1
|
Potschka H. The aging brain and late onset drug-refractory epilepsies. Seizure 2025; 128:83-89. [PMID: 39406557 DOI: 10.1016/j.seizure.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 05/27/2025] Open
Abstract
While late-onset epilepsies are characterized by a good pharmacoresponsiveness, a relevant subgroup of this patient population suffers from drug-refractory epilepsy with its impact on overall quality of life and a high risk of seizure-related injuries. Particular attention should be paid to accurate diagnosis and thorough exclusion of pseudoresistance. Challenges include the likelihood of multimorbidities and polypharmacotherapy in an elderly patient population. Network, cellular, molecular, and metabolic alterations associated with aging and age-related disorders have the potential to affect the intrinsic severity of late-onset epilepsies, neural network function, and the pharmacodynamics and pharmacokinetics of antiseizure medications (ASMs). Whereas age-related changes in pharmacokinetics tend to favor responsiveness to low doses, respective changes in network excitability and pharmacodynamics of ASMs are more likely to contribute to drug resistance. There are particular gaps in our knowledge of the mechanisms of drug resistance and the impact of influencing factors in this patient population. Therefore, experimental and clinical research needs to be intensified to advance our understanding of drug-resistant epilepsy in patients with late-onset epilepsies and to develop multivariate prediction algorithms. In this context, the heterogeneity of an elderly patient population should be taken into account, considering differences in etiology, comorbidities, co-medications, frailty, activity and environmental factors.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
| |
Collapse
|
2
|
Shtangel O, Mezer AA. Testing quantitative magnetization transfer models with membrane lipids. Magn Reson Med 2024; 92:2149-2162. [PMID: 38873709 DOI: 10.1002/mrm.30192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Quantitative magnetization transfer (qMT) models aim to quantify the contributions of lipids and macromolecules to the MRI signal. Hence, a model system that relates qMT parameters and their molecular sources may improve the interpretation of the qMT parameters. Here we used membrane lipid phantoms as a meaningful tool to study qMT models. By controlling the fraction and type of membrane lipids, we could test the accuracy, reliability, and interpretability of different qMT models. METHODS We formulated liposomes with various lipid types and water-to-lipids fractions and measured their signals with spoiled gradient-echo MT. We fitted three known qMT models and estimated six parameters for every model. We tested the accuracy and reproducibility of the models and compared the dependency among the qMT parameters. We compared the samples' qMT parameters with their water-to-lipid fractions and with a simple MTnorm (= MTon/MToff) calculation. RESULTS We found that the three qMT models fit the membrane lipids signals well. We also found that the estimated qMT parameters are highly interdependent. Interestingly, the estimated qMT parameters are a function of the membrane lipid type and also highly related to the water-to-lipid fraction. Finally, we find that most of the lipid sample's information can be captured using the common and easy to estimate MTnorm analysis. CONCLUSION qMT parameters are sensitive to both the water-to-lipid fraction and to the lipid type. Estimating the water-to-lipid fraction can improve the characterization of membrane lipids' contributions to qMT parameters. Similar characterizations can be obtained using the MTnorm analysis.
Collapse
Affiliation(s)
- Oshrat Shtangel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Brain & Behavior, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Jossinger S, Yablonski M, Amir O, Ben-Shachar M. The Contributions of the Cerebellar Peduncles and the Frontal Aslant Tract in Mediating Speech Fluency. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:676-700. [PMID: 39175785 PMCID: PMC11338307 DOI: 10.1162/nol_a_00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/23/2022] [Indexed: 08/24/2024]
Abstract
Fluent speech production is a complex task that spans multiple processes, from conceptual framing and lexical access, through phonological encoding, to articulatory control. For the most part, imaging studies portraying the neural correlates of speech fluency tend to examine clinical populations sustaining speech impairments and focus on either lexical access or articulatory control, but not both. Here, we evaluated the contribution of the cerebellar peduncles to speech fluency by measuring the different components of the process in a sample of 45 neurotypical adults. Participants underwent an unstructured interview to assess their natural speaking rate and articulation rate, and completed timed semantic and phonemic fluency tasks to assess their verbal fluency. Diffusion magnetic resonance imaging with probabilistic tractography was used to segment the bilateral cerebellar peduncles (CPs) and frontal aslant tract (FAT), previously associated with speech production in clinical populations. Our results demonstrate distinct patterns of white matter associations with different fluency components. Specifically, verbal fluency is associated with the right superior CP, whereas speaking rate is associated with the right middle CP and bilateral FAT. No association is found with articulation rate in these pathways, in contrast to previous findings in persons who stutter. Our findings support the contribution of the cerebellum to aspects of speech production that go beyond articulatory control, such as lexical access, pragmatic or syntactic generation. Further, we demonstrate that distinct cerebellar pathways dissociate different components of speech fluency in neurotypical speakers.
Collapse
Affiliation(s)
- Sivan Jossinger
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Maya Yablonski
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ofer Amir
- Department of Communication Disorders, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- The Department of English Literature and Linguistics, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
4
|
He Z, Soullié P, Lefebvre P, Ambarki K, Felblinger J, Odille F. Changes of in vivo electrical conductivity in the brain and torso related to age, fat fraction and sex using MRI. Sci Rep 2024; 14:16109. [PMID: 38997324 PMCID: PMC11245625 DOI: 10.1038/s41598-024-67014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
This work was inspired by the observation that a majority of MR-electrical properties tomography studies are based on direct comparisons with ex vivo measurements carried out on post-mortem samples in the 90's. As a result, the in vivo conductivity values obtained from MRI in the megahertz range in different types of tissues (brain, liver, tumors, muscles, etc.) found in the literature may not correspond to their ex vivo equivalent, which still serves as a reference for electromagnetic modelling. This study aims to pave the way for improving current databases since the definition of personalized electromagnetic models (e.g. for Specific Absorption Rate estimation) would benefit from better estimation. Seventeen healthy volunteers underwent MRI of both brain and thorax/abdomen using a three-dimensional ultrashort echo-time (UTE) sequence. We estimated conductivity (S/m) in several classes of macroscopic tissue using a customized reconstruction method from complex UTE images, and give general statistics for each of these regions (mean-median-standard deviation). These values are used to find possible correlations with biological parameters such as age, sex, body mass index and/or fat volume fraction, using linear regression analysis. In short, the collected in vivo values show significant deviations from the ex vivo values in conventional databases, and we show significant relationships with the latter parameters in certain organs for the first time, e.g. a decrease in brain conductivity with age.
Collapse
Affiliation(s)
- Zhongzheng He
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
| | - Paul Soullié
- IADI U1254, INSERM and Université de Lorraine, Nancy, France.
| | | | | | - Jacques Felblinger
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| | - Freddy Odille
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| |
Collapse
|
5
|
Yablonski M, Zhou Z, Cao X, Schauman S, Liao C, Setsompop K, Yeatman JD. Fast and reliable quantitative measures of white matter development with magnetic resonance fingerprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600735. [PMID: 38979185 PMCID: PMC11230456 DOI: 10.1101/2024.06.26.600735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Developmental cognitive neuroscience aims to shed light on evolving relationships between brain structure and cognitive development. To this end, quantitative methods that reliably measure individual differences in brain tissue properties are fundamental. Standard qualitative MRI sequences are influenced by scan parameters and hardware-related biases, and also lack physical units, making the analysis of individual differences problematic. In contrast, quantitative MRI can measure physical properties of the tissue but with the cost of long scan durations and sensitivity to motion. This poses a critical limitation for studying young children. Here, we examine the reliability and validity of an efficient quantitative multiparameter mapping method - Magnetic Resonance Fingerprinting (MRF) - in children scanned longitudinally. We focus on T1 values in white matter, since quantitative T1 values are known to primarily reflect myelin content, a key factor in brain development. Forty-nine children aged 8-13y (mean 10.3y ±1.4) completed two scanning sessions 2-4 months apart. In each session, two 2-minute 3D-MRF scans at 1mm isotropic resolution were collected to evaluate the effect of scan duration on image quality and scan-rescan reliability. A separate calibration scan was used to measure B0 inhomogeneity and correct for bias. We examined the impact of scan time and B0 inhomogeneity correction on scan-rescan reliability of values in white matter, by comparing single 2-min and combined two 2-min scans, with and without B0-correction. Whole-brain voxel-based reliability analysis showed that combining two 2-min MRF scans improved reliability (pearson's r=0.87) compared with a single 2-min scan (r=0.84), while B0-correction had no effect on reliability in white matter (r=0.86 and 0.83 4-min vs 2-min). Using diffusion tractography, we delineated MRF-derived T1 profiles along major white matter fiber tracts and found similar or higher reliability for T1 from MRF compared to diffusion parameters (based on a 10-minute dMRI scan). Lastly, we found that T1 values in multiple white matter tracts were significantly correlated with age. In sum, MRF-derived T1 values were highly reliable in a longitudinal sample of children and replicated known age effects. Reliability in white matter was improved by longer scan duration but was not affected by B0-correction, making it a quick and straightforward scan to collect. We propose that MRF provides a promising avenue for acquiring quantitative brain metrics in children and patient populations where scan time and motion are of particular concern.
