1
|
Huang Y, Li X, Wu Y, Xue C, Li J, Lin Y, Nie W, Liu X, Liu Q, Michalski G, Zhang J, Zong Z, Lu D, Jiang G. Blockchain-based isotopic big data-driven tracing of global PM sources and interventions. Nat Commun 2025; 16:3901. [PMID: 40274850 PMCID: PMC12022126 DOI: 10.1038/s41467-025-59220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Tracing sources and assessing intervention effectiveness are crucial for controlling atmospheric particulate matter (PM) pollution. Isotopic techniques enable precise top-down tracing, but the absence of long-term, global-scale multi-compound isotopic data limits comprehensive analysis. Here, we establish a blockchain-based isotopic database, compiling 34,815 isotopic fingerprints of global PM and its emissions from 1,890 pollution events across 66 countries. This allows retrospective analysis and predictions, revealing that PM sources are distinct, dynamically changing over time, and often asynchronous with interventions. Additionally, we estimate source contributions to PM2.5 and its compounds, highlighting the increasing impact of biomass burning. Furthermore, projections indicate that by 2100, PM levels may decline to 5.38 ± 0.16 μg/m³ in the Americas and 13.9 ± 1.82 μg/m³ in Asia under climate mitigation scenarios but will still exceed WHO guidelines without further controls on natural emissions. Guiding future interventions with isotopic big data is essential for addressing air pollution challenges.
Collapse
Affiliation(s)
- Yuming Huang
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyu Li
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuehan Wu
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chaoyang Xue
- Max Planck Institute for Chemistry, Mainz, Germany
| | - Jiashuo Li
- Institute of Blue and Green Development, Shandong University, Weihai, 264209, China
| | - Yongfeng Lin
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Xian Liu
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qian Liu
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Greg Michalski
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, USA
| | - Jingwei Zhang
- Yunnan Key Laboratory of Meteorological Disasters and Climate Resources in the Greater Mekong Subregion, Yunnan University, Kunming, 650500, China.
| | - Zheng Zong
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China.
| | - Dawei Lu
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Guibin Jiang
- Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Hu K, Hu J, Tchinda NT, George C, Li J, Du L. Revealing the composition and optical properties of marine carbonaceous aerosols: A case of the eastern China marginal seas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178136. [PMID: 39705957 DOI: 10.1016/j.scitotenv.2024.178136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Marine aerosols are major components of atmospheric aerosols, playing substantial roles in influencing the regional and global environment and climate. Marine aerosols are not only produced by seawater directly, but also by indirect processes such as atmospheric oxidation of marine bioactive gases as well as terrestrial transport. Over the Eastern China Marginal Seas (ECMS), marine aerosols are strongly affected by marine emission and transport of terrestrial aerosols. However, only few studies have paid attention to the optical properties across three marginal seas. In this study, marine aerosol samples were collected from the entire ECMS in spring 2023 to explore the composition and properties of carbonaceous species. Due to the significant influence of terrestrial transport on Bohai Sea, the average concentration of total suspended particles (TSP) is as high as (359.65 ± 150.45) μg m-3, while the average concentrations of organic carbon (OC) and element carbon (EC) can be up to (17.99 ± 7.71) μg m-3 and (3.28 ± 1.23) μg m-3, respectively. Besides, intense solar radiation may be a potential factor leading to an increase in the solubility of OC in aerosols over southern Yellow Sea. The light-absorbing capacity (MAE365) of water-soluble organic carbon (WSOC) is higher in northern sea region, being (0.58 ± 0.11) m2 g-1 in Bohai Sea, (0.40 ± 0.12) m2 g-1 in Yellow Sea and (0.29 ± 0.11) m2 g-1 in East China Sea. The current results show that humic-like and protein-like substances are the main fluorescent components in water-soluble organic matter. Terrestrial sources enhance the warming effect of aerosols over ECMS by about 1.5-2 times more than marine sources. This study suggests that future research should focus on the impact of terrestrial sources on the northern region of ECMS and the impact of marine sources on the southern region of ECMS.
Collapse
Affiliation(s)
- Kuanyun Hu
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jie Hu
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Narcisse Tsona Tchinda
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Christian George
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, Villeurbanne F-69100, France; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jianlong Li
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Lin Du
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Amorim K, Grover R, Omanović D, Sauzéat L, Do Noscimiento MIM, Fine M, Ferrier-Pagès C. Desert dust improves the photophysiology of heat-stressed corals beyond iron. Sci Rep 2024; 14:26509. [PMID: 39489736 PMCID: PMC11532333 DOI: 10.1038/s41598-024-77381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Desert dust is an important source of essential metals for marine primary productivity, especially in oligotrophic systems surrounded by deserts, such as the Red Sea. However, there are very few studies on the effects of dust on reef-building corals and none on the response of corals to heat stress. We therefore supplied dust to two coral species (Stylophora pistillata and Turbinaria reniformis) kept under control conditions (26 °C) or heat stress (32 °C). Since dust releases large amounts of iron (Fe) in seawater, among other metals, the direct effect of different forms of Fe enrichment on coral photosynthesis was also tested. First, our results show that the desert dust altered the coral metallome by increasing the content of metals that are important for coral physiology (e.g. lithium (up to 5-fold), manganese (up to 4-fold in S. pistillata), iron (up to 3-fold in S. pistillata), magnesium (up to 1.3-fold), molybdenum (up to 1.5-fold in S. pistillata)). Overall, metal enrichment improved the photosynthetic performance of corals, especially under thermal stress (e.g. Pgross (up to 2-fold), Pnet (up to 10-fold), chlorophyll (up to 1.5-fold), symbionts (up to 1.6-fold)). However, Fe exposure (ferric chloride or ferric citrate) did not directly improve photosynthesis, suggesting that it is the combination of metals released by the dust, the so-called "metal cocktail effect", that has a positive impact on coral photophysiology. Dust also led to a decrease in Ni uptake (up to 1.4-fold in the symbionts), likely related to the nitrogen metabolism. Finally, we found that the isotopic signature of metals such as iron, zinc and copper is a good indicator of heat stress and dust exposure in corals. In conclusion, desert dust can increase coral resistance to bleaching by supplying corals with essential metals.
