1
|
Zhang Y, Liu H, Zhen W, Jiang T, Cui J. Advancement of drugs conjugated with GalNAc in the targeted delivery to hepatocytes based on asialoglycoprotein receptor. Carbohydr Res 2025; 552:109426. [PMID: 40068307 DOI: 10.1016/j.carres.2025.109426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 04/22/2025]
Abstract
The asialoglycoprotein receptor (ASGPR) is specifically expressed in hepatocytes. Sugar molecules, such as asialoglycoprotein, galactose, galactosamine, and N-acetyl galactosamine (GalNAc), have a high affinity for ASGPR. This review summarizes the structure of ASGPR, the distribution of this molecule in different cells, and the factors influencing the binding of GalNAc to ASGPR. We introduce the application of GalNAc in targeted delivery into hepatocytes by forming conjugated compounds with RNAs and small molecules, and the standard methods for synthesizing GalNAc are also briefly presented. This is to provide an overview of the current research on GalNAc and to shed light on the design of the new GalNAc.
Collapse
Affiliation(s)
- Yafang Zhang
- Baoding Key Laboratory for Precision Diagnosis and Treatment of Infectious Diseases in Children, Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Baoding, 071000, Hebei Province, China
| | - Hongliang Liu
- Pharmaron Beijing Co., Ltd. (China), Beijing, 100176, China
| | - Weina Zhen
- Baoding Key Laboratory for Precision Diagnosis and Treatment of Infectious Diseases in Children, Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Baoding, 071000, Hebei Province, China
| | - Tingting Jiang
- Baoding Key Laboratory for Precision Diagnosis and Treatment of Infectious Diseases in Children, Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Baoding, 071000, Hebei Province, China
| | - Jingxuan Cui
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
2
|
Lui VCH. Organoids in biliary atresia. WORLD JOURNAL OF PEDIATRIC SURGERY 2025; 8:e001010. [PMID: 40385243 PMCID: PMC12083310 DOI: 10.1136/wjps-2025-001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/27/2025] [Indexed: 05/20/2025] Open
Abstract
Organoids are three-dimensional and self-organizing cell cultures of various lineages that resemble structures and functions of an organ in many ways, and they are versatile tools in disease modeling and patho-mechanistic study of human diseases affecting their tissues of origin. Biliary atresia (BA), a cholangiopathy affecting the bile ducts of the liver, is a heterogeneous and multifaceted liver disease of complex pathogenesis. Cholangiopathies refer to a category of liver diseases that affect the cholangiocytes, the epithelial cells lining the lumen of the biliary trees. Biliary organoids consist of cholangiocytes in a spherical monolayer epithelium, which favorably resembles the structures and functional properties of the bile duct cholangiocytes. Biliary tissue-derived cells, pluripotent stem cells or embryonic stem cells, and hepatic progenitor cells are capable of generating biliary organoids. In the last decade, a considerable advancement has been made in the generation of biliary organoids for modeling liver physiology and pathophysiology. Using biliary organoids, scientists have advanced our knowledge underlying the pathogenic roles of genetic susceptibility, dysregulated hepatobiliary development/structure, environmental factors, and dysregulated immune-inflammatory responses to an injury in BA. This review will summarize and discuss the derivation and the use of biliary organoids in the disease modeling and patho-mechanistic study of BA.
Collapse
|
3
|
Hammond NL, Murtuza Baker S, Georgaka S, Al-Anbaki A, Jokl E, Simpson K, Sanchez-Alvarez R, Athwal VS, Purssell H, Siriwardena AK, Spiers HVM, Dixon MJ, Bere LD, Jones AP, Haley MJ, Couper KN, Bobola N, Sharrocks AD, Hanley NA, Rattray M, Piper Hanley K. Spatial gene regulatory networks driving cell state transitions during human liver disease. EMBO Mol Med 2025:10.1038/s44321-025-00230-6. [PMID: 40281306 DOI: 10.1038/s44321-025-00230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Liver fibrosis is a major cause of death worldwide. As a progressive step in chronic liver disease, fibrosis is almost always diagnosed too late with limited treatment options. Here, we uncover the spatial transcriptional landscape driving human liver fibrosis using single nuclei RNA and Assay for Transposase-Accessible Chromatin (ATAC) sequencing to deconvolute multi-cell spatial transcriptomic profiling in human liver cirrhosis. Through multi-modal data integration, we define molecular signatures driving cell state transitions in liver disease and define an impaired cellular response and directional trajectory between hepatocytes and cholangiocytes associated with disease remodelling. We identify pro-fibrogenic signatures in non-parenchymal cell subpopulations co-localised within the fibrotic niche and localise transitional cell states at the scar interface. This combined approach provides a spatial atlas of gene regulation and defines molecular signatures associated with liver disease for targeted therapeutics or as early diagnostic markers of progressive liver disease.
Collapse
Affiliation(s)
- Nigel L Hammond
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Syed Murtuza Baker
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Sokratia Georgaka
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Ali Al-Anbaki
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Elliot Jokl
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Kara Simpson
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Rosa Sanchez-Alvarez
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Varinder S Athwal
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Huw Purssell
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Ajith K Siriwardena
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | | | - Mike J Dixon
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Leoma D Bere
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Adam P Jones
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Michael J Haley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Kevin N Couper
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Nicoletta Bobola
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Neil A Hanley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Karen Piper Hanley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
4
|
Jiang N, Li G, Luo S, Kong X, Yin S, Peng J, Jiang Y, Tao W, Li C, Xie H, Deng H, Xie B. Single-cell transcriptomics reveals liver developmental trajectory during lineage reprogramming of human induced hepatocyte-like cells. Cell Mol Life Sci 2025; 82:139. [PMID: 40188417 PMCID: PMC11973031 DOI: 10.1007/s00018-025-05677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/08/2025]
Abstract
Hepatocytes are crucial for drug screening, disease modeling, and clinical transplantation, yet generating functional hepatocytes in vitro is challenging due to the difficulty of establishing their authentic gene regulatory networks (GRNs). We have previously developed a two-step lineage reprogramming strategy to generate functionally competent human induced hepatocytes (hiHeps), providing an effective model for studying the establishment of hepatocyte-specific GRNs. In this study, we utilized high-throughput single-cell RNA sequencing (scRNA-seq) to explore the cell-fate transition and the establishment of hepatocyte-specific GRNs involved in the two-step reprogramming process. Our findings revealed that the late stage of the reprogramming process mimics the natural trajectory of liver development, exhibiting similar transcriptional waves of developmental genes. CD24 and DLK1 were identified as surface markers enriching two distinct hepatic progenitor populations respectively. Lipid metabolism emerged as a key enhancer of hiHeps maturation. Furthermore, transcription factors HNF4A and HHEX were identified as pivotal gatekeepers directing cell fate decisions between hepatocytes and intestinal cells. Collectively, this study provides valuable insights into the establishment of hepatocyte-specific GRNs during hiHeps induction at single-cell resolution, facilitating more efficient production of functional hepatocytes for therapeutic applications.
Collapse
Affiliation(s)
- Nan Jiang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Guangya Li
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Sen Luo
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Xi Kong
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Wei Tao
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Zhou H, Zhou X, Huang G, Zhao Y, Lan P, Chen Z. Inhibition of ferroptosis protects intrahepatic bile duct cells against ischemia-reperfusion and bile salt toxicity. Biochem Pharmacol 2025; 233:116788. [PMID: 39890033 DOI: 10.1016/j.bcp.2025.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Ischemia-reperfusion injury (IRI) and bile salt toxicity are significant contributors to post-transplant cholangiopathy. Ferroptosis appears to play a critical role in intrahepatic bile duct injury induced by ischemia-reperfusion (I/R) and bile salt toxicity. Our study aimed to elucidate the role of ferroptosis in bile duct injuries and its potential as a therapeutic target for liver diseases. Mouse models of liver ischemia-reperfusion (I/R) and α-naphthyl isocyanate (ANIT)-induced liver cholestasis were employed to investigate the role of ferroptosis in intrahepatic bile duct injury in vivo. Hypoxia-reoxygenation (H/R) and bile salt treatment models were utilized to simulate the post-transplant bile duct injury process in vitro. In mouse models of liver I/R and cholestasis, we observed a downregulation of glutathione peroxidase 4 (GPX4) and an upregulation of lipid peroxidation levels in bile duct cells. Furthermore, the ferroptosis inhibitor Liproxstatin-1 (Lip-1) significantly attenuated intrahepatic bile duct injuries. Ferroptosis inhibitors alleviated cell death and lipid peroxide accumulation in human intrahepatic biliary epithelial cells (HiBECs) subjected to H/R or glycochenodeoxycholate (GCDCA) treatment. GCDCA treatment led to ferroptosis in HiBECs along with ferritin degradation. Inhibition of autophagy alleviated GCDCA-induced bile duct cell death. Our study suggested that ferroptosis played an important role of in the intrahepatic bile duct injury during I/R or cholestasis.
Collapse
Affiliation(s)
- Huisheng Zhou
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China
| | - Xi Zhou
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China
| | - Guobin Huang
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China
| | - Peixiang Lan
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China.
| | - Zhishui Chen
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China.
| |
Collapse
|
6
|
Xie H, Zhu Z, Tang J, Zhu W, Zhu M, Yi Wai AW, Li J, Wu Z, Tam PKH, Lui VCH, Tang W. Dysregulated Activation of Hippo-YAP1 Signaling Induces Oxidative Stress and Aberrant Development of Intrahepatic Biliary Cells in Biliary Atresia. J Transl Med 2025; 105:102199. [PMID: 39579985 DOI: 10.1016/j.labinv.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
The canonical Hippo-YAP1 signaling pathway is crucial for liver development and regeneration, but its role in repair and regeneration of intrahepatic bile duct in biliary atresia (BA) remains largely unknown. YAP1 expression in the liver tissues of patients with BA and Rhesus rotavirus-induced experimental BA mouse models were examined using quantitative reverse transcriptase-PCR and double immunofluorescence. Mouse EpCAM-expressing cell-derived liver organoids were generated and treated with Hippo-YAP1 pathway activators (Xmu-mp-1 and TRULI) or an inhibitor (Peptide17). Morphologic, immunofluorescence, RNA-seq, and bioinformatic analyses were performed. Oxidative stress in human intrahepatic biliary epithelial cells transfected with a constitutively active YAP1 (YAPS127A) plasmid was assessed using quantitative reverse transcriptase-PCR and fluorescence-activated cell sorting analysis. PRDX1 expression in BA and experimental BA mouse model livers was examined by double immunofluorescence. The mRNA expression and nuclear localization of YAP1 in EpCAM-expressing bile duct cells were increased in the livers of BA and experimental BA mouse model. Aberrant development of intrahepatic organoids, differential expression of oxidative stress response genes Sod3 and Prdx1, enrichment of oxidative stress, and mitochondrial reactive oxidative stress-associated gene sets were observed in organoids treated with the Hippo-YAP1 activator, whereas organoid development was unaffected by the addition of the Hippo-YAP1 inhibitor. Transfection with constitutively active YAP1 led to the downregulation of PRDX1 and oxidative stress in human intrahepatic biliary epithelial cells. Additionally, reduced PRDX1 expression was also observed in the bile duct of human BA and experimental BA mouse livers. In conclusion, dysregulated activation of Hippo-YAP1 signaling induces oxidative stress and impairs the development of intrahepatic biliary organoids, which indicates therapeutic strategies targeting Hippo-YAP1 signaling may offer the potential to improve biliary repair and regeneration in patients with BA.