Collapse
|
6
|
Oz S, Saar G, Olszakier S, Heinrich R, Kompanets MO, Berlin S. Revealing the MRI-Contrast in Optically Cleared Brains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400316. [PMID: 38647385 PMCID: PMC11165557 DOI: 10.1002/advs.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
The current consensus holds that optically-cleared specimens are unsuitable for Magnetic Resonance Imaging (MRI); exhibiting absence of contrast. Prior studies combined MRI with tissue-clearing techniques relying on the latter's ability to eliminate lipids, thereby fostering the assumption that lipids constitute the primary source of ex vivo MRI-contrast. Nevertheless, these findings contradict an extensive body of literature that underscores the contribution of other features to contrast. Furthermore, it remains unknown whether non-delipidating clearing methods can produce MRI-compatible specimens or whether MRI-contrast can be re-established. These limitations hinder the development of multimodal MRI-light-microscopy (LM) imaging approaches. This study assesses the relation between MRI-contrast, and delipidation in optically-cleared whole brains following different tissue-clearing approaches. It is demonstrated that uDISCO and ECi-brains are MRI-compatible upon tissue rehydration, despite both methods' substantial delipidating-nature. It is also demonstrated that, whereas Scale-clearing preserves most lipids, Scale-cleared brain lack MRI-contrast. Furthermore, MRI-contrast is restored to lipid-free CLARITY-brains without introducing lipids. Our results thereby dissociate between the essentiality of lipids to MRI-contrast. A tight association is found between tissue expansion, hyperhydration and loss of MRI-contrast. These findings then enabled us to develop a multimodal MRI-LM-imaging approach, opening new avenues to bridge between the micro- and mesoscale for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Shimrit Oz
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Galit Saar
- Biomedical Core FacilityFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Shunit Olszakier
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Ronit Heinrich
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Mykhail O. Kompanets
- L.M. Litvinenko Institute of Physico‐Organic Chemistry and Coal ChemistryNational Academy of Sciences of UkraineKyivUkraine
| | - Shai Berlin
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| |
Collapse
|
7
|
Radunsky D, Solomon C, Stern N, Blumenfeld-Katzir T, Filo S, Mezer A, Karsa A, Shmueli K, Soustelle L, Duhamel G, Girard OM, Kepler G, Shrot S, Hoffmann C, Ben-Eliezer N. A comprehensive protocol for quantitative magnetic resonance imaging of the brain at 3 Tesla. PLoS One 2024; 19:e0297244. [PMID: 38820354 PMCID: PMC11142522 DOI: 10.1371/journal.pone.0297244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/01/2024] [Indexed: 06/02/2024] Open
Abstract
Quantitative MRI (qMRI) has been shown to be clinically useful for numerous applications in the brain and body. The development of rapid, accurate, and reproducible qMRI techniques offers access to new multiparametric data, which can provide a comprehensive view of tissue pathology. This work introduces a multiparametric qMRI protocol along with full postprocessing pipelines, optimized for brain imaging at 3 Tesla and using state-of-the-art qMRI tools. The total scan time is under 50 minutes and includes eight pulse-sequences, which produce range of quantitative maps including T1, T2, and T2* relaxation times, magnetic susceptibility, water and macromolecular tissue fractions, mean diffusivity and fractional anisotropy, magnetization transfer ratio (MTR), and inhomogeneous MTR. Practical tips and limitations of using the protocol are also provided and discussed. Application of the protocol is presented on a cohort of 28 healthy volunteers and 12 brain regions-of-interest (ROIs). Quantitative values agreed with previously reported values. Statistical analysis revealed low variability of qMRI parameters across subjects, which, compared to intra-ROI variability, was x4.1 ± 0.9 times higher on average. Significant and positive linear relationship was found between right and left hemispheres' values for all parameters and ROIs with Pearson correlation coefficients of r>0.89 (P<0.001), and mean slope of 0.95 ± 0.04. Finally, scan-rescan stability demonstrated high reproducibility of the measured parameters across ROIs and volunteers, with close-to-zero mean difference and without correlation between the mean and difference values (across map types, mean P value was 0.48 ± 0.27). The entire quantitative data and postprocessing scripts described in the manuscript are publicly available under dedicated GitHub and Figshare repositories. The quantitative maps produced by the presented protocol can promote longitudinal and multi-center studies, and improve the biological interpretability of qMRI by integrating multiple metrics that can reveal information, which is not apparent when examined using only a single contrast mechanism.
Collapse
Affiliation(s)
- Dvir Radunsky
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | - Chen Solomon
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | - Neta Stern
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | | | - Shir Filo
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anita Karsa
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | | | | | - Gal Kepler
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shrot
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel
| | - Chen Hoffmann
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel
| | - Noam Ben-Eliezer
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Center for Advanced Imaging Innovation and Research (CAI2R), New-York University Langone Medical Center, New York, NY, United States of America
| |
Collapse
|
8
|
Tao X, Zhu Z, Wang L, Li C, Sun L, Wang W, Gong W. Biomarkers of Aging and Relevant Evaluation Techniques: A Comprehensive Review. Aging Dis 2024; 15:977-1005. [PMID: 37611906 PMCID: PMC11081160 DOI: 10.14336/ad.2023.00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
The risk of developing chronic illnesses and disabilities is increasing with age. To predict and prevent aging, biomarkers relevant to the aging process must be identified. This paper reviews the known molecular, cellular, and physiological biomarkers of aging. Moreover, we discuss the currently available technologies for identifying these biomarkers, and their applications and potential in aging research. We hope that this review will stimulate further research and innovation in this emerging and fast-growing field.
Collapse
Affiliation(s)
- Xue Tao
- Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Ziman Zhu
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China.
| | - Liguo Wang
- Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Liwei Sun
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Wei Wang
- Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Filo S, Shaharabani R, Bar Hanin D, Adam M, Ben-David E, Schoffman H, Margalit N, Habib N, Shahar T, Mezer AA. Non-invasive assessment of normal and impaired iron homeostasis in the brain. Nat Commun 2023; 14:5467. [PMID: 37699931 PMCID: PMC10497590 DOI: 10.1038/s41467-023-40999-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Strict iron regulation is essential for normal brain function. The iron homeostasis, determined by the milieu of available iron compounds, is impaired in aging, neurodegenerative diseases and cancer. However, non-invasive assessment of different molecular iron environments implicating brain tissue's iron homeostasis remains a challenge. We present a magnetic resonance imaging (MRI) technology sensitive to the iron homeostasis of the living brain (the r1-r2* relaxivity). In vitro, our MRI approach reveals the distinct paramagnetic properties of ferritin, transferrin and ferrous iron ions. In the in vivo human brain, we validate our approach against ex vivo iron compounds quantification and gene expression. Our approach varies with the iron mobilization capacity across brain regions and in aging. It reveals brain tumors' iron homeostasis, and enhances the distinction between tumor tissue and non-pathological tissue without contrast agents. Therefore, our approach may allow for non-invasive research and diagnosis of iron homeostasis in living human brains.
Collapse
Affiliation(s)
- Shir Filo
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Rona Shaharabani
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Bar Hanin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miriam Adam
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eliel Ben-David
- The Department of Radiology, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanan Schoffman
- The Laboratory of Molecular Neuro-Oncology, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nevo Margalit
- The Department of Neurosurgery, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Shahar
- The Laboratory of Molecular Neuro-Oncology, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Department of Neurosurgery, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Martin MN, Jordanova KV, Kos AB, Russek SE, Keenan KE, Stupic KF. Relaxation measurements of an MRI system phantom at low magnetic field strengths. MAGMA (NEW YORK, N.Y.) 2023:10.1007/s10334-023-01086-y. [PMID: 37209233 PMCID: PMC10386925 DOI: 10.1007/s10334-023-01086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 03/29/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE Temperature controlled T1 and T2 relaxation times are measured on NiCl2 and MnCl2 solutions from the ISMRM/NIST system phantom at low magnetic field strengths of 6.5 mT, 64 mT and 550 mT. MATERIALS AND METHODS The T1 and T2 were measured of five samples with increasing concentrations of NiCl2 and five samples with increasing concentrations of MnCl2. All samples were scanned at 6.5 mT, 64 mT and 550 mT, at sample temperatures ranging from 10 °C to 37 °C. RESULTS The NiCl2 solutions showed little change in T1 and T2 with magnetic field strength, and both relaxation times decreased with increasing temperature. The MnCl2 solutions showed an increase in T1 and a decrease in T2 with increasing magnetic field strength, and both T1 and T2 increased with increasing temperature. DISCUSSION The low field relaxation rates of the NiCl2 and MnCl2 arrays in the ISMRM/NIST system phantom are investigated and compared to results from clinical field strengths of 1.5 T and 3.0 T. The measurements can be used as a benchmark for MRI system functionality and stability, especially when MRI systems are taken out of the radiology suite or laboratory and into less traditional environments.
Collapse
Affiliation(s)
- Michele N Martin
- U.S. Department of Commerce, National Institute of Standards and Technology, 325 Broadway, Boulder, CO, 80305, USA.
| | - Kalina V Jordanova
- U.S. Department of Commerce, National Institute of Standards and Technology, 325 Broadway, Boulder, CO, 80305, USA
| | - Anthony B Kos
- U.S. Department of Commerce, National Institute of Standards and Technology, 325 Broadway, Boulder, CO, 80305, USA
| | - Stephen E Russek
- U.S. Department of Commerce, National Institute of Standards and Technology, 325 Broadway, Boulder, CO, 80305, USA
| | - Kathryn E Keenan
- U.S. Department of Commerce, National Institute of Standards and Technology, 325 Broadway, Boulder, CO, 80305, USA
| | - Karl F Stupic
- U.S. Department of Commerce, National Institute of Standards and Technology, 325 Broadway, Boulder, CO, 80305, USA
| |
Collapse
|
11
|
Morita T, Takemura H, Naito E. Functional and Structural Properties of Interhemispheric Interaction between Bilateral Precentral Hand Motor Regions in a Top Wheelchair Racing Paralympian. Brain Sci 2023; 13:brainsci13050715. [PMID: 37239187 DOI: 10.3390/brainsci13050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Long-term motor training can cause functional and structural changes in the human brain. Assessing how the training of specific movements affects specific parts of the neural circuitry is essential to understand better the underlying mechanisms of motor training-induced plasticity in the human brain. We report a single-case neuroimaging study that investigated functional and structural properties in a professional athlete of wheelchair racing. As wheelchair racing requires bilateral synchronization of upper limb movements, we hypothesized that functional and structural properties of interhemispheric interactions in the central motor system might differ between the professional athlete and controls. Functional and diffusion magnetic resonance imaging (fMRI and dMRI) data were obtained from a top Paralympian (P1) in wheelchair racing. With 23 years of wheelchair racing training starting at age eight, she holds an exceptional competitive record. Furthermore, fMRI and dMRI data were collected from three other paraplegic participants (P2-P4) with long-term wheelchair sports training other than wheelchair racing and 37 able-bodied control volunteers. Based on the fMRI data analyses, P1 showed activation in the bilateral precentral hand sections and greater functional connectivity between these sections during a right-hand unimanual task. In contrast, other paraplegic participants and controls showed activation in the contralateral hemisphere and deactivation in the ipsilateral hemisphere. Moreover, dMRI data analysis revealed that P1 exhibited significantly lower mean diffusivity along the transcallosal pathway connecting the bilateral precentral motor regions than control participants, which was not observed in the other paraplegic participants. These results suggest that long-term training with bilaterally synchronized upper-limb movements may promote bilateral recruitment of the precentral hand sections. Such recruitment may affect the structural circuitry involved in the interhemispheric interaction between the bilateral precentral regions. This study provides valuable evidence of the extreme adaptability of the human brain.
Collapse
Affiliation(s)
- Tomoyo Morita
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Aichi, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama 240-0193, Kanagawa, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
12
|
Oishi H, Takemura H, Amano K. Macromolecular tissue volume mapping of lateral geniculate nucleus subdivisions in living human brains. Neuroimage 2023; 265:119777. [PMID: 36462730 DOI: 10.1016/j.neuroimage.2022.119777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The lateral geniculate nucleus (LGN) is a key thalamic nucleus in the visual system, which has an important function in relaying retinal visual input to the visual cortex. The human LGN is composed mainly of magnocellular (M) and parvocellular (P) subdivisions, each of which has different stimulus selectivity in neural response properties. Previous studies have discussed the potential relationship between LGN subdivisions and visual disorders based on psychophysical data on specific types of visual stimuli. However, these relationships remain speculative because non-invasive measurements of these subdivisions are difficult due to the small size of the LGN. Here we propose a method to identify these subdivisions by combining two structural MR measures: high-resolution proton-density weighted images and macromolecular tissue volume (MTV) maps. We defined the M and P subdivisions based on MTV fraction data and tested the validity of the definition by (1) comparing the data with that from human histological studies, (2) comparing the data with functional magnetic resonance imaging measurements on stimulus selectivity, and (3) analyzing the test-retest reliability. The findings demonstrated that the spatial organization of the M and P subdivisions was consistent across subjects and in line with LGN subdivisions observed in human histological data. Moreover, the difference in stimulus selectivity between the subdivisions identified using MTV was consistent with previous physiology literature. The definition of the subdivisions based on MTV was shown to be robust over measurements taken on different days. These results suggest that MTV mapping is a promising approach for evaluating the tissue properties of LGN subdivisions in living humans. This method potentially will enable neuroscientific and clinical hypotheses about the human LGN subdivisions to be tested.
