1
|
Akaoka M, Yanagaki M, Kubota H, Haruki K, Furukawa K, Taniai T, Onda S, Hamura R, Tsunematsu M, Shirai Y, Matsumoto M, Shimoda M, Ikegami T. ARID4B Promotes the Progression of Hepatocellular Carcinoma Through the PI3K/AKT Pathway. Ann Surg Oncol 2025; 32:3009-3018. [PMID: 39751985 DOI: 10.1245/s10434-024-16790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND AT-rich interaction domain 4B (ARID4B) is a transcriptional activator that regulates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in prostate cancer. However, the role of ARID4B in hepatocellular carcinoma (HCC) has remained unclear. METHODS This study included 162 patients who had undergone primary hepatic resection for HCC between 2008 and 2019. Their HCC samples were immunohistochemically stained for ARID4B, and ARID4B score was calculated from the intensity and percentage of staining. We retrospectively investigated the association of ARID4B score with disease-free and overall survival, and primary recurrence patterns of HCC. Furthermore, human HCC cell lines (HuH-1 and HuH-7) were knocked down for ARID4B using small-interfering RNA (siRNA), and the expression of PI3K/AKT proteins, cell proliferation, migration, and invasion ability were assessed. RESULTS In multivariate analyses, negative HBs-antigen (p = 0.02), multiple tumors (p < 0.01), microvascular invasion (p = 0.03), and high ARID4B score (p = 0.01) were independent predictors of disease-free survival, while tumor size >5 cm (p = 0.03), microvascular invasion (p < 0.01), and high ARID4B score (p = 0.04) were independent predictors of overall survival. A high ARID4B score was associated with high serum α-fetoprotein (AFP) level (p = 0.04), poor tumor differentiation (p < 0.01), and microvascular invasion (p < 0.01). ARID4B scores were significantly lower in the no recurrence, intrahepatic recurrence, and extrahepatic recurrence groups, in that order. Knockdown of ARID4B using siRNA in human HCC cell lines significantly suppressed the PI3K/AKT pathway, cell proliferation, migration, and invasion. CONCLUSIONS ARID4B may activate the PI3K/AKT signaling pathway in HCC and may be a prognostic factor after hepatic resection for HCC.
Collapse
Affiliation(s)
- Munetoshi Akaoka
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuru Yanagaki
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
| | - Hoshiho Kubota
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenei Furukawa
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Taniai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Onda
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryoga Hamura
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masashi Tsunematsu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Michinori Matsumoto
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Ikegami
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Zhou L, Li J, Sun X, Xin Y, Yin S, Ning X. CircArid4b: A novel circular RNA regulating antibacterial response during hypoxic stress via apoptosis in yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110121. [PMID: 39788357 DOI: 10.1016/j.cbpc.2025.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
The intricate interaction among host, pathogen, and environment significantly influences aquatic health, yet the influence of hypoxic stress combined with bacterial infection on host response is understudied. Circular RNAs with stable closed-loop structures have emerged as important regulators in immunity, yet remain ill-defined in fish. In this study, we systematically explored the circRNA response in yellow catfish subjected to combined hypoxia-bacterial infection (HB) stress. Following HB stress, H&E and TUNEL staining identified heightened hepatocyte apoptosis, intracellular vacuolation, and inflammatory tissue damage. RT-qPCR elucidated that differentially expressed genes stimulated by HB synergistically enhanced apoptosis and inflammatory responses. Importantly, we systematically evaluated differentially expressed circRNAs (DEcirs) in yellow catfish under hypoxia with and without Aeromonas veronii infection and identified a novel HB-specific DEcir, designated as circArid4b, whose parental gene Arid4b is highly associated with apoptosis. Experiments confirmed the circular structure of circArid4b and revealed that under HB stimulation, specific knockdown of circArid4b inhibited the expression of Arid4b, while concurrent alterations in multiple apoptosis- and inflammation-related genes synergistically indicated the promotion of apoptotic and inflammatory pathways. Notably, the downregulation of circArid4b expression significantly reduced the susceptibility to bacterial infection in yellow catfish during hypoxia. These results suggest that HB-induced suppression of circArid4b promotes cell apoptosis and inflammation by inhibiting its parental gene and thereby facilitating resistance to bacterial infection during hypoxia. Our study enriches the understanding of fish circRNA mechanisms and offers novel preventive and control strategies for bacterial infections in fish under hypoxic environments.
Collapse
Affiliation(s)
- Linxin Zhou
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Jiayi Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xinxin Sun
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yingying Xin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Shaowu Yin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Xianhui Ning
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| |
Collapse
|
3
|
Yuan Z, Lv G, Liu X, Xiao Y, Tan Y, Zhu Y. Machine learning selection of basement membrane-associated genes and development of a predictive model for kidney fibrosis. Sci Rep 2025; 15:6567. [PMID: 39994219 PMCID: PMC11850825 DOI: 10.1038/s41598-025-89733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
This study investigates the role of basement membrane-related genes in kidney fibrosis, a significant factor in the progression of chronic kidney disease that can lead to end-stage renal failure. The authors aim to develop a predictive model using machine learning techniques due to the limitations of existing diagnostic methods, which often lack sensitivity and specificity. Utilizing gene expression data from the GEO database, the researchers applied LASSO, Random Forest, and SVM-RFE methods to identify five pivotal genes: ARID4B, EOMES, KCNJ3, LIF, and STAT1. These genes were analyzed across training and validation datasets, resulting in the development of a Nomogram prediction model. Performance metrics, including the area under the ROC curve (AUC), calibration curves, and decision curve analysis, indicated excellent predictive capabilities with an AUC of 0.923. Experimental validation through qRT-PCR in clinical samples and TGF-β-treated HK-2 cells corroborated the expression patterns identified in silico, showing upregulation of ARID4B, EOMES, LIF, and STAT1, and downregulation of KCNJ3. The findings emphasize the importance of basement membrane-related genes in kidney fibrosis and pave the way for enhanced early diagnosis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ziwei Yuan
- Department of Laboratory Medicine, The Third People's Hospital of Ganzhou, 341000, Ganzhou, China
| | - Guangjia Lv
- College of Life Sciences, Northeast Forestry University, Harbin, 150004, China
| | - Xinyan Liu
- Zhanggong District Maternal and Child Health Hospital, Ganzhou, 341000, China.
| | - Yanyi Xiao
- Department of Thyroid and Breast Surgery, Wenzhou Central Hospital, Wenzhou, 325000, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yuanfang Tan
- Department of Laboratory Medicine, The Third People's Hospital of Ganzhou, 341000, Ganzhou, China.
| | - Youyou Zhu
- Department of pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China.
| |
Collapse
|
4
|
Wei J, Li W, Zhang P, Guo F, Liu M. Current trends in sensitizing immune checkpoint inhibitors for cancer treatment. Mol Cancer 2024; 23:279. [PMID: 39725966 DOI: 10.1186/s12943-024-02179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically transformed the treatment landscape for various malignancies, achieving notable clinical outcomes across a wide range of indications. Despite these advances, resistance to immune checkpoint blockade (ICB) remains a critical clinical challenge, characterized by variable response rates and non-durable benefits. However, growing research into the complex intrinsic and extrinsic characteristics of tumors has advanced our understanding of the mechanisms behind ICI resistance, potentially improving treatment outcomes. Additionally, robust predictive biomarkers are crucial for optimizing patient selection and maximizing the efficacy of ICBs. Recent studies have emphasized that multiple rational combination strategies can overcome immune checkpoint resistance and enhance susceptibility to ICIs. These findings not only deepen our understanding of tumor biology but also reveal the unique mechanisms of action of sensitizing agents, extending clinical benefits in cancer immunotherapy. In this review, we will explore the underlying biology of ICIs, discuss the significance of the tumor immune microenvironment (TIME) and clinical predictive biomarkers, analyze the current mechanisms of resistance, and outline alternative combination strategies to enhance the effectiveness of ICIs, including personalized strategies for sensitizing tumors to ICIs.