Collapse
Affiliation(s)
- Katherine Amorim
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco.
| | - R Grover
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco
| | - D Omanović
- Center for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, 10000, Croatia
| | - L Sauzéat
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Clermont-Ferrand, 63000, France
- Université Clermont Auvergne, CNRS, INSERM, Institut Génétique, Reproduction et Développement, Clermont-Ferrand, 63000, France
| | - M I Marcus Do Noscimiento
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco
| | - Maoz Fine
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, P.O.B. 469, Eilat, 88103, Israel
| | - Christine Ferrier-Pagès
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco.
| |
Collapse
|
4
|
Chen Y, Wang Z, Fang Z, Huang C, Xu H, Zhang H, Zhang T, Wang F, Luo L, Shi G, Wang X, Tang M. Dominant Contribution of Non-dust Primary Emissions and Secondary Processes to Dissolved Aerosol Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17355-17363. [PMID: 39301696 DOI: 10.1021/acs.est.4c05816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Solubility largely determines the impacts of aerosol Fe on marine ecosystems and human health. Currently, modeling studies have large uncertainties in aerosol Fe solubility due to inadequate understanding of the sources of dissolved Fe. This work investigated seasonal variations of Fe solubility in coarse and fine aerosols in Qingdao, a coastal city in the Northwest Pacific, and utilized a receptor model for source apportionment of total and dissolved aerosol Fe. Desert dust was found to be the main source of total Fe, contributing 65 and 81% annually to total Fe in coarse and fine particles, respectively; in contrast, dissolved aerosol Fe originated primarily from combustion, industrial, and secondary sources. The annual average contributions to dissolved Fe in coarse and fine particles were 68 and 47% for the secondary source and 32 and 33% for the combustion source, respectively. Aerosol Fe solubility was found to be highest in summer and lowest in spring, showing seasonal patterns similar to those of aerosol acidity. Increase in Fe solubility in atmospheric particles, when compared to desert dust, was mainly caused by secondary processing and combustion emission, and the effect of secondary processes was dictated by aerosol acidity and liquid water content.
Collapse
Affiliation(s)
- Yizhu Chen
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhengyang Fang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chengpeng Huang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Han Xu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huanhuan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tianyu Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Fu Wang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Lan Luo
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Guoliang Shi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
5
|
Huang L, Aarons SM, Koffman BG, Cheng W, Hanschka L, Munk LA, Jenckes J, Norris E, Arendt CA. Role of Source, Mineralogy, and Organic Complexation on Lability and Fe Isotopic Composition of Terrestrial Fe sources to the Gulf of Alaska. ACS EARTH & SPACE CHEMISTRY 2024; 8:1505-1518. [PMID: 39166260 PMCID: PMC11331515 DOI: 10.1021/acsearthspacechem.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 08/22/2024]
Abstract
Iron (Fe) is a key trace nutrient supporting marine primary production, and its deposition in the surface ocean can impact multiple biogeochemical cycles. Understanding Fe cycling in the subarctic is key for tracking the fate of particulate-bound sources of oceans in a changing climate. Recently, Fe isotope ratios have been proposed as a potential tool to trace sources of Fe to the marine environment. Here, we investigate the Fe isotopic composition of terrestrial sources of Fe including glacial sediment, loess, volcanic ash, and wildfire aerosols, all from Alaska. Results show that the δ56Fe values of glaciofluvial silt, glacial dissolved load, volcanic ash, and wildfire aerosols fall in a restricted range of δ56Fe values from -0.02 to +0.12‰, in contrast to the broader range of Fe isotopic compositions observed in loess, -0.50 to +0.13‰. The Fe isotopic composition of the dissolved load of glacial meltwater was consistently lighter compared to its particulate counterpart. The 'aging' (exposure to environmental conditions) of volcanic ash did not significantly fractionate the Fe isotopic composition. The Fe isotopic composition of wildfire aerosols collected during an active fire season in Alaska in the summer of 2019 was not significantly fractionated from those of the average upper continental crust composition. We find that the δ56Fe values of loess (<5 μm fraction) were more negative (-0.32 to +0.05‰) with respect to all samples measured here, had the highest proportion of easily reducible Fe (5.9-59.6%), and were correlated with the degree of chemical weathering and organic matter content. Transmission electron spectroscopy measurements indicate an accumulation of amorphous Fe phases in the loess. Our results indicate that Fe isotopes can be related to Fe lability when in the presence of organic matter and that higher organic matter content is associated with a distinctly more negative Fe isotope signature likely due to Fe-organic complexation.