Collapse
Affiliation(s)
- Hiroki Oishi
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Department of Psychology, University of California, Berkeley, Berkeley, CA 94704, United States.
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan.
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Inhomogeneous Magnetization Transfer (ihMT) imaging in the acute cuprizone mouse model of demyelination/remyelination. Neuroimage 2023; 265:119785. [PMID: 36464096 DOI: 10.1016/j.neuroimage.2022.119785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND To investigate the association of ihMT (inhom signals with the demyelination and remyelination phases of the acute cuprizone mouse model in comparison with histology, and to assess the extent of tissue damage and repair from MRI data. METHODS Acute demyelination by feeding 0.2% cuprizone for five weeks, followed by a four-week remyelination period was applied on genetically modified plp-GFP mice. Animals were scanned at different time points of the demyelination and remyelination phases of the cuprizone model using a multimodal MRI protocol, including ihMT T1D-filters, MPF (Macromolecular Proton Fraction) and R1 (longitudinal relaxation rate). For histology, plp-GFP (proteolipid protein - Green Fluorescent Protein) microscopy and LFB (Luxol Fast Blue) staining were employed as references for the myelin content. Comparison of MRI with histology was performed in the medial corpus callosum (mCC) and cerebral cortex (CTX) at two brain levels whereas ROI-wise and voxel-based analyses of the MRI metrics allowed investigating in vivo the spatial extent of myelin alterations. RESULTS IhMT high-pass T1D-filters, targeted toward long T1D components, showed significant temporal variations in the mCC consistent with the effects induced by the cuprizone toxin. In addition, the corresponding signals correlated strongly and significantly with the myelin content assessed by GFP fluorescence and LFB staining over the demyelination and the remyelination phases. The signal of the band-pass T1D-filter, which isolates short T1D components, showed changes over time that were poorly correlated with histology, hence suggesting a sensitivity to pathological processes possibly not related to myelin. Although MPF was also highly correlated to histology, ihMT high-pass T1D-filters showed better capability to characterize the spatial-temporal patterns during the demyelination and remyelination phases of the acute cuprizone model (e.g., rostro-caudal gradient of demyelination in the mCC previously described in the literature). CONCLUSIONS IhMT sequences selective for long T1D components are specific and sensitive in vivo markers of demyelination and remyelination and have successfully captured the spatially heterogeneous pattern of the demyelination and remyelination mechanisms in the cuprizone model. Interestingly, differences in signal variations between the ihMT high-pass and band-pass T1D-filter, suggest a sensitivity of the ihMT sequences targeted to short T1Ds to alterations other than those of myelin. Future studies will need to further address these differences by examining more closely the origin of the short T1D components and the variation of each T1D component in pathology.
Collapse
|
14
|
Berman S, Drori E, Mezer AA. Spatial profiles provide sensitive MRI measures of the midbrain micro- and macrostructure. Neuroimage 2022; 264:119660. [PMID: 36220534 DOI: 10.1016/j.neuroimage.2022.119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain. First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps. Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular.
Collapse
Affiliation(s)
- Shai Berman
- The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel; Mortimer B. Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY, United States.
| | - Elior Drori
- The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel
| |
Collapse
|
15
|
Mohaupt P, Roucou X, Delaby C, Vialaret J, Lehmann S, Hirtz C. The alternative proteome in neurobiology. Front Cell Neurosci 2022; 16:1019680. [PMID: 36467612 PMCID: PMC9712206 DOI: 10.3389/fncel.2022.1019680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 10/13/2023] Open
Abstract
Translation involves the biosynthesis of a protein sequence following the decoding of the genetic information embedded in a messenger RNA (mRNA). Typically, the eukaryotic mRNA was considered to be inherently monocistronic, but this paradigm is not in agreement with the translational landscape of cells, tissues, and organs. Recent ribosome sequencing (Ribo-seq) and proteomics studies show that, in addition to currently annotated reference proteins (RefProt), other proteins termed alternative proteins (AltProts), and microproteins are encoded in regions of mRNAs thought to be untranslated or in transcripts annotated as non-coding. This experimental evidence expands the repertoire of functional proteins within a cell and potentially provides important information on biological processes. This review explores the hitherto overlooked alternative proteome in neurobiology and considers the role of AltProts in pathological and healthy neuromolecular processes.
Collapse
Affiliation(s)
- Pablo Mohaupt
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Constance Delaby
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Jérôme Vialaret
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Christophe Hirtz
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| |
Collapse
|
16
|
Wang Y, Zhan M, Roebroeck A, De Weerd P, Kashyap S, Roberts MJ. Inconsistencies in atlas-based volumetric measures of the human nucleus basalis of Meynert: A need for high-resolution alternatives. Neuroimage 2022; 259:119421. [PMID: 35779763 DOI: 10.1016/j.neuroimage.2022.119421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022] Open
Abstract
The nucleus basalis of Meynert (nbM) is the major source of cortical acetylcholine (ACh) and has been related to cognitive processes and to neurological disorders. However, spatially delineating the human nbM in MRI studies remains challenging. Due to the absence of a functional localiser for the human nbM, studies to date have localised it using nearby neuroanatomical landmarks or using probabilistic atlases. To understand the feasibility of MRI of the nbM we set our four goals; our first goal was to review current human nbM region-of-interest (ROI) selection protocols used in MRI studies, which we found have reported highly variable nbM volume estimates. Our next goal was to quantify and discuss the limitations of existing atlas-based volumetry of nbM. We found that the identified ROI volume depends heavily on the atlas used and on the probabilistic threshold set. In addition, we found large disparities even for data/studies using the same atlas and threshold. To test whether spatial resolution contributes to volume variability, as our third goal, we developed a novel nbM mask based on the normalized BigBrain dataset. We found that as long as the spatial resolution of the target data was 1.3 mm isotropic or above, our novel nbM mask offered realistic and stable volume estimates. Finally, as our last goal we tried to discern nbM using publicly available and novel high resolution structural MRI ex vivo MRI datasets. We find that, using an optimised 9.4T quantitative T2⁎ ex vivo dataset, the nbM can be visualised using MRI. We conclude caution is needed when applying the current methods of mapping nbM, especially for high resolution MRI data. Direct imaging of the nbM appears feasible and would eliminate the problems we identify, although further development is required to allow such imaging using standard (f)MRI scanning.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Minye Zhan
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; U992 (Cognitive neuroimaging unit), NeuroSpin, INSERM-CEA, Gif sur Yvette, France
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Techna Institute, University Health Network, Toronto, ON, Canada
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
17
|
Zhang Y, Zhang Y, Ai H, Van Dam NT, Qian L, Hou G, Xu P. Microstructural deficits of the thalamus in major depressive disorder. Brain Commun 2022; 4:fcac236. [PMID: 36196087 PMCID: PMC9525011 DOI: 10.1093/braincomms/fcac236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Macroscopic structural abnormalities in the thalamus and thalamic circuits have been implicated in the neuropathology of major depressive disorder. However, cytoarchitectonic properties underlying these macroscopic abnormalities remain unknown. Here, we examined systematic deficits of brain architecture in depression, from structural brain network organization to microstructural properties. A multi-modal neuroimaging approach including diffusion, anatomical and quantitative MRI was used to examine structural-related alternations in 56 patients with depression compared with 35 age- and sex-matched controls. The seed-based probabilistic tractography showed multiple alterations of structural connectivity within a set of subcortical areas and their connections to cortical regions in patients with depression. These subcortical regions included the putamen, thalamus and caudate, which are predominantly involved in the limbic-cortical-striatal-pallidal-thalamic network. Structural connectivity was disrupted within and between large-scale networks, including the subcortical network, default-mode network and salience network. Consistently, morphometric measurements, including cortical thickness and voxel-based morphometry, showed widespread volume reductions of these key regions in patients with depression. A conjunction analysis identified common structural alternations of the left orbitofrontal cortex, left putamen, bilateral thalamus and right amygdala across macro-modalities. Importantly, the microstructural properties, longitudinal relaxation time of the left thalamus was increased and inversely correlated with its grey matter volume in patients with depression. Together, this work to date provides the first macro-micro neuroimaging evidence for the structural abnormalities of the thalamus in patients with depression, shedding light on the neuropathological disruptions of the limbic-cortical-striatal-pallidal-thalamic circuit in major depressive disorder. These findings have implications in understanding the abnormal changes of brain structures across the development of depression.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Yingli Zhang
- Department of Depressive Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Hui Ai
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen 518052, China
| | - Nicholas T Van Dam
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne 3010, Australia
| | - Long Qian
- MR Research, GE Healthcare, Beijing 100176, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen 518107, China
| |
Collapse
|
18
|
Dong Z, Wang F, Setsompop K. Motion-corrected 3D-EPTI with efficient 4D navigator acquisition for fast and robust whole-brain quantitative imaging. Magn Reson Med 2022; 88:1112-1125. [PMID: 35481604 PMCID: PMC9246907 DOI: 10.1002/mrm.29277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To develop a motion estimation and correction method for motion-robust three-dimensional (3D) quantitative imaging with 3D-echo-planar time-resolved imaging. THEORY AND METHODS The 3D-echo-planar time-resolved imaging technique was designed with additional four-dimensional navigator acquisition (x-y-z-echoes) to achieve fast and motion-robust quantitative imaging of the human brain. The four-dimensional-navigator is inserted into the relaxation-recovery deadtime of the sequence in every pulse TR (∼2 s) to avoid extra scan time, and to provide continuous tracking of the 3D head motion and B0 -inhomogeneity changes. By using an optimized spatiotemporal encoding combined with a partial-Fourier scheme, the navigator acquires a large central k-t data block for accurate motion estimation using only four small-flip-angle excitations and readouts, resulting in negligible signal-recovery reduction to the 3D-echo-planar time-resolved imaging acquisition. By incorporating the estimated motion and B0 -inhomogeneity changes into the reconstruction, multi-contrast images can be recovered with reduced motion artifacts. RESULTS Simulation shows the cost to the SNR efficiency from the added navigator acquisitions is <1%. Both simulation and in vivo retrospective experiments were conducted, that demonstrate the four-dimensional navigator provided accurate estimation of the 3D motion and B0 -inhomogeneity changes, allowing effective reduction of image artifacts in quantitative maps. Finally, in vivo prospective undersampling acquisition was performed with and without head motion, in which the motion corrupted data after correction show close image quality and consistent quantifications to the motion-free scan, providing reliable quantitative measurements even with head motion. CONCLUSION The proposed four-dimensional navigator acquisition provides reliable tracking of the head motion and B0 change with negligible SNR cost, equips the 3D-echo-planar time-resolved imaging technique for motion-robust and efficient quantitative imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
19
|
Drori E, Berman S, Mezer AA. Mapping microstructural gradients of the human striatum in normal aging and Parkinson's disease. SCIENCE ADVANCES 2022; 8:eabm1971. [PMID: 35857492 PMCID: PMC9286505 DOI: 10.1126/sciadv.abm1971] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mapping structural spatial change (i.e., gradients) in the striatum is essential for understanding the function of the basal ganglia in both health and disease. We developed a method to identify and quantify gradients of microstructure in the single human brain in vivo. We found spatial gradients in the putamen and caudate nucleus of the striatum that were robust across individuals, clinical conditions, and datasets. By exploiting multiparametric quantitative MRI, we found distinct, spatially dependent, aging-related alterations in water content and iron concentration. Furthermore, we found cortico-striatal microstructural covariation, showing relations between striatal structural gradients and cortical hierarchy. In Parkinson's disease (PD) patients, we found abnormal gradients in the putamen, revealing changes in the posterior putamen that explain patients' dopaminergic loss and motor dysfunction. Our work provides a noninvasive approach for studying the spatially varying, structure-function relationship in the striatum in vivo, in normal aging and PD.