Collapse
Grants
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
Collapse
Affiliation(s)
- Jing Wei
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Wenke Li
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Pengfei Zhang
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Ming Liu
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
5
|
Huang Y, Li B, Wu Z, Liu K, Min J. Inhibitors targeting the PWWP domain-containing proteins. Eur J Med Chem 2024; 280:116965. [PMID: 39413441 DOI: 10.1016/j.ejmech.2024.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
PWWP domain-containing proteins play a pivotal role in chromatin-mediated biological processes, and their aberrant regulation is linked to various human diseases. Recent years have witnessed remarkable strides in unraveling the structural and functional features of PWWP domain-containing proteins, propelling significant advances in targeting the PWWP domain-containing proteins for drug discovery purposes. Several drugs have already been approved, while others are currently in clinical trials. This review offers a comprehensive overview of the latest developments on PWWP domain-containing proteins, including their structural characteristics and biological significance. It also provides detailed insights into the drug discovery process targeting these proteins, including screening, design, and structural optimization.
Collapse
Affiliation(s)
- Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Boyi Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Zhibin Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Tabibian M, Moghaddam FS, Motevaseli E, Ghafouri-Fard S. Targeting mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a special focus on androgen receptor signaling. Cell Commun Signal 2024; 22:504. [PMID: 39420406 PMCID: PMC11484332 DOI: 10.1186/s12964-024-01833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Prostate cancer is among prevalent cancers in men. Numerous strategies have been proposed to intervene with the important prostate cancer-related signaling pathways. Among the most promising strategies is CRISPR/Cas9 strategy. This strategy has been used to modify expression of a number of genes in prostate cancer cells. AIMS This review summarizes the most recent progresses in the application of CRISPR/Cas9 strategy in modification of prostate cancer-related phenotypes with an especial focus on pathways related to androgen receptor signaling. CONCLUSION CRISPR/Cas9 technology has successfully targeted several genes in the prostate cancer cells. Moreover, the efficiency of this technique in reducing tumor burden has been tested in animal models of prostate cancer. Most of targeted genes have been related with the androgen receptor signaling. Targeted modulation of these genes have affected growth of castration-resistant prostate cancer. PI3K/AKT/mTOR signaling and immune response-related genes have been other targets that have been successfully modulated by CRISPR/Cas9 technology in prostate cancer. Based on the rapid translation of this technology into the clinical application, it is anticipated that novel treatments based on this technique change the outcome of this malignancy in future.
Collapse
Affiliation(s)
- Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | | | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Han Z, Xu L, Wang A, Wang B, Liu Q, Liu H, Liu Q, Gang Z, Yu S, Mu L, Weng C, Lin Z, Hu L. UBE2S facilitates glioblastoma progression through activation of the NF-κB pathway via attenuating K11-linked ubiquitination of AKIP1. Int J Biol Macromol 2024; 278:134426. [PMID: 39098687 DOI: 10.1016/j.ijbiomac.2024.134426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Rapid proliferation is a hallmark of glioblastoma multiforme (GBM) and a major contributor to its recurrence. Aberrant ubiquitination has been implicated in various diseases, including cancer. In our preliminary studies, we identified Ubiquitin-conjugating enzyme E2S (UBE2S) as a potential glioma biomarker, exhibiting close associations with glioma grade and protein phosphatase 1, regulatory subunit 105 (Ki67) expression levels. However, the underlying molecular mechanisms remained elusive. NF-κB is an important signaling pathway that promotes GBM proliferation. Direct intervention targeting NF-κB has not yielded the expected results, prompting the exploration of new molecules for regulating NF-κB as a new direction. METHODS This study employed methods including yeast two-hybrid and immunoprecipitation to uncover the interaction between UBE2S and A kinase interacting protein 1 (AKIP1). Laser confocal microscopy was used to observe the localization of UBE2S and AKIP1. Dual luciferase reporter genes were utilized to observe the activation of NF-κB. RESULTS Our findings demonstrate that UBE2S deficiency significantly impedes GBM progression, both in vitro and in vivo. Mechanistically, UBE2S plays a crucial role in recruiting Ubiquitin Specific Peptidase 15 (USP15), facilitating the removal of K11-linked ubiquitination on AKIP1. This action enhances AKIP1 stability within the GBM context. The resulting increase in AKIP1 levels further augments nuclear factor kappa-B (NF-κB) transcriptional activity, leading to the upregulation of downstream genes regulated by the NF-κB pathway, thereby promoting GBM progression. CONCLUSIONS In summary, our findings reveal the role of the UBE2S/AKIP1-NF-κB axis in regulating GBM progression and provide novel evidence supporting UBE2S as a potential drug target for GBM.
Collapse
Affiliation(s)
- Zhibin Han
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Aowen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoju Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinfang Liu
- Department of Neuroscience, Yale University School of Medicine, New Haven, America
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenbo Gang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shengkun Yu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Long Mu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Li Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Peng H, Du F, Wang J, Wu Y, Wei Q, Chen A, Duan Y, Shi S, Zhang J, Yu S. Adipose-Derived Stem-Cell-Membrane-Coated PLGA-PEI Nanoparticles Promote Wound Healing via Efficient Delivery of miR-21. Pharmaceutics 2024; 16:1113. [PMID: 39339150 PMCID: PMC11434648 DOI: 10.3390/pharmaceutics16091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
miRNAs have been shown to be involved in the regulation of a variety of physiological and pathological processes, but their use in the treatment of diseases is still limited due to their instability. Biomimetic nanomaterials combine nanomaterials with cellular components that are readily modifiable and biocompatible, making them an emerging miRNA delivery vehicle. In this study, adipose-derived MSC membranes were wrapped around PLGA-PEI loaded with miR-21 through co-extrusion and later transplanted into C57BL/6 mice wounds. The wound-healing rate, epithelialization, angiogenesis, and collagen deposition were assessed after treatment and corroborated in vitro. Our study demonstrated that m/NP/miR-21 can promote wound healing in terms of epithelialization, dermal reconstruction, and neovascularization, and it can regulate the corresponding functions of keratinocytes, fibroblasts, and vascular endothelial cells. m/NP/miR-21 can inhibit the expression of PTEN, a gene downstream of miR-21, and increase the phosphorylation activation of AKT, which can then regulate the functions of fibroblasts. In conclusion, this provides a new approach to therapy for skin wounds using microRNA transporters and biomimetic nanoparticles.
Collapse
Affiliation(s)
- Huiyu Peng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Qian Wei
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Aoying Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuhan Duan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Shuaiguang Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jingzhong Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Shuang Yu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
9
|
Li Y, Zhu Z, Li S, Xie X, Qin L, Zhang Q, Yang Y, Wang T, Zhang Y. Exosomes: compositions, biogenesis, and mechanisms in diabetic wound healing. J Nanobiotechnology 2024; 22:398. [PMID: 38970103 PMCID: PMC11225131 DOI: 10.1186/s12951-024-02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Diabetic wounds are characterized by incomplete healing and delayed healing, resulting in a considerable global health care burden. Exosomes are lipid bilayer structures secreted by nearly all cells and express characteristic conserved proteins and parent cell-associated proteins. Exosomes harbor a diverse range of biologically active macromolecules and small molecules that can act as messengers between different cells, triggering functional changes in recipient cells and thus endowing the ability to cure various diseases, including diabetic wounds. Exosomes accelerate diabetic wound healing by regulating cellular function, inhibiting oxidative stress damage, suppressing the inflammatory response, promoting vascular regeneration, accelerating epithelial regeneration, facilitating collagen remodeling, and reducing scarring. Exosomes from different tissues or cells potentially possess functions of varying levels and can promote wound healing. For example, mesenchymal stem cell-derived exosomes (MSC-exos) have favorable potential in the field of healing due to their superior stability, permeability, biocompatibility, and immunomodulatory properties. Exosomes, which are derived from skin cellular components, can modulate inflammation and promote the regeneration of key skin cells, which in turn promotes skin healing. Therefore, this review mainly emphasizes the roles and mechanisms of exosomes from different sources, represented by MSCs and skin sources, in improving diabetic wound healing. A deeper understanding of therapeutic exosomes will yield promising candidates and perspectives for diabetic wound healing management.
