1
|
Shira BA, Cooks RG. Serine Octamer Clusters Direct the Chirality of Peptides Formed in Water Microdroplets. J Phys Chem A 2025; 129:4535-4542. [PMID: 40340402 DOI: 10.1021/acs.jpca.5c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The chemistry underlying biological homochirality remains challenging. We propose that noncovalent clusters may have served as the means by which an enantiomeric excess of one amino acid could direct other racemic amino acids toward homochiral biochemistry. Serine has long been known to exhibit a chiral preference when clustering to form the octamer; here, we extend this finding by reporting the effects of a nonzero e.e. serine on the formation of noncovalent clusters with other amino acids as well as on the formation of peptides, their covalent condensation products. We show that (i) enantiopure serine directs racemic leucine and proline to enantioselective dipeptide formation in water microdroplets and (ii) likely intermediates are seen as the proline and leucine substituted serine octamer clusters. This work indicates the relevance of microdroplet sprays, e.g., natural aerosols, to molecular clustering and to homochirality.
Collapse
Affiliation(s)
- Brison A Shira
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - R Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Liang J, Gan F, Zhang G, Shen C, Qiu H. Halogen bond-modulated solid-state reordering and symmetry breaking of azahelicenes. Nat Commun 2025; 16:3788. [PMID: 40263330 PMCID: PMC12015230 DOI: 10.1038/s41467-025-59222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Spontaneous symmetry breaking predominately occurs during the aggregation of discrete molecules in solution. Herein, we report a unique solid-state symmetry breaking process of dynamically chiral aza[4]helicenes that emerged in vacuum-driven transformation of halogen bond-woven crystals. Due to the weak feature of the halogen bonding, the halides in the cocrystals can be completely removed under vacuum at an elevated temperature. Interestingly, the aza[4]helicene molecules released from the halogen bond network solely adopt one chiral conformation upon reordering and symmetry breaking instantly occurs in a solid state. The Cotton effects gradually increase with the extension of vacuum-heating treatment, indicating a unidirectional transformation of the chiral conformations and an amplification of symmetry breaking during the solid-state reorganization. Moreover, the use of aza[6]helicene as a chiral inducer further enables a precise manipulation for the absolute configuration of the solid-state symmetry breaking, paving a distinctive route to chiral organic materials from achiral/racemic precursors.
Collapse
Affiliation(s)
- Juncong Liang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, State Key Laboratory of Micro-Nano Engineering Science, Shanghai Jiao Tong University, Shanghai, China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, State Key Laboratory of Micro-Nano Engineering Science, Shanghai Jiao Tong University, Shanghai, China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, State Key Laboratory of Micro-Nano Engineering Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, State Key Laboratory of Micro-Nano Engineering Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Jiang Z, Chen Z, Yu X, Lu S, Xu W, Yu B, Stern CL, Li SY, Zhao Y, Liu X, Han Y, Chen S, Cai K, Shen D, Ma K, Li X, Chen AXY. Engineering Helical Chirality in Metal-Coordinated Cyclodextrin Nanochannels. J Am Chem Soc 2025; 147:7325-7335. [PMID: 39964363 DOI: 10.1021/jacs.4c14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Helicates are a defining element of DNAs and proteins, with functions that are critical to a variety of biological processes. Cyclodextrins are promising candidates for forging multiple-stranded helicates with well-defined helicity, but a lack of available tools has precluded the construction of artificial helical nanochannels with a controllable geometry and helicity from these widely available chiral building blocks. Herein, we disclose a family of Ag6L2 helical nanochannels that can be readily assembled from α-cyclodextrin-derived ligands through coordination between pyridinyl groups and Ag+ cations. We discovered that the nanochannels exhibit either an M or a P helicity when the Ag+ cations adopt a tetrahedral coordination geometry while losing most of their helicity when the Ag+ cations are linearly coordinated. Both the geometry and helicity of the nanochannels can be precisely controlled by simply changing the number of methyl groups at the ortho positions of the pyridinyl ligands. The tetracoordinated Ag+ cations interconnect the helical nanochannels into an infinite two-dimensional coordinative network characterized by hexagonal tessellation. Theoretical calculations, which reveal lower energies of the helical conformations observed in crystals compared with those of their inverted counterparts, support the experimental results.
Collapse
Affiliation(s)
- Zhiyuan Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wenmin Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Bo Yu
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shu-Yi Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Yue Zhao
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Xinzhi Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Yeqiang Han
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Shuqi Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Kang Cai
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Kaikai Ma
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Aspen X-Y Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Chen C, Zhang S. Symmetry Breaking: Case Studies with Organic Cage-Racemates. Acc Chem Res 2025; 58:583-598. [PMID: 39873624 DOI: 10.1021/acs.accounts.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology. Chemistry is particularly rich in symmetry breaking studies, encompassing areas such as asymmetric synthesis, chiral resolution, chiral structure assembly, and so on. Across different disciplines, a well-defined methodology is fundamental and necessary to analyze the symmetry or symmetry breaking nature behind the phenomenon, enabling researchers to uncover the underlying principles and mechanisms. Basically, three key points underpin symmetry-related research: the scale-dependency of symmetry/symmetry breaking, the driving force behind symmetry breaking phenomena, and the properties arising from symmetry breaking.This Account will focus on the three aforementioned key points elucidated with organic cages as proof-of-concept models, as organic cages exhibit shape-persistent 3D molecular frameworks, well-defined molecular motion, and a high propensity for crystallization.First, we examine racemization processes of organic cages with dynamic molecular motions to illustrate that symmetry and symmetry breaking are time-scale-dependent. Specifically, the racemization, driven by molecular motion, is influenced by hydrogen bonding and the rigidity of the cage framework, which may or may not be observable within the experimental temporal scale. This determines whether the enantiomeric excess system, namely, the symmetry broken system, can be detected experimentally. We also investigate the hierarchical structures self-assembled by racemic organic cages, demonstrating that symmetry and asymmetry manifest differently across spatial scales, from molecular to supramolecular and macroscopic levels. Second, we discuss the driving force behind spontaneous chiral resolution─a classic symmetry-breaking event during crystallization─from a thermodynamic perspective. We suggest that racemic compounds, compared to conglomerates, are more entropy-favored, explaining their greater prevalence in nature. Spontaneous chiral resolution can take place only when a favorable enthalpy compensates for unfavorable entropy. In conglomerates composed of organic cages, strong intermolecular interactions along the screw axes provide the necessary compensation. Finally, we explore the unique properties that emerge from symmetry-broken molecular packing within crystals of cage racemates, such as second-harmonic generation and piezoelectricity. It turns out that the symmetry operation in molecular packing plays a critical role in determining material properties. By comprehensively analyzing symmetry and symmetry-breaking in organic cage racemates, this Account provides insights into symmetry-related phenomena across scientific disciplines. It also paves the way for designing novel materials with tailored properties for applications in optics, electronics, and beyond.
Collapse
Affiliation(s)
- Chenhao Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Wang Y, Xu T, Pandey A, Jin S, Yan JX, Yuan Q, Zhang S, Wang JY, Liang R, Li G. Enantiopure Turbo Chirality Targets in Tri-Propeller Blades: Design, Asymmetric Synthesis, and Computational Analysis. Molecules 2025; 30:603. [PMID: 39942707 PMCID: PMC11819669 DOI: 10.3390/molecules30030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Enantiopure turbo chirality in small organic molecules, without other chiral elements, is a fascinating topic that has garnered significant interest within the chemical and materials science community. However, further research into and application of this concept have been severely limited by the lack of effective asymmetric tools. To date, only a few enantiomers of turbo chiral targets have been isolated, and these were obtained through physical separation using chiral HPLC, typically on milligram scales. In this work, we report the first asymmetric approach to enantiopure turbo chirality in the absence of other chiral elements such as central and axial chirality. This is demonstrated by assembling aromatic phosphine oxides, where three propeller-like groups are anchored to a P(O) center via three axes. Asymmetric induction was successfully carried out using a chiral sulfonimine auxiliary, with absolute configurations and conformations unambiguously determined by X-ray diffraction analysis. The resulting turbo frameworks exhibit three propellers arranged in either a clockwise (P,P,P) or counterclockwise (M,M,M) configuration. In these arrangements, the bulkier sides of the aromatic rings are oriented toward the oxygen atom of the P=O bond rather than in the opposite direction. Additionally, the orientational configuration is controlled by the sulfonimine auxiliary as well, showing that one of the Naph rings is pushed away from the auxiliary group (-CH2-NHSO2-tBu) of the phenyl ring. Computational studies were conducted on relative energies for the rotational barriers of a turbo target along the P=O axis and the transition pathway between two enantiomers, meeting our expectations. This work is expected to have a significant impact on the fields of chemistry, biomedicine, and materials science in the future.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
| | - Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
| | - Ankit Pandey
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
| | - Jasmine X. Yan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sai Zhang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou 213164, China; (S.Z.)
| | - Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou 213164, China; (S.Z.)