Collapse
Affiliation(s)
- Elior Drori
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shai Berman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Wang F, Dong Z, Reese TG, Rosen B, Wald LL, Setsompop K. 3D Echo Planar Time-resolved Imaging (3D-EPTI) for ultrafast multi-parametric quantitative MRI. Neuroimage 2022; 250:118963. [PMID: 35122969 PMCID: PMC8920906 DOI: 10.1016/j.neuroimage.2022.118963] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/09/2021] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Multi-parametric quantitative MRI has shown great potential to improve the sensitivity and specificity of clinical diagnosis and to enhance our understanding of complex brain processes, but suffers from long scan time especially at high spatial resolution. To address this longstanding challenge, we introduce a novel approach, termed 3D Echo Planar Time-resolved Imaging (3D-EPTI), which significantly increases the acceleration capacity of MRI sampling, and provides high acquisition efficiency for multi-parametric MRI. This is achieved by exploiting the spatiotemporal correlation of MRI data at multiple timescales through new encoding strategies within and between efficient continuous readouts. Specifically, an optimized spatiotemporal CAIPI encoding within the readouts combined with a radial-block sampling strategy across the readouts enables an acceleration rate of 800 fold in the k-t space. A subspace reconstruction was employed to resolve thousands of high-quality multi-contrast images. We have demonstrated the ability of 3D-EPTI to provide robust and repeatable whole-brain simultaneous T1, T2, T2*, PD and B1+ mapping at high isotropic resolution within minutes (e.g., 1-mm isotropic resolution in 3 minutes), and to enable submillimeter multi-parametric imaging to study detailed brain structures.
Collapse
Affiliation(s)
- Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, USA; Department of Electrical Engineering, Stanford University, Stanford, USA
| |
Collapse
|
21
|
Neef NE, Korzeczek A, Primaßin A, Wolff von Gudenberg A, Dechent P, Riedel CH, Paulus W, Sommer M. White matter tract strength correlates with therapy outcome in persistent developmental stuttering. Hum Brain Mapp 2022; 43:3357-3374. [PMID: 35415866 PMCID: PMC9248304 DOI: 10.1002/hbm.25853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/11/2022] Open
Abstract
Persistent stuttering is a prevalent neurodevelopmental speech disorder, which presents with involuntary speech blocks, sound and syllable repetitions, and sound prolongations. Affected individuals often struggle with negative feelings, elevated anxiety, and low self-esteem. Neuroimaging studies frequently link persistent stuttering with cortical alterations and dysfunctional cortico-basal ganglia-thalamocortical loops; dMRI data also point toward connectivity changes of the superior longitudinal fasciculus (SLF) and the frontal aslant tract (FAT). Both tracts are involved in speech and language functions, and the FAT also supports inhibitory control and conflict monitoring. Whether the two tracts are involved in therapy-associated improvements and how they relate to therapeutic outcomes is currently unknown. Here, we analyzed dMRI data of 22 patients who participated in a fluency-shaping program, 18 patients not participating in therapy, and 27 fluent control participants, measured 1 year apart. We used diffusion tractography to segment the SLF and FAT bilaterally and to quantify their microstructural properties before and after a fluency-shaping program. Participants learned to speak with soft articulation, pitch, and voicing during a 2-week on-site boot camp and computer-assisted biofeedback-based daily training for 1 year. Therapy had no impact on the microstructural properties of the two tracts. Yet, after therapy, stuttering severity correlated positively with left SLF fractional anisotropy, whereas relief from the social-emotional burden to stutter correlated negatively with right FAT fractional anisotropy. Thus, posttreatment, speech motor performance relates to the left dorsal stream, while the experience of the adverse impact of stuttering relates to the structure recently associated with conflict monitoring and action inhibition.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexandra Korzeczek
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Annika Primaßin
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Fachbereich Gesundheit, FH Münster University of Applied Sciences, Münster, Germany
| | | | - Peter Dechent
- Department of Cognitive Neurology, MR Research in Neurosciences, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Heiner Riedel
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Cárdenas-Tueme M, Trujillo-Villarreal LÁ, Ramírez-Amaya V, Garza-Villarreal EA, Camacho-Morales A, Reséndez-Pérez D. Fornix volumetric increase and microglia morphology contribute to spatial and recognition-like memory decline in ageing male mice. Neuroimage 2022; 252:119039. [PMID: 35227858 DOI: 10.1016/j.neuroimage.2022.119039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022] Open
Abstract
Ageing displays a low-grade pro-inflammatory profile in blood and the brain. Accumulation of pro-inflammatory cytokines, microglia activation and volumetric changes in the brain correlate with cognitive decline in ageing models. However, the interplay between them is not totally understood. Here, we aimed to globally identify an age-dependent pro-inflammatory profile and microglia morphological plasticity that favors major volume changes in the brain associated with cognitive decline. Cluster analysis of behavioral data obtained from 2-,12- and 20-month-old male C57BL/6 mice revealed age-dependent cognitive decline after the Y-maze, Barnes maze, object recognition (NORT) and object location tests (OLT). Global magnetic resonance imageing (MRI) analysis by deformation-based morphometry (DBM) in the brain identified a volume increase in the fornix and a decrease in the left medial entorhinal cortex (MEntC) during ageing. Notably, the fornix shows an increase in the accumulation of pro-inflammatory cytokines, whereas the left MEntC displays a decrease. Morphological assessment of microglia also confirms an active and dystrophic phenotype in the fornix and a surveillance phenotype in the left MEntC. Finally, biological modeling revealed that age-related volume increase in the fornix was associated with dystrophic microglia and cognitive impairment, as evidenced by failure on tasks examining memory of object location and novelty. Our results propose that the morphological plasticity of microglia might contribute to volumetric changes in brain regions associated with cognitive decline during physiological ageing.
Collapse
Affiliation(s)
- Marcela Cárdenas-Tueme
- Universidad Autonoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, San Nicolás de los Garza, Nuevo León, México
| | - Luis Ángel Trujillo-Villarreal
- Universidad Autonoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica, Monterrey, Nuevo León, México; Universidad Autonoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la Salud, Unidad de Neurometabolismo, Monterrey, Nuevo León, México
| | - Victor Ramírez-Amaya
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET- UNC, Friuli 2434, Colinas de Vélez Sarsfield, Córdoba 5016, Argentina
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, México
| | - Alberto Camacho-Morales
- Universidad Autonoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica, Monterrey, Nuevo León, México; Universidad Autonoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la Salud, Unidad de Neurometabolismo, Monterrey, Nuevo León, México.
| | - Diana Reséndez-Pérez
- Universidad Autonoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, San Nicolás de los Garza, Nuevo León, México.
| |
Collapse
|
23
|
Ogawa S, Takemura H, Horiguchi H, Miyazaki A, Matsumoto K, Masuda Y, Yoshikawa K, Nakano T. Multi-Contrast Magnetic Resonance Imaging of Visual White Matter Pathways in Patients With Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:29. [PMID: 35201263 PMCID: PMC8883150 DOI: 10.1167/iovs.63.2.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Glaucoma is a disorder that involves visual field loss caused by retinal ganglion cell damage. Previous diffusion magnetic resonance imaging (dMRI) studies have demonstrated that retinal ganglion cell damage affects tissues in the optic tract (OT) and optic radiation (OR). However, because previous studies have used a simple diffusion tensor model to analyze dMRI data, the microstructural interpretation of white matter tissue changes remains uncertain. In this study, we used a multi-contrast MRI approach to further clarify the type of microstructural damage that occurs in patients with glaucoma. Methods We collected dMRI data from 17 patients with glaucoma and 30 controls using 3-tesla (3T) MRI. Using the dMRI data, we estimated three types of tissue property metrics: intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fraction (IsoV). Quantitative T1 (qT1) data, which may be relatively specific to myelin, were collected from all subjects. Results In the OT, all four metrics showed significant differences between the glaucoma and control groups. In the OR, only the ICVF showed significant between-group differences. ICVF was significantly correlated with qT1 in the OR of the glaucoma group, although qT1 did not show any abnormality at the group level. Conclusions Our results suggest that, at the group level, tissue changes in OR caused by glaucoma might be explained by axonal damage, which is reflected in the intracellular diffusion signals, rather than myelin damage. The significant correlation between ICVF and qT1 suggests that myelin damage might also occur in a smaller number of severe cases.
Collapse
Affiliation(s)
- Shumpei Ogawa
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| | - Hiroshi Horiguchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Kenji Matsumoto
- Brain Science Institute, Tamagawa University, Machida, Japan
| | - Yoichiro Masuda
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Keiji Yoshikawa
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
- Yoshikawa Eye Clinic, Machida, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Yu FF, Yi Huang S, Kumar A, Witzel T, Liao C, Duval T, Cohen-Adad J, Bilgic B. Rapid simultaneous acquisition of macromolecular tissue volume, susceptibility, and relaxometry maps. Magn Reson Med 2022; 87:781-790. [PMID: 34480768 PMCID: PMC8627440 DOI: 10.1002/mrm.28995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE A major obstacle to the clinical implementation of quantitative MR is the lengthy acquisition time required to derive multi-contrast parametric maps. We sought to reduce the acquisition time for QSM and macromolecular tissue volume by acquiring both contrasts simultaneously by leveraging their redundancies. The joint virtual coil concept with GRAPPA (JVC-GRAPPA) was applied to reduce acquisition time further. METHODS Three adult volunteers were imaged on a 3 Tesla scanner using a multi-echo 3D GRE sequence acquired at 3 head orientations. Macromolecular tissue volume, QSM, R2∗ , T1 , and proton density maps were reconstructed. The same sequence (GRAPPA R = 4) was performed in subject 1 with a single head orientation for comparison. Fully sampled data was acquired in subject 2, from which retrospective undersampling was performed (R = 6 GRAPPA and R = 9 JVC-GRAPPA). Prospective undersampling was performed in subject 3 (R = 6 GRAPPA and R = 9 JVC-GRAPPA) using gradient blips to shift k-space sampling in later echoes. RESULTS Subject 1's multi-orientation and single-orientation macromolecular tissue volume maps were not significantly different based on RMSE. For subject 2, the retrospectively undersampled JVC-GRAPPA and GRAPPA generated similar results as fully sampled data. This approach was validated with the prospectively undersampled images in subject 3. Using QSM, R2∗ , and macromolecular tissue volume, the contributions of myelin and iron content to susceptibility were estimated. CONCLUSION We have developed a novel strategy to simultaneously acquire data for the reconstruction of 5 intrinsically coregistered 1-mm isotropic resolution multi-parametric maps, with a scan time of 6 min using JVC-GRAPPA.