Collapse
Affiliation(s)
- Yichuan Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Xiaohang Xie
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Qin
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, 437000, China
| | - Yan Yang
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ting Wang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College of Huazhong, University of Science and Technology, Wuhan, 430030, China.
| | - Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Zhang B, Liu M, Mai F, Li X, Wang W, Huang Q, Du X, Ding W, Li Y, Barwick BG, Ni JJ, Osunkoya AO, Chen Y, Zhou W, Xia S, Dong JT. Interruption of KLF5 acetylation promotes PTEN-deficient prostate cancer progression by reprogramming cancer-associated fibroblasts. J Clin Invest 2024; 134:e175949. [PMID: 38781024 PMCID: PMC11245161 DOI: 10.1172/jci175949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Inactivation of phosphatase and tensin homolog (PTEN) is prevalent in human prostate cancer and causes high-grade adenocarcinoma with a long latency. Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor progression, but it remains elusive whether and how PTEN-deficient prostate cancers reprogram CAFs to overcome the barriers for tumor progression. Here, we report that PTEN deficiency induced Krüppel-like factor 5 (KLF5) acetylation and that interruption of KLF5 acetylation orchestrated intricate interactions between cancer cells and CAFs that enhance FGF receptor 1 (FGFR1) signaling and promote tumor growth. Deacetylated KLF5 promoted tumor cells to secrete TNF-α, which stimulated inflammatory CAFs to release FGF9. CX3CR1 inhibition blocked FGFR1 activation triggered by FGF9 and sensitized PTEN-deficient prostate cancer to the AKT inhibitor capivasertib. This study reveals the role of KLF5 acetylation in reprogramming CAFs and provides a rationale for combined therapies using inhibitors of AKT and CX3CR1.
Collapse
Affiliation(s)
- Baotong Zhang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Fengyi Mai
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Xiawei Li
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Inner Mongolia Institute of Quality and Standardization, Inner Mongolia Administration for Market Regulation, Hohhot, China
| | - Wenzhou Wang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Qingqing Huang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Xiancai Du
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Weijian Ding
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jianping Jenny Ni
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Adeboye O. Osunkoya
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Departments of Pathology and Urology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Siyuan Xia
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Yuan H, Wang T, Peng P, Xu Z, Feng F, Cui Y, Ma J, Wu J. Urinary Exosomal miR-17-5p Accelerates Bladder Cancer Invasion by Repressing its Target Gene ARID4B and Regulating the Immune Microenvironment. Clin Genitourin Cancer 2024; 22:569-579.e1. [PMID: 38383173 DOI: 10.1016/j.clgc.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Urothelial bladder cancer (BCa) is a common malignant tumor of the urinary system. It has been identified that exosomal miRNAs contribute to the development of BCa. However, its significance and mechanism in the malignant biological behavior of BCa remain unclear. In this study, the influence of exosomal miRNAs on BCa progression was investigated. METHODS High-throughput sequencing was conducted to analyze the microRNA-expression profile in urinary exosomes to screen out the key miRNA of muscle-invasive bladder cancer (MIBC). Then, candidate miRNA expression was verified and validated in urinary exosomes and tissue samples. To address the potential role of the candidate miRNA, we overexpressed and knocked down the candidate miRNA and explored its activity in BCa cell lines. Furthermore, the target gene of the selected miRNA was predicted and validated. RESULTS The expression profile of miRNAs revealed increased expression of miR-17-5p in MIBC urinary exosomes, and this was later confirmed in urinary exosomes and tissue samples. Cell function studies revealed that exosomal miR-17-5p significantly promoted the growth and invasion of BCa cells. Bioinformatics and luciferase experiments demonstrated that the ARID4B mRNA 3' UTR might be the binding site for miR-17-5p. Low ARID4B levels were linked to high-grade BCa patients and were associated with a better prognosis. CONCLUSION Elevated miR-17-5p contributes to BCa progression by targeting ARID4B and influencing the immune system. Based on these findings, miR-17-5p has the potential to be a new therapeutic target for the treatment of BCa.
Collapse
Affiliation(s)
- Hejia Yuan
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Tianqi Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Peng Peng
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Zhunan Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fan Feng
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China.
| |
Collapse
|
12
|
Park Y, Lee HJ, Sim DY, Park JE, Ahn CH, Park SY, Lee YC, Shim BS, Kim B, Kim SH. Inhibition of glycolysis and SIRT1/GLUT1 signaling ameliorates the apoptotic effect of Leptosidin in prostate cancer cells. Phytother Res 2024; 38:1235-1244. [PMID: 38176954 DOI: 10.1002/ptr.8115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/19/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Since the silent information regulation 2 homolog-1 (sirtuin, SIRT1) and glucose transporter 1 (GLUT1) are known to modulate cancer cell metabolism and proliferation, the role of SIRT1/GLUT1 signaling was investigated in the apoptotic effect of Leptosidin from Coreopsis grandiflora in DU145 and PC3 human prostate cancer (PCa) cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis, Western blotting, cBioportal correlation analysis, and co-immunoprecipitation were used in this work. Leptosidin showed cytotoxicity, augmented sub-G1 population, and abrogated the expression of pro-poly (ADP-ribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (pro-caspase3) in DU145 and PC3 cells. Also, Leptosidin inhibited the expression of SIRT1, GLUT1, pyruvate kinase isozymes M2 (PKM2), Hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA) in DU145 and PC3 cells along with disrupted binding of SIRT1 and GLUT1. Consistently, Leptosidin curtailed lactate, glucose, and ATP in DU145 and PC3 cells. Furthermore, SIRT1 depletion enhanced the decrease of GLUT1, LDHA, and pro-Cas3 by Leptosidin in treated DU145 cells, while pyruvate suppressed the ability of Leptosidin in DU145 cells. These findings suggest that Leptosidin induces apoptosis via inhibition of glycolysis and SIRT1/GLUT1 signaling axis in PCa cells.
Collapse
Affiliation(s)
- Youngsang Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Yu-Chan Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
13
|
Hu J, Fu S, Zhan Z, Zhang J. Advancements in dual-target inhibitors of PI3K for tumor therapy: Clinical progress, development strategies, prospects. Eur J Med Chem 2024; 265:116109. [PMID: 38183777 DOI: 10.1016/j.ejmech.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphoinositide 3-kinases (PI3Ks) modify lipids by the phosphorylation of inositol phospholipids at the 3'-OH position, thereby participating in signal transduction and exerting effects on various physiological processes such as cell growth, metabolism, and organism development. PI3K activation also drives cancer cell growth, survival, and metabolism, with genetic dysregulation of this pathway observed in diverse human cancers. Therefore, this target is considered a promising potential therapeutic target for various types of cancer. Currently, several selective PI3K inhibitors and one dual-target PI3K inhibitor have been approved and launched on the market. However, the majority of these inhibitors have faced revocation or voluntary withdrawal of indications due to concerns regarding their adverse effects. This article provides a comprehensive review of the structure and biological functions, and clinical status of PI3K inhibitors, with a specific emphasis on the development strategies and structure-activity relationships of dual-target PI3K inhibitors. The findings offer valuable insights and future directions for the development of highly promising dual-target drugs targeting PI3K.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siyu Fu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
14
|
Yan Y, Wu Q, Li JH, Wei X, Xiao J, Yang L, Xie A, Zhang L, Mei WJ, Yang YJ, Zeng Y, Wen D, Deng LJ, Zheng LF. Chitosan inhibits vascular intimal hyperplasia via LINC01615/MIR-185-5p/PIK3R2 signaling pathway. Gene 2024; 892:147850. [PMID: 37778418 DOI: 10.1016/j.gene.2023.147850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are the main pathological processes which are involved in the formation of new intima. In our previous study, we found that chitosan can inhibit the formation of new intima in the arteriovenous fistulas of uremic patients, and the expression of LINC01615 was significantly increased in patients after treatment with chitosan. Therefore, this study aims to further explore the effect of chitosan on the intimal hyperplasia and elucidate the potential molecular mechanism. In vitro, we found that in chitosan-treated VSMC, the levels of Il-1β, IL-6 and TNF-α decreased, and the intimal hyperplasia was inhibited along with significantly downregulated PIK3R2 and upregualted PI3K, AKT and p-AKT. Meanwhile, we observed the phenotypic transformation of hVSMCs after LINC01615 was upregulated. In addition, inflammatory factors showed the same changes in the process of up-regulating LINC01615. Moreover, only in the LINC01615 overexpression and miR-185-5p mimic experimental group, the inhibition of intimal hyperplasia was the most obvious. The interaction between LINC01615 and miR-185-5p, miR-185-5p and PIK3R2 was further confirmed by the dual luciferase assay. These results suggest that chitosan has a potential preventive effect on neointimal hyperplasia and related vascular remodeling.
