progression. Moreover, we proved that PUN is a promising neuroprotective agent against all risk factors of ADHD.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Al-Ayen University, Thi-Qar, 64001, Iraq.
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag university, Sohag, Egypt.
| | - Heba M A Elsanhory
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia 41636, Egypt.
| | | | - Ahmed M E Hamdan
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Rehab Ali Elsayed Masoud
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine for girls, Al-Azhar University, Cairo, Egypt.
| | - Rana H Abd El-Rhman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia 41636, Egypt.
| | - Enji Reda
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia 41636, Egypt.
| |
Collapse
|
45
|
Reyes A, Siddiqi T. Targeting BCL2 pathways in CLL: a story of resistance and ingenuity. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:828-837. [PMID: 38263980 PMCID: PMC10804389 DOI: 10.20517/cdr.2023.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 01/25/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is common amongst leukemic malignancies, prompting dedicated investigation throughout the years. Over the last decade, the treatment for CLL has significantly advanced with agents targeting B-cell lymphoma 2 (BCL2), Bruton's tyrosine kinase, and CD20. Single agents or combinations of these targets have proven efficacy. Unfortunately, resistance to one or multiple of the new treatment targets develops. Our review investigates various mechanisms of resistance to BCL2 inhibitors, including mutations in BCL2, alterations in the Bcl protein pathway, epigenetic modifications, genetic heterogeneity, Richter transformation, and alterations in oxidative phosphorylation. Additionally, the review will discuss potential avenues to overcome this resistance with novel agents such as bispecific antibodies, Bruton's tyrosine kinase (BTK) degraders, non-covalent BTK inhibitors, and chimeric antigen receptor T (CART).
Collapse
Affiliation(s)
- Amanda Reyes
- Hematology & Oncology, City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
46
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
47
|
Vaddamanu G, Goswami A, Nandipati RSR, Malireddy YT, Katam Reddy VKR, Mulakayala N. Identification, Synthesis, and Characterization of Potential Oxidative Impurities of Venetoclax: Application of Meisenheimer Rearrangement. ACS OMEGA 2023; 8:38494-38505. [PMID: 37867659 PMCID: PMC10586452 DOI: 10.1021/acsomega.3c05325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Venetoclax is a potent BCL-2 inhibitor that is used for the treatment of several blood cancers. During the oxidative stress degradation of venetoclax, we observed the formation of two potential impurities at levels of about 8-10%, which have similar molecular weights. The two impurities were isolated and identified as 4-(3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)carbamoyl)phenyl)-1-((4'-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)methyl)piperazine 1-oxide (venetoclax N-oxide, VNO) and 2-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((4'-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)methoxy)piperazin-1-yl)-N-((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide (venetoclax hydroxylamine impurity, VHA). To confirm these two compounds, we have synthesized each impurity individually and analyzed it by high-performance liquid chromatography, mass spectrometry, 1H NMR, 13C NMR, and 2D NMR. VNO was synthesized by the oxidation of venetoclax using m-CPBA in dichloromethane to get the required N-oxide impurity. After the confirmation of the VNO impurity, the VNO impurity was heated with water at reflux in a sealed tube for 36 h to get the VHA impurity of about 6-8% after 36 h. After thorough analysis, it was confirmed that venetoclax N-oxide undergoes [1,2] Meisenheimer rearrangement to form the venetoclax hydroxylamine impurity. These two impurities may be relevant reference standards in manufacturing venetoclax Active Pharmaceutical Ingredient (API) (or) tablets.
Collapse
Affiliation(s)
- Guruswamy Vaddamanu
- Department
of Chemistry, School of Applied Science and Humanities, Vignan’s Foundation for Science, Technology
and Research (Deemed to Be University), Vadlamudi, Guntur 522 213, India
- SVAK
Lifesciences, ALEAP Industrial
Area, Hyderabad 500090, Telangana, India
| | - Anandarup Goswami
- Department
of Chemistry, School of Applied Science and Humanities, Vignan’s Foundation for Science, Technology
and Research (Deemed to Be University), Vadlamudi, Guntur 522 213, India
| | | | | | | | - Naveen Mulakayala
- SVAK
Lifesciences, ALEAP Industrial
Area, Hyderabad 500090, Telangana, India
| |
Collapse
|
48
|
Xu J, Dong X, Huang DCS, Xu P, Zhao Q, Chen B. Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers. Cancers (Basel) 2023; 15:4957. [PMID: 37894324 PMCID: PMC10605442 DOI: 10.3390/cancers15204957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Targeting the intrinsic apoptotic pathway regulated by B-cell lymphoma-2 (BCL-2) antiapoptotic proteins can overcome the evasion of apoptosis in cancer cells. BCL-2 inhibitors have evolved into an important means of treating cancers by inducing tumor cell apoptosis. As the most extensively investigated BCL-2 inhibitor, venetoclax is highly selective for BCL-2 and can effectively inhibit tumor survival. Its emergence and development have significantly influenced the therapeutic landscape of hematological malignancies, especially in chronic lymphocytic leukemia and acute myeloid leukemia, in which it has been clearly incorporated into the recommended treatment regimens. In addition, the considerable efficacy of venetoclax in combination with other agents has been demonstrated in relapsed and refractory multiple myeloma and certain lymphomas. Although venetoclax plays a prominent antitumor role in preclinical experiments and clinical trials, large individual differences in treatment outcomes have been characterized in real-world patient populations, and reduced drug sensitivity will lead to disease recurrence or progression. The therapeutic efficacy may vary widely in patients with different molecular characteristics, and key genetic mutations potentially result in differential sensitivities to venetoclax. The identification and validation of more novel biomarkers are required to accurately predict the effectiveness of BCL-2 inhibition therapy. Furthermore, we summarize the recent research progress relating to the use of BCL-2 inhibitors in solid tumor treatment and demonstrate that a wealth of preclinical models have shown promising results through combination therapies. The applications of venetoclax in solid tumors warrant further clinical investigation to define its prospects.