Collapse
Affiliation(s)
- Fang Frank Yu
- Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States,,Corresponding author. Fang Frank Yu, MD, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, Ph: 214-648-7813, Fax: 214-648-3904,
| | - Susie Yi Huang
- Department of Radiology, Harvard Medical School, Boston, MA, United States,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Ashwin Kumar
- Vanderbilt University, Nashville, TN, United States
| | | | - Congyu Liao
- Radiological Sciences Laboratory, Stanford Medicine, Stanford, CA, United States
| | - Tanguy Duval
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada
| | - Julien Cohen-Adad
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada
| | - Berkin Bilgic
- Department of Radiology, Harvard Medical School, Boston, MA, United States,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| |
Collapse
|
25
|
Hertanu A, Soustelle L, Buron J, Le Priellec J, Cayre M, Le Troter A, Varma G, Alsop DC, Durbec P, Girard OM, Duhamel G. T 1D -weighted ihMT imaging - Part II. Investigating the long- and short-T 1D components correlation with myelin content. Comparison with R 1 and the macromolecular proton fraction. Magn Reson Med 2022; 87:2329-2346. [PMID: 35001427 DOI: 10.1002/mrm.29140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 12/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To investigate the long- and short-T1D components correlation with myelin content using inhomogeneous magnetization transfer (ihMT) high-pass and band-pass T1D -filters and to compare ihMT, R1 , and the macromolecular proton fraction (MPF) for myelin specific imaging. METHODS The 3D ihMT rapid gradient echo (ihMTRAGE) sequences with increasing switching times (Δt) were used to derive ihMT high-pass T1D -filters with increasing T1D cutoff values and an ihMT band-pass T1D -filter for components in the 100 µs to 1 ms range. 3D spoiled gradient echo quantitative MT (SPGR-qMT) protocols were used to derive R1 and MPF maps. The specificity of R1 , MPF, and ihMT T1D -filters was evaluated by comparison with two histological reference techniques for myelin imaging. RESULTS The higher contribution of long-T1D s as compared to the short components as Δt got longer led to an increase in the specificity to myelination. In contrast, focusing on the signal originating from a narrow range of short-T1D s (< 1 ms) as isolated by the band-pass T1D -filter led to lower specificity. In addition, the significantly lower r2 correlation coefficient of the band-pass T1D -filter suggests that the origin of short-T1D components is mostly associated with non-myelin protons. Also, the important contribution of short-T1D s to the estimated MPF, explains its low specificity to myelination as compared to the ihMT high-pass T1D -filters. CONCLUSION Long-T1D components imaging by means of ihMT high-pass T1D -filters is proposed as an MRI biomarker for myelin content. Future studies should enable the investigation of the sensitivity of ihMT T1D -filters for demyelinating processes.
Collapse
Affiliation(s)
- Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Julie Buron
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
26
|
Fingerhut H, Gozdas E, Hosseini SH. Quantitative MRI Evidence for Cognitive Reserve in Healthy Elders and Prodromal Alzheimer's Disease. J Alzheimers Dis 2022; 89:849-863. [PMID: 35964179 PMCID: PMC9928487 DOI: 10.3233/jad-220197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Cognitive reserve (CR) has been postulated to contribute to the variation observed between neuropathology and clinical outcomes in Alzheimer's disease (AD). OBJECTIVE We investigated the effect of an education-occupation derived CR proxy on biological properties of white matter tracts in patients with amnestic mild cognitive impairment (aMCI) and healthy elders (HC). METHODS Educational attainment and occupational complexity ratings (complexity with data, people, and things) from thirty-five patients with aMCI and twenty-eight HC were used to generate composite CR scores. Quantitative magnetic resonance imaging (qMRI) and multi-shell diffusion MRI were used to extract macromolecular tissue volume (MTV) across major white matter tracts. RESULTS We observed significant differences in the association between CR and white matter tract MTV in aMCI versus HC when age, gender, intracranial volume, and memory ability were held constant. Particularly, in aMCI, higher CR was associated with worse tract pathology (lower MTV) in the left and right dorsal cingulum, callosum forceps major, right inferior fronto-occipital fasciculus, and right superior longitudinal fasciculus (SLF) tracts. Conversely higher CR was associated with higher MTV in the right parahippocampal cingulum and left SLF in HC. CONCLUSION Our results support compensatory CR mechanisms in aMCI and neuroprotective mechanisms in HC and suggest differential roles for CR on white matter macromolecular properties in healthy elders versus prodromal AD patients.
Collapse
Affiliation(s)
| | | | - S.M. Hadi Hosseini
- Correspondence to: S.M. Hadi Hosseini, Department of Psychiatry and Behavioral Sciences, C-BRAIN Lab, 401 Quarry Rd., Stanford, CA 94305-5795, USA. Tel.: +1 650 723 5798;
| |
Collapse
|
27
|
Jossinger S, Sares A, Zislis A, Sury D, Gracco V, Ben-Shachar M. White matter correlates of sensorimotor synchronization in persistent developmental stuttering. JOURNAL OF COMMUNICATION DISORDERS 2022; 95:106169. [PMID: 34856426 PMCID: PMC8821245 DOI: 10.1016/j.jcomdis.2021.106169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Individuals with persistent developmental stuttering display deficits in aligning motor actions to external cues (i.e., sensorimotor synchronization). Diffusion imaging studies point to stuttering-associated differences in dorsal, not ventral, white matter pathways, and in the cerebellar peduncles. Here, we studied microstructural white matter differences between adults who stutter (AWS) and fluent speakers using two complementary approaches to: (a) assess previously reported group differences in white matter diffusivity, and (b) evaluate the relationship between white matter diffusivity and sensorimotor synchronization in each group. METHODS Participants completed a sensorimotor synchronization task and a diffusion MRI scan. We identified the cerebellar peduncles and major dorsal- and ventral-stream language pathways in each individual and assessed correlations between sensorimotor synchronization and diffusion measures along the tracts. RESULTS The results demonstrated group differences in dorsal, not ventral, language tracts, in alignment with prior reports. Specifically, AWS had significantly lower fractional anisotropy (FA) in the left arcuate fasciculus, and significantly higher mean diffusivity (MD) in the bilateral frontal aslant tract compared to fluent speakers, while no significant group difference was detected in the inferior fronto-occipital fasciculus. We also found significant group differences in both FA and MD of the left middle cerebellar peduncle. Comparing patterns of association with sensorimotor synchronization revealed a novel double dissociation: MD within the left inferior cerebellar peduncle was significantly correlated with mean asynchrony in AWS but not in fluent speakers, while FA within the left arcuate fasciculus was significantly correlated with mean asynchrony in fluent speakers, but not in AWS. CONCLUSIONS Our results support the view that stuttering involves altered connectivity in dorsal tracts and that AWS may rely more heavily on cerebellar tracts to process timing information. Evaluating microstructural associations with sensitive behavioral measures provides a powerful tool for discovering additional functional differences in the underlying connectivity in AWS.
Collapse
Affiliation(s)
- Sivan Jossinger
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| | - Anastasia Sares
- Department of Psychology, Concordia University, Montréal, Canada; Centre for Research on Brain, Language and Music, McGill University, Montréal, Canada
| | - Avital Zislis
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Dana Sury
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Vincent Gracco
- Centre for Research on Brain, Language and Music, McGill University, Montréal, Canada; School of Communication Sciences and Disorders, McGill University, Montréal, Canada; Haskins Laboratories, New Haven, CT, United States
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; The Department of English Literature and Linguistics, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
28
|
Omer N, Galun M, Stern N, Blumenfeld-Katzir T, Ben-Eliezer N. Data-driven algorithm for myelin water imaging: Probing subvoxel compartmentation based on identification of spatially global tissue features. Magn Reson Med 2021; 87:2521-2535. [PMID: 34958690 DOI: 10.1002/mrm.29125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Multicomponent analysis of MRI T2 relaxation time (mcT2 ) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel-based approach is challenging due to the large ambiguity in the multi-T2 space and the low SNR of MRI signals. Herein, we present a data-driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel. METHODS Deconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel-wise myelin water fraction maps. RESULTS Validations are shown for computer-generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof-of-concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans. CONCLUSION We conclude that studying global tissue motifs prior to performing voxel-wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general.
Collapse
Affiliation(s)
- Noam Omer
- The Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | - Meirav Galun
- Department of Computer Science and Applied Mathematics, Weitzman Institute of Science, Rehovot, Israel
| | - Neta Stern
- The Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | | | - Noam Ben-Eliezer
- The Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
29
|
Klietz M, Elaman MH, Mahmoudi N, Nösel P, Ahlswede M, Wegner F, Höglinger GU, Lanfermann H, Ding XQ. Cerebral Microstructural Alterations in Patients With Early Parkinson's Disease Detected With Quantitative Magnetic Resonance Measurements. Front Aging Neurosci 2021; 13:763331. [PMID: 34790113 PMCID: PMC8591214 DOI: 10.3389/fnagi.2021.763331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023] Open
Abstract
Objective: Parkinson’s disease (PD) is the second most common neurodegenerative disease in the elderly. In early stages of PD, patients typically display normal brain magnet resonance imaging (MRI) in routine screening. Advanced imaging approaches are necessary to discriminate early PD patients from healthy controls. In this study, microstructural changes in relevant brain regions of early PD patients were investigated by using quantitative MRI methods. Methods: Cerebral MRI at 3T was performed on 20 PD patients in early stages and 20 age and sex matched healthy controls. Brain relative proton density, T1, T2, and T2′ relaxation times were measured in 14 regions of interest (ROIs) in each hemisphere and compared between patients and controls to estimate PD related alterations. Results: In comparison to matched healthy controls, the PD patients revealed decreased relative proton density in contralateral prefrontal subcortical area, upper and lower pons, in ipsilateral globus pallidus, and bilaterally in splenium corporis callosi, caudate nucleus, putamen, thalamus, and mesencephalon. The T1 relaxation time was increased in contralateral prefrontal subcortical area and centrum semiovale, putamen, nucleus caudatus and mesencephalon, whereas T2 relaxation time was elevated in upper pons bilaterally and in centrum semiovale ipsilaterally. T2′ relaxation time did not show significant changes. Conclusion: Early Parkinson’s disease is associated with a distinct profile of brain microstructural changes which may relate to clinical symptoms. The quantitative MR method used in this study may be useful in early diagnosis of Parkinson’s disease. Limitations of this study include a small sample size and manual selection of the ROIs. Atlas-based or statistical mapping methods would be an alternative for an objective evaluation. More studies are necessary to validate the measurement methods for clinical use in diagnostics of early Parkinson’s disease.