Collapse
Affiliation(s)
- Yan Yan
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qian Wu
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jin-Hong Li
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xin Wei
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jun Xiao
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Liu Yang
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - An Xie
- Institute of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Li Zhang
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wen-Juan Mei
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yu-Juan Yang
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yan Zeng
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Dan Wen
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Li-Juan Deng
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lin-Feng Zheng
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
15
|
Gonzalez-Salinas F, Herrera-Gamboa J, Rojo R, Trevino V. Heterozygous Knockout of ARID4B Using CRISPR/Cas9 Attenuates Some Aggressive Phenotypes in a Breast Cancer Cell Line. Genes (Basel) 2023; 14:2184. [PMID: 38137006 PMCID: PMC10743217 DOI: 10.3390/genes14122184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is one of the leading causes of death in women around the world. Over time, many genes and mutations that are associated with the development of this disease have been identified. However, the specific role of many genes has not yet been fully elucidated. Higher ARID4B expression has been identified as a risk factor for diverse cancer types. Silencing experiments also showed that ARID4B is associated with developing cancer-associated characteristics. However, no transcriptomic studies have shown the overall cellular effect of loss of function in breast cancer in humans. This study addresses the impact of loss-of-function mutations in breast cancer MCF-7 cells. Using the CRISPR/Cas9 system, we generated mutations that caused heterozygous truncated proteins, isolating three monoclonal lines carrying insertions and deletions in ARID4B. We observed reduced proliferation and migration in in vitro experiments. In addition, from RNA-seq assays, a differential expression analysis shows known and novel deregulated cancer-associate pathways in mutated cells supporting the impact of ARID4B. For example, we found the AKT-PI3K pathway to be altered at the transcript level but through different genes than those reported for ARID4B. Our transcriptomic results also suggest new insights into the role of ARID4B in aggressiveness by the epithelial-to-mesenchymal transition and TGF-β pathways and in metabolism through cholesterol and mevalonate pathways. We also performed exome sequencing to show that no off-target effects were apparent. In conclusion, the ARID4B gene is associated with some aggressive phenotypes in breast cancer cells.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico; (F.G.-S.); (J.H.-G.); (R.R.)
| | - Jessica Herrera-Gamboa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico; (F.G.-S.); (J.H.-G.); (R.R.)
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo Leon, San Nicolas de los Garza 66455, Nuevo Leon, Mexico
| | - Rocio Rojo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico; (F.G.-S.); (J.H.-G.); (R.R.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City 14380, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico; (F.G.-S.); (J.H.-G.); (R.R.)
- Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo Leon, Mexico
- Tecnologico de Monterrey, oriGen Project, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
16
|
Guo CC, Xu HE, Ma X. ARID3a from the ARID family: structure, role in autoimmune diseases and drug discovery. Acta Pharmacol Sin 2023; 44:2139-2150. [PMID: 37488425 PMCID: PMC10618457 DOI: 10.1038/s41401-023-01134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
The AT-rich interaction domain (ARID) family of DNA-binding proteins is a group of transcription factors and chromatin regulators with a highly conserved ARID domain that recognizes specific AT-rich DNA sequences. Dysfunction of ARID family members has been implicated in various human diseases including cancers and intellectual disability. Among them, ARID3a has gained increasing attention due to its potential involvement in autoimmunity. In this article we provide an overview of the ARID family, focusing on the structure and biological functions of ARID3a. It explores the role of ARID3a in autoreactive B cells and its contribution to autoimmune diseases such as systemic lupus erythematosus and primary biliary cholangitis. Furthermore, we also discuss the potential for drug discovery targeting ARID3a and present a plan for future research in this field.
Collapse
Affiliation(s)
- Cheng-Cen Guo
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
17
|
Schneider P, Wander P, Arentsen-Peters STCJM, Vrenken KS, Rockx-Brouwer D, Adriaanse FRS, Hoeve V, Paassen I, Drost J, Pieters R, Stam RW. CRISPR-Cas9 Library Screening Identifies Novel Molecular Vulnerabilities in KMT2A-Rearranged Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:13207. [PMID: 37686014 PMCID: PMC10487613 DOI: 10.3390/ijms241713207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
In acute lymphoblastic leukemia (ALL), chromosomal translocations involving the KMT2A gene represent highly unfavorable prognostic factors and most commonly occur in patients less than 1 year of age. Rearrangements of the KMT2A gene drive epigenetic changes that lead to aberrant gene expression profiles that strongly favor leukemia development. Apart from this genetic lesion, the mutational landscape of KMT2A-rearranged ALL is remarkably silent, providing limited insights for the development of targeted therapy. Consequently, identifying potential therapeutic targets often relies on differential gene expression, yet the inhibition of these genes has rarely translated into successful therapeutic strategies. Therefore, we performed CRISPR-Cas9 knock-out screens to search for genetic dependencies in KMT2A-rearranged ALL. We utilized small-guide RNA libraries directed against the entire human epigenome and kinome in various KMT2A-rearranged ALL, as well as wild-type KMT2A ALL cell line models. This screening approach led to the discovery of the epigenetic regulators ARID4B and MBD3, as well as the receptor kinase BMPR2 as novel molecular vulnerabilities and attractive therapeutic targets in KMT2A-rearranged ALL.
Collapse
Affiliation(s)
- Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | - Kirsten S. Vrenken
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | | | - Veerle Hoeve
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Irene Paassen
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Ronald W. Stam
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
18
|
Ha S, Gujrati H, Wang BD. Aberrant PI3Kδ splice isoform as a potential biomarker and novel therapeutic target for endocrine cancers. Front Endocrinol (Lausanne) 2023; 14:1190479. [PMID: 37670888 PMCID: PMC10475954 DOI: 10.3389/fendo.2023.1190479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction PI3K/AKT signaling pathway is upregulated in a broad spectrum of cancers. Among the class I PI3Ks (PI3Kδ/β/δ isoforms), PI3Kδ has been implicated in hematologic cancers and solid tumors. Alternative splicing is a post-transcriptional process for acquiring proteomic diversity in eukaryotic cells. Emerging evidence has highlighted the involvement of aberrant mRNA splicing in cancer development/progression. Methods Our previous studies revealed that PIK3CD-S is an oncogenic splice variant that promotes tumor aggressiveness and drug resistance in prostate cancer (PCa). To further evaluate the potential of utilizing PI3Kδ-S (encoded from PIK3CD-S) as a cancer biomarker and/or drug target, comprehensive analyses were performed in a series of patient samples and cell lines derived from endocrine/solid tumors. Specifically, IHC, immunofluorescence, western blot and RT-PCR assay results have demonstrated that PI3Kδ isoforms were highly expressed in endocrine/solid tumor patient specimens and cell lines. Results Differential PIK3CD-S/PIK3CD-L expression profiles were identified in a panel of endocrine/solid tumor cells. SiRNA knockdown of PIK3CD-L or PIK3CD-S differentially inhibits AKT/mTOR signaling in PCa, breast, colon and lung cancer cell lines. Moreover, siRNA knockdown of PTEN increased PI3Kδ levels and activated AKT/mTOR signaling, while overexpression of PTEN reduced PI3Kδ levels and inhibited AKT/mTOR signaling in cancer cells. Intriguingly, PI3Kδ-S levels remained unchanged upon either siRNA knockdown or overexpression of PTEN. Taken together, these results suggested that PTEN negatively regulates PI3Kδ-L and its downstream AKT/mTOR signaling, while PI3Kδ-S promotes AKT/mTOR signaling without regulation by PTEN. Lastly, PI3Kδ inhibitor Idelalisib and SRPK1/2 inhibitor SRPIN340 were employed to assess their efficacies on inhibiting the PI3Kδ-expressing endocrine/solid tumors. Our results have shown that Idelalisib effectively inhibited PI3Kδ-L (but not PI3Kδ-S) mediated AKT/mTOR signaling. In contrast, SRPIN340 reversed the aberrant mRNA splicing, thereby inhibiting AKT/mTOR signaling. In-vitro functional assays have further demonstrated that a combination of Idelalisib and SRPIN340 achieved a synergistic drug effect (with drastically reduced cell viabilities/growths of tumor spheroids) in inhibiting the advanced tumor cells. Conclusion In summary, our study has suggested a promising potential of utilizing PI3Kδ-S (an oncogenic isoform conferring drug resistance and exempt from PTEN regulation) as a prognostic biomarker and drug target in advanced endocrine cancers.