Collapse
Affiliation(s)
- Hua Xie
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongxian Zhu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaqi Tang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Wei Zhu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyan Zhu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Amy Wing Yi Wai
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Junzhi Li
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhongluan Wu
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Paul Kwong Hang Tam
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; Medical Sciences Division, Macau University of Science and Technology, Macau SAR, China
| | - Vincent Chi Hang Lui
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Wai AWY, Lui VCH, Tang CSM, Wang B, Tam PKH, Wong KKY, Chung PHY. Human Liver Organoids to Predict the Outcome of Kasai Portoenterostomy. J Pediatr Surg 2025; 60:161686. [PMID: 39271308 DOI: 10.1016/j.jpedsurg.2024.161686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Kasai portoenterostomy (KPE) remains the primary intervention for biliary atresia (BA), but its outcomes are highly variable. Reliable prognostic biomarkers remain elusive, complicating the management and prediction of postoperative progression. METHOD Liver biopsies from BA patients taken at and after KPE (post-KPE) were used to generate organoids for RNA-sequencing analysis. Control organoids were derived from non-BA livers. Differential gene expression and enrichment analyses were performed to assess post-KPE transcriptomic changes between native liver survivors (NLS) and patients who eventually became liver transplant recipients (LTR). RESULTS Organoid datasets: 70 from liver biopsies at KPE (10 patients), 112 from post-KPE livers (13 livers; 12 patients), and 47 from control livers (9 patients). At KPE, BA organoids displayed mainly hepatocyte expression, a trait notably reduced in control organoids. Similarly, post-KPE organoids from NLS revealed a significant decrease in hepatocyte expression features and an overall increase in cholangiocyte expression features. A similar hepatocyte-to-cholangiocyte expression transition was evidenced in paired liver organoids (at- and post-KPE) generated from an NLS. In contrast, post-KPE organoids from LTR maintained a high level of hepatocyte expression features. CONCLUSION Our study demonstrated that an elevated expression of hepatocyte features in KPE organoids may indicate aberrant cholangiocyte development in BA livers. In contrast, a post-KPE hepatocyte-to-cholangiocyte expression transition in NLS may imply effective biliary recovery. The lack of this transition in LTR organoids indicates ongoing disease progression, highlighting the potential for organoid-based transcriptomic profiling to inform KPE success and guide BA management. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Amy Wing Yi Wai
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Vincent Chi Hang Lui
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Clara Sze Man Tang
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Paul Kwong Hang Tam
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Kenneth Kak Yuen Wong
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Patrick Ho Yu Chung
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Bebelman MP, Belicova L, Gralinska E, Jumel T, Lahree A, Sommer S, Shevchenko A, Zatsepin T, Kalaidzidis Y, Vingron M, Zerial M. Hepatocyte differentiation requires anisotropic expansion of bile canaliculi. Development 2024; 151:dev202777. [PMID: 39373104 DOI: 10.1242/dev.202777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
During liver development, bipotential progenitor cells called hepatoblasts differentiate into hepatocytes or cholangiocytes. Hepatocyte differentiation is uniquely associated with multi-axial polarity, enabling the anisotropic expansion of apical lumina between adjacent cells and formation of a three-dimensional network of bile canaliculi. Cholangiocytes, the cells forming the bile ducts, exhibit the vectorial polarity characteristic of epithelial cells. Whether cell polarization feeds back on the gene regulatory pathways governing hepatoblast differentiation is unknown. Here, we used primary mouse hepatoblasts to investigate the contribution of anisotropic apical expansion to hepatocyte differentiation. Silencing of the small GTPase Rab35 caused isotropic lumen expansion and formation of multicellular cysts with the vectorial polarity of cholangiocytes. Gene expression profiling revealed that these cells express reduced levels of hepatocyte markers and upregulate genes associated with cholangiocyte identity. Timecourse RNA sequencing demonstrated that loss of lumen anisotropy precedes these transcriptional changes. Independent alterations in apical lumen morphology induced either by modulation of the subapical actomyosin cortex or by increased intraluminal pressure caused similar transcriptional changes. These findings suggest that cell polarity and lumen morphogenesis feed back to hepatoblast-to-hepatocyte differentiation.
Collapse
Affiliation(s)
- Maarten P Bebelman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lenka Belicova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elzbieta Gralinska
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Tobias Jumel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Aparajita Lahree
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Sarah Sommer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Timofei Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
9
|
Deng Z, Dong Z, Wang Y, Dai Y, Liu J, Deng F. Identification of TACSTD2 as novel therapeutic targets for cisplatin-induced acute kidney injury by multi-omics data integration. Hum Genet 2024; 143:1061-1080. [PMID: 38369676 DOI: 10.1007/s00439-024-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Cisplatin-induced acute kidney injury (CP-AKI) is a common complication in cancer patients. Although ferroptosis is believed to contribute to the progression of CP-AKI, its mechanisms remain incompletely understood. In this study, after initially processed individual omics datasets, we integrated multi-omics data to construct a ferroptosis network in the kidney, resulting in the identification of the key driver TACSTD2. In vitro and in vivo results showed that TACSTD2 was notably upregulated in cisplatin-treated kidneys and BUMPT cells. Overexpression of TACSTD2 accelerated ferroptosis, while its gene disruption decelerated ferroptosis, likely mediated by its potential downstream targets HMGB1, IRF6, and LCN2. Drug prediction and molecular docking were further used to propose that drugs targeting TACSTD2 may have therapeutic potential in CP-AKI, such as parthenolide, progesterone, premarin, estradiol and rosiglitazone. Our findings suggest a significant association between ferroptosis and the development of CP-AKI, with TACSTD2 playing a crucial role in modulating ferroptosis, which provides novel perspectives on the pathogenesis and treatment of CP-AKI.
Collapse
Affiliation(s)
- Zebin Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jiachen Liu
- Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Center of Systems Biology and Data Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Xie H, Li G, Fu Y, Jiang N, Yi S, Kong X, Shi J, Yin S, Peng J, Jiang Y, Lu S, Deng H, Xie B. A two-step strategy to expand primary human hepatocytes in vitro with efficient metabolic and regenerative capacities. Stem Cell Res Ther 2024; 15:281. [PMID: 39227965 PMCID: PMC11373096 DOI: 10.1186/s13287-024-03911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Primary human hepatocytes (PHHs) are highly valuable for drug-metabolism evaluation, liver disease modeling and hepatocyte transplantation. However, their availability is significantly restricted due to limited donor sources, alongside their constrained proliferation capabilities and reduced functionality when cultured in vitro. To address this challenge, we aimed to develop a novel method to efficiently expand PHHs in vitro without a loss of function. METHODS By mimicking the in vivo liver regeneration route, we developed a two-step strategy involving the de-differentiation/expansion and subsequent maturation of PHHs to generate abundant functional hepatocytes in vitro. Initially, we applied SiPer, a prediction algorithm, to identify candidate small molecules capable of activating liver regenerative transcription factors, thereby formulating a novel hepatic expansion medium to de-differentiate PHHs into proliferative human hepatic progenitor-like cells (ProHPLCs). These ProHPLCs were then re-differentiated into functionally mature hepatocytes using a new hepatocyte maturation condition. Additionally, we investigated the underlying mechanism of PHHs expansion under our new conditions. RESULTS The novel hepatic expansion medium containing hydrocortisone facilitated the de-differentiation of PHHs into ProHPLCs, which exhibited key hepatic progenitor characteristics and demonstrated a marked increase in proliferation capacity compared to cells cultivated in previously established expansion conditions. Remarkably, these subsequent matured hepatocytes rivaled PHHs in terms of transcriptome profiles, drug metabolizing activities and in vivo engraftment capabilities. Importantly, our findings suggest that the enhanced expansion of PHHs by hydrocortisone may be mediated through the PPARα signaling pathway and regenerative transcription factors. CONCLUSIONS This study presents a two-step strategy that initially induces PHHs into a proliferative state (ProHPLCs) to ensure sufficient cell quantity, followed by the maturation of ProHPLCs into fully functional hepatocytes to guarantee optimal cell quality. This approach offers a promising means of producing large numbers of seeding cells for hepatocyte-based applications.
Collapse
Affiliation(s)
- Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guangya Li
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Yunxi Fu
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Nan Jiang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Simeng Yi
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xi Kong
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jihang Shi
- Department of Gastroenterology, The Second Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianhua Peng
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery, Institute of Hepatobiliary Surgery of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
11
|
Shin GJ, Choi BH, Eum HH, Jo A, Kim N, Kang H, Hong D, Jang JJ, Lee HH, Lee YS, Lee YS, Lee HO. Single-cell RNA sequencing of nc886, a non-coding RNA transcribed by RNA polymerase III, with a primer spike-in strategy. PLoS One 2024; 19:e0301562. [PMID: 39190696 DOI: 10.1371/journal.pone.0301562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/06/2024] [Indexed: 08/29/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a versatile tool in biology, enabling comprehensive genomic-level characterization of individual cells. Currently, most scRNA-seq methods generate barcoded cDNAs by capturing the polyA tails of mRNAs, which exclude many non-coding RNAs (ncRNAs), especially those transcribed by RNA polymerase III (Pol III). Although previously thought to be expressed constitutively, Pol III-transcribed ncRNAs are expressed variably in healthy and disease states and play important roles therein, necessitating their profiling at the single-cell level. In this study, we developed a measurement protocol for nc886 as a model case and initial step for scRNA-seq for Pol III-transcribed ncRNAs. Specifically, we spiked in an oligo-tagged nc886-specific primer during the polyA tail capture process for the 5'scRNA-seq. We then produced sequencing libraries for standard 5' gene expression and oligo-tagged nc886 separately, to accommodate different cDNA sizes and ensure undisturbed transcriptome analysis. We applied this protocol in three cell lines that express high, low, and zero levels of nc886. Our results show that the identification of oligo tags exhibited limited target specificity, and sequencing reads of nc886 enabled the correction of non-specific priming. These findings suggest that gene-specific primers (GSPs) can be employed to capture RNAs lacking a polyA tail, with subsequent sequence verification ensuring accurate gene expression counting. Moreover, we embarked on an analysis of differentially expressed genes in cell line sub-clusters with differential nc886 expression, demonstrating variations in gene expression phenotypes. Collectively, the primer spike-in strategy allows combined analysis of ncRNAs and gene expression phenotype.
Collapse
Affiliation(s)
- Gyeong-Jin Shin
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Byung-Han Choi
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hye Hyeon Eum
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
| | - Areum Jo
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
| | - Nayoung Kim
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
| | - Huiram Kang
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Dongwan Hong
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, The Catholic University of Korea, Seoul, Korea
| | - Jiyoung Joan Jang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hwi-Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Yeon-Su Lee
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hae-Ock Lee
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Maulding ND, Seninge L, Stuart JM. Associating transcription factors to single-cell trajectories with DREAMIT. Genome Biol 2024; 25:220. [PMID: 39143494 PMCID: PMC11323358 DOI: 10.1186/s13059-024-03368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
Inferring gene regulatory networks from single-cell RNA-sequencing trajectories has been an active area of research yet methods are still needed to identify regulators governing cell transitions. We developed DREAMIT (Dynamic Regulation of Expression Across Modules in Inferred Trajectories) to annotate transcription-factor activity along single-cell trajectory branches, using ensembles of relations to target genes. Using a benchmark representing several different tissues, as well as external validation with ATAC-Seq and Perturb-Seq data on hematopoietic cells, the method was found to have higher tissue-specific sensitivity and specificity over competing approaches.
