1
|
Ruan X, Meng D, Xu M, Fang G, Ding C, Leng J, Wang X, Ba K, Zhang H, Zhang W, Xie T, Jiang Z, Dai J, Cui X, Ravi SK. Semi-Organic Artificial Photosynthetic System with Engineered Phenoxazinone Derivatives for Photocatalytic Hydrogen Production with Broadened Near-Infrared Light Harvesting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2501037. [PMID: 39985283 PMCID: PMC12005748 DOI: 10.1002/advs.202501037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Indexed: 02/24/2025]
Abstract
Natural photosynthetic systems utilize complex pigment-protein assemblies for light harvesting across a broad spectral range from UV to near-infrared, enabling efficient photogeneration and charge separation. Conventional photocatalysts, however, primarily absorb UV (<380 nm) and visible light (380-780 nm), resulting in suboptimal spectral utilization. This study introduces a semi-organic artificial photosynthetic system that integrates molecularly engineered phenoxazinone derivatives with H-doped rutile TiO2 (H-TiO2) nanorods. Bis(Triphenylamine)Phenoxazinone (BTP) features a phenoxazinone core with two triphenylamine donor groups, enabling light absorption up to 800 nm. Modifying BTP with an additional malononitrile group (MBTP) extends absorption into the NIR region up to 1200 nm. Optimized semi-organic catalysts with MBTP nanobelts and H-TiO2 nanorods showed an excellent photocatalytic hydrogen evolution rate of 29.4 mmol g-1 h-1 and 60.4 µmol g-1 h-1 under UV-vis and NIR irradiation, respectively. Femtosecond transient absorption (fs-TA) spectroscopy showed rapid electron injection from the photoexcited phenoxazinone derivatives to the H-TiO2 conduction band, indicating efficient charge carrier dynamics. Photoelectrochemical measurements confirmed improved charge transport and reduced recombination in the MBTP-based system, attributed to the stronger internal electric field and increased dipole moment from the malononitrile modification. These findings highlight the potential of tailored semi-organic systems for high-efficiency solar-to-hydrogen conversion.
Collapse
Affiliation(s)
- Xiaowen Ruan
- School of Energy and EnvionmentCity University of Hong KongTat Chee Avenue, KowloonHong Kong SAR999077P. R. China
- National Key Laboratory of Automotive Chassis Integration and BionicsSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Depeng Meng
- National Key Laboratory of Automotive Chassis Integration and BionicsSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Minghua Xu
- National Key Laboratory of Automotive Chassis Integration and BionicsSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Guozhen Fang
- National Key Laboratory of Automotive Chassis Integration and BionicsSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Chunsheng Ding
- National Key Laboratory of Automotive Chassis Integration and BionicsSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Xuan Wang
- College of Information TechnologyJilin Normal UniversitySiping136000P. R. China
| | - Kaikai Ba
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Haiyan Zhang
- National Key Laboratory of Automotive Chassis Integration and BionicsSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Wei Zhang
- National Key Laboratory of Automotive Chassis Integration and BionicsSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Tengfeng Xie
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Zhifeng Jiang
- Institute for Energy ResearchJiangsu UniversityZhenjiang212013P. R. China
| | - Jianan Dai
- College of Information TechnologyJilin Normal UniversitySiping136000P. R. China
| | - Xiaoqiang Cui
- National Key Laboratory of Automotive Chassis Integration and BionicsSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Sai Kishore Ravi
- School of Energy and EnvionmentCity University of Hong KongTat Chee Avenue, KowloonHong Kong SAR999077P. R. China
| |
Collapse
|
2
|
Li D, Deng L, Chen H, Song X, Chen C, Feng Y, Bai H, Qin Y, Zhang W, Li C. Manipulation of Oxygen Vacancies and Charge Transfer for Enhancing Visible-Near-Infrared Photodegradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6007-6019. [PMID: 40000010 DOI: 10.1021/acs.langmuir.4c04739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Photocatalytic degradation technology has drawn extensive attention due to its ability to utilize light energy for pollutant degradation. However, the generation of superoxide and hydroxyl radicals under broad-spectrum light confronts significant challenges. Herein, N-GQDs/TiO2-x was rationally designed by adjusting oxygen vacancies (Ov) densities and constructing interfacial charge transfer channels. First, in situ XRD and EPR investigations disclosed that lowering the calcination temperature enabled the easy formation of rich oxygen vacancies. These vacancies introduced mid-gap states within the bandgap of TiO2-x, thereby facilitating efficient light absorption. Meanwhile, the increased Ov density enhanced electron transport and facilitated electron escape in TiO2-x. Moreover, an interfacial charge transfer channel was established between N-GQDs and TiO2-x, which effectively promoted the transfer of photogenerated carriers. Because of these structural and electronic modifications, both ·OH and ·O2- could be readily generated under visible and near-infrared light irradiations. Notably, under the irradiation of 470 nm LEDs, 99.3% of acid chrome blue K (AcbK) was degraded by N-GQDs/TiO2-x within 120 min. This work emphasizes the vital synergistic role of oxygen vacancies and interfacial charge-transfer channels, guiding the design of high-performance, full-spectrum photocatalysts for environmental applications.