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
6
|
Gao C, Li D, Xie A, Lyu Y, Sun Q, Han J, Guo R. Metal Ion-Mediated Supramolecular Nanotube Catalyst for Enantioselective Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26771-26778. [PMID: 39621316 DOI: 10.1021/acs.langmuir.4c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Rational control over the morphologies of supramolecular assemblies for asymmetric catalysis with enhanced enantioselectivity represents a pivotal challenge in the realm of synthetic chemistry and material technology. Herein, Cu(II) ion-mediated supramolecular nanostructures assembled from chiral amino acid-based amphiphiles (l/d-AlaC16) are fabricated as chiral catalysts for Diels-Alder cycloaddition between aza-chalcone and cyclopentadiene. In particular, compared with the supramolecular nanosheet formed by l/d-AlaC16 without Cu(II) ions, we found that the l/d-alanine chiral amphiphile can form supramolecular nanotubes with a multilayer structure and with the thickness of the tubular wall about 15 nm through the transition from a nanoribbon to tubular structure in the presence of Cu(II) ions. Consequently, the catalytic enantioselectivity of Diels-Alder was improved from 6% (nanosheet) to 49% (nanotube), attributed to the curved surface of the nanotube structure, which provides a preferential chiral environment and high density of the catalytic center to favor the chirality transfer. Our study presented in this work offers valuable insights for designing chiral supramolecular catalysts with a higher enantioselectivity driven by a metal ions-mediated nanostructure.
Collapse
Affiliation(s)
- Cong Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
- Henan Institute of Chemistry, Henan Academy of Sciences, No. 56 Hongzhuan Road, Zhengzhou 450003, China
| | - Dongying Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Aiting Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yanchao Lyu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Qingqing Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
7
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
8
|
Gao C, Sun Y, Miao Z, Chen S, Xi Z, Sun Q, Han J, Guo R. Chiral Supramolecular Self-Assembly Catalysts with Enhanced Metal Ion Interaction for Higher Enantioselectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14555-14560. [PMID: 38940619 DOI: 10.1021/acs.langmuir.4c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Understanding the interaction between metal ions as catalytic centers and supramolecular scaffolds as chiral substrates plays an important role in developing chiral supramolecular catalysts with high enantioselectivity. Herein, we found that compared with l-norleucine chiral amphiphile (l-NorC16), l-methionine chiral amphiphile (l-MetC16) with the only heteroatom of S site difference in the hydrophilic group can form a similar supramolecular chiral nanoribbon (NR) with the bilayer structure through the self-assembly approach; yet, the interaction between the Cu(II) ion catalytic centers and supramolecular scaffolds is reinforced, favoring the chirality transfer and therefore enhancing their catalytic enantioselectivity of Diels-Alder reaction from 23% [l-NorC16-NR-Cu(II)] to 78% [l-MetC16-NR-Cu(II)]. Our work demonstrates a new strategy from the perspective of strengthening the metal ion-supramolecular scaffold interaction for the preparation of chiral supramolecular catalysts with good catalytic enantioselectivity.
Collapse
Affiliation(s)
- Cong Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
- Henan Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan 450003, China
| | - Yemeng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Zhengjie Miao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shipeng Chen
- Henan Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan 450003, China
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Zheng Xi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Qingqing Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
9
|
Gibb CJ, Hobbs J, Nikolova DI, Raistrick T, Berrow SR, Mertelj A, Osterman N, Sebastián N, Gleeson HF, Mandle RJ. Spontaneous symmetry breaking in polar fluids. Nat Commun 2024; 15:5845. [PMID: 38992039 PMCID: PMC11239904 DOI: 10.1038/s41467-024-50230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Spontaneous symmetry breaking and emergent polar order are each of fundamental importance to a range of scientific disciplines, as well as generating rich phase behaviour in liquid crystals (LCs). Here, we show the union of these phenomena to lead to two previously undiscovered polar liquid states of matter. Both phases have a lamellar structure with an inherent polar ordering of their constituent molecules. The first of these phases is characterised by polar order and a local tilted structure; the tilt direction processes about a helix orthogonal to the layer normal, the period of which is such that we observe selective reflection of light. The second new phase type is anti-ferroelectric, with the constituent molecules aligning orthogonally to the layer normal. This has led us to term the phases the Sm C P H and SmAAF phases, respectively. Further to this, we obtain room temperature ferroelectric nematic (NF) and Sm C P H phases via binary mixture formulation of the novel materials described here with a standard NF compound (DIO), with the resultant materials having melting points (and/or glass transitions) which are significantly below ambient temperature. The new soft matter phase types discovered herein can be considered as electrical analogues of topological structures of magnetic spins in hard matter.
Collapse
Affiliation(s)
- Calum J Gibb
- School of Chemistry, University of Leeds, Leeds, UK
| | - Jordan Hobbs
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | | | | | - Stuart R Berrow
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | | | - Natan Osterman
- Jožef Stefan Institute, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
| | | | - Helen F Gleeson
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Richard J Mandle
- School of Chemistry, University of Leeds, Leeds, UK.
- School of Physics and Astronomy, University of Leeds, Leeds, UK.
| |
Collapse
|
10
|
Zhang J, Liu Y, Liu M, Wang Z, Qi T, Zhang M, Shi H, Song J. Carboxylic acid isomer-directed synthesis of CdS nanocluster isomers. Chem Sci 2024; 15:10585-10591. [PMID: 38994410 PMCID: PMC11234825 DOI: 10.1039/d4sc01569j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Selective synthesis of nanocluster (NC) isomers with tailored structures holds significant importance for enhancing their applications. Here, we develop an effective strategy for the selective synthesis of CdS NC isomers through the judicious choice of a pair of carboxylic acid isomer additives. Specifically, CdS NC-312 and NC-323 (denoted by their UV-vis absorption peak position) could be selectively produced by introducing a conventional mixture of Cd and S precursors, with the addition of 2-methylbutyric acid (2-MA) and 3-methylbutyric acid (3-MA), respectively. The synthesized NC isomers demonstrated a precise isomeric relationship, sharing both the isomeric inorganic core and organic surface. Alternatively, the as-synthesized NCs were interconvertible by re-adding the acid isomers. The density functional theory calculations further support that 2-MA and 3-MA have specific selectivity for producing CdS NC isomers by interfacial tuning. Finally, the generality of this methodology was also evidenced with applications in other CdS NC synthetic systems. This study unveils the intriguing correlation between additive structures and the configuration of NCs, providing a foundation for the selective synthesis of NC isomers.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Yu Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Mingyang Liu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Zhenzhu Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| | - Mingming Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Hao Shi
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
11
|
Cao H, Yang E, Kim Y, Zhao Y, Ma W. Biomimetic Chiral Nanomaterials with Selective Catalysis Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306979. [PMID: 38561968 PMCID: PMC11187969 DOI: 10.1002/advs.202306979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/20/2024] [Indexed: 04/04/2024]
Abstract
Chiral nanomaterials with unique chiral configurations and biocompatible ligands have been booming over the past decade for their interesting chiroptical effect, unique catalytical activity, and related bioapplications. The catalytic activity and selectivity of chiral nanomaterials have emerged as important topics, that can be potentially controlled and optimized by the rational biochemical design of nanomaterials. In this review, chiral nanomaterials synthesis, composition, and catalytic performances of different biohybrid chiral nanomaterials are discussed. The construction of chiral nanomaterials with multiscale chiral geometries along with the underlying principles for enhancing chiroptical responses are highlighted. Various biochemical approaches to regulate the selectivity and catalytic activity of chiral nanomaterials for biocatalysis are also summarized. Furthermore, attention is paid to specific chiral ligands, materials compositions, structure characteristics, and so on for introducing selective catalytic activities of representative chiral nanomaterials, with emphasis on substrates including small molecules, biological macromolecule, and in-site catalysis in living systems. Promising progress has also been emphasized in chiral nanomaterials featuring structural versatility and improved chiral responses that gave rise to unprecedented chances to utilize light for biocatalytic applications. In summary, the challenges, future trends, and prospects associated with chiral nanomaterials for catalysis are comprehensively proposed.
Collapse
Affiliation(s)
- Honghui Cao
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyNo. 100 Haiquan RoadShanghai201418China
- School of Food Science and Technology, State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiJiangsu214122China
| | - En Yang
- School of Food Science and Technology, State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiJiangsu214122China
- Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
| | - Yoonseob Kim
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water BayHong Kong SAR999077China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
| | - Wei Ma
- School of Food Science and Technology, State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiJiangsu214122China
| |
Collapse
|
12
|
Gao C, Li S, Zhao C, Sun Q, Sun X, Ge L, Wang L, Xi Z, Han J, Guo R. Self-Assembled Metal-Coordination Nanohelices as Efficient and Robust Chiral Supramolecular Catalysts for Enantioselective Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310234. [PMID: 38155520 DOI: 10.1002/smll.202310234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Indexed: 12/30/2023]
Abstract
The development of chiral nanostructures-based supramolecular catalysts with satisfied enantioselectivity remains a significantly more challenging task. Herein, the synthesis and self-assembly of various amino acid amphiphiles as chiral supramolecular catalysts after metal ion coordination is reported and systematically investigate their enantioselectivity in asymmetric Diels-Alder reactions. In particular, the self-assembly of l/d-phenylglycine-based amphiphiles (l/d-PhgC16) and Cu(II) into chiral supramolecular catalysts in the methanol/water solution mixture is described, which features the interesting M/P nanohelices (diameter ≈8 nm) and mostly well-aligned M/P nanoribbons (NRs). The M/P supramolecular catalysts show both high but inverse enantioselectivity (>90% ee) in Diels-Alder reactions, while their monomeric counterparts display nearly racemic products. Analysis of the catalytic results suggests the outstanding enantioselectivities are closely related to the specific stereochemical microenvironment provided by the arrangement of the amphiphiles in the supramolecular assembly. Based on the experimental evidence of chirality transfer from supramolecular nanohelices to coordinated Cu(II) and substrate aza-chalcone and the molecular dynamics simulations, the enantioselective catalytic mechanisms are proposed. Moreover, the relationships between molecular structures of amino acid amphiphiles (the hydrophilic head group and hydrophobic alkyl chain length) in supramolecular catalysts and enantioselectivity in Diels-Alder reactions are elaborated.