Collapse
Affiliation(s)
- Linqing Huang
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Sarah M. Aarons
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Bess G. Koffman
- Department
of Geology, Colby College, Waterville, Maine 04901, United States
| | - Wenhan Cheng
- College
of Resources and Environment, Anhui Agricultural
University, Hefei, Anhui 230036, China
| | - Lena Hanschka
- Department
of Geology, Colby College, Waterville, Maine 04901, United States
| | - Lee Ann Munk
- Department
of Geological Sciences, University of Alaska
Anchorage, Anchorage, Alaska 99508, United States
| | - Jordan Jenckes
- Department
of Chemistry, University of Alaska Anchorage, Anchorage, Alaska 99508, United States
| | - Emmet Norris
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Carli A. Arendt
- Department
of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Zhang T, Liu J, Xiang Y, Liu X, Zhang J, Zhang L, Ying Q, Wang Y, Wang Y, Chen S, Chai F, Zheng M. Quantifying anthropogenic emission of iron in marine aerosol in the Northwest Pacific with shipborne online measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169158. [PMID: 38092217 DOI: 10.1016/j.scitotenv.2023.169158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 01/01/2024]
Abstract
Anthropogenic emissions are recognized as significant contributors to atmospheric soluble iron (Fe) in recent years, which may affect marine primary productivity, especially in Fe-limited areas. However, the contribution of different emission sources to Fe in marine aerosol has been primarily estimated by modeling approaches. Quantifying anthropogenic Fe based on field measurements remains a great challenge. In this study, online multi-element measurements and Positive Matrix Factorization (PMF) were combined for the first time to quantify sources of atmospheric Fe and soluble Fe in the Northwest Pacific during a cruise in spring 2015. Fe concentration in 624 atmospheric PM2.5 samples measured online was 74.58 ± 90.87 ng/m3. The PMF results showed anthropogenic activities, including industrial coal combustion, biomass burning, and maritime transport, were important in this region, contributing 31.4 % of atmospheric Fe on average. In addition, anthropogenic Fe concentration resolved by PMF was comparable to the simulation results of the CMAQ (Community Multiscale Air Quality) and GEOS-Chem (Goddard Earth Observing System-Chemical transport) models, with better correlation to CMAQ (r = 0.76) than GEOS-Chem (r = 0.26). This study developed a new method to estimate atmospheric soluble Fe, which integrates Fe source apportionment results and Fe solubility from different sources. Soluble Fe concentration was estimated as 3.93 ± 5.14 ng/m3, of which 87.0 % was attributed to anthropogenic emissions. Notably, ship emission alone contributed 27.5 % of soluble Fe, though its contribution to total Fe was only 2.2 %. Finally, the total deposition fluxes of atmospheric Fe (37.11 ± 38.43 μg/m2/day) and soluble Fe (1.85 ± 2.13 μg/m2/day) were estimated. This study developed a new methodology for quantifying contribution of anthropogenic emissions to Fe in marine aerosol, which could greatly help the assessment of impacts of human activities on marine environment.
Collapse
Affiliation(s)
- Tianle Zhang
- SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Junyi Liu
- SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yaxin Xiang
- SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xiaomeng Liu
- SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jie Zhang
- Zachary Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77845, USA
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Qi Ying
- Zachary Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77845, USA
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yinan Wang
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shuangling Chen
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Fei Chai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Mei Zheng
- SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Tagliabue A, Buck KN, Sofen LE, Twining BS, Aumont O, Boyd PW, Caprara S, Homoky WB, Johnson R, König D, Ohnemus DC, Sohst B, Sedwick P. Authigenic mineral phases as a driver of the upper-ocean iron cycle. Nature 2023; 620:104-109. [PMID: 37532817 DOI: 10.1038/s41586-023-06210-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/12/2023] [Indexed: 08/04/2023]
Abstract
Iron is important in regulating the ocean carbon cycle1. Although several dissolved and particulate species participate in oceanic iron cycling, current understanding emphasizes the importance of complexation by organic ligands in stabilizing oceanic dissolved iron concentrations2-6. However, it is difficult to reconcile this view of ligands as a primary control on dissolved iron cycling with the observed size partitioning of dissolved iron species, inefficient dissolved iron regeneration at depth or the potential importance of authigenic iron phases in particulate iron observational datasets7-12. Here we present a new dissolved iron, ligand and particulate iron seasonal dataset from the Bermuda Atlantic Time-series Study (BATS) region. We find that upper-ocean dissolved iron dynamics were decoupled from those of ligands, which necessitates a process by which dissolved iron escapes ligand stabilization to generate a reservoir of authigenic iron particles that settle to depth. When this 'colloidal shunt' mechanism was implemented in a global-scale biogeochemical model, it reproduced both seasonal iron-cycle dynamics observations and independent global datasets when previous models failed13-15. Overall, we argue that the turnover of authigenic particulate iron phases must be considered alongside biological activity and ligands in controlling ocean-dissolved iron distributions and the coupling between dissolved and particulate iron pools.