Collapse
Affiliation(s)
- Nathan D Maulding
- UCSC Genomics Institute, Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Lucas Seninge
- UCSC Genomics Institute, Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Joshua M Stuart
- UCSC Genomics Institute, Biomolecular Engineering, University of California, Santa Cruz, USA.
| |
Collapse
|
13
|
Xie S, Xu J, Chen L, Qi Y, Yang H, Tan B. Single-Cell Transcriptomic Analysis Revealed the Cell Population Changes and Cell-Cell Communication in the Liver of a Carnivorous Fish in Response to High-Carbohydrate Diet. J Nutr 2024; 154:2381-2395. [PMID: 38945299 DOI: 10.1016/j.tjnut.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Carnivorous fish have a low carbohydrate utilization ability, and the physiologic and molecular basis of glucose intolerance has not been fully illustrated. OBJECTIVES This study aimed to use largemouth bass as a model to investigate the possible mechanism of glucose intolerance in carnivorous fish with the help of single-nuclei RNA sequencing (snRNA-seq). METHODS Two diets were formulated, a low-carbohydrate (LC) diet and a high-carbohydrate (HC) diet. The feeding trial lasted for 6 wk, and then, growth performance, biochemical parameters, liver histology, and snRNA-seq were performed. RESULTS Growth performance of fish was not affected by the HC diet, while liver glucolipid metabolism disorder and liver injury were observed. A total of 13,247 and 12,848 cells from the liver derived from 2 groups were isolated and sequenced, and 7 major liver cell types were annotated by the marker genes. Hepatocytes and cholangiocytes were lower and hepatic stellate cells (HSCs) and immune cells were higher in the HC group than those in the LC group. Reclustering analysis identified 7 subtypes of hepatocytes and immune cells, respectively. The HSCs showed more cell communication with other cell types, and periportal hepatocytes showed more cell communication with other hepatocyte subtypes. Cell-cell communication mainly focused on cell junction-related signaling pathways. Uncovered by the pseudotime analysis, midzonal hepatocytes were differentiated into 2 major branches-biliary epithelial hepatocytes and hepatobiliary hybrid progenitor. Cell junction and liver fibrosis-related genes were highly expressed in the HC group. HC diet induced the activation of HSCs and, therefore, led to the liver fibrosis of largemouth bass. CONCLUSIONS HC diet induces liver glucolipid metabolism disorder and liver injury of largemouth bass. The increase and activation of HSCs might be the main reason for the liver injury. In adaption to HC diet, midzonal hepatocytes differentiates into 2 major branches-biliary epithelial hepatocytes and hepatobiliary hybrid progenitors.
Collapse
Affiliation(s)
- Shiwei Xie
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Guangdong Provincial Key Lab of Aquatic Animals Disease Control and Healthy Culture, Zhanjiang, China.
| | - Jia Xu
- Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Liutong Chen
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Yu Qi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Huijun Yang
- Guangzhou Chengyi Aquaculture, Guangzhou, Guangdong, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China.
| |
Collapse
|
14
|
Tadokoro T, Murata S, Kato M, Ueno Y, Tsuchida T, Okumura A, Kuse Y, Konno T, Uchida Y, Yamakawa Y, Zushi M, Yajima M, Kobayashi T, Hasegawa S, Kawakatsu-Hatada Y, Hayashi Y, Osakabe S, Maeda T, Kimura K, Mori A, Tanaka M, Kamishibahara Y, Matsuo M, Nie YZ, Okamoto S, Oba T, Tanimizu N, Taniguchi H. Human iPSC-liver organoid transplantation reduces fibrosis through immunomodulation. Sci Transl Med 2024; 16:eadg0338. [PMID: 39047116 DOI: 10.1126/scitranslmed.adg0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Donor organ shortages for transplantation remain a serious global concern, and alternative treatment is in high demand. Fetal cells and tissues have considerable therapeutic potential as, for example, organoid technology that uses human induced pluripotent stem cells (hiPSCs) to generate unlimited human fetal-like cells and tissues. We previously reported the in vivo vascularization of early fetal liver-like hiPSC-derived liver buds (LBs) and subsquent improved survival of recipient mice with subacute liver failure. Here, we show hiPSC-liver organoids (LOs) that recapitulate midgestational fetal liver promote de novo liver generation when grafted onto the surface of host livers in chemical fibrosis models, thereby recovering liver function. We found that fetal liver, a hematopoietic tissue, highly expressed macrophage-recruiting factors and antifibrotic M2 macrophage polarization factors compared with the adult liver, resulting in fibrosis reduction because of CD163+ M2-macrophage polarization. Next, we created midgestational fetal liver-like hiPSC-LOs by fusion of hiPSC-LBs to induce static cell-cell interactions and found that these contained complex structures such as hepatocytes, vasculature, and bile ducts after transplantation. This fusion allowed the generation of a large human tissue suitable for transplantation into immunodeficient rodent models of liver fibrosis. hiPSC-LOs showed superior liver function compared with hiPSC-LBs and improved survival and liver function upon transplantation. In addition, hiPSC-LO transplantation ameliorated chemically induced liver fibrosis, a symptom of liver cirrhosis that leads to organ dysfunction, through immunomodulatory effects, particularly on CD163+ phagocytic M2-macrophage polarization. Together, our results suggest hiPSC-LO transplantation as a promising therapeutic option for liver fibrosis.
Collapse
Affiliation(s)
- Tomomi Tadokoro
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Soichiro Murata
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Mimoko Kato
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Yasuharu Ueno
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tomonori Tsuchida
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshiki Kuse
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takahiro Konno
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Yutaro Uchida
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Yuriko Yamakawa
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Marina Zushi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Megumi Yajima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Kobayashi
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Shunsuke Hasegawa
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Yumi Kawakatsu-Hatada
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Yoshihito Hayashi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Shun Osakabe
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takuji Maeda
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Kodai Kimura
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Akihiro Mori
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Maiko Tanaka
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Yu Kamishibahara
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Megumi Matsuo
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yun-Zhong Nie
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Okamoto
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takayoshi Oba
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
15
|
Brazovskaja A, Gomes T, Holtackers R, Wahle P, Körner C, He Z, Schaffer T, Eckel JC, Hänsel R, Santel M, Seimiya M, Denecke T, Dannemann M, Brosch M, Hampe J, Seehofer D, Damm G, Camp JG, Treutlein B. Cell atlas of the regenerating human liver after portal vein embolization. Nat Commun 2024; 15:5827. [PMID: 38992008 PMCID: PMC11239663 DOI: 10.1038/s41467-024-49236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
The liver has the remarkable capacity to regenerate. In the clinic, regeneration is induced by portal vein embolization, which redirects portal blood flow, resulting in liver hypertrophy in locations with increased blood supply, and atrophy of embolized segments. Here, we apply single-cell and single-nucleus transcriptomics on healthy, hypertrophied, and atrophied patient-derived liver samples to explore cell states in the regenerating liver. Our data unveils pervasive upregulation of genes associated with developmental processes, cellular adhesion, and inflammation in post-portal vein embolization liver, disrupted portal-central hepatocyte zonation, and altered cell subtype composition of endothelial and immune cells. Interlineage crosstalk analysis reveals mesenchymal cells as an interaction hub between immune and endothelial cells, and highlights the importance of extracellular matrix proteins in liver regeneration. Moreover, we establish tissue-scale iterative indirect immunofluorescence imaging for high-dimensional spatial analysis of perivascular microenvironments, uncovering changes to tissue architecture in regenerating liver lobules. Altogether, our data is a rich resource revealing cellular and histological changes in human liver regeneration.
Collapse
Affiliation(s)
| | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - Rene Holtackers
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Philipp Wahle
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christiane Körner
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Theresa Schaffer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julian Connor Eckel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - René Hänsel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
| | - Malgorzata Santel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, Leipzig University, Leipzig, Germany
| | - Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mario Brosch
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden, Germany
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany.
| | - J Gray Camp
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
16
|
Li J, Fu L, Li Y, Sun W, Yi Y, Jia W, Li H, Liu H, Guo P, Wang Y, Shen Y, Zhang X, Lv Y, Qin B, Li W, Liu C, Liu L, Mazid MA, Lai Y, Esteban MA, Jiang Y, Wu L. A single-cell chromatin accessibility dataset of human primed and naïve pluripotent stem cell-derived teratoma. Sci Data 2024; 11:725. [PMID: 38956385 PMCID: PMC11220047 DOI: 10.1038/s41597-024-03558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Teratoma, due to its remarkable ability to differentiate into multiple cell lineages, is a valuable model for studying human embryonic development. The similarity of the gene expression and chromatin accessibility patterns in these cells to those observed in vivo further underscores its potential as a research tool. Notably, teratomas derived from human naïve (pre-implantation epiblast-like) pluripotent stem cells (PSCs) have larger embryonic cell diversity and contain extraembryonic lineages, making them more suitable to study developmental processes. However, the cell type-specific epigenetic profiles of naïve PSC teratomas have not been yet characterized. Using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we analyzed 66,384 cell profiles from five teratomas derived from human naïve PSCs and their post-implantation epiblast-like (primed) counterparts. We observed 17 distinct cell types from both embryonic and extraembryonic lineages, resembling the corresponding cell types in human fetal tissues. Additionally, we identified key transcription factors specific to different cell types. Our dataset provides a resource for investigating gene regulatory programs in a relevant model of human embryonic development.
Collapse
Affiliation(s)
- Jinxiu Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Lixin Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Sun
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yao Yi
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Wenqi Jia
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Haiwei Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, Guangdong, 510530, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Pengcheng Guo
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Yang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Hangzhou, 310030, China
| | - Yue Shen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Yuan Lv
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Baoming Qin
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chuanyu Liu
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yiwei Lai
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
- 3DCStar lab, BGI, Shenzhen, 518083, China
| | - Miguel A Esteban
- BGI Research, Shenzhen, 518083, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- 3DCStar lab, BGI, Shenzhen, 518083, China
| | - Yu Jiang
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
17
|
Gribben C, Galanakis V, Calderwood A, Williams EC, Chazarra-Gil R, Larraz M, Frau C, Puengel T, Guillot A, Rouhani FJ, Mahbubani K, Godfrey E, Davies SE, Athanasiadis E, Saeb-Parsy K, Tacke F, Allison M, Mohorianu I, Vallier L. Acquisition of epithelial plasticity in human chronic liver disease. Nature 2024; 630:166-173. [PMID: 38778114 PMCID: PMC11153150 DOI: 10.1038/s41586-024-07465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.
Collapse
Affiliation(s)
- Christopher Gribben
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
| | - Vasileios Galanakis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alexander Calderwood
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Eleanor C Williams
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ruben Chazarra-Gil
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Miguel Larraz
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carla Frau
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany
| | - Tobias Puengel
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Edmund Godfrey
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emmanouil Athanasiadis
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, University of West Attica, Athens, Greece
| | | | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Allison
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Irina Mohorianu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
18
|
Hendriks D, Artegiani B, Margaritis T, Zoutendijk I, Chuva de Sousa Lopes S, Clevers H. Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth. Nat Commun 2024; 15:4034. [PMID: 38740814 DOI: 10.1038/s41467-024-48550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.
Collapse
Affiliation(s)
- Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | | | - Iris Zoutendijk
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- University Medical Center Utrecht, Utrecht, The Netherlands.