Collapse
Affiliation(s)
- Cong Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Shixin Li
- School of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Cici Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Qingqing Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Zheng Xi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| |
Collapse
|
13
|
Zhang B, Gan Y, Liu C, He Q, Chen J, Li J, You Y, Fan W, Wang Y, Bai G. An acid-chromic luminescent lanthanide metallogel for time-dependent information encryption and anti-counterfeiting. Dalton Trans 2024; 53:8626-8632. [PMID: 38693908 DOI: 10.1039/d4dt00700j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Luminescent materials with dynamic color transformation demonstrate significant potential in advanced information encryption and anti-counterfeiting. In this study, we designed multi-color luminescent lanthanide metallogels featuring time-dependent color transformation. These materials are based on Förster resonance energy transfer (FRET) platforms, facilitating cascade energy transfer from the ligand 4,4',4''-[1,3,5-benzenetriyltris (carbonylimino)]trisbenzoic acid (H3L) to Tb3+ ions and subsequently to Sulforhodamine 101. The emission color of the gels can be readily adjusted by the introduction of HCl, transitioning from initial green, yellow, light red, and red hues to blue, violet, pink, and deep red, respectively. Importantly, the color change in these gels is time-dependent, controlled by the hydrolysis time of glucono-δ-lactone, which modulates the luminescence intensity of H3L, Tb3+, and Sulforhodamine 101. Exploiting these characteristics, we developed methods for information encryption utilizing 3D color codes and anti-counterfeiting flower patterns. These patterns undergo time-dependent transformations, generating a series of 3D codes and flower patterns that can only be recognized in a predetermined manner. These findings highlight the promising application of lanthanide metallogels in advanced information protection strategies.
Collapse
Affiliation(s)
- Binbin Zhang
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Post-doctoral Research Center, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Yu Gan
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China.
| | - Chao Liu
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China.
| | - Qiuyu He
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China.
| | - Jingye Chen
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China.
| | - Jiaqi Li
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China.
| | - Yanxiang You
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China.
| | - Wenxiu Fan
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China.
| | - Yujie Wang
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China.
| | - Guangyue Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Post-doctoral Research Center, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| |
Collapse
|
14
|
Chen R, Hammoud A, Aoun P, Martínez-Aguirre MA, Vanthuyne N, Maruchenko R, Brocorens P, Bouteiller L, Raynal M. Switchable supramolecular helices for asymmetric stereodivergent catalysis. Nat Commun 2024; 15:4116. [PMID: 38750046 PMCID: PMC11096402 DOI: 10.1038/s41467-024-48412-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Despite recent developments on the design of dynamic catalysts, none of them have been exploited for the in-situ control of multiple stereogenic centers in a single molecular scaffold. We report herein that it is possible to obtain in majority any amongst the four possible stereoisomers of an amino alcohol by means of a switchable asymmetric catalyst built on supramolecular helices. Hydrogen-bonded assemblies between a benzene-1,3,5-tricarboxamide (BTA) achiral phosphine ligand coordinated to copper and a chiral BTA comonomer are engaged in a copper-hydride catalyzed hydrosilylation and hydroamination cascade process. The nature of the product stereoisomer is related to the handedness of the helices and can thus be directed in a predictable way by changing the nature of the major enantiomer of the BTA comonomer present in the assemblies. The strategy allows all stereoisomers to be obtained one-pot with similar selectivities by conducting the cascade reaction in a concomitant manner, i.e. without inverting the handedness of the helices, or sequentially, i.e. by switching the handedness of the supramolecular helices between the hydrosilylation and hydroamination steps. Supramolecular helical catalysts appear as a unique and versatile platform to control the configuration of molecules or polymers embedding several stereogenic centers.
Collapse
Affiliation(s)
- Ran Chen
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Ahmad Hammoud
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Paméla Aoun
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Mayte A Martínez-Aguirre
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2, UMR 7313, 13397, Marseille, Cedex 20, France
| | - Régina Maruchenko
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Patrick Brocorens
- Service de Chimie des Matériaux Nouveaux, Institut de Recherche sur les Matériaux, Université de Mons, 20B-7000, 20 B-7000, Mons, Belgium
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
15
|
Li D, Gao C, Zhao C, Sun Q, Xi Z, Han J, Guo R. Phenylglycine amphiphile-metal ion chiral supramolecular nanozymes for enantioselective catalysis. Chem Commun (Camb) 2024; 60:4569-4572. [PMID: 38572692 DOI: 10.1039/d4cc00637b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
L/D-Phenylglycine amphiphiles and metal ions with peroxidase-like activity self-assembled into chiral nanoribbons, which act as efficient chiral supramolecular nanozymes for catalyzing the 3,4-dihydroxy-L/D-phenylalanine (L/D-DOPA) oxidation reactions. The catalytic efficiency and enantioselectivity are dominated by the chirality transfer and the synergistic effect between the metal ions and chiral nanoribbons.
Collapse
Affiliation(s)
- Dongying Li
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, Jiangsu 225002, China.
| | - Cong Gao
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, Jiangsu 225002, China.
| | - Cici Zhao
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, Jiangsu 225002, China.
| | - Qingqing Sun
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, Jiangsu 225002, China.
| | - Zheng Xi
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, Jiangsu 225002, China.
| | - Jie Han
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, Jiangsu 225002, China.
| | - Rong Guo
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, Jiangsu 225002, China.
| |
Collapse
|
16
|
Yang Z, Jaiswal A, Yin Q, Lin X, Liu L, Li J, Liu X, Xu Z, Li JJ, Yong KT. Chiral nanomaterials in tissue engineering. NANOSCALE 2024; 16:5014-5041. [PMID: 38323627 DOI: 10.1039/d3nr05003c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Addressing significant medical challenges arising from tissue damage and organ failure, the field of tissue engineering has evolved to provide revolutionary approaches for regenerating functional tissues and organs. This involves employing various techniques, including the development and application of novel nanomaterials. Among them, chiral nanomaterials comprising non-superimposable nanostructures with their mirror images have recently emerged as innovative biomaterial candidates to guide tissue regeneration due to their unique characteristics. Chiral nanomaterials including chiral fibre supramolecular hydrogels, polymer-based chiral materials, self-assembling peptides, chiral-patterned surfaces, and the recently developed intrinsically chiroptical nanoparticles have demonstrated remarkable ability to regulate biological processes through routes such as enantioselective catalysis and enhanced antibacterial activity. Despite several recent reviews on chiral nanomaterials, limited attention has been given to the specific potential of these materials in facilitating tissue regeneration processes. Thus, this timely review aims to fill this gap by exploring the fundamental characteristics of chiral nanomaterials, including their chiroptical activities and analytical techniques. Also, the recent advancements in incorporating these materials in tissue engineering applications are highlighted. The review concludes by critically discussing the outlook of utilizing chiral nanomaterials in guiding future strategies for tissue engineering design.
Collapse
Affiliation(s)
- Zhenxu Yang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Arun Jaiswal
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Qiankun Yin
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaoqi Lin
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lu Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhejun Xu
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
17
|
Zhang F, Shen Z, Sui K, Liu M. Disassembly of spherical structures into nanohelices by good solvent dilution. J Colloid Interface Sci 2024; 657:853-857. [PMID: 38091908 DOI: 10.1016/j.jcis.2023.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/02/2024]
Abstract
Supramolecular self-assembly of low molecular weight molecules into various organic nanostructures has attracted considerable research interest. However, preparing organic nanostructures through a top-down method, such as the disassembly of one large structure into many smaller nanoscale nanostructures, still remains a big challenge. Here, we make use of anti-solvent method to regulate the hierarchical self-assembly of an achiral C3-symmetric molecule in THF/water to prepare various nanostructures, including spherical structures, nanofibers, nanoribbons and nanotwists. Interestingly, the spherical structures could disassemble into nanohelices through good solvent dilution, providing a nanoscale top-down method to prepare organic nanostructures.
Collapse
Affiliation(s)
- Fang Zhang
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Zhaocun Shen
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Kunyan Sui
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
18
|
Zha X, Xu G, Khan NA, Yan Z, Zuo M, Xiong Y, Liu Y, You H, Wu Y, Liu K, Li M, Wang D. Sculpting Mesoscopic Helical Chirality into Covalent Organic Framework Nanotubes from Entirely Achiral Building Blocks. Angew Chem Int Ed Engl 2024; 63:e202316385. [PMID: 38010600 DOI: 10.1002/anie.202316385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The diversification of chirality in covalent organic frameworks (COFs) holds immense promise for expanding their properties and functionality. Herein, we introduce an innovative approach for imparting helical chirality to COFs and fabricating a family of chiral COF nanotubes with mesoscopic helicity from entirely achiral building blocks for the first time. We present an effective 2,3-diaminopyridine-mediated supramolecular templating method, which facilitates the prefabrication of helical imine-linked polymer nanotubes using unprecedented achiral symmetric monomers. Through meticulous optimization of crystallization conditions, these helical polymer nanotubes are adeptly converted into imine-linked COF nanotubes boasting impressive surface areas, while well preserving their helical morphology and chiroptical properties. Furthermore, these helical imine-linked polymers or COFs could be subtly transformed into corresponding more stable and functional helical β-ketoenamine-linked and hydrazone-linked COF nanotubes with transferred circular dichroism via monomer exchange. Notably, despite the involvement of covalent bonding breakage and reorganization, these exchange processes overcome thermodynamic disadvantages, allowing mesoscopic helical chirality to be perfectly preserved. This research highlights the potential of mesoscopic helicity in conferring COFs with favourable chiral properties, providing novel insights into the development of multifunctional COFs in the field of chiral materials chemistry.