Collapse
Affiliation(s)
- Dongliang Li
- Department of Chemical and Material Engineering, Lvliang University, Lvliang 033001, Shanxi, P. R. China
- Institute of New Carbon-Based Materials and Zero-Carbon and Negative-Carbon Technology, Lvliang University, Lvliang 033001, Shanxi, P. R. China
| | - Liqiang Deng
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R.China
- Institute of New Carbon-Based Materials and Zero-Carbon and Negative-Carbon Technology, Lvliang University, Lvliang 033001, Shanxi, P. R. China
| | - Huiyan Chen
- Department of Chemical and Material Engineering, Lvliang University, Lvliang 033001, Shanxi, P. R. China
| | - Xinran Song
- Department of Chemical and Material Engineering, Lvliang University, Lvliang 033001, Shanxi, P. R. China
| | - Chao Chen
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Yu Feng
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R.China
| | - Hui Bai
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R.China
| | - Yongqi Qin
- Department of Chemical and Material Engineering, Lvliang University, Lvliang 033001, Shanxi, P. R. China
- Institute of New Carbon-Based Materials and Zero-Carbon and Negative-Carbon Technology, Lvliang University, Lvliang 033001, Shanxi, P. R. China
| | - Weimin Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R.China
| | - Congming Li
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R.China
| |
Collapse
|
3
|
Ahasan T, Edirisooriya EMNT, Senanayake PS, Xu P, Wang H. Advanced TiO 2-Based Photocatalytic Systems for Water Splitting: Comprehensive Review from Fundamentals to Manufacturing. Molecules 2025; 30:1127. [PMID: 40076350 PMCID: PMC11901858 DOI: 10.3390/molecules30051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The global imperative for clean energy solutions has positioned photocatalytic water splitting as a promising pathway for sustainable hydrogen production. This review comprehensively analyzes recent advances in TiO2-based photocatalytic systems, focusing on materials engineering, water source effects, and scale-up strategies. We recognize the advancements in nanoscale architectural design, the engineered heterojunction of catalysts, and cocatalyst integration, which have significantly enhanced photocatalytic efficiency. Particular emphasis is placed on the crucial role of water chemistry in photocatalytic system performance, analyzing how different water sources-from wastewater to seawater-impact hydrogen evolution rates and system stability. Additionally, the review addresses key challenges in scaling up these systems, including the optimization of reactor design, light distribution, and mass transfer. Recent developments in artificial intelligence-driven materials discovery and process optimization are discussed, along with emerging opportunities in bio-hybrid systems and CO2 reduction coupling. Through critical analysis, we identify the fundamental challenges and propose strategic research directions for advancing TiO2-based photocatalytic technology toward practical implementation. This work will provide a comprehensive framework for exploring advanced TiO2-based composite materials and developing efficient and scalable photocatalytic systems for multifunctional simultaneous hydrogen production.
Collapse
Affiliation(s)
| | | | | | | | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (T.A.); (E.M.N.T.E.); (P.S.S.); (P.X.)
| |
Collapse
|
4
|
Banerjee F, Gupta PD, Roy S, Samanta SK. Symmetry-Engineered BINOL-Based Porous Aromatic Frameworks for H 2O 2 Production via Artificial Photosynthesis and In Situ Degradation of Pharmaceutical Pollutants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58689-58702. [PMID: 39432327 DOI: 10.1021/acsami.4c12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Accomplishing visible light-driven H2O2 production at millimolar concentrations is practically challenging, particularly for organic semiconductors. In this context, achieving a maximum H2O2 production rate of 31.60 mmol·g-1·h-1 by using porous aromatic frameworks (PAFs) represents a significant accomplishment. We report the unusual photoactivity of tetraphenylmethane-BINOL-linked PAFs in triplet oxygen activation to facilitate the generation of reactive oxygen species (ROS), as confirmed by their optical and electrochemical responses, despite the absence of a conventional chromophoric moiety. Moreover, an in situ BINOL formation strategy was used to synthesize these PAFs during polymerization in contrast to the reported protocols involving chiral BINOLs as precursors. The as-synthesized polymers had a capsule-like morphology (for TPM-BINOL-6), high thermal stability up to 348 °C, and a high Brunauer-Emmett-Teller (BET) surface area of up to 1382 m2/g (for TPM-BINOL-4). Interestingly, they showed sunlight-driven production of H2O2 via an oxygen reduction reaction of up to 17.05 mmol·g-1·h-1 in 1:10 isopropanol in water for TPM-BINOL-6, which was quantified by titration with ceric sulfate. It also exhibited exemplary photocatalytic efficiency with an H2O2 production rate of 6.65 mmol·g-1·h-1 in seawater. Interestingly, the H2O2 production rate reached a maximum of 18.03 mmol·g-1·h-1 with an SCC efficiency of 4.5% under an AM 1.5G solar simulator and apparent quantum yield (AQY) of 15.8% (at λ = 456 nm) for TPM-BINOL-6 in ethanol:water = 1:10. Moreover, the exceptionally high H2O2 production rate of 31.60 mmol·g-1·h-1 was achieved in 1:1 ethanol in water under 50 W blue LED light. Furthermore, these PAFs generated adequate ROS, which were utilized in the photocatalytic degradation of tetracycline via the superoxide intermediate. Additionally, the as-formed H2O2 was further channelized in the pollution abatement catalytic system for the fast degradation of ciprofloxacin (within 4 h) and the reduction of toxic oxometallate Cr(VI) within 10 min, which is one of the earliest reports of utilizing photosynthesized H2O2 for environmental detoxification.