- Pharma Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
19
|
Scheidecker B, Poulain S, Sugimoto M, Kido T, Kawanishi T, Miyajima A, Kim SH, Arakawa H, Kato Y, Nishikawa M, Danoy M, Sakai Y, Leclerc E. Dynamic, IPSC-derived hepatic tissue tri-culture system for the evaluation of liver physiology in vitro. Biofabrication 2024; 16:025037. [PMID: 38447229 DOI: 10.1088/1758-5090/ad30c5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Availability of hepatic tissue for the investigation of metabolic processes is severely limited. While primary hepatocytes or animal models are widely used in pharmacological applications, a change in methodology towards more sustainable and ethical assays is highly desirable. Stem cell derived hepatic cells are generally regarded as a viable alternative for the above model systems, if current limitations in functionality and maturation can be overcome. By combining microfluidic organ-on-a-chip technology with individually differentiated, multicellular hepatic tissue fractions, we aim to improve overall functionality of hepatocyte-like cells, as well as evaluate cellular composition and interactions with non-parenchymal cell populations towards the formation of mature liver tissue. Utilizing a multi-omic approach, we show the improved maturation profiles of hepatocyte-like cells maintained in a dynamic microenvironment compared to standard tissue culture setups without continuous perfusion. In order to evaluate the resulting tissue, we employ single cell sequencing to distinguish formed subpopulations and spatial localization. While cellular input was strictly defined based on established differentiation protocols of parenchyma, endothelial and stellate cell fractions, resulting hepatic tissue was shown to comprise a complex mixture of epithelial and non-parenchymal fractions with specific local enrichment of phenotypes along the microchannel. Following this approach, we show the importance of passive, paracrine developmental processes in tissue formation. Using such complex tissue models is a crucial first step to develop stem cell-derivedin vitrosystems that can compare functionally with currently used pharmacological and toxicological applications.
Collapse
Affiliation(s)
- Benedikt Scheidecker
- CNRS UMI 2820, Institute of Industrial Science, University of Tokyo, 153-8505 Tokyo, Japan
| | - Stéphane Poulain
- Institute of Industrial Science, University of Tokyo, 153-8505 Tokyo, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, 997-0035 Yamagata, Japan
- Institute of Medical Science, Tokyo Medical University, 160-8402 Tokyo, Japan
| | - Taketomo Kido
- Institute for Quantitative Biosciences, University of Tokyo, 113-0032 Tokyo, Japan
| | - Takumi Kawanishi
- School of Pharmaceutical Sciences, Kanazawa University, 920-1102 Kanazawa, Japan
| | - Atsushi Miyajima
- Institute for Quantitative Biosciences, University of Tokyo, 113-0032 Tokyo, Japan
| | - Soo Hyeon Kim
- Institute of Industrial Science, University of Tokyo, 153-8505 Tokyo, Japan
| | - Hiroshi Arakawa
- School of Pharmaceutical Sciences, Kanazawa University, 920-1102 Kanazawa, Japan
| | - Yukio Kato
- School of Pharmaceutical Sciences, Kanazawa University, 920-1102 Kanazawa, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, University of Tokyo, 113-8654 Tokyo, Japan
| | - Mathieu Danoy
- Department of Chemical System Engineering, University of Tokyo, 113-8654 Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, University of Tokyo, 113-8654 Tokyo, Japan
| | - Eric Leclerc
- CNRS UMI 2820, Institute of Industrial Science, University of Tokyo, 153-8505 Tokyo, Japan
- CNRS UMR 7338, Laboratoire de Biomécanique et Bioingénierie, Université de Technologies de Compiègne, 60203 Compiègne, France
| |
Collapse
|
20
|
Kildisiute G, Kalyva M, Elmentaite R, van Dongen S, Thevanesan C, Piapi A, Ambridge K, Prigmore E, Haniffa M, Teichmann SA, Straathof K, Cortés-Ciriano I, Behjati S, Young MD. Transcriptional signals of transformation in human cancer. Genome Med 2024; 16:8. [PMID: 38195504 PMCID: PMC10775554 DOI: 10.1186/s13073-023-01279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND As normal cells transform into cancers, their cell state changes, which may drive cancer cells into a stem-like or more primordial, foetal, or embryonic cell state. The transcriptomic profile of this final state may encode information about cancer's origin and how cancers relate to their normal cell counterparts. METHODS Here, we used single-cell atlases to study cancer transformation in transcriptional terms. We utilised bulk transcriptomes across a wide spectrum of adult and childhood cancers, using a previously established method to interrogate their relationship to normal cell states. We extend and validate these findings using single-cell cancer transcriptomes and organ-specific atlases of colorectal and liver cancer. RESULTS Our bulk transcriptomic data reveals that adult cancers rarely return to an embryonic state, but that a foetal state is a near-universal feature of childhood cancers. This finding was confirmed with single-cell cancer transcriptomes. CONCLUSIONS Our findings provide a nuanced picture of transformation in human cancer, indicating cancer-specific rather than universal patterns of transformation pervade adult epithelial cancers.
Collapse
Affiliation(s)
- Gerda Kildisiute
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Maria Kalyva
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stijn van Dongen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Christine Thevanesan
- University College London Cancer Institute and Great Ormond Street Biomedical Research Centre, London, UK
| | - Alice Piapi
- University College London Cancer Institute and Great Ormond Street Biomedical Research Centre, London, UK
| | - Kirsty Ambridge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Biosciences Institute and Newcastle NIHR-BRC Dermatology, Newcastle University, Newcastle Upon Tyne, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, UK
| | - Karin Straathof
- University College London Cancer Institute and Great Ormond Street Biomedical Research Centre, London, UK
| | | | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| | - Matthew D Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
21
|
Pouyabahar D, Chung SW, Pezzutti OI, Perciani CT, Wang X, Ma XZ, Jiang C, Camat D, Chung T, Sekhon M, Manuel J, Chen XC, McGilvray ID, MacParland SA, Bader GD. A rat liver cell atlas reveals intrahepatic myeloid heterogeneity. iScience 2023; 26:108213. [PMID: 38026201 PMCID: PMC10651689 DOI: 10.1016/j.isci.2023.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The large size and vascular accessibility of the laboratory rat (Rattus norvegicus) make it an ideal hepatic animal model for diseases that require surgical manipulation. Often, the disease susceptibility and outcomes of inflammatory pathologies vary significantly between strains. This study uses single-cell transcriptomics to better understand the complex cellular network of the rat liver, as well as to unravel the cellular and molecular sources of inter-strain hepatic variation. We generated single-cell and single-nucleus transcriptomic maps of the livers of healthy Dark Agouti and Lewis rat strains and developed a factor analysis-based bioinformatics analysis pipeline to study data covariates, such as strain and batch. Using this approach, we discovered transcriptomic variation within the hepatocyte and myeloid populations that underlie distinct cell states between rat strains. This finding will help provide a reference for future investigations on strain-dependent outcomes of surgical experiment models.
Collapse
Affiliation(s)
- Delaram Pouyabahar
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Sai W. Chung
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olivia I. Pezzutti
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Catia T. Perciani
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Xinle Wang
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Xue-Zhong Ma
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Chao Jiang
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Damra Camat
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Trevor Chung
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Manmeet Sekhon
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Justin Manuel
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Xu-Chun Chen
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Ian D. McGilvray
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Sonya A. MacParland
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gary D. Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Princess Margaret Research Institute, University Health Network, Toronto, ON, Canada
- The Multiscale Human Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
22
|
Kong D, Mourtzinos A, Heegsma J, Blokzijl H, de Meijer VE, Faber KN. Growth differentiation factor 7 autocrine signaling promotes hepatic progenitor cell expansion in liver fibrosis. Stem Cell Res Ther 2023; 14:288. [PMID: 37798809 PMCID: PMC10557292 DOI: 10.1186/s13287-023-03493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND AND AIM Liver fibrosis is prevalent among chronic diseases of the liver and represents a major health burden worldwide. Growth differentiation factor 7 (GDF7), a member of the TGFβ protein superfamily, has been recently investigated for its role in repair of injured organs, but its role in chronic liver diseases remains unclear. Here, we examined hepatic GDF7 expression and its association with development and progression of human liver fibrosis. Moreover, we determined the source and target cells of GDF7 in the human liver. METHODS GDF7 expression was analyzed in fibrotic and healthy human liver tissues by immunohistochemistry and qPCR. Cell-specific accumulation of GDF7 was examined by immunofluorescence through co-staining of cell type-specific markers on formalin-fixed paraffin-embedded human liver tissues. Public single cell RNA sequence databases were analyzed for cell type-specific expression of GDF7. In vitro, human liver organoids and LX-2 hepatic stellate cells (LX-2) were treated with recombinant human GDF7. Human liver organoids were co-cultured with activated LX-2 cells to induce an autocrine signaling circuit of GDF7 in liver organoids. RESULTS GDF7 protein levels were elevated in fibrotic liver tissue, mainly detected in hepatocytes and cholangiocytes. In line, GDF7 mRNA was mainly detected in liver parenchymal cells. Expressions of BMPR1A and BMPR2, encoding GDF7 receptors, were readily detected in hepatocytes, cholangiocytes and stellate cells in vivo and in vitro. In vitro, recombinant GDF7 promoted liver organoid growth and enhanced expression of the progenitor cell markers (LGR5, AXIN2), but failed to activate LX-2 cells. Still, activated LX-2 cells induced GDF7 and LGR5 expression in co-cultured human liver organoids. CONCLUSIONS Collectively, this study reveals a role of GDF7 in liver fibrosis and suggests a potential pro-regenerative function that can be utilized for amelioration of hepatic fibrosis caused by chronic liver disease.
Collapse
Affiliation(s)
- Defu Kong
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Apostolos Mourtzinos
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
23
|
Lotto J, Stephan TL, Hoodless PA. Fetal liver development and implications for liver disease pathogenesis. Nat Rev Gastroenterol Hepatol 2023; 20:561-581. [PMID: 37208503 DOI: 10.1038/s41575-023-00775-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/21/2023]
Abstract
The metabolic, digestive and homeostatic roles of the liver are dependent on proper crosstalk and organization of hepatic cell lineages. These hepatic cell lineages are derived from their respective progenitors early in organogenesis in a spatiotemporally controlled manner, contributing to the liver's specialized and diverse microarchitecture. Advances in genomics, lineage tracing and microscopy have led to seminal discoveries in the past decade that have elucidated liver cell lineage hierarchies. In particular, single-cell genomics has enabled researchers to explore diversity within the liver, especially early in development when the application of bulk genomics was previously constrained due to the organ's small scale, resulting in low cell numbers. These discoveries have substantially advanced our understanding of cell differentiation trajectories, cell fate decisions, cell lineage plasticity and the signalling microenvironment underlying the formation of the liver. In addition, they have provided insights into the pathogenesis of liver disease and cancer, in which developmental processes participate in disease emergence and regeneration. Future work will focus on the translation of this knowledge to optimize in vitro models of liver development and fine-tune regenerative medicine strategies to treat liver disease. In this Review, we discuss the emergence of hepatic parenchymal and non-parenchymal cells, advances that have been made in in vitro modelling of liver development and draw parallels between developmental and pathological processes.
Collapse
Affiliation(s)
- Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada
| | - Tabea L Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada.