Collapse
Affiliation(s)
| | - Kristen N Buck
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Laura E Sofen
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Olivier Aumont
- LOCEAN, IRD-CNRS-Sorbonne Université-MNHN, IPSL, Paris, France
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Salvatore Caprara
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | | | - Rod Johnson
- Bermuda Institute of Ocean Sciences, St. George's, Bermuda
| | - Daniela König
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Daniel C Ohnemus
- Skidaway Institute of Oceanography, University of Georgia, Department of Marine Sciences, Savannah, GA, USA
| | - Bettina Sohst
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, USA
| | - Peter Sedwick
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
8
|
Ito A, Miyakawa T. Aerosol Iron from Metal Production as a Secondary Source of Bioaccessible Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4091-4100. [PMID: 36853188 PMCID: PMC10018757 DOI: 10.1021/acs.est.2c06472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric iron (Fe) from anthropogenic, lithogenic, and pyrogenic sources contributes to ocean fertilization, climate change, and human health risk. However, significant uncertainties remain in the source apportionment due to a lack of source-specific evaluation of Fe-laden aerosols. Here, the large uncertainties in the model estimates are investigated using different Fe emissions from metal production. The best agreement in the anthropogenic factor of aerosol Fe concentrations with the field data in the downstream region of East Asian outflow (median: 0.026 μg m-3) is obtained with the low case (0.023 μg m-3), whereas the best agreement of aerosol Fe bioaccessibility with field data (4.5%) over oceans south of 45°S is obtained with the high case (4.9%). Our simulation with the low case confirms that anthropogenic aerosols play dominant roles in bioaccessible Fe deposition in the northwestern Pacific, compared to lithogenic sources. Our simulations with higher cases suggest that Fe-containing particles co-emitted with sulfur dioxide from metal production substantially contribute to atmospheric bioaccessible Fe fluxes to the Southern Ocean. These findings highlight that accurate representation of aerosol Fe from metal production is a key to reduce large uncertainties in bioaccessible Fe deposition fluxes to the Southern Ocean (0.7-4.4 Gg Fe year-1).
Collapse
|
9
|
Fitzsimmons JN, Conway TM. Novel Insights into Marine Iron Biogeochemistry from Iron Isotopes. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:383-406. [PMID: 36100217 DOI: 10.1146/annurev-marine-032822-103431] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The micronutrient iron plays a major role in setting the magnitude and distribution of primary production across the global ocean. As such, an understanding of the sources, sinks, and internal cycling processes that drive the oceanic distribution of iron is key to unlocking iron's role in the global carbon cycle and climate, both today and in the geologic past. Iron isotopic analyses of seawater have emerged as a transformative tool for diagnosing iron sources to the ocean and tracing biogeochemical processes. In this review, we summarize the end-member isotope signatures of different iron source fluxes and highlight the novel insights into iron provenance gained using this tracer. We also review ways in which iron isotope fractionation might be used to understand internal oceanic cycling of iron, including speciation changes, biological uptake, and particle scavenging. We conclude with an overview of future research needed to expand the utilization of this cutting-edge tracer.
Collapse
Affiliation(s)
| | - Tim M Conway
- College of Marine Science, University of South Florida, St. Petersburg, Florida, USA;
| |
Collapse
|
10
|
Non-traditional stable isotopic analysis for source tracing of atmospheric particulate matter. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Li R, Zhang H, Wang F, He Y, Huang C, Luo L, Dong S, Jia X, Tang M. Mass fractions, solubility, speciation and isotopic compositions of iron in coal and municipal waste fly ash. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155974. [PMID: 35588802 DOI: 10.1016/j.scitotenv.2022.155974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Deposition of anthropogenic aerosols may contribute significantly to dissolved Fe in the open ocean, affecting marine primary production and biogeochemical cycles; however, fractional solubility of Fe is not well understood for anthropogenic aerosols. This work investigated mass fractions, solubility, speciation and isotopic compositions of Fe in coal and municipal waste fly ash. Compared to desert dust (3.1 ± 1.1%), the average mass fraction of Fe was higher in coal fly ash (6.2 ± 2.7%) and lower in municipal waste fly ash (2.6 ± 0.4%), and the average Fe/Al ratios were rather similar for the three types of particles. Municipal waste fly ash showed highest Fe solubility (1.98 ± 0.43%) in acetate buffer (pH: 4.3), followed by desert dust (0.43 ± 0.30%) and coal fly ash (0.24 ± 0.28%), suggesting that not all the anthropogenic aerosols showed higher Fe solubility than desert dust. For the samples examined in our work, amorphous Fe appeared to be an important controlling factor for Fe solubility, which was not correlated with particle size or BET surface area. Compared to desert dust (-0.05‰ to 0.21‰), coal and municipal waste fly ash showed similar or even higher δ56Fe values for total Fe (range: 0.05‰ to 0.75‰), implying that the presence of coal or municipal waste fly ash may not be able to explain significantly smaller δ56Fe values reported for total Fe in ambient aerosols affected by anthropogenic sources.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Huanhuan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Fu Wang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Yuting He
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chengpeng Huang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Lan Luo
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Shuwei Dong
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xiaohong Jia
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
König D, Conway TM, Hamilton DS, Tagliabue A. Surface Ocean Biogeochemistry Regulates the Impact of Anthropogenic Aerosol Fe Deposition on the Cycling of Iron and Iron Isotopes in the North Pacific. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL098016. [PMID: 36245954 PMCID: PMC9539696 DOI: 10.1029/2022gl098016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
Distinctively-light isotopic signatures associated with Fe released from anthropogenic activity have been used to trace basin-scale impacts. However, this approach is complicated by the way Fe cycle processes modulate oceanic dissolved Fe (dFe) signatures (δ56Fediss) post deposition. Here we include dust, wildfire, and anthropogenic aerosol Fe deposition in a global ocean biogeochemical model with active Fe isotope cycling, to quantify how anthropogenic Fe impacts surface ocean dFe and δ56Fediss. Using the North Pacific as a natural laboratory, the response of dFe, δ56Fediss, and primary productivity are spatially and seasonally variable and do not simply follow the footprint of atmospheric deposition. Instead, the effect of anthropogenic Fe is regulated by the biogeochemical regime, specifically the degree of Fe limitation and rates of primary production. Overall, we find that while δ56Fediss does trace anthropogenic input, the response is muted by fractionation during phytoplankton uptake, but amplified by other isotopically-light Fe sources.