Collapse
Affiliation(s)
- Flora Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Priyojit Das Gupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shiladitya Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Kalyan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Hou X, Li Y, Zhang H, Lund PD, Kwan J, Tsang SCE. Black titanium oxide: synthesis, modification, characterization, physiochemical properties, and emerging applications for energy conversion and storage, and environmental sustainability. Chem Soc Rev 2024; 53:10660-10708. [PMID: 39269216 DOI: 10.1039/d4cs00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Since its advent in 2011, black titanium oxide (B-TiOx) has garnered significant attention due to its exceptional optical characteristics, notably its enhanced absorption spectrum ranging from 200 to 2000 nm, in stark contrast to its unmodified counterpart. The escalating urgency to address global climate change has spurred intensified research into this material for sustainable hydrogen production through thermal, photocatalytic, electrocatalytic, or hybrid water-splitting techniques. The rapid advancements in this dynamic field necessitate a comprehensive update. In this review, we endeavor to provide a detailed examination and forward-looking insights into the captivating attributes, synthesis methods, modifications, and characterizations of B-TiOx, as well as a nuanced understanding of its physicochemical properties. We place particular emphasis on the potential integration of B-TiOx into solar and electrochemical energy systems, highlighting its applications in green hydrogen generation, CO2 reduction, and supercapacitor technology, among others. Recent breakthroughs in the structure-property relationship of B-TiOx and its applications, grounded in both theoretical and empirical studies, are underscored. Additionally, we will address the challenges of scaling up B-TiOx production, its long-term stability, and economic viability to align with ambitious future objectives.
Collapse
Affiliation(s)
- Xuelan Hou
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Yiyang Li
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Hang Zhang
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - Peter D Lund
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - James Kwan
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| |
Collapse
|
6
|
Keyhanian M, García-Romeral N, Morales-García Á, Viñes F, Illas F. First principles modeling of composites involving TiO 2 clusters supported on M 2C MXenes. Phys Chem Chem Phys 2024; 26:25319-25328. [PMID: 39082376 DOI: 10.1039/d4cp01757a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
First-principles calculations based on density functional theory are performed to investigate the formation of titania/MXene composites taking (TiO2)5/M2C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) as cases of study. The present systematic analysis confirms a favorable, high exothermic interaction, which promotes important structural reconstructions of the (TiO2)5 cluster along with charge transfer from the MXene to titania. MXenes composed of d3 transition metals promote the strongest interaction, deformation energy, and charge transfer, followed by d4 and d5 M2C MXenes. We provide evidence that the formation of these (TiO2)5/M2C composites is governed by charge transfer, leading to scaling relationships. By using the electronegativity of the metal composing MXene and the MXene d-band center, we also establish linear correlations that can be used to predict the interaction strength of (TiO2)5/M2C composites just from the knowledge of the MXene composition. It is likely that the present trends hold for other TiO2/MXene composites.
Collapse
Affiliation(s)
- Masoomeh Keyhanian
- Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran
| | - Néstor García-Romeral
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Ángel Morales-García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
7
|
Zhao W, Chen H, Zhang J, Low PJ, Sun H. Photocatalytic overall water splitting endowed by modulation of internal and external energy fields. Chem Sci 2024:d4sc05065g. [PMID: 39397813 PMCID: PMC11467725 DOI: 10.1039/d4sc05065g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
The pursuit of sustainable and clean energy sources has driven extensive research into the generation and use of novel energy vectors. The photocatalytic overall water splitting (POWS) reaction has been identified as a promising approach for harnessing solar energy to produce hydrogen to be used as a clean energy carrier. Materials chemistry and associated photocatalyst design are key to the further improvement of the efficiency of the POWS reaction through the optimization of charge carrier separation, migration and interfacial reaction kinetics. This review examines the latest progress in POWS, ranging from key catalyst materials to modification strategies and reaction design. Critical analysis focuses on carrier separation and promotion from the perspective of internal and external energy fields, aiming to trace the driving force behind the POWS process and explore the potential for industrial development of this technology. This review concludes by presenting perspectives on the emerging opportunities for this technology, and the challenges to be overcome by future studies.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Perth Western Australia 6009 Australia
| | - Haijun Chen
- Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Mechanical and Power Engineering, Nanjing Tech University Nanjing 211816 Jiangsu China
| | - Jinqiang Zhang
- School of Chemical Engineering, The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Paul J Low
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Perth Western Australia 6009 Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Perth Western Australia 6009 Australia
| |
Collapse
|
8
|
Zhao WQ, Liao YX, Chen YT, Ma L, Yu ZY, Ding SJ, Qin PL, Chen XB, Wang QQ. TiN/anatase/rutile phase junction obtained by in-situ thermal transformation for efficient photothermal-assisted photocatalytic hydrogen generation. J Colloid Interface Sci 2024; 669:383-392. [PMID: 38718591 DOI: 10.1016/j.jcis.2024.04.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
Phase junctions exhibit great potential in photocatalytic energy conversion, yet the narrow light response region and inefficient charge transfer limit their photocatalytic performance. Herein, an anatase/rutile phase junction modified by plasmonic TiN and oxygen vacancies (TiN/(A-R-TiO2-Ov)) is prepared through an in-situ thermal transformation from TiN for efficient photothermal-assisted photocatalytic hydrogen production for the first time. The content of TiN, oxygen vacancies, and phase components in TiN/(A-R-TiO2-Ov) hybrids can be well-adjusted by tuning the heating time. The as-prepared photocatalysts display a large specific area and wide light absorption due to the synergistic effect of plasmonic excitation, oxygen vacancies, and bandgap excitations. Meanwhile, the multi-interfaces between TiN, anatase, and rutile provide built-in electric fields for efficient separation of photoinduced carriers and hot electron injection via ohmic contact and type-Ⅱ band arrangement. As a result, the TiN/(A-R-TiO2-Ov) photocatalyst shows an excellent photocatalytic hydrogen generation rate of 15.07 mmol/g/h, which is 20.6 times higher than that of titanium dioxide P25. Moreover, temperature-dependent photocatalytic tests reveal that the excellent photothermal conversion caused by plasmonic heating and crystal lattice vibrations in TiN/(A-R-TiO2-Ov) has about 25 % enhancement in photocatalysis (18.84 mmol/g/h). This work provides new inspiration for developing high-performance photocatalysts by optimizing charge transfer and photothermal conversion.