Collapse
Affiliation(s)
- Martin Klietz
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - M Handan Elaman
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Nima Mahmoudi
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Patrick Nösel
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Mareike Ahlswede
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | | | - Heinrich Lanfermann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Xiao-Qi Ding
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
30
|
Gottschalk A, Scafidi S, Toung TJK. Brain water as a function of age and weight in normal rats. PLoS One 2021; 16:e0249384. [PMID: 34525113 PMCID: PMC8443050 DOI: 10.1371/journal.pone.0249384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Rats are frequently used for studying water content of normal and injured brain, as well as changes in response to various osmotherapeutic regimens. Magnetic resonance imaging in humans has shown that brain water content declines with age as a result of progressive myelination and other processes. The purpose of this study was to quantify changes in brain water content during rat development and aging. Brain water content was measured by standard techniques in 129 normal male Sprague-Dawley rats that ranged in age (weight) from 13 to 149 days (18 to 759 g). Overall, the results demonstrated a decrease in water content from 85.59% to 76.56% with increasing age (weight). Nonlinear allometric functions relating brain water to age and weight were determined. These findings provide age-related context for prior rat studies of brain water, emphasize the importance of using similarly aged controls in studies of brain water, and indicate that age-related changes in brain water content are not specific to humans.
Collapse
Affiliation(s)
- Allan Gottschalk
- Departments of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Susanna Scafidi
- Departments of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Thomas J. K. Toung
- Departments of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
31
|
Benjamini D, Iacono D, Komlosh ME, Perl DP, Brody DL, Basser PJ. Diffuse axonal injury has a characteristic multidimensional MRI signature in the human brain. Brain 2021; 144:800-816. [PMID: 33739417 DOI: 10.1093/brain/awaa447] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 02/01/2023] Open
Abstract
Axonal injury is a major contributor to the clinical symptomatology in patients with traumatic brain injury. Conventional neuroradiological tools, such as CT and MRI, are insensitive to diffuse axonal injury (DAI) caused by trauma. Diffusion tensor MRI parameters may change in DAI lesions; however, the nature of these changes is inconsistent. Multidimensional MRI is an emerging approach that combines T1, T2, and diffusion, and replaces voxel-averaged values with distributions, which allows selective isolation of specific potential abnormal components. By performing a combined post-mortem multidimensional MRI and histopathology study, we aimed to investigate T1-T2-diffusion changes linked to DAI and to define their histopathological correlates. Corpora callosa derived from eight subjects who had sustained traumatic brain injury, and three control brain donors underwent post-mortem ex vivo MRI at 7 T. Multidimensional, diffusion tensor, and quantitative T1 and T2 MRI data were acquired and processed. Following MRI acquisition, slices from the same tissue were tested for amyloid precursor protein (APP) immunoreactivity to define DAI severity. A robust image co-registration method was applied to accurately match MRI-derived parameters and histopathology, after which 12 regions of interest per tissue block were selected based on APP density, but blind to MRI. We identified abnormal multidimensional T1-T2, diffusion-T2, and diffusion-T1 components that are strongly associated with DAI and used them to generate axonal injury images. We found that compared to control white matter, mild and severe DAI lesions contained significantly larger abnormal T1-T2 component (P = 0.005 and P < 0.001, respectively), and significantly larger abnormal diffusion-T2 component (P = 0.005 and P < 0.001, respectively). Furthermore, within patients with traumatic brain injury the multidimensional MRI biomarkers differentiated normal-appearing white matter from mild and severe DAI lesions, with significantly larger abnormal T1-T2 and diffusion-T2 components (P = 0.003 and P < 0.001, respectively, for T1-T2; P = 0.022 and P < 0.001, respectively, for diffusion-T2). Conversely, none of the conventional quantitative MRI parameters were able to differentiate lesions and normal-appearing white matter. Lastly, we found that the abnormal T1-T2, diffusion-T1, and diffusion-T2 components and their axonal damage images were strongly correlated with quantitative APP staining (r = 0.876, P < 0.001; r = 0.727, P < 0.001; and r = 0.743, P < 0.001, respectively), while producing negligible intensities in grey matter and in normal-appearing white matter. These results suggest that multidimensional MRI may provide non-invasive biomarkers for detection of DAI, which is the pathological substrate for neurological disorders ranging from concussion to severe traumatic brain injury.
Collapse
Affiliation(s)
- Dan Benjamini
- Section on Quantitative Imaging and Tissue Sciences, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
| | - Diego Iacono
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA.,Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,Neuroscience Graduate Program, Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michal E Komlosh
- Section on Quantitative Imaging and Tissue Sciences, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
| | - Daniel P Perl
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| | - David L Brody
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
32
|
Huber E, Mezer A, Yeatman JD. Neurobiological underpinnings of rapid white matter plasticity during intensive reading instruction. Neuroimage 2021; 243:118453. [PMID: 34358657 DOI: 10.1016/j.neuroimage.2021.118453] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 01/18/2023] Open
Abstract
Diffusion MRI is a powerful tool for imaging brain structure, but it is challenging to discern the biological underpinnings of plasticity inferred from these and other non-invasive MR measurements. Biophysical modeling of the diffusion signal aims to render a more biologically rich image of tissue microstructure, but the application of these models comes with important caveats. A separate approach for gaining biological specificity has been to seek converging evidence from multi-modal datasets. Here we use metrics derived from diffusion kurtosis imaging (DKI) and the white matter tract integrity (WMTI) model along with quantitative MRI measurements of T1 relaxation to characterize changes throughout the white matter during an 8-week, intensive reading intervention (160 total hours of instruction). Behavioral measures, multi-shell diffusion MRI data, and quantitative T1 data were collected at regular intervals during the intervention in a group of 33 children with reading difficulties (7-12 years old), and over the same period in an age-matched non-intervention control group. Throughout the white matter, mean 'extra-axonal' diffusivity was inversely related to intervention time. In contrast, model estimated axonal water fraction (AWF), overall diffusion kurtosis, and T1 relaxation time showed no significant change over the intervention period. Both diffusion and quantitative T1 based metrics were correlated with pre-intervention reading performance, albeit with distinct anatomical distributions. These results are consistent with the view that rapid changes in diffusion properties reflect phenomena other than widespread changes in myelin density. We discuss this result in light of recent work highlighting non-axonal factors in experience-dependent plasticity and learning.
Collapse
Affiliation(s)
- Elizabeth Huber
- Institute for Learning and Brain Sciences and Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Aviv Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason D Yeatman
- Graduate School of Education, Stanford University, Stanford, CA 94305, USA; Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA 95305, USA
| |
Collapse
|
33
|
Brandhofe A, Stratmann C, Schüre JR, Pilatus U, Hattingen E, Deichmann R, Nöth U, Wagner M, Gracien RM, Seiler A. T 2 relaxation time of the normal-appearing white matter is related to the cognitive status in cerebral small vessel disease. J Cereb Blood Flow Metab 2021; 41:1767-1777. [PMID: 33327818 PMCID: PMC8221761 DOI: 10.1177/0271678x20972511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Previous diffusion tensor imaging (DTI) studies indicate that impaired microstructural integrity of the normal-appearing white matter (NAWM) is related to cognitive impairment in cerebral small vessel disease (SVD). This study aimed to investigate whether quantitative T2 relaxometry is a suitable imaging biomarker for the assessment of tissue changes related to cognitive abnormalities in patients with SVD. 39 patients and 18 age-matched healthy control subjects underwent 3 T magnetic resonance imaging (MRI) with T2-weighted multiple spin echo sequences for T2 relaxometry and DTI sequences, as well as comprehensive cognitive assessment. Averaged quantitative T2, fractional anisotropy (FA) and mean diffusivity (MD) were determined in the NAWM and related to cognitive parameters controlling for age, normalized brain volume, white matter hyperintensity volume and other conventional SVD markers. In SVD patients, quantitative T2 values were significantly increased compared to controls (p = 0.002) and significantly negatively correlated with the global cognitive performance (r= -0.410, p = 0.014) and executive function (r= -0.399, p = 0.016). DTI parameters did not correlate with cognitive function. T2 relaxometry of the NAWM seems to be sensitive to microstructural tissue damage associated with cognitive impairment in SVD and might be a promising imaging biomarker for evaluation of disease progression and possible effects of therapeutic interventions.
Collapse
Affiliation(s)
- Annemarie Brandhofe
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany.,Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Christoph Stratmann
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Jan-Rüdiger Schüre
- Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany.,Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Alexander Seiler
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany.,Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
34
|
Liu H, van der Heide O, van den Berg CAT, Sbrizzi A. Fast and accurate modeling of transient-state, gradient-spoiled sequences by recurrent neural networks. NMR IN BIOMEDICINE 2021; 34:e4527. [PMID: 33949718 PMCID: PMC8244023 DOI: 10.1002/nbm.4527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/26/2021] [Indexed: 05/11/2023]
Abstract
Fast and accurate modeling of MR signal responses are typically required for various quantitative MRI applications, such as MR fingerprinting. This work uses a new extended phase graph (EPG)-Bloch model for accurate simulation of transient-state, gradient-spoiled MR sequences, and proposes a recurrent neural network (RNN) as a fast surrogate of the EPG-Bloch model for computing large-scale MR signals and derivatives. The computational efficiency of the RNN model is demonstrated by comparisons with other existing models, showing one to three orders of acceleration compared with the latest GPU-accelerated, open-source EPG package. By using numerical and in vivo brain data, two used cases, namely, MRF dictionary generation and optimal experimental design, are also provided. Results show that the RNN surrogate model can be efficiently used for computing large-scale dictionaries of transient-state signals and derivatives within tens of seconds, resulting in several orders of magnitude acceleration with respect to state-of-the-art implementations. The practical application of transient-state quantitative techniques can therefore be substantially facilitated.