Collapse
Affiliation(s)
- D. König
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - T. M. Conway
- College of Marine ScienceUniversity of South FloridaSt PetersburgFLUSA
| | - D. S. Hamilton
- Department of Earth and Atmospheric ScienceCornell UniversityIthacaNYUSA
| | - A. Tagliabue
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
13
|
Maters EC, Mulholland DS, Flament P, de Jong J, Mattielli N, Deboudt K, Dhont G, Bychkov E. Laboratory study of iron isotope fractionation during dissolution of mineral dust and industrial ash in simulated cloud water. CHEMOSPHERE 2022; 299:134472. [PMID: 35367494 DOI: 10.1016/j.chemosphere.2022.134472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric deposition is a key mode of iron (Fe) input to ocean regions where low concentrations of this micronutrient limit marine primary production. Various natural particles (e.g., mineral dust, volcanic ash) and anthropogenic particles (e.g., from industrial processes, biomass burning) can deliver Fe to the ocean, and assessment of their relative importance in supplying Fe to seawater requires knowledge of both their deposition flux and their Fe solubility (a proxy for Fe bioavailability). Iron isotope (54Fe, 56Fe, 57Fe, 58Fe) analysis is a potential tool for tracing natural and anthropogenic Fe inputs to the ocean. However, it remains uncertain how the distinct Fe isotopic signatures (δ56Fe) of these particles may be modified by physicochemical processes (e.g., acidification, photochemistry, condensation-evaporation cycles) that are known to enhance Fe solubility during atmospheric transport. In this experimental study, we measure changes over time in both Fe solubility and δ56Fe of a Tunisian soil dust and an Fe-Mn alloy factory industrial ash exposed under irradiation to a pH 2 solution containing oxalic acid, the most widespread organic complexing agent in cloud- and rainwater. The Fe released per unit surface area of the ash (∼1460 μg Fe m-2) is ∼40 times higher than that released by the dust after 60 min in solution. Isotopic fractionation is also observed, to a greater extent in the dust than the ash, in parallel with dissolution of the solid particles and driven by preferential release of 54Fe into solution. After the initial release of 54Fe, the re-adsorption of A-type Fe-oxalate ternary complexes on the most stable surface sites of the solid particles seems to impair the release of the heavier Fe isotopes, maintaining a relative enrichment in the light Fe isotope in solution over time. These findings provide new insights on Fe mobilisation and isotopic fractionation in mineral dust and industrial ash during atmospheric processing, with potential implications for ultimately improving the tracing of natural versus anthropogenic contributions of soluble Fe to the ocean.
Collapse
Affiliation(s)
- Elena C Maters
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Daniel S Mulholland
- Laboratório de Águas e Efluentes & Laboratório de Análises Ambientais, Universidade Federal do Tocantins, Rua Badejos, Gurupi, TO, Brazil
| | - Pascal Flament
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France.
| | - Jeroen de Jong
- Laboratoire G-Time (Geochemistry: Tracing with Isotope, Mineral and Element), Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium
| | - Nadine Mattielli
- Laboratoire G-Time (Geochemistry: Tracing with Isotope, Mineral and Element), Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium
| | - Karine Deboudt
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Guillaume Dhont
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Eugène Bychkov
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
| |
Collapse
|
14
|
Di J, Dong Z, Parteli EJR, Wei T, Marcelli A, Ren J, Qin X, Chen S. Insight into atmospheric deposition and spatial distribution of bioavailable iron in the glaciers of northeastern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153946. [PMID: 35189209 DOI: 10.1016/j.scitotenv.2022.153946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Iron (Fe) is an essential micronutrient in glacial ecosystems and modulates global biogeochemical cycles. To find out the deposition concentration, multiple origins and release form of iron in various glacier areas of central Asia, this study investigated the total Fe (TFe) and dissolved-Fe (dFe, diameter < 0.45 or <0.2 μm) deposition in glaciers and snowpack of northeast Tibetan Plateau, based on snow and meltwater sampling in ablation period of 2014-2017. The composition and concentration of dFe in the samples were measured, and the spatial distribution and temporal variations of dFe in glacial surface snow and meltwater runoff were investigated. Results showed that average TFe and dFe contents exhibited a generally heterogeneous geographic distribution that varied from north to south. The northern locations in eastern Tianshan Mountains (e.g. Miaoergou Glacier) showed the highest TFe and dFe values, followed by Yuzhufeng Glacier of eastern Kunlun Mountains, whereas the Qilian Mountains locations displayed relatively lower TFe and dFe contents spanning a wide range. Based on the good correlation between TFe and dFe, we infer that aeolian dust and anthropogenic aerosols, and their chemical interactions are likely the important origins for dFe deposition. In meltwater runoff the peak values of dFe release flux appeared in July, with maximum appeared earlier (the early of July) than TFe (the end of July). Moreover, the annual dFe release flux from Laohugou glacier terminus meltwater runoff is estimated to be 1740 kg yr-1 (with 9256 kg yr-1 for TFe), and meltwater showed higher mean concentration of dFe than that of glacier snowpack. We also provided a conceptual framework showing the multiple origins and transport dynamics of dissolved Fe along the atmosphere-glacier-meltwater runoff path. Compared to Fe release in other global glacier/ice-sheet, the TP glacier is an important potential dFe reservoir and may have a profound effect on regional downstream ecosystem through Fe biochemistry cycle.