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
24
|
Zou J, Li J, Zhong X, Tang D, Fan X, Chen R. Liver in infections: a single-cell and spatial transcriptomics perspective. J Biomed Sci 2023; 30:53. [PMID: 37430371 PMCID: PMC10332047 DOI: 10.1186/s12929-023-00945-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
The liver is an immune organ that plays a vital role in the detection, capture, and clearance of pathogens and foreign antigens that invade the human body. During acute and chronic infections, the liver transforms from a tolerant to an active immune state. The defence mechanism of the liver mainly depends on a complicated network of intrahepatic and translocated immune cells and non-immune cells. Therefore, a comprehensive liver cell atlas in both healthy and diseased states is needed for new therapeutic target development and disease intervention improvement. With the development of high-throughput single-cell technology, we can now decipher heterogeneity, differentiation, and intercellular communication at the single-cell level in sophisticated organs and complicated diseases. In this concise review, we aimed to summarise the advancement of emerging high-throughput single-cell technologies and re-define our understanding of liver function towards infections, including hepatitis B virus, hepatitis C virus, Plasmodium, schistosomiasis, endotoxemia, and corona virus disease 2019 (COVID-19). We also unravel previously unknown pathogenic pathways and disease mechanisms for the development of new therapeutic targets. As high-throughput single-cell technologies mature, their integration into spatial transcriptomics, multiomics, and clinical data analysis will aid in patient stratification and in developing effective treatment plans for patients with or without liver injury due to infectious diseases.
Collapse
Affiliation(s)
- Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao Zhong
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xuegong Fan
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
25
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
26
|
Hautz T, Salcher S, Fodor M, Sturm G, Ebner S, Mair A, Trebo M, Untergasser G, Sopper S, Cardini B, Martowicz A, Hofmann J, Daum S, Kalb M, Resch T, Krendl F, Weissenbacher A, Otarashvili G, Obrist P, Zelger B, Öfner D, Trajanoski Z, Troppmair J, Oberhuber R, Pircher A, Wolf D, Schneeberger S. Immune cell dynamics deconvoluted by single-cell RNA sequencing in normothermic machine perfusion of the liver. Nat Commun 2023; 14:2285. [PMID: 37085477 PMCID: PMC10121614 DOI: 10.1038/s41467-023-37674-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/27/2023] [Indexed: 04/23/2023] Open
Abstract
Normothermic machine perfusion (NMP) has emerged as an innovative organ preservation technique. Developing an understanding for the donor organ immune cell composition and its dynamic changes during NMP is essential. We aimed for a comprehensive characterization of immune cell (sub)populations, cell trafficking and cytokine release during liver NMP. Single-cell transcriptome profiling of human donor livers prior to, during NMP and after transplantation shows an abundance of CXC chemokine receptor 1+/2+ (CXCR1+/CXCR2+) neutrophils, which significantly decreased during NMP. This is paralleled by a large efflux of passenger leukocytes with neutrophil predominance in the perfusate. During NMP, neutrophils shift from a pro-inflammatory state towards an aged/chronically activated/exhausted phenotype, while anti-inflammatory/tolerogenic monocytes/macrophages are increased. We herein describe the dynamics of the immune cell repertoire, phenotypic immune cell shifts and a dominance of neutrophils during liver NMP, which potentially contribute to the inflammatory response. Our findings may serve as resource to initiate future immune-interventional studies.
Collapse
Affiliation(s)
- T Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S Salcher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Fodor
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - G Sturm
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - S Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Mair
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Trebo
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - G Untergasser
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - S Sopper
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - B Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Martowicz
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - J Hofmann
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S Daum
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Kalb
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - T Resch
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - F Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - G Otarashvili
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - P Obrist
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - B Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - D Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - J Troppmair
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - R Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Pircher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - D Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria.
| | - S Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
27
|
Huppert SS, Schwartz RE. Multiple Facets of Cellular Homeostasis and Regeneration of the Mammalian Liver. Annu Rev Physiol 2023; 85:469-493. [PMID: 36270290 PMCID: PMC9918695 DOI: 10.1146/annurev-physiol-032822-094134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver regeneration occurs in response to diverse injuries and is capable of functionally reestablishing the lost parenchyma. This phenomenon has been known since antiquity, encapsulated in the Greek myth where Prometheus was to be punished by Zeus for sharing the gift of fire with humanity by having an eagle eat his liver daily, only to have the liver regrow back, thus ensuring eternal suffering and punishment. Today, this process is actively leveraged clinically during living donor liver transplantation whereby up to a two-thirds hepatectomy (resection or removal of part of the liver) on a donor is used for transplant to a recipient. The donor liver rapidly regenerates to recover the lost parenchymal mass to form a functional tissue. This astonishing regenerative process and unique capacity of the liver are examined in further detail in this review.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA;
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
28
|
He J, Deng C, Krall L, Shan Z. ScRNA-seq and ST-seq in liver research. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:11. [PMID: 36732412 PMCID: PMC9895469 DOI: 10.1186/s13619-022-00152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/11/2022] [Indexed: 02/04/2023]
Abstract
Spatial transcriptomics, which combine gene expression data with spatial information, has quickly expanded in recent years. With application of this method in liver research, our knowledge about liver development, regeneration, and diseases have been greatly improved. While this field is moving forward, a variety of problems still need to be addressed, including sensitivity, limited capacity to obtain exact single-cell information, data processing methods, as well as others. Methods like single-cell RNA sequencing (scRNA-seq) are usually used together with spatial transcriptome sequencing (ST-seq) to clarify cell-specific gene expression. In this review, we explore how advances of scRNA-seq and ST-seq, especially ST-seq, will pave the way to new opportunities to investigate fundamental questions in liver research. Finally, we will discuss the strengths, limitations, and future perspectives of ST-seq in liver research.
Collapse
Affiliation(s)
- Jia He
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Chengxiang Deng
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Leonard Krall
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhao Shan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
29
|
Le Guilcher C, Merlen G, Dellaquila A, Labour MN, Aid R, Tordjmann T, Letourneur D, Simon-Yarza T. Engineered human liver based on pullulan-dextran hydrogel promotes mice survival after liver failure. Mater Today Bio 2023; 19:100554. [PMID: 36756209 PMCID: PMC9900439 DOI: 10.1016/j.mtbio.2023.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Liver tissue engineering approaches aim to support drug testing, assistance devices, or transplantation. However, their suitability for clinical application remains unsatisfactory. Herein, we demonstrate the beneficial and biocompatible use of porous pullulan-dextran hydrogel for the self-assembly of hepatocytes and biliary-like cells into functional 3D microtissues. Using HepaRG cells, we obtained 21 days maintenance of engineered liver polarity, functional detoxification and excretion systems, as well as glycogen storage in hydrogel. Implantation on two liver lobes in mice of hydrogels containing 3800 HepaRG 3D structures of 100 μm in diameter, indicated successful engraftment and no signs of liver toxicity after one month. Finally, after acetaminophen-induced liver failure, when mice were transplanted with engineered livers on left lobe and peritoneal cavity, the survival rate at 7 days significantly increased by 31.8% compared with mice without cell therapy. These findings support the clinical potential of pullulan-dextran hydrogel for liver failure management.
Collapse
Affiliation(s)
- Camille Le Guilcher
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, U1148, F-75018 Paris, France,Corresponding author.
| | - Grégory Merlen
- Université Paris-Saclay, INSERM U1193, F- 94800 Villejuif, France
| | - Alessandra Dellaquila
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, U1148, F-75018 Paris, France
| | - Marie-Noëlle Labour
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, U1148, F-75018 Paris, France,ICGM, Université de Montpellier, CNRS, ENSCM, F- 34293 Montpellier, France,École Pratique des Hautes Études, Université Paris Sciences et Lettres, F-75014 Paris, France
| | - Rachida Aid
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, U1148, F-75018 Paris, France
| | | | - Didier Letourneur
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, U1148, F-75018 Paris, France,Corresponding author.
| | - Teresa Simon-Yarza
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, U1148, F-75018 Paris, France,Corresponding author.
| |
Collapse
|
30
|
Secretin alleviates biliary and liver injury during late-stage primary biliary cholangitis via restoration of secretory processes. J Hepatol 2023; 78:99-113. [PMID: 35987275 DOI: 10.1016/j.jhep.2022.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC) is characterised by ductopenia, ductular reaction, impairment of anion exchanger 2 (AE2) and the 'bicarbonate umbrella'. Ductulo-canalicular junction (DCJ) derangement is hypothesised to promote PBC progression. The secretin (Sct)/secretin receptor (SR) axis regulates cystic fibrosis transmembrane receptor (CFTR) and AE2, thus promoting choleresis. We evaluated the role of Sct/SR signalling on biliary secretory processes and subsequent injury in a late-stage PBC mouse model and human samples. METHODS At 32 weeks of age, female and male wild-type and dominant-negative transforming growth factor beta receptor II (late-stage PBC model) mice were treated with Sct for 1 or 8 weeks. Bulk RNA-sequencing was performed in isolated cholangiocytes from mouse models. RESULTS Biliary Sct/SR/CFTR/AE2 expression and bile bicarbonate levels were reduced in late-stage PBC mouse models and human samples. Sct treatment decreased bile duct loss, ductular reaction, inflammation, and fibrosis in late-stage PBC models. Sct reduced hepatic bile acid levels, modified bile acid composition, and restored the DCJ and 'bicarbonate umbrella'. RNA-sequencing identified that Sct promoted mature epithelial marker expression, specifically anterior grade protein 2 (Agr2). Late-stage PBC models and human samples exhibited reduced biliary mucin 1 levels, which were enhanced by Sct treatment. CONCLUSION Loss of Sct/SR signalling in late-stage PBC results in a faulty 'bicarbonate umbrella' and reduced Agr2-mediated mucin production. Sct restores cholangiocyte secretory processes and DCJ formation through enhanced mature cholangiocyte phenotypes and bile duct growth. Sct treatment may be beneficial for individuals with late-stage PBC. IMPACT AND IMPLICATIONS Secretin (Sct) regulates biliary proliferation and bicarbonate secretion in cholangiocytes via its receptor, SR, and in mouse models and human samples of late-stage primary biliary cholangitis (PBC), the Sct/SR axis is blunted along with loss of the protective 'bicarbonate umbrella'. We found that both short- and long-term Sct treatment ameliorated ductular reaction, immune cell influx, and liver fibrosis in late-stage PBC mouse models. Importantly, Sct treatment promoted bicarbonate and mucin secretion and hepatic bile acid efflux, thus reducing cholestatic and toxic bile acid-associated injury in late-stage PBC mouse models. Our work perpetuates the hypothesis that PBC pathogenesis hinges on secretory defects, and restoration of secretory processes that promote the 'bicarbonate umbrella' may be important for amelioration of PBC-associated damage.
Collapse
|
31
|
Hess S, Kendall TJ, Pena M, Yamane K, Soong D, Adams L, Truman R, Rambukkana A. In vivo partial reprogramming by bacteria promotes adult liver organ growth without fibrosis and tumorigenesis. Cell Rep Med 2022; 3:100820. [PMID: 36384103 PMCID: PMC9729881 DOI: 10.1016/j.xcrm.2022.100820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 05/04/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
Ideal therapies for regenerative medicine or healthy aging require healthy organ growth and rejuvenation, but no organ-level approach is currently available. Using Mycobacterium leprae (ML) with natural partial cellular reprogramming capacity and its animal host nine-banded armadillos, we present an evolutionarily refined model of adult liver growth and regeneration. In infected armadillos, ML reprogram the entire liver and significantly increase total liver/body weight ratio by increasing healthy liver lobules, including hepatocyte proliferation and proportionate expansion of vasculature, and biliary systems. ML-infected livers are microarchitecturally and functionally normal without damage, fibrosis, or tumorigenesis. Bacteria-induced reprogramming reactivates liver progenitor/developmental/fetal genes and upregulates growth-, metabolism-, and anti-aging-associated markers with minimal change in senescence and tumorigenic genes, suggesting bacterial hijacking of homeostatic, regeneration pathways to promote de novo organogenesis. This may facilitate the unraveling of endogenous pathways that effectively and safely re-engage liver organ growth, with broad therapeutic implications including organ regeneration and rejuvenation.