Collapse
Affiliation(s)
- Jiaxuan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Xiaoqing Dong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Quan Zhao
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| |
Collapse
|
49
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
50
|
Sneyers F, Kerkhofs M, Speelman-Rooms F, Welkenhuyzen K, La Rovere R, Shemy A, Voet A, Eelen G, Dewerchin M, Tait SWG, Ghesquière B, Bootman MD, Bultynck G. Intracellular BAPTA directly inhibits PFKFB3, thereby impeding mTORC1-driven Mcl-1 translation and killing MCL-1-addicted cancer cells. Cell Death Dis 2023; 14:600. [PMID: 37684238 PMCID: PMC10491774 DOI: 10.1038/s41419-023-06120-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Intracellular Ca2+ signals control several physiological and pathophysiological processes. The main tool to chelate intracellular Ca2+ is intracellular BAPTA (BAPTAi), usually introduced into cells as a membrane-permeant acetoxymethyl ester (BAPTA-AM). Previously, we demonstrated that BAPTAi enhanced apoptosis induced by venetoclax, a BCL-2 antagonist, in diffuse large B-cell lymphoma (DLBCL). This finding implied a novel interplay between intracellular Ca2+ signaling and anti-apoptotic BCL-2 function. Hence, we set out to identify the underlying mechanisms by which BAPTAi enhances cell death in B-cell cancers. In this study, we discovered that BAPTAi alone induced apoptosis in hematological cancer cell lines that were highly sensitive to S63845, an MCL-1 antagonist. BAPTAi provoked a rapid decline in MCL-1-protein levels by inhibiting mTORC1-driven Mcl-1 translation. These events were not a consequence of cell death, as BAX/BAK-deficient cancer cells exhibited similar downregulation of mTORC1 activity and MCL-1-protein levels. Next, we investigated how BAPTAi diminished mTORC1 activity and identified its ability to impair glycolysis by directly inhibiting 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) activity, a previously unknown effect of BAPTAi. Notably, these effects were also induced by a BAPTAi analog with low affinity for Ca2+. Consequently, our findings uncover PFKFB3 inhibition as an Ca2+-independent mechanism through which BAPTAi impairs cellular metabolism and ultimately compromises the survival of MCL-1-dependent cancer cells. These findings hold two important implications. Firstly, the direct inhibition of PFKFB3 emerges as a key regulator of mTORC1 activity and a promising target in MCL-1-dependent cancers. Secondly, cellular effects caused by BAPTAi are not necessarily related to Ca2+ signaling. Our data support the need for a reassessment of the role of Ca2+ in cellular processes when findings were based on the use of BAPTAi.
Collapse
Affiliation(s)
- Flore Sneyers
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Femke Speelman-Rooms
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
- KU Leuven, Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I bis, Herestraat 49 box 901, 3000, Leuven, Belgium
| | - Kirsten Welkenhuyzen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Rita La Rovere
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Ahmed Shemy
- KU Leuven, Laboratory for Biomolecular Modelling and Design, Department of Chemistry, Celestijnenlaan 200G, 3001, Heverlee, Belgium
| | - Arnout Voet
- KU Leuven, Laboratory for Biomolecular Modelling and Design, Department of Chemistry, Celestijnenlaan 200G, 3001, Heverlee, Belgium
| | - Guy Eelen
- KU Leuven, Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, Campus Gasthuisberg O&N4, Herestraat 49 box 912, Leuven, Belgium
- VIB-KU Leuven, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Campus Gasthuisberg O&N4, Herestraat 49 box 912, 3000, Leuven, Belgium
| | - Mieke Dewerchin
- KU Leuven, Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, Campus Gasthuisberg O&N4, Herestraat 49 box 912, Leuven, Belgium
- VIB-KU Leuven, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Campus Gasthuisberg O&N4, Herestraat 49 box 912, 3000, Leuven, Belgium
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Bart Ghesquière
- KU Leuven, Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, Leuven, Belgium - VIB, Metabolomics Core Facility Leuven, Center for Cancer Biology, Leuven, Belgium, Herestraat 49 box 912, 3000, Leuven, Belgium
| | - Martin D Bootman
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium.
| |
Collapse
|