Collapse
Affiliation(s)
- Wen-Qin Zhao
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yu-Xin Liao
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yu-Ting Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Zi-Yang Yu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Ping-Li Qin
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiang-Bai Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qu-Quan Wang
- School of Science, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
9
|
Zhong X, Zhu Y, Wang Y, Jia Z, Jiang M, Sun Q, Yao J. Intramolecular Quaternary Carbon Nitride Homojunction for Enhanced Visible Light Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402219. [PMID: 38634337 DOI: 10.1002/smll.202402219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Indexed: 04/19/2024]
Abstract
In this work, an intramolecular carbon nitride (CN)-based quaternary homojunction functionalized with pyridine rings is prepared via an in situ alkali-assisted copolymerization strategy of bulk CN and 2-aminopyridine for efficient visible light hydrogen generation. In the obtained structure, triazine-based CN (TCN), heptazine-based CN (HCN), pyridine unit incorporated TCN, and pyridine ring inserted HCN constitute a special multicomponent system and form a built-in electric field between the crystalline semiconductors by the arrangement of energy band levels. The electron-withdrawing function of the conjugated heterocycle can trigger the skeleton delocalization and edge induction effect. Highly accelerated photoelectron-hole transfer rates via multi-stepwise charge migration pathways are achieved by the synergistic effect of the functional group modification and molecular quaternary homojunction. Under the addition of 5 mg 2-aminopyridine, the resulting homojunction framework exhibits a significantly improved hydrogen evolution rate of 6.64 mmol g-1 h-1 with an apparent quantum efficiency of 12.27% at 420 nm. Further, the catalyst verifies its potential commercial value since it can produce hydrogen from various real water environments. This study provides a reliable way for the rational design and fabrication of intramolecular multi-homojunction to obtain high-efficient photocatalytic reactions.
Collapse
Affiliation(s)
- Xiang Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yuxiang Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Zhengtao Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Meng Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Qiufan Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
10
|
Werner V, Lora FB, Chai Z, Hörndl J, Praxmair J, Luber S, Haussener S, Pokrant S. Stability and degradation of (oxy)nitride photocatalysts for solar water splitting. RSC SUSTAINABILITY 2024; 2:1738-1752. [PMID: 38845685 PMCID: PMC11152140 DOI: 10.1039/d4su00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024]
Abstract
Advancing towards alternative technologies for the sustainable production of hydrogen is a necessity for the successful integration of this potentially green fuel in the future. Photocatalytic and photoelectrochemical water splitting are promising concepts in this context. Over the past decades, researchers have successfully explored several materials classes, such as oxides, nitrides, and oxynitrides, in their quest for suitable photocatalysts with a focus on reaching higher efficiencies. However, to pave the way towards practicability, understanding degradation processes and reaching stability is essential, a domain where research has been scarcer. This perspective aims at providing an overview on recent progress concerning stability and degradation with a focus on (oxy)nitride photocatalysts and at providing insights into the opportunities and challenges coming along with the investigation of degradation processes and the attempts to improve the stability of photocatalysts.
Collapse
Affiliation(s)
- Valérie Werner
- Department of Chemistry and Physics of Materials, Paris Lodron University Salzburg Jakob-Haringer-Str. 2A 5020 Salzburg Austria
| | - Franky Bedoya Lora
- Laboratory of Renewable Energy Science and Engineering, Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Ziwei Chai
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Julian Hörndl
- Department of Chemistry and Physics of Materials, Paris Lodron University Salzburg Jakob-Haringer-Str. 2A 5020 Salzburg Austria
| | - Jakob Praxmair
- Department of Chemistry and Physics of Materials, Paris Lodron University Salzburg Jakob-Haringer-Str. 2A 5020 Salzburg Austria
| | - Sandra Luber
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Sophia Haussener
- Laboratory of Renewable Energy Science and Engineering, Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Simone Pokrant
- Department of Chemistry and Physics of Materials, Paris Lodron University Salzburg Jakob-Haringer-Str. 2A 5020 Salzburg Austria
| |
Collapse
|
11
|
Zhang J, Chen K, Bai Y, Wang L, Huang J, She H, Wang Q. An MgO passivation layer and hydrotalcite derived spinel Co 2AlO 4 synergically promote photoelectrochemical water oxidation conducted using BiVO 4-based photoanodes. NANOSCALE 2024; 16:10038-10047. [PMID: 38712536 DOI: 10.1039/d4nr00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
MxCo3-xO4 co-catalysed photoanodes with high potential for improvement in PEC water-oxidizing properties are reported. However, it is difficult to control the recombination of photogenerated carriers at the interface between the catalyst and cocatalyst. Here, an ultra-thin MgO passivation layer was introduced into the MxCo3-xO4/BiVO4 coupling system to construct a ternary composite photoanode Co2AlO4/MgO/BiVO4. The photocurrent density of the electrode is 3.52 mA cm-2, which is 3.2 times that of BiVO4 (at 1.23 V vs. RHE). The photocurrent is practically increased by 0.86 mA cm-2 and 1.56 mA cm-2 in comparison with that of Co2AlO4/BiVO4 and MgO/BiVO4 electrodes, respectively. Meanwhile, the Co2AlO4/MgO/BiVO4 electrode has the highest charge separation efficiency, the lowest charge transfer resistance (Rct) and best stability. The excellent PEC performance could be attributed to the inhibitive effect provided by the MgO passivation layer that efficaciously suppresses the electron-hole recombination at the interface and drives the hole transfer outward, which is induced by Co2AlO4 to capture the electrode/electrolyte interface for efficient water oxidation reaction. In order to understand the origin of this improvement, first-principles calculations with density functional theory (DFT) were performed. The theoretical investigation converges to our experimental results. This work proposes a novel idea for restraining the recombination of photogenerated carriers between interfaces and the rational design of efficient photoanodes.