Collapse
Affiliation(s)
- Xinlin Zha
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Guilin Xu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Niaz Ali Khan
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Zhong Yan
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Mengjuan Zuo
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Yi Xiong
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Ying Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Haining You
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Yi Wu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Ke Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
19
|
Ye S, Zhang W, Zhai Z, Shang S, Huang L, Song Z, Jiang J. CO 2-Responsive Rosin-Based Supramolecular Hydrogels: Diverse Chiral Nanostructures and Their Application in In Situ Synthesis of Chiral Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:647-656. [PMID: 38153972 DOI: 10.1021/acs.langmuir.3c02850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Natural small molecules have demonstrated tremendous potential for the construction of supramolecular chiral nanostructures owing to their unique molecular structures and chirality. In this study, novel CO2-responsive supramolecular hydrogels were constructed using a series of rosin-based surfactants (CnMPAN, n = 10, 12, and 14). The macroscopic properties, rheological properties, nanostructures, and intermolecular interactions of the hydrogels were investigated using differential scanning calorimetry, rotational rheometry, cryogenic transmission electron microscopy, and Fourier transform infrared spectroscopy. Interestingly, diverse nanostructures containing helical nanofibers, interwoven nanofibers, and twisted nanoribbons were formed in the hydrogels, which were rarely observed in reported supramolecular hydrogels, and the strength of the hydrogels was significantly enhanced by increasing the CnMPAN concentration and the alkyl chain length. The obtained hydrogels exhibited excellent CO2-responsiveness, with no obvious variation in the nanostructures and rheological properties after response to CO2/N2 for five cycles. Taking advantage of the chiral nanostructures of hydrogels, gold nanoparticles (GNPs) were further prepared. The average particle sizes of the resulting GNPs were as low as 2.5 nm, and the GNPs also had a chiral structure. It is worth noting that no additional reductants and UV-light irradiation were used during the reduction process of GNPs. This study emphasizes that the unique molecular structure and chirality of rosin are critical for the preparation of hydrogels with chiral nanostructures. In addition, this study enriches the applications of forest resources.
Collapse
Affiliation(s)
- Shengfeng Ye
- Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Nanjing, Jiangsu Province 210042, China
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Wenjing Zhang
- Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Nanjing, Jiangsu Province 210042, China
| | - Zhaolan Zhai
- Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Nanjing, Jiangsu Province 210042, China
| | - Shibin Shang
- Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Nanjing, Jiangsu Province 210042, China
| | - Lixin Huang
- Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Nanjing, Jiangsu Province 210042, China
| | - Zhanqian Song
- Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forestry Products, Nanjing, Jiangsu Province 210042, China
| | - Jianxin Jiang
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
20
|
Dai Y, Zhang Z, Wang D, Li T, Ren Y, Chen J, Feng L. Machine-Learning-Driven G-Quartet-Based Circularly Polarized Luminescence Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310455. [PMID: 37983564 DOI: 10.1002/adma.202310455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Circularly polarized luminescence (CPL) materials have garnered significant interest due to their potential applications in chiral functional devices. Synthesizing CPL materials with a high dissymmetry factor (glum ) remains a significant challenge. Inspired by efficient machine learning (ML) applications in scientific research, this work demonstrates ML-based techniques for the first time to guide the synthesis of G-quartet-based CPL gels with high glum values and multiple chiral regulation strategies. Employing an "experiment-prediction-verification" approach, this work devises a ML classification and regression model for the solvothermal synthesis of G-quartet gels in deep eutectic solvents. This process illustrates the relationship between various synthesis parameters and the glum value. The decision tree algorithm demonstrates superior performance across six ML models, with model accuracy and determination coefficients amounting to 0.97 and 0.96, respectively. The screened CPL gels exhibiting a glum value up to 0.15 are obtained through combined ML guidance and experimental verification, among the highest ones reported till now for biomolecule-based CPL systems. These findings indicate that ML can streamline the rational design of chiral nanomaterials, thereby expediting their further development.
Collapse
Affiliation(s)
- Yankai Dai
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Zhiwei Zhang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Dong Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Tianliang Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yuze Ren
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Jingqi Chen
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
- Shanghai Engineering Research Center of Organ Repair, ShanghaiUniversity, Shanghai, 200444, China
- QianWeichang College, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
21
|
Yao Q, Liu R, Yang Z, Wei J. Using a molecular additive to control chiral supramolecular assembly and the subsequent chirality transfer process. SOFT MATTER 2023; 19:8680-8683. [PMID: 37916423 DOI: 10.1039/d3sm01211e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Hierarchical assembly of chiral molecules is achieved through the introduction of molecular additives, which enables the chiral assembly of nanosheets into helical nanorods with inverted chirality. Moreover, the hierarchical assembly of chiral molecules in the presence of a molecular additive can lead to the subsequent chirality transfer from a molecular system to nanoparticle assemblies.
Collapse
Affiliation(s)
- Qingyuan Yao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China.
| | - Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China.
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China.
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China.
| |
Collapse
|
22
|
Jia JG, Zhao CC, Wei YF, Zhai ZM, Bao SS, Jacobson AJ, Ma J, Zheng LM. Macroscopic Helical Assembly of One-Dimensional Coordination Polymers: Helicity Inversion Triggered by Solvent Isomerism. J Am Chem Soc 2023; 145:23948-23962. [PMID: 37886816 DOI: 10.1021/jacs.3c05552] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Assembling macroscopic helices with controllable chirality and understanding their formation mechanism are highly desirable but challenging tasks for artificial systems, especially coordination polymers. Here, we utilize solvents as an effective tool to induce the formation of macroscopic helices of chiral coordination polymers (CPs) and manipulate their helical sense. We chose the Ni/R-,S-BrpempH2 system with a one-dimensional tubular structure, where R-,S-BrpempH2 stands for R-,S-(1-(4-bromophenyl)ethylaminomethylphosphonic acid). The morphology of the self-assemblies can be controlled by varying the cosolvent in water, resulting in the formation of twisted ribbons of R-,S-Ni(Brpemp)(H2O)·H2O (R-,S-2T) in pure H2O; needle-like crystals of R-,S-Ni(Brpemp)(H2O)2·1/3CH3CN (R-,S-1C) in 20 vol % CH3CN/H2O; nanofibers of R-,S-Ni(Brpemp)(H2O)·H2O (R-,S-3F) in 20-40 vol % methanol/H2O or ethanol/H2O; and superhelices of R-,S-Ni(Brpemp)(H2O)·H2O (R-,S-4H or 5H) in 40 vol % propanol/H2O. Interestingly, the helicity of the superhelix can be controlled by using a propanol isomer in water. For the Ni/R-BrpempH2 system, a left-handed superhelix of R-4H(M) was obtained in 40 vol % NPA/H2O, while a right-handed superhelix of R-5H(P) was isolated in 40 vol % IPA/H2O. These results were rationalized by theoretical calculations. Adsorption studies revealed the chiral recognition behavior of these compounds. This work may contribute to the development of chiral CPs with a macroscopic helical morphology and interesting functionalities.
Collapse
Affiliation(s)
- Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
- Magnetism Key Laboratory of Zhejiang Province, College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, P. R. China
| | - Chen-Chen Zhao
- Theoretical and Computational Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Fan Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhi-Min Zhai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Allan J Jacobson
- Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Jing Ma
- Theoretical and Computational Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
23
|
Yuan G, Wang C, Xi Z, Li S, Sun X, Hang P, Liu X, Han J, Guo R. Supramolecular Polyaniline-Metal Ion as Chiral Nanozymes for Enantioselective Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303739. [PMID: 37507827 DOI: 10.1002/smll.202303739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Understanding origin of asymmetric information encoded on chiral nanozymes is important in mediating enantioselective catalysis. Herein, the supramolecular chiral nanozymes constructed from P/M-polyaniline (P/M-PANI) nanotwists and metal ions (M2+ , M = Cu, Ni, Co, and Zn) are designed through thioglycolic acid (TA) without chiral molecules to show the regulated catalytic efficiency and enantioselectivity. With combination of chiral environment from supramolecular scaffolds and catalytic center from metal ions, the P-PANI-TA-M2+ as nanozymes show preference to 3,4-dihydroxy-S-phenylalanine (S-DOPA) oxidation while the M-PANI-TA-M2+ show better selectivity to R-DOPA oxidation. Among them, though the Cu2+ doped supramolecular nanotwists show the highest catalytic efficiency, the Co2+ doped ones with moderate catalytic efficiency can exhibit the best enantioselectivity with select factor as high as 2.07. The molecular dynamic (MD) simulation clarifies the mechanism of enantioselective catalysis caused by the differential kinetics with S/R-DOPA enantiomers adsorbed on chiral PANI surface and free in solution. This work systematically studies the synergistic effect between the chiral supramolecular nanostructures assembled by achiral species and metal ions as peroxidase-like catalytic centers to regulate the enantioselectivity, providing deep understanding of the origin of asymmetric catalysis and serving as strong foundation to guide the design of nanozymes with high enantioselectivity.