Collapse
Affiliation(s)
- Samuel Hess
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Timothy J Kendall
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK; Edinburgh Pathology, The University of Edinburgh, Edinburgh, UK
| | - Maria Pena
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Keitaro Yamane
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Daniel Soong
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
| | - Linda Adams
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Richard Truman
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Anura Rambukkana
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK; Edinburgh Infectious Diseases, The University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
32
|
Gasper W, Rossi F, Ligorio M, Ghersi D. Variant calling enhances the identification of cancer cells in single-cell RNA sequencing data. PLoS Comput Biol 2022; 18:e1010576. [PMID: 36191033 PMCID: PMC9560611 DOI: 10.1371/journal.pcbi.1010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Single-cell RNA-sequencing is an invaluable research tool that allows for the investigation of gene expression in heterogeneous cancer cell populations in ways that bulk RNA-seq cannot. However, normal (i.e., non tumor) cells in cancer samples have the potential to confound the downstream analysis of single-cell RNA-seq data. Existing methods for identifying cancer and normal cells include copy number variation inference, marker-gene expression analysis, and expression-based clustering. This work aims to extend the existing approaches for identifying cancer cells in single-cell RNA-seq samples by incorporating variant calling and the identification of putative driver alterations. We found that putative driver alterations can be detected in single-cell RNA-seq data obtained with full-length transcript technologies and noticed that a subset of cells in tumor samples are enriched for putative driver alterations as compared to normal cells. Furthermore, we show that the number of putative driver alterations and inferred copy number variation are not correlated in all samples. Taken together, our findings suggest that augmenting existing cancer-cell filtering methods with variant calling and analysis can increase the number of tumor cells that can be confidently included in downstream analyses of single-cell full-length transcript RNA-seq datasets.
Collapse
Affiliation(s)
- William Gasper
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Francesca Rossi
- Department of Surgery, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Matteo Ligorio
- Department of Surgery, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| |
Collapse
|
33
|
Wesley BT, Ross ADB, Muraro D, Miao Z, Saxton S, Tomaz RA, Morell CM, Ridley K, Zacharis ED, Petrus-Reurer S, Kraiczy J, Mahbubani KT, Brown S, Garcia-Bernardo J, Alsinet C, Gaffney D, Horsfall D, Tysoe OC, Botting RA, Stephenson E, Popescu DM, MacParland S, Bader G, McGilvray ID, Ortmann D, Sampaziotis F, Saeb-Parsy K, Haniffa M, Stevens KR, Zilbauer M, Teichmann SA, Vallier L. Single-cell atlas of human liver development reveals pathways directing hepatic cell fates. Nat Cell Biol 2022; 24:1487-1498. [PMID: 36109670 PMCID: PMC7617064 DOI: 10.1038/s41556-022-00989-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
The liver has been studied extensively due to the broad number of diseases affecting its vital functions. However, therapeutic advances have been hampered by the lack of knowledge concerning human hepatic development. Here, we addressed this limitation by describing the developmental trajectories of different cell types that make up the human liver at single-cell resolution. These transcriptomic analyses revealed that sequential cell-to-cell interactions direct functional maturation of hepatocytes, with non-parenchymal cells playing essential roles during organogenesis. We utilized this information to derive bipotential hepatoblast organoids and then exploited this model system to validate the importance of signalling pathways in hepatocyte and cholangiocyte specification. Further insights into hepatic maturation also enabled the identification of stage-specific transcription factors to improve the functionality of hepatocyte-like cells generated from human pluripotent stem cells. Thus, our study establishes a platform to investigate the basic mechanisms directing human liver development and to produce cell types for clinical applications.
Collapse
Affiliation(s)
- Brandon T Wesley
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Alexander D B Ross
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Daniele Muraro
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Zhichao Miao
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Sarah Saxton
- Departments of Bioengineering and Pathology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Rute A Tomaz
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Carola M Morell
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Katherine Ridley
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Ekaterini D Zacharis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Sandra Petrus-Reurer
- Department of Surgery, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Judith Kraiczy
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | | | - Stephanie Brown
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | | | | | | - Dave Horsfall
- Digital Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Olivia C Tysoe
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Rachel A Botting
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Gary Bader
- University of Toronto, Toronto, Ontario, Canada
| | - Ian D McGilvray
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Daniel Ortmann
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kelly R Stevens
- Departments of Bioengineering and Pathology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Matthias Zilbauer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, UK
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
| |
Collapse
|
34
|
Dynamics of hepatocyte-cholangiocyte cell-fate decisions during liver development and regeneration. iScience 2022; 25:104955. [PMID: 36060070 PMCID: PMC9437857 DOI: 10.1016/j.isci.2022.104955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/17/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The immense regenerative potential of the liver is attributed to the ability of its two key cell types – hepatocytes and cholangiocytes – to trans-differentiate to one another either directly or through intermediate progenitor states. However, the dynamic features of decision-making between these cell-fates during liver development and regeneration remains elusive. Here, we identify a core gene regulatory network comprising c/EBPα, TGFBR2, and SOX9 which is multistable in nature, enabling three distinct cell states – hepatocytes, cholangiocytes, and liver progenitor cells (hepatoblasts/oval cells) – and stochastic switching among them. Predicted expression signature for these three states are validated through multiple bulk and single-cell transcriptomic datasets collected across developmental stages and injury-induced liver repair. This network can also explain the experimentally observed spatial organization of phenotypes in liver parenchyma and predict strategies for efficient cellular reprogramming. Our analysis elucidates how the emergent dynamics of underlying regulatory networks drive diverse cell-fate decisions in liver development and regeneration. Identified minimal regulatory network to model liver development and regeneration Changes in phenotypic landscapes by in-silico perturbations of regulatory networks Ability to explain physiological spatial patterning of liver cell types Decoded strategies for efficient reprogramming among liver cell phenotypes
Collapse
|
35
|
Lee IS, Takebe T. Narrative engineering of the liver. Curr Opin Genet Dev 2022; 75:101925. [PMID: 35700688 PMCID: PMC10118678 DOI: 10.1016/j.gde.2022.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022]
Abstract
Liver organoids are primary or pluripotent stem cell-derived three-dimensional structures that recapitulate regenerative or ontogenetic processes in vitro towards biomedical applications including disease modelling and diagnostics, drug safety and efficacy prediction, and therapeutic use. The cellular composition and structural organization of liver organoids may vary depending on the goal at hand, and the key challenge in general is to direct their development in a rational and controlled fashion for gaining targeted maturity, reproducibility, and scalability. Such endeavor begins with a detailed understanding of the biological processes in space and time behind hepatogenesis, followed by precise translation of these narrative processes through a bioengineering approach. Here, we discuss advancements in liver organoid technology through the lens of 'narrative engineering' in an attempt to synergize evolving understanding around molecular and cellular landscape governing hepatogenesis with engineering-inspired approaches for organoidgenesis.
Collapse
Affiliation(s)
- Inkyu S Lee
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Communication Design Center, Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Japan.
| |
Collapse
|
36
|
Abstract
The human liver is a complex organ made up of multiple specialized cell types that carry out key physiological functions. An incomplete understanding of liver biology limits our ability to develop therapeutics to prevent chronic liver diseases, liver cancers, and death as a result of organ failure. Recently, single-cell modalities have expanded our understanding of the cellular phenotypic heterogeneity and intercellular cross-talk in liver health and disease. This review summarizes these findings and looks forward to highlighting new avenues for the application of single-cell genomics to unravel unknown pathogenic pathways and disease mechanisms for the development of new therapeutics targeting liver pathology. As these technologies mature, their integration into clinical data analysis will aid in patient stratification and in developing treatment plans for patients suffering from liver disease.
Collapse
Affiliation(s)
- Jawairia Atif
- Ajmera Transplant Centre, Schwartz Reisman Liver Research Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Cornelia Thoeni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gary D. Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ian D. McGilvray
- Ajmera Transplant Centre, Schwartz Reisman Liver Research Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sonya A. MacParland
- Ajmera Transplant Centre, Schwartz Reisman Liver Research Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Chen Y, Gao WK, Shu YY, Ye J. Mechanisms of ductular reaction in non-alcoholic steatohepatitis. World J Gastroenterol 2022; 28:2088-2099. [PMID: 35664038 PMCID: PMC9134136 DOI: 10.3748/wjg.v28.i19.2088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease spectrum caused in part by insulin resistance and genetic predisposition. This disease is primarily characterized by excessive lipid accumulation in hepatocytes in the absence of alcohol abuse and other causes of liver damage. Histologically, NAFLD is divided into several periods: simple steatosis, non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. With the increasing prevalence of obesity and hyperlipidemia, NAFLD has become the main cause of chronic liver disease worldwide. As a result, the pathogenesis of this disease is drawing increasing attention. Ductular reaction (DR) is a reactive bile duct hyperplasia caused by liver injury that involves hepatocytes, cholangiocytes, and hepatic progenitor cells. Recently, DR is shown to play a pivotal role in simple steatosis progression to NASH or liver fibrosis, providing new research and treatment options. This study reviews several DR signaling pathways, including Notch, Hippo/YAP-TAZ, Wnt/β-catenin, Hedgehog, HGF/c-Met, and TWEAK/Fn14, and their role in the occurrence and development of NASH.
Collapse
Affiliation(s)
- Yue Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Wen-Kang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Yun Shu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
38
|
Roos FJM, van Tienderen GS, Wu H, Bordeu I, Vinke D, Albarinos LM, Monfils K, Niesten S, Smits R, Willemse J, Rosmark O, Westergren-Thorsson G, Kunz DJ, de Wit M, French PJ, Vallier L, IJzermans JNM, Bartfai R, Marks H, Simons BD, van Royen ME, Verstegen MMA, van der Laan LJW. Human branching cholangiocyte organoids recapitulate functional bile duct formation. Cell Stem Cell 2022; 29:776-794.e13. [PMID: 35523140 DOI: 10.1016/j.stem.2022.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
Human cholangiocyte organoids show great promise for regenerative therapies and in vitro modeling of bile duct development and diseases. However, the cystic organoids lack the branching morphology of intrahepatic bile ducts (IHBDs). Here, we report establishing human branching cholangiocyte organoid (BRCO) cultures. BRCOs self-organize into complex tubular structures resembling the IHBD architecture. Single-cell transcriptomics and functional analysis showed high similarity to primary cholangiocytes, and importantly, the branching growth mimics aspects of tubular development and is dependent on JAG1/NOTCH2 signaling. When applied to cholangiocarcinoma tumor organoids, the morphology changes to an in vitro morphology like primary tumors. Moreover, these branching cholangiocarcinoma organoids (BRCCAOs) better match the transcriptomic profile of primary tumors and showed increased chemoresistance to gemcitabine and cisplatin. In conclusion, BRCOs recapitulate a complex process of branching morphogenesis in vitro. This provides an improved model to study tubular formation, bile duct functionality, and associated biliary diseases.