Collapse
Affiliation(s)
- Hongyan Liu
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Oscar van der Heide
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Alessandro Sbrizzi
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
35
|
Olsson H, Andersen M, Wirestam R, Helms G. Mapping magnetization transfer saturation (MT sat ) in human brain at 7T: Protocol optimization under specific absorption rate constraints. Magn Reson Med 2021; 86:2562-2576. [PMID: 34196043 DOI: 10.1002/mrm.28899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/19/2021] [Accepted: 06/02/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE To optimize a whole-brain magnetization transfer saturation (MTsat ) protocol at 7T, focusing on maximizing obtainable MTsat under the constraints of specific absorption rate (SAR) and transmit field inhomogeneity, while avoiding bias and keeping scan time short. THEORY AND METHODS MTsat is a semi-quantitative metric, obtained by spoiled gradient-echo MRI in the imaging steady-state. Optimization was based on an established 7T dual flip angle protocol, and focused on MT pulse, readout flip angle, repetition time (TR), offset frequency (Δ), and correction of residual effects from transmit field inhomogeneities by separate flip angle mapping. RESULTS A 100% SAR level was reached at a 180° MT pulse flip angle, using a compact sinc main lobe (4 ms duration) and minimum TR = 26.5 ms. The use of Δ = +2.0 kHz caused no discernible direct saturation, while Δ = -2.0 kHz resulted in 45% higher MTsat in white matter (WM) compared to Δ = +2.0 kHz. A 4° readout flip angle eliminated bias while yielding a good signal-to-noise ratio. Increased TR yielded only a little increase in MTsat , and TR = 26.5 ms (scan time 04:58 min) was thus selected. Post hoc transmit field correction clearly improved homogeneity, especially in WM. CONCLUSIONS The range of MTsat is limited at 7T, and this can partly be overcome by the exploitation of the asymmetry of the macromolecular lineshape through the sign of Δ. To reduce scan time, a compact MT pulse with a sufficiently narrow frequency response should be used. TR and readout flip angle should be kept short/small. Transmit field correction through separate flip angle mapping is required.
Collapse
Affiliation(s)
- Hampus Olsson
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Mads Andersen
- Philips Healthcare, Copenhagen, Denmark.,Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Gunther Helms
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
36
|
RESUME N: A flexible class of multi-parameter qMRI protocols. Phys Med 2021; 88:23-36. [PMID: 34171573 DOI: 10.1016/j.ejmp.2021.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To introduce a class of fast 3D quantitative MRI (qMRI) schemes (RESUMEN, for N=1,…,4) that allow for a thorough characterization of microstructural properties of brain tissues. METHODS An arbitrary multi-echo GRE acquisition optimized for quantitative susceptibility mapping (QSM) is complemented with an appropriate low flip-angle GRE sequence drawn from four possible choices. The acquired signals are processed to analytically derive the longitudinal relaxation (R1) and free induction decay (R2∗) rates, as well as the proton density (PD) and QSM. A comprehensive modeling of the excitation and B1- profiles and of the RF-spoiling is included in the acquisition and processing pipeline. RESULTS The RESUMEN maps appear homogeneous throughout the field-of-view and exhibit comparable values and high SNR across the considered range of N values. CONCLUSIONS The introduced schemes represent a class of robust and flexible strategies to derive a thorough and fast qMRI study, suitable for a whole-brain acquisition with isotropic voxel resolution of 700 μm in less than 15 min.
Collapse
|
37
|
Gozdas E, Fingerhut H, Wu H, Bruno JL, Dacorro L, Jo B, O'Hara R, Reiss AL, Hosseini SMH. Quantitative measurement of macromolecular tissue properties in white and gray matter in healthy aging and amnestic MCI. Neuroimage 2021; 237:118161. [PMID: 34000394 DOI: 10.1016/j.neuroimage.2021.118161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022] Open
Abstract
Healthy and pathological aging influence brain microstructure via complex processes. Discerning these processes requires measurements that are sensitive to specific biological properties of brain tissue. We integrated a novel quantitative R1 measure with multi-shell diffusion weighted imaging to map age-associated changes in macromolecular tissue volume (MTV) along major white matter tracts in healthy older adults and patients with amnestic Mild Cognitive Impairment (aMCI). Reduced MTV in association tracts was associated with older age in healthy aging, was correlated with memory performance, and distinguished aMCI from controls. We also mapped changes in gray matter tissue properties using quantitative R1 measurements. We documented a widespread decrease in R1 with advancing age across the cortex and decreased R1 in aMCI compared with controls in regions implicated in episodic memory. Our data are the first to characterize MTV loss along major white matter tracts in aMCI and suggest that qMRI is a sensitive measure for detecting subtle degeneration of white and gray matter tissue that cannot be detected by conventional MRI and diffusion measures.
Collapse
Affiliation(s)
- Elveda Gozdas
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| | - Hannah Fingerhut
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Hua Wu
- Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, United States
| | - Jennifer L Bruno
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Lauren Dacorro
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Allan L Reiss
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
38
|
Shemesh D, Rozenberg K, Rosenzweig T, Abookasis D. Single probe diffuse reflectance spectroscopy to assess the effect of sarcopoterium spinosum treatment on the cerebral tissue properties of ApoE knockout mouse. JOURNAL OF BIOPHOTONICS 2021; 14:e202000307. [PMID: 33084182 DOI: 10.1002/jbio.202000307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
In this work, diffuse near-infrared light reflectance spectroscopy based on a single optical probe, contains central single collection fiber surrounded by a circular array of illumination fibers, was used to quantify cerebral tissue properties in ApoE knockout mice following Sarcopoterium spinosum treatment. Sarcopoterium spinosum, also known as Thorny burnet, is a Mediterranean plant widely used as a traditional therapy for the treatment of a variety of pathologies, primarily type 2 diabetes mellitus (T2D). While it's efficacy in the treatment of T2D, and of other components of metabolic syndrome, have already been validated by us, the aim of this study was to investigate the effects of Sarcopoterium spinosum extract (SSE) on dyslipidemia and vascular functions. We utilized ApoE deficient mice (ApoE-/- , Atherosclerosis-prone apolipoprotein E-deficient), who have a severe impairment in plasma lipoprotein clearance and thus develop alterations in blood lipid profile and are highly susceptible to atherogenic plaque formation. A total of 34 male mice were divided into five groups representing various genetic, dietary, and treatment configurations. Optical measurements were used to assess changes in diffused reflectance spectra, optical properties (absorption and scattering), and cerebral tissue chromophore contents. Specifically, significant improvement in cerebral hemoglobin level was observed in ApoE KO mice, fed an artherogenic diet (ATD), upon SSE treatment. Biochemical and histological analyses of ApoE-/- ATD mice showed elevated body weight and a high level of blood triglycerides, free fatty acids and cholesterol. In contrast, in SSE treated mice improvement was observed, suggesting beneficial effects of SSE. In ApoE-/- ATD mice group a higher levels of deoxyhemoglobin was monitored indicating that the rate of oxygen release to the tissue is low. This was supported by decrease in oxygen saturation. It was also shown a reduction in water content in the brain of ApoE KO. Mice fed with the atherogenic diet demonstrated increased water content as compared to STD-fed ApoE KO mice, while SSE administration reversed the effect of the diet. To our knowledge, no such study has been reported before.
Collapse
Affiliation(s)
- David Shemesh
- Department of Electrical and Electronics Engineering, Ariel University, Ariel, Israel
| | - Konstantin Rozenberg
- Departments of Molecular Biology and Nutritional Studies, Ariel University, Ariel, Israel
| | - Tovit Rosenzweig
- Departments of Molecular Biology and Nutritional Studies, Ariel University, Ariel, Israel
| | - David Abookasis
- Department of Electrical and Electronics Engineering, Ariel University, Ariel, Israel
| |
Collapse
|
39
|
Erramuzpe A, Schurr R, Yeatman JD, Gotlib IH, Sacchet MD, Travis KE, Feldman HM, Mezer AA. A Comparison of Quantitative R1 and Cortical Thickness in Identifying Age, Lifespan Dynamics, and Disease States of the Human Cortex. Cereb Cortex 2021; 31:1211-1226. [PMID: 33095854 PMCID: PMC8485079 DOI: 10.1093/cercor/bhaa288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 07/22/2023] Open
Abstract
Brain development and aging are complex processes that unfold in multiple brain regions simultaneously. Recently, models of brain age prediction have aroused great interest, as these models can potentially help to understand neurological diseases and elucidate basic neurobiological mechanisms. We test whether quantitative magnetic resonance imaging can contribute to such age prediction models. Using R1, the longitudinal rate of relaxation, we explore lifespan dynamics in cortical gray matter. We compare R1 with cortical thickness, a well-established biomarker of brain development and aging. Using 160 healthy individuals (6-81 years old), we found that R1 and cortical thickness predicted age similarly, but the regions contributing to the prediction differed. Next, we characterized R1 development and aging dynamics. Compared with anterior regions, in posterior regions we found an earlier R1 peak but a steeper postpeak decline. We replicate these findings: firstly, we tested a subset (N = 10) of the original dataset for whom we had additional scans at a lower resolution; and second, we verified the results on an independent dataset (N = 34). Finally, we compared the age prediction models on a subset of 10 patients with multiple sclerosis. The patients are predicted older than their chronological age using R1 but not with cortical thickness.
Collapse
Affiliation(s)
| | - R Schurr
- The Hebrew University of Jerusalem, The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - J D Yeatman
- Graduate School of Education, Stanford University, Stanford, CA, USA
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - I H Gotlib
- Psychology, Stanford University, Stanford, CA, USA
| | - M D Sacchet
- Harvard Medical School, Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - K E Travis
- Pediatrics, Stanford University, Stanford, CA, USA
| | - H M Feldman
- Development and Behavior Unit, Stanford University, Stanford, CA, USA
| | - A A Mezer
- The Hebrew University of Jerusalem, The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| |
Collapse
|
40
|
Seiler A, Schöngrundner S, Stock B, Nöth U, Hattingen E, Steinmetz H, Klein JC, Baudrexel S, Wagner M, Deichmann R, Gracien RM. Cortical aging - new insights with multiparametric quantitative MRI. Aging (Albany NY) 2020; 12:16195-16210. [PMID: 32852283 PMCID: PMC7485732 DOI: 10.18632/aging.103629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Understanding the microstructural changes related to physiological aging of the cerebral cortex is pivotal to differentiate healthy aging from neurodegenerative processes. The aim of this study was to investigate the age-related global changes of cortical microstructure and regional patterns using multiparametric quantitative MRI (qMRI) in healthy subjects with a wide age range. 40 healthy participants (age range: 2nd to 8th decade) underwent high-resolution qMRI including T1, PD as well as T2, T2* and T2′ mapping at 3 Tesla. Cortical reconstruction was performed with the FreeSurfer toolbox, followed by tests for correlations between qMRI parameters and age. Cortical T1 values were negatively correlated with age (p=0.007) and there was a widespread age-related decrease of cortical T1 involving the frontal and the parietotemporal cortex, while T2 was correlated positively with age, both in frontoparietal areas and globally (p=0.004). Cortical T2′ values showed the most widespread associations across the cortex and strongest correlation with age (r= -0.724, p=0.0001). PD and T2* did not correlate with age. Multiparametric qMRI allows to characterize cortical aging, unveiling parameter-specific patterns. Quantitative T2′ mapping seems to be a promising imaging biomarker of cortical age-related changes, suggesting that global cortical iron deposition is a prominent process in healthy aging.
Collapse
Affiliation(s)
- Alexander Seiler
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Sophie Schöngrundner
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Benjamin Stock
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Johannes C Klein
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Simon Baudrexel
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Marlies Wagner
- Department of Neuroradiology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University, Frankfurt am Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
41
|
Berman S, Backner Y, Krupnik R, Paul F, Petrou P, Karussis D, Levin N, Mezer AA. Conduction delays in the visual pathways of progressive multiple sclerosis patients covary with brain structure. Neuroimage 2020; 221:117204. [PMID: 32745679 DOI: 10.1016/j.neuroimage.2020.117204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/24/2023] Open
Abstract
In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR). Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated. Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency. In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases.