Collapse
Affiliation(s)
- Ganyin Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Chu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Zheng Xi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Shixin Li
- School of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Pengyuan Hang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Xu Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
24
|
Szustakiewicz P, Powała F, Szepke D, Lewandowski W, Majewski PW. Unrestricted Chiral Patterning by Laser Writing in Liquid Crystalline and Plasmonic Nanocomposite Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310197. [PMID: 37905376 DOI: 10.1002/adma.202310197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Obtaining hierarchical structures with arbitrarily controlled chirality remains a challenge. Here, thin films featuring chiroptically bipolar patterns are produced by a device utilizing microscale photothermal re-melting of materials exhibiting chirality synchronization. This device operates autonomously, guided by an algorithm that facilitates the homochiral growth of supramolecular organic helices through controlling their re-melting. The chirality synchronization phenomena of constitutionally achiral molecules grants availability of both handednesses of the helices, enabling unrestricted chiral writing in the film. The collective chiroptical response of assembled molecules is utilised to guide the patterning process, creating a foundation for optically secured information. The established methodology enables achieving dissymmetry factor values for circular dichroism (CD) a magnitude higher than previously reported, as confirmed with state-of-the-art, synchrotron-based Mueller matrix polarimetry (MMP). Moreover, the developed method is extended to nanocomposites comprising gold nanoparticles, providing the opportunity to tune the CD toward the plasmonic region. This strategic application of photothermal processing, specifically laser-directed melting, uncovers the potential to broaden the selection of nanostructured materials with precisely designed functionalities for photonic applications.
Collapse
Affiliation(s)
| | - Filip Powała
- Department of Chemistry, University of Warsaw, Warsaw, 02089, Poland
| | - Dorota Szepke
- Department of Chemistry, University of Warsaw, Warsaw, 02089, Poland
| | | | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Warsaw, 02089, Poland
| |
Collapse
|
25
|
Wang CY, Jia JG, Weng GG, Qin MF, Xu K, Zheng LM. Macroscopic handedness inversion of terbium coordination polymers achieved by doping homochiral ligand analogues. Chem Sci 2023; 14:10892-10901. [PMID: 37829014 PMCID: PMC10566478 DOI: 10.1039/d3sc03230b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Inspired by natural biological systems, chiral or handedness inversion by altering external and internal conditions to influence intermolecular interactions is an attractive topic for regulating chiral self-assembled materials. For coordination polymers, the regulation of their helical handedness remains little reported compared to polymers and supramolecules. In this work, we choose the chiral ligands R-pempH2 (pempH2 = (1-phenylethylamino)methylphosphonic acid) and R-XpempH2 (X = F, Cl, Br) as the second ligand, which can introduce C-H⋯π and C-H⋯X interactions, doped into the reaction system of the Tb(R-cyampH)3·3H2O (cyampH2 = (1-cyclohexylethylamino)methylphosphonic acid) coordination polymer, which itself can form a right-handed superhelix by van der Waals forces, and a series of superhelices R-1H-x, R-2F-x, R-3Cl-x, and R-4Br-x with different doping ratios x were obtained, whose handedness is related to the second ligand and its doping ratio, indicating the decisive role of interchain interactions of different strengths in the helical handedness. This study could provide a new pathway for the design and self-assembly of chiral materials with controllable handedness and help the further understanding of the mechanism of self-assembly of coordination polymers forming macroscopic helical systems.
Collapse
Affiliation(s)
- Chang-Yu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
26
|
Singh V, Feldman Y, Leitus G, Brumfeld V, Shimon LJW, Lahav M, van der Boom ME. Factors Controlling Complex Morphologies of Isomorphous Metal-Organic Frameworks. Chemistry 2023; 29:e202301825. [PMID: 37334917 DOI: 10.1002/chem.202301825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
We demonstrate here how nitrate salts of bivalent copper, nickel, cobalt, and manganese, along with an achiral organic ligand, assemble into various structures such as symmetrical double-decker flowers, smooth elongated hexagonal bipyramids, and hexagonal prisms. Large morphological changes occur in these structures because of different metal cations, although they maintain isomorphous hexagonal crystallographic structures. Metal cations with stronger coordination to ligands (Cu and Ni) tend to form uniform crystals with unusual shapes, whereas weaker coordinating metal cations (Mn and Co) produce crystals with more regular hexagonal morphologies. The unusual flower-like crystals formed with copper nitrate have two pairs of six symmetrical petals with hexagonal convex centers. The texture of the petals indicates dendritic growth. Two different types of morphologies were formed by using different copper nitrate-to-ligand ratios. An excess of the metal salt results in uniform and hexagonal crystals having a narrow size distribution, whereas the use of an excess of ligand results in double-decker morphologies. Mechanistically, an intermediate structure was observed with slightly concave facets and a domed center. Such structures most likely play a key role in the formation of double-decker crystals that can be formed by fusion processes. The coordination chemistry results in isostructural chiral frameworks consisting of two types of continuous helical channels. Four pyridine units from four separate ligands are coordinated to the metal center in a plane having a chiral (propeller-type) arrangement. The individual double-decker flower crystals are homochiral and a batch consists of crystals having both handedness.
Collapse
Affiliation(s)
- Vivek Singh
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Gregory Leitus
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal Lahav
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Milko E van der Boom
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
27
|
Li Y, Zhang Z, Li T, Liang Y, Si W, Lin Y. Highly-Active Chiral Organic Photovoltaic Catalysts with Suppressed Charge Recombination. Angew Chem Int Ed Engl 2023; 62:e202307466. [PMID: 37403233 DOI: 10.1002/anie.202307466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
Recombination of free charges in organic semiconductors reduces the available photo-induced charge-carriers and restricts photovoltaic efficiency. In this work, the chiral organic semiconductors (Y6-R and Y6-S with enantiopure R- and S- chiral alkyl sidechains) are designed and synthesized, which show effective aggregation-induced chirality through mainchain packing with chiral conformations in non-centrosymmetric space groups with tilt chirality. Based on the analysis of spin-injection, magnetic-hysteresis loop, and thermodynamics and dynamics of the excited state, we suggest that the aggregation-induced chirality can generate spin-polarization, which suppresses charge recombination and offers more available charge-carriers within Y6-R and Y6-S relative to the achiral counterpart (Y6). Then the chiral Y6-R and Y6-S show enhanced catalytic activity with optimal average hydrogen evolution rates of 205 and 217 mmol h-1 g-1 , respectively, 60-70 % higher than Y6, when they are employed as nanoparticle photocatalysts in photocatalytic hydrogen evolution under simulated solar light, AM1.5G, 100 mW cm-2 .
Collapse
Affiliation(s)
- Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tengfei Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanxin Liang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqin Si
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Wu B, Tong Y, Wang J, Qiu Y, Gao Y, Cohen Stuart MA, Wang J. Hierarchical self-assembly of metal-organic supramolecular fibers with lanthanide-derived functionalities. SOFT MATTER 2023; 19:2579-2587. [PMID: 36946212 DOI: 10.1039/d3sm00084b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Achieving organized assembly structures with high complexity and adjustable functionalities is a central quest in supramolecular chemistry. In this report, we study what happens when a discotic benzene-1,3,5-tricarboxamide (BTA) ligand containing three dipicolinic acid (DPA) groups is allowed to coordinate with lanthanide (Ln) ions. A multi-BTA coordination cluster forms, which behaves as a type of "supramolecular monomer", stacking into fibers via hydrogen bonds enabled by multiple BTA cores. The fibrous morphology and size, as well as the packing unit and the process by which it grows, were investigated by light scattering measurements, luminescence spectra, TEM images and molecular simulation data. More notably, by selecting the kind of lanthanide or mixture of lanthanides that is incorporated, tunable luminescence and magnetic relaxation properties without compromising the fibrous structure can be realized. This case of hierarchical self-assembly is made possible by the special structure of our BTA-like building block, which makes non-covalent bond types that are different along the radial (coordination bonds) and axial (H-bonds) directions, respectively, each with just the right strength. Moreover, the use of lanthanide coordination leads to materials with metal-derived optical and magnetic properties. Therefore, the established approach demonstrates a novel strategy for designing and fabrication of multi-functional supramolecular materials.
Collapse
Affiliation(s)
- Bohang Wu
- East China University of Science and Technology, Department of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China.
| | - Yutao Tong
- East China University of Science and Technology, Department of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China.
| | - Jiahua Wang
- East China University of Science and Technology, Department of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China.
| | - Yuening Qiu
- East China University of Science and Technology, Department of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China.
| | - Yifan Gao
- East China University of Science and Technology, Department of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China.
| | - Martien A Cohen Stuart
- East China University of Science and Technology, Department of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China.
| | - Junyou Wang
- East China University of Science and Technology, Department of Chemical Engineering, Meilong Road 130, 200237 Shanghai, China.
| |
Collapse
|
29
|
Zuo Y, Liu X, Fu E, Zhang S. A Pair of Interconverting Cages Formed from Achiral Precursors Spontaneously Resolve into Homochiral Conformers. Angew Chem Int Ed Engl 2023; 62:e202217225. [PMID: 36748582 DOI: 10.1002/anie.202217225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Without chiral induction the emergence of homochirality from achiral molecules is rather serendipitous, as the rationale is somewhat ambiguous. We herein provide a plausible solution. From achiral precursors are formed a pair of interconverting cage conformers that exhibit a C3 -axis as the only symmetry element. When their interconversion is impeded with intramolecular H-bonding, each conformer self-sorts into a homochiral crystal, which is driven by a helical network of multivalent intermolecular interactions during the self-assembly of homochiral cage conformers. As no chiral induction is involved throughout, we believe our study could enlighten the rational design for the emergence of homochirality with several criteria: 1) formation of a molecule without inversion center or mirror plane; 2) suppression of the enantiomeric interconversion, and introduction of multivalent interactions along the helical trajectory of screw symmetry within the resulting superstructure.