Collapse
Affiliation(s)
- Floris J M Roos
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Gilles S van Tienderen
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Haoyu Wu
- Radboud University, Department of Molecular Biology, Nijmegen, the Netherlands
| | - Ignacio Bordeu
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Dina Vinke
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Laura Muñoz Albarinos
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Kathryn Monfils
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Sabrah Niesten
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Ron Smits
- Erasmus MC, University Medical Center Rotterdam, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands
| | - Jorke Willemse
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Oskar Rosmark
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Daniel J Kunz
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, University of Cambridge, Cambridge, UK
| | - Maurice de Wit
- Erasmus MC, University Medical Center Rotterdam, Department of Pathology, Rotterdam, the Netherlands
| | - Pim J French
- Erasmus MC, University Medical Center Rotterdam, Cancer Treatment Screening Facility, Department of Neurology, Rotterdam, the Netherlands
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Jan N M IJzermans
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Richard Bartfai
- Radboud University, Department of Molecular Biology, Nijmegen, the Netherlands
| | - Hendrik Marks
- Radboud University, Department of Molecular Biology, Nijmegen, the Netherlands
| | - Ben D Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Martin E van Royen
- Erasmus MC, University Medical Center Rotterdam, Department of Pathology, Rotterdam, the Netherlands
| | - Monique M A Verstegen
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Luc J W van der Laan
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands.
| |
Collapse
|
39
|
Holczbauer Á, Wangensteen KJ, Shin S. Cellular origins of regenerating liver and hepatocellular carcinoma. JHEP Rep 2022; 4:100416. [PMID: 35243280 PMCID: PMC8873941 DOI: 10.1016/j.jhepr.2021.100416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant primary cancer arising from the liver and is one of the major causes of cancer-related mortality worldwide. The cellular origin of HCC has been a topic of great interest due to conflicting findings regarding whether it originates in hepatocytes, biliary cells, or facultative stem cells. These cell types all undergo changes during liver injury, and there is controversy about their contribution to regenerative responses in the liver. Most HCCs emerge in the setting of chronic liver injury from viral hepatitis, fatty liver disease, alcohol, and environmental exposures. The injuries are marked by liver parenchymal changes such as hepatocyte regenerative nodules, biliary duct cellular changes, expansion of myofibroblasts that cause fibrosis and cirrhosis, and inflammatory cell infiltration, all of which may contribute to carcinogenesis. Addressing the cellular origin of HCC is the key to identifying the earliest events that trigger it. Herein, we review data on the cells of origin in regenerating liver and HCC and the implications of these findings for prevention and treatment. We also review the origins of childhood liver cancer and other rare cancers of the liver.
Collapse
|
40
|
Lin Y, Zhang F, Zhang L, Chen L, Zheng S. Characteristics of SOX9-positive progenitor-like cells during cholestatic liver regeneration in biliary atresia. Stem Cell Res Ther 2022; 13:114. [PMID: 35313986 PMCID: PMC8935712 DOI: 10.1186/s13287-022-02795-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background The progression of Biliary Atresia (BA) is associated with the number of reactive ductular cells (RDCs) whose heterogeneity in origin and evolution in humans remains unknown. SOX9-positive liver progenitor-like cells (LPLCs) have been shown to participate in RDCs and new hepatocyte formation during cholestatic liver regeneration in an animal model, which implies the possibility that hepatocyte-reprogrammed LPLCs could be a source of RDCs in BA. The present study aimed to elucidate the characteristics of SOX9-positive LPLCs in BA for exploring new possible therapeutic targets by manipulating the bi-differentiation process of LPLCs to prevent disease progression. Methods Twenty-eight patients, including 24 patients with BA and 4 patients with Congenital Choledochal Cyst as the control group, were retrospectively recruited. Liver biopsy samples were classified histologically using a 4-point scale based on fibrosis severity. LPLCs were detected by SOX9 and HNF4A double positive staining. Single immunohistochemistry, double immunohistochemistry, and multiple immunofluorescence staining were used to determine the different cell types and characteristics of LPLCs. Results The prognostic predictors of BA, namely total bile acid (TBA), RDCs, and fibrosis, were correlated to the emergence of LPLCs. SOX9 and HNF4A double-positive LPLCs co-stained rarely with relevant markers of portal hepatic progenitor cells (portal-HPCs), including CK19, CK7, EPCAM, PROM1 (CD133), TROP2, and AFP. Under cholestasis conditions, LPLCs acquired superior proliferation and anti-senescence ability among hepatocytes. Moreover, LPLCs arranged as a pseudo-rosette structure appeared from the periportal parenchyma to the portal region, which implied the differentiation from hepatocyte-reprogrammed LPLCs to RDCs with the progression of cholestasis. Conclusions LPLCs are associated with disease progression and prognostic factors of BA. The bipotent characteristics of LPLCs are different from those of portal-HPCs. As cholestasis progresses, LPLCs appear to gain superior proliferation and anti-senescence ability and continually differentiate to RDCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02795-2.
Collapse
Affiliation(s)
- Yuting Lin
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lian Chen
- Department of Pathology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai, 201102, China.
| |
Collapse
|
41
|
Giancotti A, D'Ambrosio V, Corno S, Pajno C, Carpino G, Amato G, Vena F, Mondo A, Spiniello L, Monti M, Muzii L, Bosco D, Gaudio E, Alvaro D, Cardinale V. Current protocols and clinical efficacy of human fetal liver cell therapy in patients with liver disease: A literature review. Cytotherapy 2022; 24:376-384. [DOI: 10.1016/j.jcyt.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/12/2021] [Accepted: 10/30/2021] [Indexed: 12/28/2022]
|
42
|
Tyser RCV, Mahammadov E, Nakanoh S, Vallier L, Scialdone A, Srinivas S. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 2021; 600:285-289. [PMID: 34789876 PMCID: PMC7615353 DOI: 10.1038/s41586-021-04158-y] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/05/2021] [Indexed: 12/25/2022]
Abstract
Gastrulation is the fundamental process in all multicellular animals through which the basic body plan is first laid down1-4. It is pivotal in generating cellular diversity coordinated with spatial patterning. In humans, gastrulation occurs in the third week after fertilization. Our understanding of this process in humans is relatively limited and based primarily on historical specimens5-8, experimental models9-12 or, more recently, in vitro cultured samples13-16. Here we characterize in a spatially resolved manner the single-cell transcriptional profile of an entire gastrulating human embryo, staged to be between 16 and 19 days after fertilization. We use these data to analyse the cell types present and to make comparisons with other model systems. In addition to pluripotent epiblast, we identified primordial germ cells, red blood cells and various mesodermal and endodermal cell types. This dataset offers a unique glimpse into a central but inaccessible stage of our development. This characterization provides new context for interpreting experiments in other model systems and represents a valuable resource for guiding directed differentiation of human cells in vitro.
Collapse
Affiliation(s)
- Richard C V Tyser
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford, Oxford, UK
| | - Elmir Mahammadov
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München-German Research Center for Environmental Health, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Shota Nakanoh
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München-German Research Center for Environmental Health, Munich, Germany.
- Institute of Functional Epigenetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Feng J, Zhu R, Yin Y, Wang S, Zhou L, Lv F, Zhao D. Re-Recognizing the Cellular Origin of the Primary Epithelial Tumors of the Liver. J Hepatocell Carcinoma 2021; 8:1537-1563. [PMID: 34917552 PMCID: PMC8668194 DOI: 10.2147/jhc.s334935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
The primary epithelial tumors of the liver (PETL) are composed of a series of heterogeneous tumors. Although the classification of PETLs has been updated several times by the World Health Organization, the cellular origins of some tumors in this family remain to be precisely depicted. In addition, certain tumors in different categories have similar histology, molecular phenotypes and biological characteristics, suggesting that they may have the same cellular origin. In this work, a narrative review method was adopted to review the relevant papers. By comparing the expression profiles of biomarkers of liver epithelium at different lineages and stages of differentiation, the cells-of-origin of some major members of the PETL family were reassessed. We propose that 1) hepatic adenomas, hepatocellular carcinomas (HCCs) and pure fetal hepatoblastomas (HBs) share the same spectrum in their cellular origin including the hepatocytic-committed progenitors (HCP) and their differentiated descendants. 2) Bile duct adenomas, peribiliary cysts and intrahepatic cholangiocellular carcinomas (ICCs) can share the same spectrum in their cellular origin including the cholangiocytic-committed progenitors (CCP) and their differentiated descendants. 3) The cells-of-origin of embryonal HBs include liver stem cells (LSCs), hepatoblasts, and transitional cells between them. Embryonal HB with small cell element, small cell undifferentiated HB and small cell neuroendocrine carcinoma of the liver can have the same or similar cells-of-origin from LSC. Embryonal HB lacking the small cell component of the LSC phenotype and presenting both hepatocytic and bile duct/ductule components may originate from actual hepatoblasts/hepatic progenitor cells (HPCs) as the combined HCC-ICC does. 4) Teratoid hepatoblastoma and mixed epithelial/mesenchymal HBs can be derived from the LSCs or even less committed extrahepatic pluripotent stem cell. 5) Many members of the PETLs family, including those derived from LSCs, hepatoblasts/HPCs, early HCPs and CCPs, have neuroendocrine potentiality. Except for those primary hepatic neuroendocrine tumor (PHNET) exhibit hepatocytic and/or cholangiocytic phenotypes, other PHNETs subtype may be derived from the descendants of LSC that differentiate towards the upper digestive tract, pancreas or other lineages.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
- Correspondence: Jiliang Feng Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, No. 8, Xitoutiao, Youanmenwai Street, FengTai District, Beijing, 100069, People’s Republic of ChinaTel +86-10-83997342Fax +86-10-83997343 Email
| | - Ruidong Zhu
- General Surgical Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Yu Yin
- Department of Pathology, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Shanshan Wang
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Lei Zhou
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College/Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Fudong Lv
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Dawei Zhao
- Department of Medical Imaging, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
44
|
Andrews TS, Atif J, Liu JC, Perciani CT, Ma X, Thoeni C, Slyper M, Eraslan G, Segerstolpe A, Manuel J, Chung S, Winter E, Cirlan I, Khuu N, Fischer S, Rozenblatt‐Rosen O, Regev A, McGilvray ID, Bader GD, MacParland SA. Single-Cell, Single-Nucleus, and Spatial RNA Sequencing of the Human Liver Identifies Cholangiocyte and Mesenchymal Heterogeneity. Hepatol Commun 2021; 6:821-840. [PMID: 34792289 PMCID: PMC8948611 DOI: 10.1002/hep4.1854] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/01/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023] Open
Abstract
The critical functions of the human liver are coordinated through the interactions of hepatic parenchymal and non-parenchymal cells. Recent advances in single-cell transcriptional approaches have enabled an examination of the human liver with unprecedented resolution. However, dissociation-related cell perturbation can limit the ability to fully capture the human liver's parenchymal cell fraction, which limits the ability to comprehensively profile this organ. Here, we report the transcriptional landscape of 73,295 cells from the human liver using matched single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq). The addition of snRNA-seq enabled the characterization of interzonal hepatocytes at a single-cell resolution, revealed the presence of rare subtypes of liver mesenchymal cells, and facilitated the detection of cholangiocyte progenitors that had only been observed during in vitro differentiation experiments. However, T and B lymphocytes and natural killer cells were only distinguishable using scRNA-seq, highlighting the importance of applying both technologies to obtain a complete map of tissue-resident cell types. We validated the distinct spatial distribution of the hepatocyte, cholangiocyte, and mesenchymal cell populations by an independent spatial transcriptomics data set and immunohistochemistry. Conclusion: Our study provides a systematic comparison of the transcriptomes captured by scRNA-seq and snRNA-seq and delivers a high-resolution map of the parenchymal cell populations in the healthy human liver.