Collapse
Affiliation(s)
- Siyoung Ha
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Himali Gujrati
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, United States
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
19
|
Chang JH, Xu BW, Shen D, Zhao W, Wang Y, Liu JL, Meng GX, Li GZ, Zhang ZL. BRF2 is mediated by microRNA-409-3p and promotes invasion and metastasis of HCC through the Wnt/β-catenin pathway. Cancer Cell Int 2023; 23:46. [PMID: 36927769 PMCID: PMC10018885 DOI: 10.1186/s12935-023-02893-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Its invasiveness and ability to metastasize contributes to an extremely high patient mortality. However, the molecular mechanisms that underlie the characteristics of HCC progression are not well understood. BRF2 has been shown to be an oncogene in a number of tumors; however, its role in HCC has not yet been thoroughly examined. In this study, we identified and validated BRF2 as an oncogene in HCC, providing a new insight into HCC pathogenesis and therapeutic possibilities. We showed that BRF2 expression was significantly upregulated in HCC cell lines and tissues, while BRF2 depletion suppressed HCC metastasis and invasion. We then examined the upstream regulation of BRF2 and identified miR-409-3p as being predicted to bind to the 3' UTR of BRF2. We used a luciferase activity assay and functional verification to show that BRF2 is downregulated by miR-409-3p. Finally, we used bioinformatic analysis to show that BRF2 may be related to early HCC development through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jian-Hua Chang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107 Wenhua West Road, Lixia District, Jinan, 250012, Shandong, China.,Department of General Surgery, Gansu Province Hospital, Lanzhou, 730000, GanSu Province, China
| | - Bo-Wen Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107 Wenhua West Road, Lixia District, Jinan, 250012, Shandong, China.,Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Shen
- Department of Obstetrics and Gynecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China
| | - Wei Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107 Wenhua West Road, Lixia District, Jinan, 250012, Shandong, China
| | - Yue Wang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107 Wenhua West Road, Lixia District, Jinan, 250012, Shandong, China
| | - Jia-Liang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107 Wenhua West Road, Lixia District, Jinan, 250012, Shandong, China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107 Wenhua West Road, Lixia District, Jinan, 250012, Shandong, China
| | - Guang-Zhen Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107 Wenhua West Road, Lixia District, Jinan, 250012, Shandong, China.
| | - Zong-Li Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107 Wenhua West Road, Lixia District, Jinan, 250012, Shandong, China.
| |
Collapse
|
20
|
Habrowska-Górczyńska DE, Kowalska K, Urbanek KA, Domińska K, Kozieł MJ, Piastowska-Ciesielska AW. Effect of the mycotoxin deoxynivalenol in combinational therapy with TRAIL on prostate cancer cells. Toxicol Appl Pharmacol 2023; 461:116390. [PMID: 36690084 DOI: 10.1016/j.taap.2023.116390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is reported as a promising anti-cancer therapeutic target. Unfortunately, prostate cancer cells (PCa) are partially resistant to TRAIL-induced apoptosis limiting its therapeutic potential. The existing body of knowledge suggests that naturally produced compounds, such as mycotoxin deoxynivalenol (DON), might potentially sensitize cells to TRAIL treatment and improve the efficiency of therapy. Previously, we observed that DON induces oxidative stress and apoptosis in PCa cell lines. Thus we addressed here whether DON can sensitize PCa cells to TRAIL-induced apoptosis. Our data demonstrates that three out of four tested PCa cell lines pretreated with DON increased TRAIL-induced apoptosis detected with flow cytometry. This effect was associated with oxidative stress (LNCaP and DU-145 cell line) and elevated DNA damage (DU-145, LNCaP, and 22Rv1 cell lines). Next, in the animal model we inoculated PC tumor to SCKID mice followed by administration of DON intraperitoneally and/or TRIAL intravenously. During 21 days monitoring of tumor growth, the animals received 7 doses of DON, TRAIL, DON+TRAIL or control injections. No significant reduction in tumor mass was observed after combinational treatment of TRAIL and DON compared to 1 μg/kg of body weight DON treatment alone, which itself decreased the tumor growth. However, despite the lack of the TRAIL + DON effect, DON itself inducing apoptosis is an interesting compound worth investigating in the context of other combination therapies.
Collapse
Affiliation(s)
| | - Karolina Kowalska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Kinga Anna Urbanek
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Marta Justyna Kozieł
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | | |
Collapse
|
21
|
Lai F, Dai S, Zhao Y, Sun Y. Combination of PDGF-BB and adipose-derived stem cells accelerated wound healing through modulating PTEN/AKT pathway. Injury 2023:S0020-1383(23)00123-7. [PMID: 37028952 DOI: 10.1016/j.injury.2023.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 04/09/2023]
Abstract
Adipose-derived stem cells (ADSCs) have been widely proven to facilitate wound healing. Our study aimed to estimate the influence of combined ADSCs and platelet-derived growth factor-BB (PDGF-BB) on wound healing. We utilized 4 healthy SD rats to isolate ADSCs. Platelet-rich plasma (PRP) was acquired utilizing a two-step centrifugation technology. The role of PRP, PDGF-BB, and PDGF-BB combined with a PI3k inhibitor LY294002 on the viability, migration, and PTEN/AKT pathway in ADSCs were examined utilizing CCK-8, Transwell, and western blot assays. Then, we constructed an open trauma model in SD rats. Effects of ADSCs treated with PDGF-BB on pathological changes, CD31, and PTEN/AKT pathway of wound closure were assessed by hematoxylin & eosin (H&E) staining, Masson staining, immunohistochemical, and western blot assays, respectively. PRP and PDGF-BB intensified the viability and migration of ADSCs by modulating the PTEN/AKT pathway. Interestingly, LY294002 reversed the role of PDGF-BB on ADSCs. In vivo experiments, combined intervention with ADSCs plus PDGF-BB/PRP facilitated wound closure and ameliorated histological injury. Moreover, combined intervention with ADSCs and PDGF-BB attenuated the PTEN level and elevated the CD31 level as well as the ratio of p-AKT/AKT in the skin tissues. A combination of ADSCs and PDGF-BB facilitated wound healing might associate with the regulation of the PTEN/AKT pathway.
Collapse
Affiliation(s)
- Fangyuan Lai
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shijie Dai
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ye Zhao
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yi Sun
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Wu Y, Chang J, Ge J, Xu K, Zhou Q, Zhang X, Zhu N, Hu M. Isobavachalcone's Alleviation of Pyroptosis Contributes to Enhanced Apoptosis in Glioblastoma: Possible Involvement of NLRP3. Mol Neurobiol 2022; 59:6934-6955. [PMID: 36053436 DOI: 10.1007/s12035-022-03010-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant intracranial tumor with high mortality rates and invariably poor prognosis due to its limited clinical treatments. There is an urgent need to develop new therapeutic drugs for GBM treatment. As a natural prenylated chalcone compound, Isobavachalcone (IBC)'s favorable pharmacological activities have been widely revealed. However, potential inhibitory effects of IBC on GBM have not been explored. In the present study, we aimed to detect the effects of IBC on GBM and clarify its anti-GBM mechanisms for the first time. It was observed that IBC could inhibit GBM cell proliferation, migration, and invasion in vitro and prevent tumor growth without any significant drug toxicity in both subcutaneous and orthotopic GBM xenograft tumor models in vivo. Mechanistically, IBC may target NOD-like receptor family pyrin domain-containing 3 (NLRP3) transcription factor estrogen receptor α (ESR1 gene) by network pharmacology and molecular docking analysis. Experimentally, IBC alleviated NLRP3 inflammasome-related pyroptosis and inflammation, arrested cell cycle at G1 phase, and induced mitochondria-dependent apoptosis in GBM cells. IBC's inhibition on NLRP3 could be rescued by the NLRP3 antagonist CY-09 both in vitro and in vivo. These results indicate that IBC is a potential therapeutic drug against GBM and provide a new insight into GBM treatment.