Collapse
Affiliation(s)
- Yong Zuo
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoning Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Enguang Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
30
|
Hu B, Wen WY, Sun HY, Wang YQ, Du KZ, Ma W, Zou GD, Wu ZF, Huang XY. Single-Crystal Superstructures via Hierarchical Assemblies of Giant Rubik's Cubes as Tertiary Building Units. Angew Chem Int Ed Engl 2023; 62:e202219025. [PMID: 36646648 DOI: 10.1002/anie.202219025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Intricate superstructures possess unusual structural features and promising applications. The preparation of superstructures with single-crystalline nature are conducive to understanding the structure-property relationship, however, remains an intriguing challenge. Herein we put forward a new hierarchical assembly strategy towards rational and precise construction of intricate single-crystal superstructures. Firstly, two unprecedented superclusters in Rubik's cube's form with a size of ≈2×2×2 nm3 are constructed by aggregation of eight {Pr4 Sb12 } oxohalide clusters as secondary building units (SBUs). Then, the Rubik's cubes further act as isolable tertiary building units (TBUs) to assemble diversified single-crystal superstructures. Importantly, intermediate assembly states are captured, which helps illustrate the evolution of TBU-based superstructures and thus provides a profound understanding of the assembly process of superstructures at the atomic level.
Collapse
Affiliation(s)
- Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Yang Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350002, P. R. China
| | - Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan-Qi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou, Fujian, 350007, P. R. China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Guo-Dong Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhao-Feng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Sang Y, Zhu Q, Zhou X, Jiang Y, Zhang L, Liu M. Ultrasound-Directed Symmetry Breaking and Spin Filtering of Supramolecular Assemblies from only Achiral Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202215867. [PMID: 36522559 DOI: 10.1002/anie.202215867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Herein we describe the self-assembly of an achiral molecule into macroscopic helicity as well as the emergent chiral-selective spin-filtering effect. It was found that a benzene-1,3,5-tricarboxamide (BTA) motif with an aminopyridine group in each arm could coordinate with AgI and self-assemble into nanospheres. Upon sonication, symmetry breaking occurred and the nanospheres transferred into helical nanofibers with strong CD signals. Although the sign of the CD signals appeared randomly, it could be controlled by using the as-made chiral assemblies as a seed. Furthermore, it was found that the charge transport of the helical nanofibers was highly selective with a spin-polarization transport of up to 45 %, although the chiral nanofibers are composed exclusively from achiral building blocks. This work demonstrates symmetry breaking under sonication and the chiral-selective spin-filtering effect.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qirong Zhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Xiaoqin Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
32
|
Bera S, Basu S, Jana B, Dastidar P. Real-time Observation of Macroscopic Helical Morphologies under Optical Microscope: A Curious Case of π-π Stacking Driven Molecular Self-assembly of an Organic Gelator Devoid of Hydrogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202216447. [PMID: 36479962 DOI: 10.1002/anie.202216447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Supramolecular assemblies such as tubules/helix/double helix/helical tape etc. are usually submicron objects preventing direct observation under optical microscope. Chiral-pure form of these assemblies is important for potential applications. Herein, we report a rare phenomenon wherein a DMSO gel of a simple terpyridine derivative [(4-CNPhe)4PyTerp] produced macroscopic helical morphologies (μm length scale) which could be observed under optical microscope, formation of which could be monitored by optical videography, stable enough to withstand acidic vapour, robust enough to display reversible gel↔sol in response to acidic and ammonia vapour and sturdy enough to be maneuvered with a needle. These properties appeared to be unique to the title compound as the other related derivatives failed to display such assembly structures. SXRD and MD simulation studies suggested that weak interactions (π-π stacking) played a crucial role in the self-assembly process.
Collapse
Affiliation(s)
- Sourabh Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sushmita Basu
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
33
|
Yang LS, Lin EC, Hua YH, Hsu CA, Chiu HZ, Lo PH, Chao YC. Circularly Polarized Photoluminescence of Chiral 2D Halide Perovskites at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54090-54100. [PMID: 36420750 DOI: 10.1021/acsami.2c16359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chiral halide perovskites have attracted considerable attention because of their chiroptical, second-harmonic generation, and ferroelectricity properties and their potential application in chiroptoelectronics and chiral spintronics. However, the fundamental research of these properties is insufficient. In this work, chiral perovskites were synthesized using precursor solutions with various stoichiometric ratios ⟨n⟩. The chiral perovskite film prepared from the solution with ⟨n⟩ = 1 is composed of (R-/S-/rac-MBA)2PbBr4, whereas the films prepared from the solutions with ⟨n⟩ larger than 1 are a mixture of (R-/S-/rac-MBA)2(CsMA)n-1PbnBr3n+1 with n = 1 and large n values. A photoluminescence quantum yield of approximately 90 was obtained. Symmetric circular dichroism (CD) spectra were observed without an external magnetic field. Under various magnetic fields, magnetic field-induced CD features are superimposed with the intrinsic chirality-induced CD features. For the ⟨n⟩ = 1 chiral perovskite film, the energy level splitting induced by chiral molecules are a few 10 μeV, whereas the energy level splitting induced by magnetic fields are at the range of ∼-250 to ∼250 μeV. Circularly polarized photoluminescence spectra were observed at room temperature and associated with the spin-preserved energy funneling from highly energetic phases to the lower energetic phases.
Collapse
Affiliation(s)
- Lan-Sheng Yang
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
| | - En-Chi Lin
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
| | - Yi-Hsiu Hua
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
| | - Chin-An Hsu
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
| | - Hao-Zhe Chiu
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
| | - Pei-Hsuan Lo
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
| | - Yu-Chiang Chao
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu300093, Taiwan
| |
Collapse
|
34
|
Liu Y, Du M, Zhang P, Wang H, Dong X, Wang Z, Wang Y, Ji L. Host-guest interaction enabled chiroptical property, morphology transition, and phase switch in azobenzene-glutamide amphiphile based hydrogel. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
He H, He J, Zheng K, Ma M, Shi Y, Chen S, Wang X. Fantastic supramolecular chiral self-assembly of POSS based dendrimers: from helical nano-fibers to nano-toroids and loofah-like superstructures. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Mashiyama Y, Hasunuma Y, Fujimori A. Correlation between Chirality and Spherical Particle Formation Related to the Loss of Function of Thixotropic Additive Molecules. ChemistrySelect 2022. [DOI: 10.1002/slct.202200918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuki Mashiyama
- Graduate School of Science and Engineering Saitama University, 255 Shimo-okubo, Sakura-ku Saitama 338-8570 Japan
| | - Yuka Hasunuma
- Faculty of Engineering Saitama University, 255 Shimo-okubo, Sakura-ku Saitama 338-8570 Japan
| | - Atsuhiro Fujimori
- Graduate School of Science and Engineering Saitama University, 255 Shimo-okubo, Sakura-ku Saitama 338-8570 Japan
| |
Collapse
|
37
|
Gao BR, Wu YJ, Xu L, Zou H, Zhou L, Liu N, Wu ZQ. Synthesis of Optically Active Helical Polycarbenes through Helix-Sense-Selective Polymerization Strategy and Their Application in Chiral Separation. ACS Macro Lett 2022; 11:785-791. [PMID: 35653295 DOI: 10.1021/acsmacrolett.2c00212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this work, helical polycarbenes with optical activity were designed and facilely synthesized through the helix-sense-selective polymerization (HSSP) of the diazoacetate monomer with a dimethylbenzyl ester pendant catalyzed by π-allylPdCl with chiral phosphine ligands at room temperature. The polymerization was carried out in a living and controlled style, and a range of helical polycarbenes with the desired number-average molecular weights and narrow molecular weight distributions were obtained. Circular dichroism and UV-vis analyses revealed that these polycarbenes exhibited a stable helical conformation with a preferred handedness, and their helical directions were dependent on the chirality of the chiral phosphine ligands. Further studies showed that the helical conformation of the obtained polycarbenes was from the polymeric backbone rather than the intermolecular aggregation in the solutions. Moreover, the prepared, optically active, helical polycarbenes possessed excellent enantioselective crystallization ability for threonine racemates. The enantiomeric excess (e.e.) of the induced crystals could be up to 83% via utilizing the prepared helical polycarbenes as a chiral separation agent.