Collapse
Affiliation(s)
- Tallulah S. Andrews
- Ajmera Transplant CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Jawairia Atif
- Ajmera Transplant CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada,Department of ImmunologyUniversity of TorontoMedical Sciences Building1 King’s College CircleTorontoONCanada
| | - Jeff C. Liu
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada,The Donnelly CentreTorontoONCanada
| | - Catia T. Perciani
- Ajmera Transplant CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada,Department of ImmunologyUniversity of TorontoMedical Sciences Building1 King’s College CircleTorontoONCanada,Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Xue‐Zhong Ma
- Ajmera Transplant CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Cornelia Thoeni
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Michal Slyper
- Klarman Cell ObservatoryBroad Institute of Harvard and MITCambridgeMAUSA
| | - Gökcen Eraslan
- Klarman Cell ObservatoryBroad Institute of Harvard and MITCambridgeMAUSA
| | - Asa Segerstolpe
- Klarman Cell ObservatoryBroad Institute of Harvard and MITCambridgeMAUSA
| | - Justin Manuel
- Ajmera Transplant CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Sai Chung
- Ajmera Transplant CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Erin Winter
- Ajmera Transplant CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Iulia Cirlan
- Princess Margaret Genome CentreUniversity Health NetworkTorontoONCanada
| | - Nicholas Khuu
- Princess Margaret Genome CentreUniversity Health NetworkTorontoONCanada
| | - Sandra Fischer
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Orit Rozenblatt‐Rosen
- Klarman Cell ObservatoryBroad Institute of Harvard and MITCambridgeMAUSA,Present address:
Genentech1 DNA WaySouth San FranciscoCA94080USA
| | - Aviv Regev
- Klarman Cell ObservatoryBroad Institute of Harvard and MITCambridgeMAUSA,Howard Hughes Medical InstituteChevy ChaseMDUSA,Koch Institute for Integrative Cancer ResearchDepartment of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA,Present address:
Genentech1 DNA WaySouth San FranciscoCA94080USA
| | - Ian D. McGilvray
- Ajmera Transplant CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Gary D. Bader
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada,The Donnelly CentreTorontoONCanada
| | - Sonya A. MacParland
- Ajmera Transplant CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada,Department of ImmunologyUniversity of TorontoMedical Sciences Building1 King’s College CircleTorontoONCanada,Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
45
|
The immune niche of the liver. Clin Sci (Lond) 2021; 135:2445-2466. [PMID: 34709406 DOI: 10.1042/cs20190654] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022]
Abstract
The liver is an essential organ that is critical for the removal of toxins, the production of proteins, and the maintenance of metabolic homeostasis. Behind each liver functional unit, termed lobules, hides a heterogeneous, complex, and well-orchestrated system. Despite parenchymal cells being most commonly associated with the liver's primary functionality, it has become clear that it is the immune niche of the liver that plays a central role in maintaining both local and systemic homeostasis by propagating hepatic inflammation and orchestrating its resolution. As such, the immunological processes that are at play in healthy and diseased livers are being investigated thoroughly in order to understand the underpinnings of inflammation and the potential avenues for restoring homeostasis. This review highlights recent advances in our understanding of the immune niche of the liver and provides perspectives for how the implementation of new transcriptomic, multimodal, and spatial technologies can uncover the heterogeneity, plasticity, and location of hepatic immune populations. Findings from these technologies will further our understanding of liver biology and create a new framework for the identification of therapeutic targets.
Collapse
|
46
|
McCarron S, Bathon B, Conlon DM, Abbey D, Rader DJ, Gawronski K, Brown CD, Olthoff KM, Shaked A, Raabe TD. Functional Characterization of Organoids Derived From Irreversibly Damaged Liver of Patients With NASH. Hepatology 2021; 74:1825-1844. [PMID: 33901295 DOI: 10.1002/hep.31857] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS NASH will soon become the leading cause of liver transplantation in the United States and is also associated with increased COVID-19 mortality. Currently, there are no Food and Drug Administration-approved drugs available that slow NASH progression or address NASH liver involvement in COVID-19. Because animal models cannot fully recapitulate human NASH, we hypothesized that stem cells isolated directly from end-stage liver from patients with NASH may address current knowledge gaps in human NASH pathology. APPROACH AND RESULTS We devised methods that allow the derivation, proliferation, hepatic differentiation, and extensive characterization of bipotent ductal organoids from irreversibly damaged liver from patients with NASH. The transcriptomes of organoids derived from NASH liver, but not healthy liver, show significant up-regulation of proinflammatory and cytochrome p450-related pathways, as well as of known liver fibrosis and tumor markers, with the degree of up-regulation being patient-specific. Functionally, NASH liver organoids exhibit reduced passaging/growth capacity and hallmarks of NASH liver, including decreased albumin production, increased free fatty acid-induced lipid accumulation, increased sensitivity to apoptotic stimuli, and increased cytochrome P450 metabolism. After hepatic differentiation, NASH liver organoids exhibit reduced ability to dedifferentiate back to the biliary state, consistent with the known reduced regenerative ability of NASH livers. Intriguingly, NASH liver organoids also show strongly increased permissiveness to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vesicular stomatitis pseudovirus as well as up-regulation of ubiquitin D, a known inhibitor of the antiviral interferon host response. CONCLUSION Expansion of primary liver stem cells/organoids derived directly from irreversibly damaged liver from patients with NASH opens up experimental avenues for personalized disease modeling and drug development that has the potential to slow human NASH progression and to counteract NASH-related SARS-CoV-2 effects.
Collapse
Affiliation(s)
- Sarah McCarron
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brooke Bathon
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Donna M Conlon
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Deepti Abbey
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katerina Gawronski
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kim M Olthoff
- Department of Surgery, Division of Transplant Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Abraham Shaked
- Department of Surgery, Division of Transplant Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Tobias D Raabe
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
47
|
Richter ML, Deligiannis IK, Yin K, Danese A, Lleshi E, Coupland P, Vallejos CA, Matchett KP, Henderson NC, Colome-Tatche M, Martinez-Jimenez CP. Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy. Nat Commun 2021; 12:4264. [PMID: 34253736 PMCID: PMC8275628 DOI: 10.1038/s41467-021-24543-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Single-cell RNA-seq reveals the role of pathogenic cell populations in development and progression of chronic diseases. In order to expand our knowledge on cellular heterogeneity, we have developed a single-nucleus RNA-seq2 method tailored for the comprehensive analysis of the nuclear transcriptome from frozen tissues, allowing the dissection of all cell types present in the liver, regardless of cell size or cellular fragility. We use this approach to characterize the transcriptional profile of individual hepatocytes with different levels of ploidy, and have discovered that ploidy states are associated with different metabolic potential, and gene expression in tetraploid mononucleated hepatocytes is conditioned by their position within the hepatic lobule. Our work reveals a remarkable crosstalk between gene dosage and spatial distribution of hepatocytes.
Collapse
Affiliation(s)
- M L Richter
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany
| | - I K Deligiannis
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany
| | - K Yin
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, United Kingdom
| | - A Danese
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - E Lleshi
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, United Kingdom
| | - P Coupland
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, United Kingdom
| | - C A Vallejos
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - K P Matchett
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh, United Kingdom
| | - N C Henderson
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh, United Kingdom
| | - M Colome-Tatche
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Munich, Germany.
| | - C P Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
48
|
Brancale J, Vilarinho S. A single cell gene expression atlas of 28 human livers. J Hepatol 2021; 75:219-220. [PMID: 34016468 PMCID: PMC8345231 DOI: 10.1016/j.jhep.2021.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/04/2022]
Affiliation(s)
- Joseph Brancale
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Silvia Vilarinho
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale School of Medicine, New Haven, CT, USA.,Corresponding author. Address: Departments of Internal Medicine (Digestive Diseases) and of Pathology, Yale School of Medicine. (S. Vilarinho)
| |
Collapse
|
49
|
Borziak K, Finkelstein J. Identification of Liver Cancer Stem Cell Stemness Markers Using a Comparative Analysis of Public Data Sets. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:9-17. [PMID: 34168465 PMCID: PMC8216768 DOI: 10.2147/sccaa.s307043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
Purpose Comparative reanalysis of single-cell transcriptomics data to gain useful novel insights into cancer stem cells (CSCs), which are a rare subset of cells within tumors, characterized by their capability to self-renew and differentiate, and their role in tumorigenicity. Patients and Methods This project utilized publically available liver single-cell RNA-seq datasets of liver cancer and liver progenitor cell types to demonstrate how shared large amounts of data can generate new and valuable information. The data were analyzed using EdgeR differential expression analysis, with focus on a set of 34 known stemness markers. Results We showed that the expression of stemness markers SOX9, KRT19, KRT7, and CD24, and Yamanaka factors Oct4 and SOX2 in CSCs was significantly elevated relative to progenitor cell types, potentially explaining their increased differentiation and replication potential. Conclusion These results help to further document the complementary expression changes that give CSCs their distinct phenotypic profile. Our findings have potential significance to advance our knowledge of the important genes relevant to CSCs.
Collapse
Affiliation(s)
- Kirill Borziak
- Center for Biomedical and Population Health Informatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph Finkelstein
- Center for Biomedical and Population Health Informatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
50
|
Nguyen Canh H, Takahashi K, Yamamura M, Li Z, Sato Y, Yoshimura K, Kozaka K, Tanaka M, Nakanuma Y, Harada K. Diversity in cell differentiation, histology, phenotype and vasculature of mass-forming intrahepatic cholangiocarcinomas. Histopathology 2021; 79:731-750. [PMID: 34018212 DOI: 10.1111/his.14417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
AIMS Mass-forming intrahepatic cholangiocarcinomas (MF-iCCAs), involving small bile ducts, bile ductules or canals of Hering, remain treated as a single entity. We aimed to examine the diversity in histology, phenotype and tumour vasculature of MF-iCCAs. METHODS AND RESULTS Based on morphology and immunophenotype, we classified MF-iCCAs into small bile duct (SBD), cholangiolocarcinoma (CLC), ductal plate malformation (DPM) and hepatocellular carcinoma (HCC)-like subtypes. Genetic correlations among the histological subtypes were examined by multi-region tumour sequencing. Vasculatures and other clinicopathological features were compared among tumour groups with various proportions of the histological subtypes in 62 MF-iCCAs. Cases of pure SBD, CLC, DPM and HCC-like subtypes numbered 18 (29%), seven (11.3%), none (0%) and two (3%), respectively; the remaining 35 (56.4%) cases comprised several components. Genetic alterations, isocitrate dehydrogenase (IDH)1/2, KRAS, TP53, polybromo-1 (PBRM1) and BRCA1-associated protein 1 (BAP1), were shared among SBD, CLC, DPM and hepatoid components within a tumour. We uncovered distinct vascularisation mechanisms among SBD, CLC and DPM subtypes with a prominent vessel co-option in CLC tumours. iCCA with a DPM pattern had the highest vascular densities (mean microvascular density,140/mm2 ; arterial vessel density, 18.3/mm2 ). Increased CLC component was correlated with longer overall survival time (r = 0.44, P = 0.006). Pure SBD tumours had a lower 5-year overall survival rate compared with MF-iCCA with CLC pattern (30.5 versus 72.4%, P = 0.011). CONCLUSIONS MF-iCCAs comprise four histological subtypes. Given their sharing some driver gene alterations, indicating they can have a common cell origin, SBD, CLC and DPM subtypes, however, differ in cell differentiation, histology, phenotype or tumour vasculature.
Collapse
Affiliation(s)
- Hiep Nguyen Canh
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kenta Takahashi
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Minako Yamamura
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Zihan Li
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kaori Yoshimura
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kazuto Kozaka
- Department of Radiology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasuni Nakanuma
- Department of Diagnostic Pathology, Fukui Saiseikai Hospital, Fukui, Japan.,Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| |
Collapse
|