Collapse
Affiliation(s)
- Yueshan Wu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Jing Chang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Juanjuan Ge
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Kangyan Xu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Quan Zhou
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Xiaowen Zhang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Ni Zhu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China.
| | - Meichun Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
23
|
Comprehensive characterization of posttranscriptional impairment-related 3'-UTR mutations in 2413 whole genomes of cancer patients. NPJ Genom Med 2022; 7:34. [PMID: 35654793 PMCID: PMC9163142 DOI: 10.1038/s41525-022-00305-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
The 3' untranslated region (3'-UTR) is the vital element regulating gene expression, but most studies have focused on variations in RNA-binding proteins (RBPs), miRNAs, alternative polyadenylation (APA) and RNA modifications. To explore the posttranscriptional function of 3'-UTR somatic mutations in tumorigenesis, we collected whole-genome data from 2413 patients across 18 cancer types. Our updated algorithm, PIVar, revealed 25,216 3'-UTR posttranscriptional impairment-related SNVs (3'-UTR piSNVs) spanning 2930 genes; 24 related RBPs were significantly enriched. The somatic 3'-UTR piSNV ratio was markedly increased across all 18 cancer types, which was associated with worse survival for four cancer types. Several cancer-related genes appeared to facilitate tumorigenesis at the protein and posttranscriptional regulation levels, whereas some 3'-UTR piSNV-affected genes functioned mainly via posttranscriptional mechanisms. Moreover, we assessed immune cell and checkpoint characteristics between the high/low 3'-UTR piSNV ratio groups and predicted 80 compounds associated with the 3'-UTR piSNV-affected gene expression signature. In summary, our study revealed the prevalence and clinical relevance of 3'-UTR piSNVs in cancers, and also demonstrates that in addition to affecting miRNAs, 3'-UTR piSNVs perturb RBPs binding, APA and m6A RNA modification, which emphasized the importance of considering 3'-UTR piSNVs in cancer biology.
Collapse
|
24
|
Deák G, Cook AG. Missense Variants Reveal Functional Insights Into the Human ARID Family of Gene Regulators. J Mol Biol 2022; 434:167529. [PMID: 35257783 PMCID: PMC9077328 DOI: 10.1016/j.jmb.2022.167529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/10/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Missense variants are alterations to protein coding sequences that result in amino acid substitutions. They can be deleterious if the amino acid is required for maintaining structure or/and function, but are likely to be tolerated at other sites. Consequently, missense variation within a healthy population can mirror the effects of negative selection on protein structure and function, such that functional sites on proteins are often depleted of missense variants. Advances in high-throughput sequencing have dramatically increased the sample size of available human variation data, allowing for population-wide analysis of selective pressures. In this study, we developed a convenient set of tools, called 1D-to-3D, for visualizing the positions of missense variants on protein sequences and structures. We used these tools to characterize human homologues of the ARID family of gene regulators. ARID family members are implicated in multiple cancer types, developmental disorders, and immunological diseases but current understanding of their mechanistic roles is incomplete. Combined with phylogenetic and structural analyses, our approach allowed us to characterise sites important for protein-protein interactions, histone modification recognition, and DNA binding by the ARID proteins. We find that comparing missense depletion patterns among paralogs can reveal sub-functionalization at the level of domains. We propose that visualizing missense variants and their depletion on structures can serve as a valuable tool for complementing evolutionary and experimental findings.
Collapse
Affiliation(s)
- Gauri Deák
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom. https://twitter.com/GauriDeak
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
25
|
Xie J, Wu W, Zheng L, Lin X, Tai Y, Wang Y, Wang L. Roles of MicroRNA-21 in Skin Wound Healing: A Comprehensive Review. Front Pharmacol 2022; 13:828627. [PMID: 35295323 PMCID: PMC8919367 DOI: 10.3389/fphar.2022.828627] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-21 (miR-21), one of the early mammalian miRNAs identified, has been detected to be upregulated in multiple biological processes. Increasing evidence has demonstrated the potential values of miR-21 in cutaneous damage and skin wound healing, but lack of a review article to summarize the current evidence on this issue. Based on this review, relevant studies demonstrated that miR-21 played an essential role in wound healing by constituting a complex network with its targeted genes (i.e., PTEN, RECK. SPRY1/2, NF-κB, and TIMP3) and the cascaded signaling pathways (i.e., MAPK/ERK, PI3K/Akt, Wnt/β-catenin/MMP-7, and TGF-β/Smad7-Smad2/3). The treatment effectiveness developed by miR-21 might be associated with the promotion of the fibroblast differentiation, the improvement of angiogenesis, anti-inflammatory, enhancement of the collagen synthesis, and the re-epithelialization of the wound. Currently, miRNA nanocarrier systems have been developed, supporting the feasibility clinical feasibility of such miR-21-based therapy. After further investigations, miR-21 may serve as a potential therapeutic target for wound healing.
Collapse
Affiliation(s)
- Jie Xie
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Weizhou Wu
- Department of Urology, Maoming People's Hospital, Guangdong, China
| | - Liying Zheng
- Postgraduate Pepartment, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Xuesong Lin
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yuncheng Tai
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yajie Wang
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Le Wang
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
26
|
Tejada-Martinez D, Avelar RA, Lopes I, Zhang B, Novoa G, de Magalhães JP, Trizzino M. Positive Selection and Enhancer Evolution Shaped Lifespan and Body Mass in Great Apes. Mol Biol Evol 2022; 39:msab369. [PMID: 34971383 PMCID: PMC8837823 DOI: 10.1093/molbev/msab369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within primates, the great apes are outliers both in terms of body size and lifespan, since they include the largest and longest-lived species in the order. Yet, the molecular bases underlying such features are poorly understood. Here, we leveraged an integrated approach to investigate multiple sources of molecular variation across primates, focusing on over 10,000 genes, including approximately 1,500 previously associated with lifespan, and additional approximately 9,000 for which an association with longevity has never been suggested. We analyzed dN/dS rates, positive selection, gene expression (RNA-seq), and gene regulation (ChIP-seq). By analyzing the correlation between dN/dS, maximum lifespan, and body mass, we identified 276 genes whose rate of evolution positively correlates with maximum lifespan in primates. Further, we identified five genes, important for tumor suppression, adaptive immunity, metastasis, and inflammation, under positive selection exclusively in the great ape lineage. RNA-seq data, generated from the liver of six species representing all the primate lineages, revealed that 8% of approximately 1,500 genes previously associated with longevity are differentially expressed in apes relative to other primates. Importantly, by integrating RNA-seq with ChIP-seq for H3K27ac (which marks active enhancers), we show that the differentially expressed longevity genes are significantly more likely than expected to be located near a novel "ape-specific" enhancer. Moreover, these particular ape-specific enhancers are enriched for young transposable elements, and specifically SINE-Vntr-Alus. In summary, we demonstrate that multiple evolutionary forces have contributed to the evolution of lifespan and body size in primates.
Collapse
Affiliation(s)
- Daniela Tejada-Martinez
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Roberto A Avelar
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Guy Novoa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología—CSIC, Madrid, Spain
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
27
|
Yoon JS, Lee HJ, Sim DY, Im E, Park JE, Park WY, Koo JI, Shim BS, Kim SH. Moracin D induces apoptosis in prostate cancer cells via activation of PPAR gamma/PKC delta and inhibition of PKC alpha. Phytother Res 2021; 35:6944-6953. [PMID: 34709688 DOI: 10.1002/ptr.7313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 10/07/2021] [Indexed: 11/11/2022]
Abstract
Herein, apoptotic mechanism of Moracin D was explored in prostate cancer cells in association with peroxisome proliferator-activated receptor gamma (PPAR-γ)-related signaling involved in lipid metabolism. Moracin D augmented cytotoxicity and sub G1 population in PC3 and DU145 prostate cancer cells, while DU145 cells were more susceptible to Moracin D than PC3 cells. Moracin D attenuated the expression of caspase-3, poly (ADP-ribose) polymerase (PARP), B-cell lymphoma 2 (Bcl-2), and B-cell lymphoma-extra-large (Bcl-xL) in DU145 cells. Consistently, Moracin D significantly augmented the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in DU145 cells. Interestingly, Moracin D activated PPAR-γ and phospho-protein kinase C delta (p-PKC-δ) and inhibited phospho-protein kinase C alpha (p-PKC-α) in DU145 cells. Furthermore, STRING bioinformatic analysis reveals that PPAR-γ interacts with nuclear factor-κB (NF-κB) that binds to PKC-α/PKC-δ or protein kinase B (AKT) or extracellular signal-regulated kinase (ERK). Indeed, Moracin D decreased phosphorylation of NF-κB, ERK, and AKT in DU145 cells. Conversely, PPAR-γ inhibitor GW9662 reduced the apoptotic ability of Moracin D to activate caspase 3 and PARP in DU145 cells. Taken together, these findings provide a novel insight that activation of PPAR-γ/p-PKC-δ and inhibition of p-PKC-α are critically involved in Moracin D-induced apoptosis in DU145 prostate cancer cells.