Collapse
Affiliation(s)
- Jie Di
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Dong
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Eric J R Parteli
- Faculty of Physics, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Ting Wei
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Augusto Marcelli
- INFN - LNF, Via E. Fermi 54, 00044 Frascati, RM, Italy; CNR - Istituto Struttura della Materia and Elettra-Sincrotrone Trieste, Basovizza Area Science Park, 34149 Trieste, Italy
| | - Jiawen Ren
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Qilian Mountain Glacier and Ecological Environment Research Station, Chinese Academy of Sciences, Lanzhou, China
| | - Xiang Qin
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Qilian Mountain Glacier and Ecological Environment Research Station, Chinese Academy of Sciences, Lanzhou, China
| | - Shifeng Chen
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Araújo DF, Knoery J, Briant N, Vigier N, Ponzevera E. "Non-traditional" stable isotopes applied to the study of trace metal contaminants in anthropized marine environments. MARINE POLLUTION BULLETIN 2022; 175:113398. [PMID: 35114550 DOI: 10.1016/j.marpolbul.2022.113398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The advent of Multicollector ICP-MS inaugurated the analysis of new metal isotope systems, the so-called "non-traditional" isotopes. They are now available tools to study geochemical and ecotoxicological aspects of marine metal contamination and hence, to push the frontiers of our knowledge. However, such applications are still in their infancy, and an accessible state-of-the-art describing main applications, obstacles, gaps, and directions for further development was missing from the literature. This paper fills this gap and aims to encourage the marine scientific community to explore the contributions of this newly available information for the fields of chemical risk assessment, biomonitoring, and trophic transfer of metal contaminants. In the current "Anthropocene" epoch, metal contamination will continue to threaten marine aquatic ecosystems, and "non-traditional" isotopes can be a valuable tool to detect human-induced changes across time-space involving metal contaminants, and their interaction with marine biota.
Collapse
Affiliation(s)
| | | | | | - Nathalie Vigier
- Laboratoire d'Océanographie de Villefranche sur Mer (LOV), IMEV, CNRS, Sorbonne Université, France
| | | |
Collapse
|
16
|
Hamilton DS, Perron MMG, Bond TC, Bowie AR, Buchholz RR, Guieu C, Ito A, Maenhaut W, Myriokefalitakis S, Olgun N, Rathod SD, Schepanski K, Tagliabue A, Wagner R, Mahowald NM. Earth, Wind, Fire, and Pollution: Aerosol Nutrient Sources and Impacts on Ocean Biogeochemistry. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:303-330. [PMID: 34416126 DOI: 10.1146/annurev-marine-031921-013612] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A key Earth system science question is the role of atmospheric deposition in supplying vital nutrients to the phytoplankton that form the base of marine food webs. Industrial and vehicular pollution, wildfires, volcanoes, biogenic debris, and desert dust all carry nutrients within their plumes throughout the globe. In remote ocean ecosystems, aerosol deposition represents an essential new source of nutrients for primary production. The large spatiotemporal variability in aerosols from myriad sources combined with the differential responses of marine biota to changing fluxes makes it crucially important to understand where, when, and how much nutrients from the atmosphere enter marine ecosystems. This review brings together existing literature, experimental evidence of impacts, and new atmospheric nutrient observations that can be compared with atmospheric and ocean biogeochemistry modeling. We evaluate the contribution and spatiotemporal variability of nutrient-bearing aerosols from desert dust, wildfire, volcanic, and anthropogenic sources, including the organic component, deposition fluxes, and oceanic impacts.
Collapse
Affiliation(s)
- Douglas S Hamilton
- Department of Earth and Atmospheric Science, Cornell University, Ithaca, New York 14853, USA;
| | - Morgane M G Perron
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania 7004, Australia
| | - Tami C Bond
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80521, USA
| | - Andrew R Bowie
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania 7004, Australia
| | - Rebecca R Buchholz
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, USA
| | - Cecile Guieu
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Akinori Ito
- Yokohama Institute for Earth Sciences, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa 236-0001, Japan
| | - Willy Maenhaut
- Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Stelios Myriokefalitakis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Penteli, Greece
| | - Nazlı Olgun
- Climate and Marine Sciences Division, Eurasia Institute of Earth Sciences, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Sagar D Rathod
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80521, USA
| | - Kerstin Schepanski
- Institute of Meteorology, Freie Universität Berlin, 12165 Berlin, Germany
| | - Alessandro Tagliabue
- School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, United Kingdom
| | - Robert Wagner
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany
| | - Natalie M Mahowald
- Department of Earth and Atmospheric Science, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
17
|
Luescher AM, Koch J, Stark WJ, Grass RN. Silica-encapsulated DNA tracers for measuring aerosol distribution dynamics in real-world settings. INDOOR AIR 2022; 32:e12945. [PMID: 34676590 PMCID: PMC9298268 DOI: 10.1111/ina.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Aerosolized particles play a significant role in human health and environmental risk management. The global importance of aerosol-related hazards, such as the circulation of pathogens and high levels of air pollutants, have led to a surging demand for suitable surrogate tracers to investigate the complex dynamics of airborne particles in real-world scenarios. In this study, we propose a novel approach using silica particles with encapsulated DNA (SPED) as a tracing agent for measuring aerosol distribution indoors. In a series of experiments with a portable setup, SPED were successfully aerosolized, recaptured, and quantified using quantitative polymerase chain reaction (qPCR). Position dependency and ventilation effects within a confined space could be shown in a quantitative fashion achieving detection limits below 0.1 ng particles per m3 of sampled air. In conclusion, SPED show promise for a flexible, cost-effective, and low-impact characterization of aerosol dynamics in a wide range of settings.