Collapse
Affiliation(s)
- Bao-Rui Gao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Yong-Jie Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
38
|
Song X, Zhu X, Yao H, Shang W, Du C, Lu W, Liu M, Tian W. Topological-skeleton controlled chirality expression of supramolecular hyperbranched and linear polymers. FUNDAMENTAL RESEARCH 2022; 2:422-428. [PMID: 38933405 PMCID: PMC11197627 DOI: 10.1016/j.fmre.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
The topology of polymers plays an essential role in their chemical, physical and biological properties. However, their effects on chirality-related functions remain unclear. Here, we reported the topology-controlled chirality expression in the chiral supramolecular system for the first time. Two topological supramolecular polymers, hyperbranched (HP) and linear (LP) supramolecular polymers produced by the host-guest interactions of branched and linear monomers, respectively, exhibited completely different chirality expressions despite the same molecular chirality of their monomers. Significantly, due to the branch points and strong steric hindrance existing in HP, cis-HP showed an enhanced and sign-inverted Cotton effect in the n-π* bands compared with cis-LP, as a result that the distinctive chirality induction and transfer were controlled by the topological skeletons. This topology-controlled chirality induction and transfer in the photoswitchable supramolecular polymers not only enables us to elucidate the in-depth effects of topology on the chiral expression in biopolymers but also inspires the design of chiroptical and bioinspired materials.
Collapse
Affiliation(s)
- Xin Song
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Hao Yao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- School of Civil Engineering, Central South University, Changsha 410075, China
| | - Weili Shang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Cong Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Wensheng Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
39
|
Sang Y, Liu M. Hierarchical self-assembly into chiral nanostructures. Chem Sci 2022; 13:633-656. [PMID: 35173928 PMCID: PMC8769063 DOI: 10.1039/d1sc03561d] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
One basic principle regulating self-assembly is associated with the asymmetry of constituent building blocks or packing models. Using asymmetry to manipulate molecular-level devices and hierarchical functional materials is a promising topic in materials sciences and supramolecular chemistry. Here, exemplified by recent major achievements in chiral hierarchical self-assembly, we show how chirality may be utilized in the design, construction and evolution of highly ordered and complex chiral nanostructures. We focus on how unique functions can be developed by the exploitation of chiral nanostructures instead of single basic units. Our perspective on the future prospects of chiral nanostructures via the hierarchical self-assembly strategy is also discussed.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
40
|
Zvaigzne M, Samokhvalov P, Gun'ko YK, Nabiev I. Anisotropic nanomaterials for asymmetric synthesis. NANOSCALE 2021; 13:20354-20373. [PMID: 34874394 DOI: 10.1039/d1nr05977g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The production of enantiopure chemicals is an essential part of modern chemical industry. Hence, the emergence of asymmetric catalysis led to dramatic changes in the procedures of chemical synthesis, and now it provides the most advantageous and economically executable solution for large-scale production of chiral chemicals. In recent years, nanostructures have emerged as potential materials for asymmetric synthesis. Indeed, on the one hand, nanomaterials offer great opportunities as catalysts in asymmetric catalysis, due to their tunable absorption, chirality, and unique energy transfer properties; on the other hand, the advantages of the larger surface area, increased number of unsaturated coordination centres, and more accessible active sites open prospects for catalyst encapsulation, partial or complete, in a nanoscale cavity, pore, pocket, or channel leading to alteration of the chemical reactivity through spatial confinement. This review focuses on anisotropic nanomaterials and considers the state-of-the-art progress in asymmetric synthesis catalysed by 1D, 2D and 3D nanostructures. The discussion comprises three main sections according to the nanostructure dimensionality. We analyze recent advances in materials and structure development, discuss the functional role of the nanomaterials in asymmetric synthesis, chirality, confinement effects, and reported enantioselectivity. Finally, the new opportunities and challenges of anisotropic 1D, 2D, and 3D nanomaterials in asymmetric synthesis, as well as the future prospects and current trends of the design and applications of these materials are analyzed in the Conclusions and outlook section.
Collapse
Affiliation(s)
- Mariya Zvaigzne
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Pavel Samokhvalov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Yurii K Gun'ko
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- School of Chemistry, Trinity College, the University of Dublin, Dublin 2, Ireland.
| | - Igor Nabiev
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, 51 rue Cognacq Jay, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| |
Collapse
|
41
|
Qi P, Li X, Huang Z, Liu Y, Song A, Hao J. G-quadruplex-based ionogels with controllable chirality for circularly polarized luminescence. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Wu B, Liu L, Zhou L, Magana JR, Hendrix MMRM, Wang J, Li C, Ding P, Wang Y, Guo X, Voets IK, Cohen Stuart MA, Wang J. Complex supramolecular fiber formed by coordination-induced self-assembly of benzene-1,3,5-tricarboxamide (BTA). J Colloid Interface Sci 2021; 608:1297-1307. [PMID: 34739992 DOI: 10.1016/j.jcis.2021.10.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022]
Abstract
HYPOTHESIS In the quest for large but well-controlled supramolecular structures, the discotic benzene-1,3,5-tricarboxamide (BTA) has received quite some attention, because it can form hydrogen-bonded stacks that can be regarded as supramolecular polymers of which the single BTA molecule is the monomer. In this report, we consider a more complex BTA-based supramolecular polymer, namely one that is built up from supramolecular 'monomers'. EXPERIMENTS We design a tris-ligand L3 consisting of a BTA core carrying three dipicolinic acid (DPA) groups. L3 itself is too small to form polymers, but in the presence of appropriate metal ions, each L3 can form three coordination bonds and so form (L3)n clusters that are large enough to stack successfully: at an appropriate metal dose, long and stable filaments with a cross-sectional diameter of 12 nm appear. We monitor the growth process by UV-vis spectroscopy and light scattering, and use small angle X-ray scattering (SAXS), TEM as well as molecular simulation to confirm the filamentous structure of the fibers and determine their dimensions. FINDINGS The formation and structure of the fiber are very similar for various transition metal ions, which enables introducing different functionalities, e.g., magnetic relaxivity, by proper choice of the metal ions. Hence, we obtain a doubly supramolecular polymer, connected axially by hydrogen bonds, and radially by coordination bonds. Not only does this realize a higher level of complexity, but it also allows to easily introduce and vary metal-derived functionalities.
Collapse
Affiliation(s)
- Bohang Wu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China
| | - Lin Liu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China
| | - Lu Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China.
| | - Jose Rodrigo Magana
- Self-Organizing Soft Matter Lab, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ, the Netherlands.
| | - Marco M R M Hendrix
- Self-Organizing Soft Matter Lab, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ, the Netherlands.
| | - Jiahua Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China
| | - Chendan Li
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China
| | - Peng Ding
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China.
| | - Yiming Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China.
| | - Xuhong Guo
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China.
| | - Ilja K Voets
- Self-Organizing Soft Matter Lab, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ, the Netherlands.
| | - Martien A Cohen Stuart
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China.
| | - Junyou Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China.
| |
Collapse
|
43
|
Liu X, Shi Z, Xie M, Xu J, Zhou Z, Jung S, Cui G, Zuo Y, Li T, Yu C, Liu Z, Zhang S. Single‐Handed Double Helix and Spiral Platelet Formed by Racemate of Dissymmetric Cages. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoning Liu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zheng Shi
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Mingchen Xie
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jianping Xu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhifan Zhou
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Sinyeong Jung
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Guijia Cui
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yong Zuo
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Tao Li
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chunyang Yu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 China
| | - Shaodong Zhang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
44
|
Liu X, Shi Z, Xie M, Xu J, Zhou Z, Jung S, Cui G, Zuo Y, Li T, Yu C, Liu Z, Zhang S. Single-Handed Double Helix and Spiral Platelet Formed by Racemate of Dissymmetric Cages. Angew Chem Int Ed Engl 2021; 60:15080-15086. [PMID: 33860594 DOI: 10.1002/anie.202103821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/09/2022]
Abstract
Spontaneous deracemization has been used to separate homochiral domains from the racemic system. However, homochirality can only be referred to when the scales of these domains and systems are specified. To clarify this, we report self-assembly of racemates of dissymmetric cages DC-1 with a cone-shape propeller geometry, forming a centrosymmetric columnar crystalline phase (racemic at crystallographic level). Owing to their anisotropic geometry, the two enantiomers are packed in a frustrated fashion in this crystalline phase; single-handed double helices are observed (single-handedness at supramolecular level). The frustrated packing (layer continuity break-up) in turn facilitates screw dislocation during the crystal growth, forming left- or right-handed spiral platelets (symmetry-breaking at morphological level), although each platelet is composed of DC-1 racemates. The symmetry correlation between DC-1 molecules, the crystalline phase and spiral platelets, all exhibit C3 symmetry.