Collapse
Affiliation(s)
- Jing Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Kaiyi Chen
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Yan Bai
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Jingwei Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Houde She
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Qizhao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| |
Collapse
|
12
|
Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing Artificial Photosynthesis with TiO 2 Heterostructures and Hybrids: Emerging Trends in a Classical yet Contemporary Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305285. [PMID: 37818725 DOI: 10.1002/adma.202305285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Titanium dioxide (TiO2) stands out as a versatile transition-metal oxide with applications ranging from energy conversion/storage and environmental remediation to sensors and optoelectronics. While extensively researched for these emerging applications, TiO2 has also achieved commercial success in various fields including paints, inks, pharmaceuticals, food additives, and advanced medicine. Thanks to the tunability of their structural, morphological, optical, and electronic characteristics, TiO2 nanomaterials are among the most researched engineering materials. Besides these inherent advantages, the low cost, low toxicity, and biocompatibility of TiO2 nanomaterials position them as a sustainable choice of functional materials for energy conversion. Although TiO2 is a classical photocatalyst well-known for its structural stability and high surface activity, TiO2-based photocatalysis is still an active area of research particularly in the context of catalyzing artificial photosynthesis. This review provides a comprehensive overview of the latest developments and emerging trends in TiO2 heterostructures and hybrids for artificial photosynthesis. It begins by discussing the common synthesis methods for TiO2 nanomaterials, including hydrothermal synthesis and sol-gel synthesis. It then delves into TiO2 nanomaterials and their photocatalytic mechanisms, highlighting the key advancements that have been made in recent years. The strategies to enhance the photocatalytic efficiency of TiO2, including surface modification, doping modulation, heterojunction construction, and synergy of composite materials, with a specific emphasis on their applications in artificial photosynthesis, are discussed. TiO2-based heterostructures and hybrids present exciting opportunities for catalyzing solar fuel production, organic degradation, and CO2 reduction via artificial photosynthesis. This review offers an overview of the latest trends and advancements, while also highlighting the ongoing challenges and prospects for future developments in this classical yet rapidly evolving field.
Collapse
Affiliation(s)
- Xiaowen Ruan
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
Wu X, Su Y, Wang Y, Amina K, Zhu P, Wang P, Wei G. TiO 2 nanotube arrays-based photoelectrocatalyst: Tri-Doping engineering and carbon coating engineering boosting visible activity, and stable hydrogen evolution. J Colloid Interface Sci 2024; 658:247-257. [PMID: 38104407 DOI: 10.1016/j.jcis.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The integration of non-metallic doping and carbon coating for TiO2-based photoelectrocatalysts can be recognized as a promising strategy to enhance their hydrogen production performance. To this end, this study explored the carbon coating engineering to induce stable multi-element doping with an aim to develop high-performance TiO2 nanotube array-based photoelectrocatalysts. The resulting structures consisted of carbon-nitrogen-sulfur-tri-doped TiO2 nanotube arrays with a nitrogen-sulfur-codoped carbon coating (CNS-TNTA/NSC). The fabrication process involved a one-step, low-cost strategy of the carbon-coated tridoped reaction confined in vacuum space, utilizing polymer thiourea sealed in a controlled environment. Compared the photocurrent density of CNS-TNTA/NSC with pristine TNTA, the photocurrent enhancement of approximately 18.3-fold under simulated sunlight and a remarkable increase of 32.8-fold under simulated visible light conditions. The enhanced photocatalytic activity under visible light was ascribed to two factors: First, C, N, and S tri-doping and Ti3+ created a diverse array of impurity energy levels within the band gap, which synergistically narrowed the band gap and further enhanced response to the visible light range. Second, the presence of a carbon coating shell doped with N and S can greatly promote electron transfer and efficient electron-hole pair separation. This study could provide significant insights concerning the design of sophisticated photoanodes.