Collapse
Affiliation(s)
- Anne M. Luescher
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| | - Julian Koch
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| | - Wendelin J. Stark
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| | - Robert N. Grass
- Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| |
Collapse
|
18
|
Liu L, Lin Q, Liang Z, Du R, Zhang G, Zhu Y, Qi B, Zhou S, Li W. Variations in concentration and solubility of iron in atmospheric fine particles during the COVID-19 pandemic: An example from China. GONDWANA RESEARCH : INTERNATIONAL GEOSCIENCE JOURNAL 2021; 97:138-144. [PMID: 35721257 PMCID: PMC9188026 DOI: 10.1016/j.gr.2021.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 05/09/2023]
Abstract
Iron (Fe) in the atmosphere can affect atmospheric chemical processes and human health. When deposited into oceans, it can further influence phytoplankton growth. These roles of Fe fundamentally depend on its concentration and solubility. However, the sources of aerosol Fe and controlling factors of Fe solubility in megacities remain poorly understood. The outbreak of the COVID-19 pandemic causes large changes in human activities, which provides a unique opportunity to answer these key issues. Field observations were conducted before, during, and after the COVID-19 lockdown in Hangzhou, China. Our results show that in the COVID-19 lockdown stage, the concentrations of total Fe (FeT, 75.0 ng m-3) and soluble Fe (FeS, 5.1 ng m-3) in PM2.5 decreased by 78% and 62%, respectively, compared with those (FeT 344.7 ng m-3, FeS 13.5 ng m-3) in the pre-lockdown stage. The sharp reduction (81%) in on-road vehicles was most responsible for the aerosol Fe decrease. Surprisingly, the Fe solubility increased by a factor of 1.9, from 4.2% in the pre-lockdown stage to 7.8% in the COVID-19 lockdown stage. We found that the atmospheric oxidizing capacity was enhanced after lockdown restrictions were implemented, which promoted the formation of more acidic species and further enhanced the dissolution of aerosol Fe.
Collapse
Affiliation(s)
- Lei Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Qiuhan Lin
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Zhuoran Liang
- Key Laboratory of Cities' Mitigation and Adaptation to Climate Change in Shanghai (CMACC), Shanghai 200092, China
| | - Rongguang Du
- Hangzhou Meteorological Bureau, Hangzhou 310051, China
- Key Laboratory of Atmospheric Chemistry, China Meteorological Administration, Beijing 100081, China
| | | | - Yanhong Zhu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Bing Qi
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Shengzhen Zhou
- School of Atmospheric Sciences and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou 510275, China
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
König D, Conway TM, Ellwood MJ, Homoky WB, Tagliabue A. Constraints on the Cycling of Iron Isotopes From a Global Ocean Model. GLOBAL BIOGEOCHEMICAL CYCLES 2021; 35:e2021GB006968. [PMID: 35860342 PMCID: PMC9285799 DOI: 10.1029/2021gb006968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 06/15/2023]
Abstract
Although iron (Fe) is a key regulator of primary production over much of the ocean, many components of the marine iron cycle are poorly constrained, which undermines our understanding of climate change impacts. In recent years, a growing number of studies (often part of GEOTRACES) have used Fe isotopic signatures (δ56Fe) to disentangle different aspects of the marine Fe cycle. Characteristic δ56Fe endmembers of external sources and assumed isotopic fractionation during biological Fe uptake or recycling have been used to estimate relative source contributions and investigate internal transformations, respectively. However, different external sources and fractionation processes often overlap and act simultaneously, complicating the interpretation of oceanic Fe isotope observations. Here we investigate the driving forces behind the marine dissolved Fe isotopic signature (δ56Fediss) distribution by incorporating Fe isotopes into the global ocean biogeochemical model PISCES. We find that distinct external source endmembers acting alongside fractionation during organic complexation and phytoplankton uptake are required to reproduce δ56Fediss observations along GEOTRACES transects. δ56Fediss distributions through the water column result from regional imbalances of remineralization and abiotic removal processes. They modify δ56Fediss directly and transfer surface ocean signals to the interior with opposing effects. Although attributing crustal compositions to sedimentary Fe sources in regions with low organic carbon fluxes improves our isotope model, δ56Fediss signals from hydrothermal or sediment sources cannot be reproduced accurately by simply adjusting δ56Fe endmember values. This highlights that additional processes must govern the exchange and/or speciation of Fe supplied by these sources to the ocean.