Collapse
Affiliation(s)
- Shai Berman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Yael Backner
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronnie Krupnik
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Panayiota Petrou
- The Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dimitrios Karussis
- The Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netta Levin
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
42
|
Takemura H, Yuasa K, Amano K. Predicting Neural Response Latency of the Human Early Visual Cortex from MRI-Based Tissue Measurements of the Optic Radiation. eNeuro 2020; 7:ENEURO.0545-19.2020. [PMID: 32424054 PMCID: PMC7333978 DOI: 10.1523/eneuro.0545-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
Although the non-invasive measurement of visually evoked responses has been extensively studied, the structural basis of variabilities in latency in healthy humans is not well understood. We investigated how tissue properties of optic radiation could predict interindividual variability in the latency of the initial visually evoked component (C1), which may originate from the primary visual cortex (V1). We collected C1 peak latency data using magnetoencephalography (MEG) and checkerboard stimuli, and multiple structural magnetic resonance imaging (MRI) data from 20 healthy subjects. While we varied the contrast and position of the stimuli, the C1 measurement was most reliable when high-contrast stimuli were presented to the lower visual field (LVF). We then attempted to predict interindividual variability in C1 peak latency in this stimulus condition with a multiple regression model using MRI parameters along the optic radiation. We found that this model could predict >20% of variance in C1 latency, when the data were averaged across the hemispheres. The model using the corticospinal tract did not predict variability in C1 latency, suggesting that there is no evidence for generalization to a non-visual tract. In conclusion, our results suggest that the variability in neural latencies in the early visual cortex in healthy subjects can be partly explained by tissue properties along the optic radiation. We discuss the challenges of predicting neural latency using current structural neuroimaging methods and other factors that may explain interindividual variance in neural latency.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita-shi, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | - Kenichi Yuasa
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita-shi, Osaka 565-0871, Japan
- Department of Psychology, New York University, New York, NY 10003
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita-shi, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
43
|
DePaoli D, Lemoine É, Ember K, Parent M, Prud’homme M, Cantin L, Petrecca K, Leblond F, Côté DC. Rise of Raman spectroscopy in neurosurgery: a review. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-36. [PMID: 32358930 PMCID: PMC7195442 DOI: 10.1117/1.jbo.25.5.050901] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/10/2020] [Indexed: 05/21/2023]
Abstract
SIGNIFICANCE Although the clinical potential for Raman spectroscopy (RS) has been anticipated for decades, it has only recently been used in neurosurgery. Still, few devices have succeeded in making their way into the operating room. With recent technological advancements, however, vibrational sensing is poised to be a revolutionary tool for neurosurgeons. AIM We give a summary of neurosurgical workflows and key translational milestones of RS in clinical use and provide the optics and data science background required to implement such devices. APPROACH We performed an extensive review of the literature, with a specific emphasis on research that aims to build Raman systems suited for a neurosurgical setting. RESULTS The main translatable interest in Raman sensing rests in its capacity to yield label-free molecular information from tissue intraoperatively. Systems that have proven usable in the clinical setting are ergonomic, have a short integration time, and can acquire high-quality signal even in suboptimal conditions. Moreover, because of the complex microenvironment of brain tissue, data analysis is now recognized as a critical step in achieving high performance Raman-based sensing. CONCLUSIONS The next generation of Raman-based devices are making their way into operating rooms and their clinical translation requires close collaboration between physicians, engineers, and data scientists.
Collapse
Affiliation(s)
- Damon DePaoli
- Université Laval, CERVO Brain Research Center, Québec, Canada
- Université Laval, Centre d’optique, Photonique et Lasers, Québec, Canada
| | - Émile Lemoine
- Polytechnique Montréal, Department of Engineering Physics, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
| | - Katherine Ember
- Polytechnique Montréal, Department of Engineering Physics, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
| | - Martin Parent
- Université Laval, CERVO Brain Research Center, Québec, Canada
| | - Michel Prud’homme
- Hôpital de l’Enfant-Jésus, Department of Neurosurgery, Québec, Canada
| | - Léo Cantin
- Hôpital de l’Enfant-Jésus, Department of Neurosurgery, Québec, Canada
| | - Kevin Petrecca
- McGill University, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, Montreal, Canada
| | - Frédéric Leblond
- Polytechnique Montréal, Department of Engineering Physics, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
| | - Daniel C. Côté
- Université Laval, CERVO Brain Research Center, Québec, Canada
- Université Laval, Centre d’optique, Photonique et Lasers, Québec, Canada
| |
Collapse
|
44
|
Shtangel O, Mezer AA. A phantom system for assessing the effects of membrane lipids on water proton relaxation. NMR IN BIOMEDICINE 2020; 33:e4209. [PMID: 31899589 DOI: 10.1002/nbm.4209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/24/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Quantitative MRI (qMRI) is a method for the non-invasive study of brain-structure-associated changes expressed with measurable units. The qMRI-derived parameters have been shown to reflect brain tissue composition such as myelin content. Nevertheless, it remains a major challenge to identify and quantify the contributions of specific molecular components to the MRI signal. Here, we describe a phantom system that can be used to evaluate the contribution of membrane lipids to qMRI-derived parameters. We used a hydration-dehydration dry film technique to formulate liposomes that can be used as a model of the bilayer lipid membrane. The liposomes were comprised of the most abundant types of lipid found in the human brain. We then applied clinically available qMRI techniques with adjusted bias corrections in order to test the ability of the phantom system to estimate multiple qMRI parameters such as proton density (PD), T1 , T2 , T2 * and magnetization transfer. In addition, we accurately measured the phantom sample water fraction (normalized PD). A similar protocol was also applied to the human brain in vivo. The phantom system allows for a reliable estimation of qMRI parameters for phantoms composed of various lipid types using a clinical MRI scanner. We also found a comparable reproducibility between the phantom and in vivo human brain qMRI estimations. To conclude, we have successfully created a biologically relevant liposome phantom system whose lipid composition can be fully controlled. Our lipid system and analysis can be used to measure the contributions to qMRI parameters of membrane lipids found in the human brain under scanning conditions that are relevant to in vivo human brain scans. Such a model system can be used to test the contributions of lipidomic changes in normal and pathological brain states.
Collapse
Affiliation(s)
- Oshrat Shtangel
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| |
Collapse
|
45
|
Schurr R, Zelman A, Mezer AA. Subdividing the superior longitudinal fasciculus using local quantitative MRI. Neuroimage 2019; 208:116439. [PMID: 31821870 DOI: 10.1016/j.neuroimage.2019.116439] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/06/2019] [Accepted: 12/03/2019] [Indexed: 01/17/2023] Open
Abstract
The association fibers of the superior longitudinal fasciculus (SLF) connect parietal and frontal cortical regions in the human brain. The SLF comprises of three distinct sub-bundles, each presenting a different anatomical trajectory, and specific functional roles. Nevertheless, in vivo studies of the SLF often consider the entire SLF complex as a single entity. In this work, we suggest a data-driven approach that relies on microstructure measurements for separating SLF-III from the rest of the SLF. We apply the SLF-III separation procedure in three independent datasets using parameters of diffusion MRI (fractional anisotropy), as well as relaxometry-based parameters (T1, T2, T2* and T2-weighted/T1-weighted). We show that the proposed procedure is reproducible across datasets and tractography algorithms. Finally, we suggest that differential crossing with different white-matter tracts is the source of the distinct MRI signatures of SLF-II and SLF-III.
Collapse
Affiliation(s)
- Roey Schurr
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Ady Zelman
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
46
|
Rajani RM, Ratelade J, Domenga-Denier V, Hase Y, Kalimo H, Kalaria RN, Joutel A. Blood brain barrier leakage is not a consistent feature of white matter lesions in CADASIL. Acta Neuropathol Commun 2019; 7:187. [PMID: 31753008 PMCID: PMC6873485 DOI: 10.1186/s40478-019-0844-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/08/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic paradigm of small vessel disease (SVD) caused by NOTCH3 mutations that stereotypically lead to the vascular accumulation of NOTCH3 around smooth muscle cells and pericytes. White matter (WM) lesions (WMLs) are the earliest and most frequent abnormalities, and can be associated with lacunar infarcts and enlarged perivascular spaces (ePVS). The prevailing view is that blood brain barrier (BBB) leakage, possibly mediated by pericyte deficiency, plays a pivotal role in the formation of WMLs. Herein, we investigated the involvement of BBB leakage and pericyte loss in CADASIL WMLs. Using post-mortem brain tissue from 12 CADASIL patients and 10 age-matched controls, we found that WMLs are heterogeneous, and that BBB leakage reflects the heterogeneity. Specifically, while fibrinogen extravasation was significantly increased in WMLs surrounding ePVS and lacunes, levels of fibrinogen leakage were comparable in WMLs without other pathology ("pure" WMLs) to those seen in the normal appearing WM of patients and controls. In a mouse model of CADASIL, which develops WMLs but no lacunes or ePVS, we detected no extravasation of endogenous fibrinogen, nor of injected small or large tracers in WMLs. Moreover, there was no evidence of pericyte coverage modification in any type of WML in either CADASIL patients or mice. These data together indicate that WMLs in CADASIL encompass distinct classes of WM changes and argue against the prevailing hypothesis that pericyte coverage loss and BBB leakage are the primary drivers of WMLs. Our results also have important implications for the interpretation of studies on the BBB in living patients, which may misinterpret evidence of BBB leakage within WM hyperintensities as suggesting a BBB related mechanism for all WMLs, when in fact this may only apply to a subset of these lesions.
Collapse
Affiliation(s)
- Rikesh M Rajani
- Institute of Psychiatry and Neuroscience of Paris - INSERM UMR1266, Paris Descartes University, 102-108 Rue de la Santé, 75014, Paris, France
| | - Julien Ratelade
- Institute of Psychiatry and Neuroscience of Paris - INSERM UMR1266, Paris Descartes University, 102-108 Rue de la Santé, 75014, Paris, France
| | - Valérie Domenga-Denier
- Institute of Psychiatry and Neuroscience of Paris - INSERM UMR1266, Paris Descartes University, 102-108 Rue de la Santé, 75014, Paris, France
| | - Yoshiki Hase
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Hannu Kalimo
- Department of Pathology, Haartman Institute, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Raj N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Anne Joutel
- Institute of Psychiatry and Neuroscience of Paris - INSERM UMR1266, Paris Descartes University, 102-108 Rue de la Santé, 75014, Paris, France.
| |
Collapse
|
47
|
Schurr R, Filo S, Mezer AA. Tractography delineation of the vertical occipital fasciculus using quantitative T1 mapping. Neuroimage 2019; 202:116121. [DOI: 10.1016/j.neuroimage.2019.116121] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/12/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
|
48
|
Bain JS, Filo S, Mezer AA. The robust and independent nature of structural STS asymmetries. Brain Struct Funct 2019; 224:3171-3182. [DOI: 10.1007/s00429-019-01952-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|