Collapse
Affiliation(s)
- Xiantong Wu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Ying Su
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Yinxiang Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Koshayeva Amina
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Peifen Zhu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Pan Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Guodong Wei
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, PR China.
| |
Collapse
|
14
|
Ruan X, Meng D, Huang C, Xu M, Jiao D, Cheng H, Cui Y, Li Z, Ba K, Xie T, Zhang L, Zhang W, Leng J, Jin S, Ravi SK, Jiang Z, Zheng W, Cui X, Yu J. Artificial Photosynthetic System with Spatial Dual Reduction Site Enabling Enhanced Solar Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309199. [PMID: 38011897 DOI: 10.1002/adma.202309199] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Although S-scheme artificial photosynthesis shows promise for photocatalytic hydrogen production, traditional methods often overly concentrate on a single reduction site. This limitation results in inadequate redox capability and inefficient charge separation, which hampers the efficiency of the photocatalytic hydrogen evolution reaction. To overcome this limitation, a double S-scheme system is proposed that leverages dual reduction sites, thereby preserving energetic photo-electrons and holes to enhance apparent quantum efficiency. The design features a double S-scheme junction consisting of CdS nanospheres decorated with anatase TiO2 nanoparticles coupled with graphitic C3 N4 . The as-prepared catalyst exhibits a hydrogen evolution rate of 26.84 mmol g-1 h-1 and an apparent quantum efficiency of 40.2% at 365 nm. This enhanced photocatalytic hydrogen evolution is ascribed to the efficient charge separation and transport induced by the double S-scheme. Both theoretical calculations and comprehensive spectroscopy tests (both in situ and ex situ) affirm the efficient charge transport across the catalyst interface. Moreover, substituting the reduction-type catalyst CdS with other similar sulfides like ZnIn2 S4 , ZnS, MoS2 and In2 S3 further confirms the feasibility of the proposed double S-scheme configuration. The findings provide a pathway to designing more effective double S-scheme artificial photosynthetic systems, opening up fresh perspectives in enhancing photocatalytic hydrogen evolution performance.
Collapse
Affiliation(s)
- Xiaowen Ruan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Depeng Meng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Minghua Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Dongxu Jiao
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Hui Cheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhiyun Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Kaikai Ba
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Tengfeng Xie
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Lei Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Wei Zhang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Zhifeng Jiang
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
15
|
Sohail M, Rauf S, Irfan M, Hayat A, Alghamdi MM, El-Zahhar AA, Ghernaout D, Al-Hadeethi Y, Lv W. Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting. NANOSCALE ADVANCES 2024; 6:1286-1330. [PMID: 38419861 PMCID: PMC10898449 DOI: 10.1039/d3na00442b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/28/2023] [Indexed: 03/02/2024]
Abstract
Photocatalytic water splitting (PWS) is an up-and-coming technology for generating sustainable fuel using light energy. Significant progress has been made in the developing of PWS innovations over recent years. In addition to various water-splitting (WS) systems, the focus has primarily been on one- and two-steps-excitation WS systems. These systems utilize singular or composite photocatalysts for WS, which is a simple, feasible, and cost-effective method for efficiently converting prevalent green energy into sustainable H2 energy on a large commercial scale. The proposed principle of charge confinement and transformation should be implemented dynamically by conjugating and stimulating the photocatalytic process while ensuring no unintentional connection at the interface. This study focuses on overall water splitting (OWS) using one/two-steps excitation and various techniques. It also discusses the current advancements in the development of new light-absorbing materials and provides perspectives and approaches for isolating photoinduced charges. This article explores multiple aspects of advancement, encompassing both chemical and physical changes, environmental factors, different photocatalyst types, and distinct parameters affecting PWS. Significant factors for achieving an efficient photocatalytic process under detrimental conditions, (e.g., strong light absorption, and synthesis of structures with a nanometer scale. Future research will focus on developing novel materials, investigating potential synthesis techniques, and improving existing high-energy raw materials. The endeavors aim is to enhance the efficiency of energy conversion, the absorption of radiation, and the coherence of physiochemical processes.
Collapse
Affiliation(s)
- Muhammad Sohail
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| | - Sana Rauf
- College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 PR China
| | - Muhammad Irfan
- Department of Chemistry, Hazara University Mansehra 21300 Pakistan
| | - Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University 321004 Jinhua Zhejiang P. R. China
| | - Majed M Alghamdi
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Adel A El-Zahhar
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Djamel Ghernaout
- Chemical Engineering Department, College of Engineering, University of Ha'il PO Box 2440 Ha'il 81441 Saudi Arabia
- Chemical Engineering Department, Faculty of Engineering, University of Blida PO Box 270 Blida 09000 Algeria
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
- King Fahd Medical Research Center (KFMRC), King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Weiqiang Lv
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| |
Collapse
|
16
|
Zhao S, Zhang C, Wang S, Lu K, Wang B, Huang J, Peng H, Li N, Liu M. Photothermally driven decoupling of gas evolution at the solid-liquid interface for boosted photocatalytic hydrogen production. NANOSCALE 2023; 16:152-162. [PMID: 38063805 DOI: 10.1039/d3nr04937j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The slow mass transfer, especially the gas evolution process at the solid-liquid interface in photocatalytic water splitting, restricts the overall efficiency of the hydrogen evolution reaction. Here, we report a novel gas-solid photocatalytic reaction system by decoupling hydrogen generation from a traditional solid-liquid interface. The success relies on annealing commercial melamine sponge (AMS) for effective photothermal conversion that leads to rapid water evaporation. The vapor flows towards the photocatalyst covering the surface of the AMS and is split by the catalyst therein. This liquid-gas/gas-solid coupling system avoids the formation of photocatalytic bubbles at the solid-liquid interface, leading to significantly improved mass transfer and conversion. Utilizing CdS nanorods anchored by highly dispersed nickel atoms/clusters as a model photocatalyst, the highest hydrogen evolution rate from water splitting reaches 686.39 μmol h-1, which is 5.31 times that of the traditional solid-liquid-gas triphase system. The solar-to-hydrogen (STH) efficiency can be up to 2.06%. This study provides a new idea for the design and construction of efficient practical photocatalytic systems.