Collapse
Affiliation(s)
- D. König
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - T. M. Conway
- College of Marine ScienceUniversity of South FloridaSt PetersburgFLUSA
| | - M. J. Ellwood
- Research School of Earth SciencesAustralian National UniversityCanberraACTAustralia
| | - W. B. Homoky
- School of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - A. Tagliabue
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
20
|
Abstract
Atmospheric aerosol deposition (wet and dry) is an important source of macro and micronutrients (N, P, C, Si, and Fe) to the oceans. Most of the mass flux of air particles is made of fine mineral particles emitted from arid or semi-arid areas (e.g., deserts) and transported over long distances until deposition to the oceans. However, this atmospheric deposition is affected by anthropogenic activities, which heavily impacts the content and composition of aerosol constituents, contributing to the presence of potentially toxic elements (e.g., Cu). Under this scenario, the deposition of natural and anthropogenic aerosols will impact the biogeochemical cycles of nutrients and toxic elements in the ocean, also affecting (positively or negatively) primary productivity and, ultimately, the marine biota. Given the importance of atmospheric aerosol deposition to the oceans, this paper reviews the existing knowledge on the impacts of aerosol deposition on the biogeochemistry of the upper ocean, and the different responses of marine biota to natural and anthropogenic aerosol input.
Collapse
|
21
|
Abstract
Fossil-fuel emissions may impact phytoplankton primary productivity and carbon cycling by supplying bioavailable Fe to remote areas of the ocean via atmospheric aerosols. However, this pathway has not been confirmed by field observations of anthropogenic Fe in seawater. Here we present high-resolution trace-metal concentrations across the North Pacific Ocean (158°W from 25°to 42°N). A dissolved Fe maximum was observed around 35°N, coincident with high dissolved Pb and Pb isotope ratios matching Asian industrial sources and confirming recent aerosol deposition. Iron-stable isotopes reveal in situ evidence of anthropogenic Fe in seawater, with low δ56Fe (-0.23‰ > δ56Fe > -0.65‰) observed in the region that is most influenced by aerosol deposition. An isotope mass balance suggests that anthropogenic Fe contributes 21-59% of dissolved Fe measured between 35° and 40°N. Thus, anthropogenic aerosol Fe is likely to be an important Fe source to the North Pacific Ocean.
Collapse
|
22
|
Luo H, Guan Q, Pan N, Wang Q, Li H, Lin J, Tan Z, Shao W. Using composite fingerprints to quantify the potential dust source contributions in northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140560. [PMID: 32721727 DOI: 10.1016/j.scitotenv.2020.140560] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Dust storms have a profound impact on the atmospheric environment, global climate change, and human health, so it is of great importance to strengthen related research. The main areas of occurrence and frequency of dust storms in northwestern China were distinguished by measuring the concentration of geochemical elements in the topsoil and atmospheric dust samples, combined with the HYSPLIT backward trajectory model, MODIS true-color satellite images, and PM10 real-time monitoring data. On this basis, the composite fingerprints method was used to establish an end-member model between the concentration of dust storm samples and topsoil samples, and then to trace the sand and dust sources in northwest China and quantify their source contributions. The results showed that the main potential source areas causing sandstorms were located in the Kumtag Desert, Hexi area, and the Gobi Desert in the central and western parts of Inner Mongolia. Overall, the contributions from natural sources were greater than those from anthropogenic sources, especially at Alxa League. In addition to natural sources, anthropogenic dust sources contributed highly to dust storms, with a contribution rate of approximately 40% in cities. The main dust source in Zhangye City was from agriculture areas. The contribution of the potential dust sources in the west of the study area showed a decreasing trend from west to east because of the distance effect. Because of the influence of the prevailing westerly winds in the east, the sources of dust were relatively extensive. The Badain Jaran Desert and Tengger Desert were not the main dust sources in the study area because of artificial sand control measures and the low amounts of fine-grained components in sandy deserts. These methods and results are of great importance for sustainable development in northwest China.
Collapse
Affiliation(s)
- Haiping Luo
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingyu Guan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Ninghui Pan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingzheng Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huichun Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinkuo Lin
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhe Tan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenyan Shao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
23
|
Trumble BC, Finch CE. THE EXPOSOME IN HUMAN EVOLUTION: FROM DUST TO DIESEL. THE QUARTERLY REVIEW OF BIOLOGY 2019; 94:333-394. [PMID: 32269391 PMCID: PMC7141577 DOI: 10.1086/706768] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global exposures to air pollution and cigarette smoke are novel in human evolutionary history and are associated with about 16 million premature deaths per year. We investigate the history of the human exposome for relationships between novel environmental toxins and genetic changes during human evolution in six phases. Phase I: With increased walking on savannas, early human ancestors inhaled crustal dust, fecal aerosols, and spores; carrion scavenging introduced new infectious pathogens. Phase II: Domestic fire exposed early Homo to novel toxins from smoke and cooking. Phases III and IV: Neolithic to preindustrial Homo sapiens incurred infectious pathogens from domestic animals and dense communities with limited sanitation. Phase V: Industrialization introduced novel toxins from fossil fuels, industrial chemicals, and tobacco at the same time infectious pathogens were diminishing. Thereby, pathogen-driven causes of mortality were replaced by chronic diseases driven by sterile inflammogens, exogenous and endogenous. Phase VI: Considers future health during global warming with increased air pollution and infections. We hypothesize that adaptation to some ancient toxins persists in genetic variations associated with inflammation and longevity.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution & Social Change and Center for Evolution and Medicine, Arizona State University Tempe, Arizona 85287 USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California Los Angeles, California 90089-0191 USA
| |
Collapse
|