Collapse
Affiliation(s)
- Xiaoning Liu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zheng Shi
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mingchen Xie
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianping Xu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhifan Zhou
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Sinyeong Jung
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guijia Cui
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yong Zuo
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tao Li
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chunyang Yu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shaodong Zhang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
45
|
Abstract
AbstractThe generally accepted hypothesis to explain the origin of biological homochirality (that is to say, the fact that proteinogenic amino acids are left-handed, and carbohydrates right-handed, in all living beings) is to assume, in the course of prebiotic chemical evolution, the appearance of an initial enantiomeric excess in a set of chiral molecular entities by spontaneous mirror-symmetry breaking (SMSB), together with suitable amplification and replication mechanisms that overcome the thermodynamic drive to racemization. However, the achievement of SMSB in chemical reactions taking place in solution requires highly specific reaction networks showing nonlinear dynamics based on enantioselective autocatalysis, and examples of its experimental realization are very rare. On the other hand, emergence of net supramolecular chirality by SMSB in the self-assembly of achiral molecules has been seen to occur in several instances, and the chirality sign of the resulting supramolecular system can be controlled by the action of macroscopic chiral forces. These considerations led us to propose a new mechanism for the generation of net chirality in molecular systems, in which the SMSB takes place in the formation of chiral supramolecular dissipative structures from achiral monomers, leading to asymmetric imbalances in their composition that are subsequently transferred to a standard enantioselective catalytic reaction, dodging in this way the highly limiting requirement of finding suitable reactions in solution that show enantioselective autocatalysis. We propose the name ‘absolute asymmetric catalysis’ for this approach, in which an achiral monomer is converted into a nonracemic chiral aggregate that is generated with SMSB and that is catalytically active.Our aim in this Account is to present a step-by-step narrative of the conceptual and experimental development of this hitherto unregarded, but prebiotically plausible, mechanism for the emergence of net chirality in molecular reactions.1 Introduction: The Origin of Biological Homochirality and Spontaneous Mirror-Symmetry Breaking2 Experimental Chemical Models for Spontaneous Mirror-Symmetry Breaking: The Soai Reaction and Beyond3 Spontaneous Mirror-Symmetry Breaking in Supramolecular Chemistry: Plenty of Room at the Top4 Absolute Asymmetric Catalysis: An Alternative Mechanism for the Emergence of Net Chirality in Molecular Systems
5 Experimental Realization of Top-Down Chirality Transfer to the Molecular Level6 Conclusions and Outlook
Collapse
Affiliation(s)
- Joaquim Crusats
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, University of Barcelona, Faculty of Chemistry
- Institute of Cosmos Science (IEE-ICC), Universitat de Barcelona
| | - Albert Moyano
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, University of Barcelona, Faculty of Chemistry
| |
Collapse
|
46
|
Liang J, Zhang H, Hao A, Xing P. Hierarchically Evolved Supramolecular Chirality Mediated by Arene-Perfluoroarene Interaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29170-29178. [PMID: 34105347 DOI: 10.1021/acsami.1c07720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rational utilization of diverse weak forces in directing multiple-constituent chiral coassemblies is of vital importance in fabricating functional chiroptical materials. In this work, arene-perfluoroarene (AP) and hydrogen bonds were orthogonally employed to afford synergistic binary and ternary coassemblies. On the supramolecular scale, amino acids were connected to achiral pyrene moieties, which packed into supramolecular tilt chirality individually. The modified aromatic amino acids coassembled with melamine and octafluoronaphthalene (OFN) through multiple hydrogen bond and AP interactions, respectively, to construct binary and ternary systems. The introduction of hydrogen bonds and AP interactions shall alter the nanostructures and luminescent properties. Emergence of macroscopic chirality at nanoscale was realized, accompanied by the inversion of circularly polarized luminescence. These interactions working in an orthogonal way regulated the supramolecular chirality, emission properties, nanostructure transformation, and chiroptical activities, which enriched the protocols in designing functional chiral composites.
Collapse
Affiliation(s)
- Juncong Liang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Heng Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
47
|
Zagorodko O, Melnyk T, Rogier O, Nebot VJ, Vicent MJ. Higher-order interfiber interactions in the self-assembly of benzene-1,3,5-tricarboxamide-based peptides in water. Polym Chem 2021; 12:3478-3487. [PMID: 34262624 PMCID: PMC8230583 DOI: 10.1039/d1py00304f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023]
Abstract
Mimicking the complexity of biological systems with synthetic supramolecular materials requires a deep understanding of the relationship between the structure of the molecule and its self-assembly pattern. Herein, we report a series of water-soluble benzene-1,3,5-tricarboxamide-based di- and tripeptide derivatives modified with small non-bulky terminal amine salt to induce self-assembly into twisted one-dimensional higher-order nanofibers. The morphology of nanofibers strongly depends on the nature, order, and quantity of amino acids in the short peptide fragments and vary from simple cylindrical to complex helical. From observations of several fiber-splitting events, we detected interfiber interactions that always occur in a pairwise manner, which implies that the C3 symmetry of benzene-1,3,5-tricarboxamide-based molecules in higher-order fibers becomes gradually distorted, thus facilitating hydrophobic contact interactions between fibrils. The proposed mechanism of self-assembly through hydrophobic contact allowed the successful design of a compound with pH-responsive morphology, and may find use in the future development of complex hierarchical architectures with controlled functionality.
Collapse
Affiliation(s)
| | - Tetiana Melnyk
- Polymer Therapeutics Lab. Prince Felipe Research Center Valencia Spain
| | - Olivier Rogier
- Polymer Therapeutics Lab. Prince Felipe Research Center Valencia Spain
| | - Vicent J Nebot
- Polymer Therapeutics Lab. Prince Felipe Research Center Valencia Spain
- PTS SL Valencia Spain
| | - María J Vicent
- Polymer Therapeutics Lab. Prince Felipe Research Center Valencia Spain
| |
Collapse
|
48
|
Ding Z, Shang H, Geng Y, Zhang ST, Huo Z, Yang Z, Li B, Xu W, Jiang S. Tuning Organic Microcrystal Morphologies through Crystal Engineering Strategies toward Anisotropic Optical Waveguide. J Phys Chem Lett 2021; 12:4585-4592. [PMID: 33970623 DOI: 10.1021/acs.jpclett.1c00769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of organic optoelectronic materials with desirable size and morphology remains a challenge now. Crystal engineering strategies (polymorphs and cocrystals) provide convenience for tailoring molecular packing and further controlling the growth morphology and photofunctionality of materials. Herein, we prepare polymorphic 2D plate crystals and 3D microhelixes by assembly of a cyanostilbene derivative (2-(3',5'-bis(trifluoromethyl)-biphenyl-4-yl)-3-(4-(pyridin-4-yl)phenyl)acrylonitrile, CF3-CN-Py). The former emits blue emission, while the latter emits green emission. Different crystallization environments contribute to the adjustable morphologies. Then, novel cocrystals are fabricated with the introduction of 1,4-diiodotetrafluorobenzene (FDIB) to CF3-CN-Py. Both molecular conformation and packing are totally changed in the cocrystal system. Such cocrystal displays a 1D sky-blue emissive rod shape on account of a long-range ordered π-stacking of molecules. In addition, the 2D plate crystal and 1D rod cocrystal are further applied to optical waveguides. In the plate crystal, a packing of transition dipole moment (μ) inclined to the upper surface leads to an anisotropic optical waveguide. In the cocrystal, owing to the nearly horizontal μ orientation, the cocrystal exhibits light propagation along the primary growth direction and a low optical loss coefficient. The present study supplies an effective way to construct materials with controlled morphology and optical waveguide.
Collapse
Affiliation(s)
- Zeyang Ding
- Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongxing Shang
- Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yijia Geng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zepeng Huo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zairan Yang
- Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shimei Jiang
- Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
49
|
Yang B, Zou G, Zhang S, Ni H, Wang H, Xu W, Yang C, Zhang H, Yu W, Luo K. Biased Symmetry Breaking and Chiral Control by Self-Replicating in Achiral Tetradentate Platinum (II) Complexes. Angew Chem Int Ed Engl 2021; 60:10531-10536. [PMID: 33682280 DOI: 10.1002/anie.202101709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Indexed: 01/03/2023]
Abstract
Obtaining homochirality from biased symmetry-breaking of self-assembly in achiral molecules remains a great challenge due to the lack of ingenious strategies and controlling their handedness. Here, we report the first case of biased symmetry breaking from achiral platinum (II) liquid crystals which self-organize into an enantiomerically enriched single domain without selection of handedness in twist grain boundary TGB [ *] phase. Most importantly, the chiral control of self-organization can be achieved by using above the homochiral liquid crystal films with determined handedness (P or M) as a template. Moreover, benefiting from self-assembled superhelix, these complexes exhibit prominent circularly polarized luminescence with high |glum | up to 3.4×10-3 in the TGB [ *] mesophase. This work paves a neoteric avenue for the development of chiral self-assemblies from achiral molecules.
Collapse
Affiliation(s)
- Bo Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Guo Zou
- Department of Chemistry, Xiamen University, Xiamen, 361000, P. R. China
| | - Shilin Zhang
- Department of Chemistry, Xiamen University, Xiamen, 361000, P. R. China
| | - Hailiang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Haifeng Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Wei Xu
- College of Chemistry and State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610000, P. R. China
| | - Cheng Yang
- College of Chemistry and State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610000, P. R. China
| | - Hui Zhang
- Department of Chemistry, Xiamen University, Xiamen, 361000, P. R. China
| | - Wenhao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Kaijun Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| |
Collapse
|
50
|
Qin P, Wu Z, Li P, Niu D, Liu M, Yin M. Triple-Modulated Chiral Inversion of Co-Assembly System Based on Alanine Amphiphile and Cyanostilbene Derivative. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18047-18055. [PMID: 33834761 DOI: 10.1021/acsami.1c03940] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of chiroptical materials with controllable chirality is of special importance in biology and chemistry. Although tunable chirality can be realized in various systems, it remains a fundamental challenge to realize multimodulated chiral inversion. Herein, we report that chiral alanine derivative and fluorescent cyanostilbene derivative co-assemble to prepare supramolecular chiral systems, where twist nanofibers with totally inverted supramolecular chirality and circularly polarized luminescence are obtained through stoichiometric modulation. The supramolecular handedness can be inverted by means of altering the cooling rate and incorporating metal ions. The mechanism study reveals that the synergistic effect among hydrogen bonds, coordination interactions, and π-π stacking interactions contributes to the chirality inversion. This work establishes an effective strategy to precisely modulate supramolecular chirality in multiple ways, which shows great potential in developing smart chiroptical materials capable of achieving complex functionalities.
Collapse
Affiliation(s)
- Penghua Qin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhen Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Pengyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dian Niu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|