Collapse
Affiliation(s)
- Shidong Zhao
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Chunyang Zhang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Shujian Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Kejian Lu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Biao Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Jie Huang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Hao Peng
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Naixu Li
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing 211189, Jiangsu, P. R. China
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
- Suzhou Academy of Xi'an Jiaotong University, Suzhou, Jiangsu 215123, P. R. China
- Gree Altairnano New Energy Inc, Zhuhai, Guangdong 519040, P. R. China
| |
Collapse
|
17
|
Zhang K, Tian L, Yang J, Wu F, Wang L, Tang H, Liu ZQ. Pauling-Type Adsorption of O 2 Induced by Heteroatom Doped ZnIn 2 S 4 for Boosted Solar-Driven H 2 O 2 Production. Angew Chem Int Ed Engl 2023:e202317816. [PMID: 38082536 DOI: 10.1002/anie.202317816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Breaking the trade-off between activity and selectivity has perennially been a formidable endeavor in the field of hydrogen peroxide (H2 O2 ) photosynthesis, especially the side-on configuration of oxygen (O2 ) on the catalyst surface will cause the cleavage of O-O bonds, which drastically hinders the H2 O2 production performance. Herein, we present an atomically heteroatom P doped ZnIn2 S4 catalyst with tunable oxygen adsorption configuration to accelerate the ORR kinetics essential for solar-driven H2 O2 production. Indeed, the spectroscopy characterizations (such as EXAFS and in situ FTIR) and DFT calculations reveal that heteroatom P doped ZnIn2 S4 at substitutional and interstitial sites, which not only optimizes the coordination environment of Zn active sites, but also facilitates electron transfer to the Zn sites and improves charge density, avoiding the breakage of O-O bonds and reducing the energy barriers to H2 O2 production. As a result, the oxygen adsorption configuration is regulated from side-on (Yeager-type) to end-on (Pauling-type), resulting in the accelerated ORR kinetics from 874.94 to 2107.66 μmol g-1 h-1 . This finding offers a new avenue toward strategic tailoring oxygen adsorption configuration by the rational design of doped photocatalyst.
Collapse
Affiliation(s)
- Kailian Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Lei Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Jingfei Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Fengxiu Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Leigang Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Hua Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
18
|
Alomairy S, Gnanasekaran L, Rajendran S, Alsanie WF. Nanosized core-shell (NiFe 2O 4/TiO 2) heterostructure for enhanced photodegradation against polycyclic aromatic hydrocarbons. CHEMOSPHERE 2023; 343:140274. [PMID: 37758072 DOI: 10.1016/j.chemosphere.2023.140274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
The global level of attention has been raised for photocatalytic pollutant removal technologies for degrading organic pollutants because of rising concerns about their toxicity. In this study, NiFe2O4/TiO2 core shells and pure samples of NiFe2O4 and TiO2 were synthesized using the sol-gel process and used to degrade naphthalene which is one among the polycyclic aromatic hydrocarbons (PAHs) pollutant. The synthesized materials were evaluated using a variety of analytical techniques, and the typical NiFe2O4/TiO2 core-shell results showed good purity and a lack of other impurity structures. Through morphological characterization, the core-shell structure of NiFe2O4/TiO2 has been established. However, the activity of visible light degradation was boosted by the generation of hydroxyl radicals after the electron-hole pair was delayed. Additionally, a lower band gap in NiFe2O4/TiO2 than in pure materials promotes photocatalytic activity. Similarly, photocatalytic naphthalene elimination by the core-shell achieved 67% efficiency after 150 min of visible light exposure. Furthermore, the produced core-shell has a high magnetic property, making separation from the photo-irradiated solutions easier; as a result, recycling was likely successful up to three cycles. The photocatalytic mechanism of the NiFe2O4/TiO2 composite was proposed. This research could also be applied to the degradation of other polycyclic aromatic hydrocarbon contaminants.
Collapse
Affiliation(s)
- Sultan Alomairy
- Department of Physics, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Walaa F Alsanie
- Department of Clinical Laboratorie, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Centre of Biomedical Sciences Research (CBSR), Deanship of ScientificResearch, Taif University, Taif, Saudi Arabia
| |
Collapse
|
19
|
Chahal S, Phor L, Kumar A, Kumar S, Kumar S, Kumar R, Kumar P. Enhanced photocatalytic degradation of organic dye by CeO 2/CNT/GO hybrid nanocomposites under UV light for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124964-124975. [PMID: 36867333 DOI: 10.1007/s11356-023-26184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/24/2023] [Indexed: 12/30/2023]
Abstract
Development of nanocomposites as efficient photocatalysts for the removal of hazardous organic pollutants is always in dire demand due to increase in water pollution. In this article, a facile sol-gel method has been used to synthesize cerium oxide (CeO2) nanoparticles followed by their decoration over multi-walled carbon nanotubes (CNTs) and graphene oxide (GO) to construct binary as well ternary hybrid nanocomposites using ultrasonic treatment. The oxygen vacancy defects have been depicted using X-ray photoelectron spectroscopy (XPS) that may result into improved photocatalytic efficiency. The ternary hybrid nanocomposites (CeO2/CNT/GO) showed excellent photocatalytic efficiency towards degradation of rose bengal (RB) dye up to 96.9% in 50 min. CNTs and GO provide the interfacial charge transfer which inhibits the electron-hole pair recombination. The results obtained here indicate that these composites can be effectively utilized as promising materials for the degradation of harmful organic pollutants for wastewater treatment.