Collapse
Affiliation(s)
- Jae Seok Yoon
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woon Yi Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ja Il Koo
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Wang Y, Lou N, Zuo M, Zhu F, He Y, Cheng Z, Wang X. STAT3-induced ZBED3-AS1 promotes the malignant phenotypes of melanoma cells by activating PI3K/AKT signaling pathway. RNA Biol 2021; 18:355-368. [PMID: 34241580 DOI: 10.1080/15476286.2021.1950463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Melanoma is considered as the most frequent primary malignancy occurring in skin. Accumulating studies have suggested that long non-coding RNAs (lncRNAs) play critical parts in multiple cancers. In this study, we explored the molecular mechanism of ZBED3 antisense RNA 1 (ZBED3-AS1) in melanoma. We observed that ZBED3-AS1 expression was remarkably up-regulated in melanoma tissues, and high ZBED3-AS1 level was linked to unsatisfactory survival of melanoma patients. Then, we discovered that ZBED3-AS1 was overexpressed in melanoma cells compared with human epidermal melanocytes. In addition, loss-of-function assays verified that ZBED3-AS1 knockdown restrained cell proliferation, migration, epithelial-mesenchymal transition (EMT), and stemness in melanoma. In addition, signal transducer and activator of transcription 3 (STAT3), which also showed tumour-facilitating functions in melanoma, was confirmed as a transcriptional activator of ZBED3-AS1. Moreover, ZBED3-AS1 enhanced the expression of AT-rich interaction domain 4B (ARID4B) through sequestering miR-381-3p. Importantly, we further confirmed that ZBED3-AS1 promoted the malignant progression of melanoma by regulating miR-381-3p/ARID4B axis to activate the phosphatidylinositol 3-kinase/AKT serine/threonine kinase (PI3K/AKT) signalling pathway. In a word, our research might provide a novel therapeutic target for melanoma.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Nan Lou
- Department of Joint Replacement Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Min Zuo
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Fuqiang Zhu
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Yan He
- Department of Pathology, Longgang Center Hospital of Shenzhen, Guangdong, China
| | - Zhiqiang Cheng
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Xiaomei Wang
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
29
|
Kwa MQ, Brandao R, Phung TH, Ge J, Scieri G, Brakebusch C. MRCKα Is Dispensable for Breast Cancer Development in the MMTV-PyMT Model. Cells 2021; 10:cells10040942. [PMID: 33921698 PMCID: PMC8073694 DOI: 10.3390/cells10040942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
MRCKα is a ubiquitously expressed serine/threonine kinase involved in cell contraction and F-actin turnover, which is highly amplified in human breast cancer and part of a gene expression signature for bad prognosis. Nothing is known about the in vivo function of MRCKα. To explore MRCKα function in development and in breast cancer, we generated mice lacking a functional MRCKα gene. Mice were born close to the Mendelian ratio and showed no obvious phenotype including a normal mammary gland formation. Assessing breast cancer development using the transgenic MMTV-PyMT mouse model, loss of MRCKα did not affect tumor onset, tumor growth and metastasis formation. Deleting MRCKα and its related family member MRCKβ in two triple-negative breast cancer cell lines resulted in reduced invasion of MDA-MB-231 cells, but did not affect migration of 4T1 cells. Further genomic analysis of human breast cancers revealed that MRCKα is frequently co-amplified with the oncogenes ARID4B and AKT3 which might contribute to the prognostic value of MRCKα expression. Collectively, these data suggest that MRCKα might be a prognostic marker for breast cancer, but probably of limited functional importance.
Collapse
MESH Headings
- Actin Depolymerizing Factors/metabolism
- Actins/metabolism
- Animals
- Antigens, Neoplasm/metabolism
- Antigens, Polyomavirus Transforming/metabolism
- Base Sequence
- Carcinogenesis/drug effects
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Collagen/pharmacology
- Disease Models, Animal
- Female
- Gels/pharmacology
- Humans
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Tumor Virus, Mouse/drug effects
- Mammary Tumor Virus, Mouse/physiology
- Mice
- Mice, Knockout
- Mutation/genetics
- Myosins/metabolism
- Myotonin-Protein Kinase/metabolism
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Neoplasm Proteins/metabolism
- Phenotype
- Phosphorylation/drug effects
- Polymerization/drug effects
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
- Mei Qi Kwa
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark; (M.Q.K.); (R.B.); (T.H.P.); (J.G.); (G.S.)
| | - Rafael Brandao
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark; (M.Q.K.); (R.B.); (T.H.P.); (J.G.); (G.S.)
| | - Trong H. Phung
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark; (M.Q.K.); (R.B.); (T.H.P.); (J.G.); (G.S.)
- Centre College, 600 W Walnut St, Danville, KY 40422, USA
| | - Jianfeng Ge
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark; (M.Q.K.); (R.B.); (T.H.P.); (J.G.); (G.S.)
- Medical Research Centre (MRC) Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, P.O. Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Giuseppe Scieri
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark; (M.Q.K.); (R.B.); (T.H.P.); (J.G.); (G.S.)
| | - Cord Brakebusch
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark; (M.Q.K.); (R.B.); (T.H.P.); (J.G.); (G.S.)
- Correspondence:
| |
Collapse
|
30
|
Luo SM, Tsai WC, Tsai CK, Chen Y, Hueng DY. ARID4B Knockdown Suppresses PI3K/AKT Signaling and Induces Apoptosis in Human Glioma Cells. Onco Targets Ther 2021; 14:1843-1855. [PMID: 33732001 PMCID: PMC7956898 DOI: 10.2147/ott.s286837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/09/2020] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Glioblastoma multiforme is a highly malignant primary brain cancer with a poor prognosis. We recently reported that ARID4B could potentially serve as a biomarker associated with poor survival in glioma patients. However, the function of ARID4B in human gliomas remains unclear. The aim of this study is to investigate the molecular cell biology role of ARID4B in human glioma cells. MATERIALS AND METHODS Gene Expression Omnibus (GEO) and Human Protein Atlas (HPA) datasets were analyzed for the expression of ARID4B in WHO pathological grading, overall survival and immunohistochemical staining. Using quantitative RT-PCR and Western blotting, those findings were confirmed in normal brain tissue and glioma cell lines. ARID4B knockdown was conducted via lentivirus-based transfection of small hairpin RNA in human glioma cells to investigate cell proliferation, cell cycle, and apoptosis. RESULTS In the present study, our analysis of GEO datasets showed that ARID4B mRNA expression is higher in WHO grade IV tumors (n = 81) than in non-tumor control tissue (n = 23, P <0.0001). ARID4B knockdown suppressed glioma cell proliferation and induced G1 phase arrest via the PI3K/AKT pathway. It also increased expression of HDAC1, leading to higher acetyl-p53 and acetyl-H3 levels and reduced glioma cell migration and invasion. These effects were mediated via downregulation of AKT pathway components, including p-mTOR, p-PI3K and p-AKT. ARID4B knockdown also led to downregulation of Cyclin D1, which increased apoptosis in human glioma cells. CONCLUSION These findings that ARID4B expression correlates positively with WHO pathologic grading in glioma. ARID4B knockdown suppresses PI3K/AKT signaling and induces apoptosis in human glioma cells. These results suggests that ARID4B acts as an oncogene in human gliomas.
Collapse
Affiliation(s)
- Siou-Min Luo
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chia-Kuang Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
31
|
Abstract
In over two decades since the discovery of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), nearly 18,000 publications have attempted to elucidate its functions and roles in normal physiology and disease. The frequent disruption of PTEN in cancer cells was a strong indication that it had critical roles in tumour suppression. Germline PTEN mutations have been identified in patients with heterogeneous tumour syndromic diseases, known as PTEN hamartoma tumour syndrome (PHTS), and in some individuals with autism spectrum disorders (ASD). Today we know that by limiting oncogenic signalling through the phosphoinositide 3-kinase (PI3K) pathway, PTEN governs a number of processes including survival, proliferation, energy metabolism, and cellular architecture. Some of the most exciting recent advances in the understanding of PTEN biology and signalling have revisited its unappreciated roles as a protein phosphatase, identified non-enzymatic scaffold functions, and unravelled its nuclear function. These discoveries are certain to provide a new perspective on its full tumour suppressor potential, and knowledge from this work will lead to new anti-cancer strategies that exploit PTEN biology. In this review, we will highlight some outstanding questions and some of the very latest advances in the understanding of the tumour suppressor PTEN.
Collapse
Affiliation(s)
- Jonathan Tak-Sum Chow
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Zhao Y, Sun Y, Yang J, Zhu Z, Jia X. WITHDRAWN: Circ_0000517 contributes to hepatocellular carcinoma progression by upregulating ARID4B via sponging miR-328-3p. Cell Signal 2021:109950. [PMID: 33582185 DOI: 10.1016/j.cellsig.2021.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Yongmei Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, China
| | - Ya Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, China.
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, China
| | - Zhenfeng Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, China
| | - Xin Jia
- School of pharmacy, Zhengzhou University, Zhengzhou City, Henan Province 450052, China
| |
Collapse
|
33
|
Chen S, He Z, Zhu C, Liu Y, Li L, Deng L, Wang J, Yu C, Sun C. TRIM37 Mediates Chemoresistance and Maintenance of Stemness in Pancreatic Cancer Cells via Ubiquitination of PTEN and Activation of the AKT-GSK-3β-β-Catenin Signaling Pathway. Front Oncol 2020; 10:554787. [PMID: 33194618 PMCID: PMC7651862 DOI: 10.3389/fonc.2020.554787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose The tripartite motif-containing family member TRIM37 is involved in a number of important biological and pathological processes, and it has recently been shown to be an essential regulator of protein ubiquitination and a contributor to tumorigenesis. We previously showed that TRIM37 is overexpressed in and promotes the proliferation and invasion of pancreatic cancer (PC). Methods Sphere formation, flow cytometric, qRT-PCR, western blot, colony formation, EdU incorporation, mouse xenograft model, TUNEL and IHC assays were performed to detect the role of TRIM37 in stemness and chemoresistance of PC in vitro and in vivo. Bioinformatics analysis and dual-luciferase reporter assays were used to determine which intracellular pathways might mediate the effects of TRIM37 in PC cells. Immunofluorescent(IF) staining, co-immunoprecipitation(CO-IP), protein stability and ubiquitination assays were performed to investigate the relationship between TRIM37 and PTEN. Results TRIM37 modulates the ubiquitination and degradation of the tumor suppressor phosphatase and tensin homolog (PTEN), which negatively regulates the AKT–GSK-3β–β-catenin signaling pathway, thereby sustaining aberrant activation of PC cells. High expression of TRIM37 combined with low expression of PTEN correlates with poor survival of PC patients. Conclusions Collectively, our results suggest that inhibition of the TRIM37–AKT–GSK-3β–β-catenin axis may be a promising strategy for treatment of PC.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Changhao Zhu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Yanqing Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Lin Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Lu Deng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Jun Wang
- Reproductive Medicine Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| |
Collapse
|
34
|
Wai Hon K, Zainal Abidin SA, Othman I, Naidu R. Insights into the Role of microRNAs in Colorectal Cancer (CRC) Metabolism. Cancers (Basel) 2020; 12:cancers12092462. [PMID: 32878019 PMCID: PMC7565715 DOI: 10.3390/cancers12092462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, with a high mortality rate globally. The pathophysiology of CRC is mainly initiated by alteration in gene expression, leading to dysregulation in multiple signalling pathways and cellular processes. Metabolic reprogramming is one of the important cancer hallmarks in CRC, which involves the adaptive changes in tumour cell metabolism to sustain the high energy requirements for rapid cell proliferation. There are several mechanisms in the metabolic reprogramming of cancer cells, such as aerobic glycolysis, oxidative phosphorylation, lactate and fatty acids metabolism. MicroRNAs (miRNAs) are a class of non-coding RNAs that are responsible for post-transcriptional regulation of gene expression. Differential expression of miRNAs has been shown to play an important role in different aspects of tumorigenesis, such as proliferation, apoptosis, and drug resistance, as well as metabolic reprogramming. Increasing evidence also reports that miRNAs could function as potential regulators of metabolic reprogramming in CRC cells. This review provides an insight into the role of different miRNAs in regulating the metabolism of CRC cells as well as to discuss the potential role of miRNAs as biomarkers or therapeutic targets in CRC tumour metabolism.
Collapse
|
35
|
Bhagat S, Singh S. Co-delivery of AKT3 siRNA and PTEN Plasmid by Antioxidant Nanoliposomes for Enhanced Antiproliferation of Prostate Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:3999-4011. [PMID: 35025475 DOI: 10.1021/acsabm.9b01016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Globally, prostate cancer is the fifth major cancer type and the second leading cause of cancer-related death in men. In 2018, about 1.3 million prostate cancer cases were reported worldwide. It is reported that loss of PTEN (tumor suppressor gene) expression leads to hyperactivation of the PI3K/AKT pathway and thus induces uncontrolled cell proliferation. Loss or mutation in regular PTEN expression is reported to occur in ∼30% of primary prostate cancer cases and ∼65% of metastatic cancer cases. Restoring the PTEN expression could inhibit the PI3K/AKT/mTOR signaling pathway, thus avoid the growth of prostate cancer cells. In this work, we have synthesized a multifunctional nanoliposomal formulation incorporating PTEN plasmid, AKT3 siRNA, and antioxidant cerium oxide nanoparticles (CeNPs). The nanoliposomes were able to successfully internalize in prostate cancer (PC-3) cells, restore the expression of PTEN protein, and knock down AKT3 mRNA. Further, the multifunctional nanoliposomes induce DNA damage and apoptosis in prostate cancer cells. The investigation of the PI3K/AKT/mTOR signaling pathway revealed that PTEN protein and apoptosis-specific proteins are overexpressed, leading to the inhibition of oncoproteins and, thus, prostate cancer.
Collapse
Affiliation(s)
- Stuti Bhagat
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Ahmedabad 380009, Gujarat, India
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
36
|
Wang Y, Wang R, Wu S, An J, Liang Y, Hou L, Zhang Z. Self-responsive co-delivery system for remodeling tumor intracellular microenvironment to promote PTEN-mediated anti-tumor therapy. NANOSCALE 2020; 12:9392-9403. [PMID: 32141453 DOI: 10.1039/d0nr00563k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Delivering the pten gene into tumor cells to reacquire PTEN functionality is considered to be an attractive method for cancer treatment. However, the inhibition effect of the tumor intracellular microenvironment (TIME), especially at the high reactive oxygen species (ROS) level, on pten expression and PTEN protein functionality was nearly overlooked. Herein, the development of a potential strategy is described, which enhances PTEN-mediated anti-tumor capability by exhausting the intracellular ROS in TIME. To achieve this, poly(ethyleneimine) (PEI)-modified DSPE was introduced to protect the pten plasmid, and form liposomes for encapsulating the "scavenger" of oxidation homeostasis, epigallocatechin-3-gallate (EGCG). Notably, this was a simple system with improved safety compared which when compared with the use of PEI could accomplish efficient pten transfection and simultaneous disintegration to cause transient release of EGCG responding to the endosome environment through the "proton sponge effect". In the cytoplasm, EGCG depleted ROS and promoted the expression of the pten gene as well as restoring protein functionality, thus negatively regulating the PI3K-AKT signaling pathway. In vitro and in vivo results revealed that this system significantly inhibited tumor growth via remodeling of the TIME, and provided a promising way to control malignant tumors.
Collapse
Affiliation(s)
- Yifei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| | | | | | | | | | | | | |
Collapse
|