Collapse
Affiliation(s)
- Surjeet Chahal
- Materials and Nano Engineering Research Laboratory, Dept. of Physics, School of Physical Sciences, DIT University, Dehradun, 248009, India
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, 131039, India
| | - Lakshita Phor
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, 131039, India
| | - Ashok Kumar
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, 131039, India
| | - Suresh Kumar
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, 131039, India
| | - Sandeep Kumar
- J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India
| | - Ravi Kumar
- J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India
| | - Parmod Kumar
- J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India.
| |
Collapse
|
20
|
Buessler M, Maruyama S, Zelenka M, Onishi H, Backus EHG. Unravelling the interfacial water structure at the photocatalyst strontium titanate by sum frequency generation spectroscopy. Phys Chem Chem Phys 2023; 25:31471-31480. [PMID: 37962476 PMCID: PMC10664186 DOI: 10.1039/d3cp03829g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The direct conversion of solar energy to hydrogen is considered as a possible method to produce carbon neutral hydrogen fuel. The mechanism of photocatalytic water splitting involves the chemical breakdown of water and re-assembly into hydrogen and oxygen at the interface of a photocatalyst. The selection rules of a suitable material are well established, but the fundamental understanding of the mechanisms, occurring at the interface between the catalyst and the water, remains missing. Using surface specific sum frequency generation spectroscopy, we present here characterisation of the interface between water and the photocatalyst strontium titanate (SrTiO3). We monitor the OH-stretching vibrations present at the interface. Their variations of intensities and frequencies as functions of isotopic dilution, pH and salt concentration provide information about the nature of the hydrogen bonding environment. We observe the presence of water molecules that flip their orientation at pH 5 indicating the point of zero charge of the SrTiO3 layer. These water molecules are oriented with their hydrogen away from the surface when the pH of the solutions is below 5 and pointing towards the surface when the pH is higher than 5. Besides, water molecules donating a H-bond to probably surface TiOH groups are observed at all pH.
Collapse
Affiliation(s)
- Martin Buessler
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090 Vienna, Austria.
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Straße 42, 1090 Vienna, Austria
| | - Shingo Maruyama
- Department of Applied Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Moritz Zelenka
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090 Vienna, Austria.
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Straße 42, 1090 Vienna, Austria
| | - Hiroshi Onishi
- Department of Chemistry, School of Science, Kobe University, Rokko-dai, Nada, Kobe, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Japan
| | - Ellen H G Backus
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090 Vienna, Austria.
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
21
|
Li J, Ding L, Su Z, Li K, Fang F, Sun R, Qin Y, Chang K. Non-Lignin Constructing the Gas-Solid Interface for Enhancing the Photothermal Catalytic Water Vapor Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305535. [PMID: 37607503 DOI: 10.1002/adma.202305535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/15/2023] [Indexed: 08/24/2023]
Abstract
The progress of solar-driven water-splitting technology has been impeded by the limited light response capability of semiconductor materials. Despite attempts to leverage nearly 50% of infrared radiation for photothermal synergy and catalytic reaction enhancement, heat loss during liquid phase reactions results in low energy conversion efficiency. Here, the photothermally driven catalytic water-splitting system, which designs K-SrTiO3 -loaded TiN silica wool at the water-air interface. Photocatalytic tests and density functional theory calculations demonstrate that the thermal effect transforms liquid water into water vapor, thereby reducing the reaction free energy of catalysts and improving the transmission rate of catalytic products. Hence, the hydrogen evolution rate reaches 275.46 mmol m-2 h-1 , and the solar-to-hydrogen (STH) efficiency is 1.81% under 1 sun irradiation in this gas-solid system, which is more than twice that of liquid water splitting. This novel photothermal catalytic pathway, which involves a coupled reaction of water evaporation and water splitting, is anticipated to broaden the utilization range of the solar spectrum and significantly enhance the conversion efficiency of STH.
Collapse
Affiliation(s)
- Jinghan Li
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Lingling Ding
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Zhiyuan Su
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Kun Li
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Fan Fang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Ruixue Sun
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yalei Qin
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Kun Chang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
22
|
Ruan X, Meng D, Huang C, Xu M, Wen X, Ba K, Singh DJ, Zhang H, Zhang L, Xie T, Zhang W, Zheng W, Ravi SK, Cui X. Enhancing Photocatalytic Hydrogen Evolution by Synergistic Benefits of MXene Cocatalysis and Homo-Interface Engineering. SMALL METHODS 2023; 7:e2300627. [PMID: 37649214 DOI: 10.1002/smtd.202300627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/11/2023] [Indexed: 09/01/2023]
Abstract
Photocatalytic water splitting holds great promise as a sustainable and cost-effectiveness alternative for the production of hydrogen. Nevertheless, the practical implementation of this strategy is hindered by suboptimal visible light utilization and sluggish charge carrier dynamics, leading to low yield. MXene is a promising cocatalyst due to its high conductivity, abundance of active sites, tunable terminal functional groups, and great specific surface area. Homo-interface has perfect lattice matching and uniform composition, which are more conducive to photogenerated carriers' separation and migration. In this study, a novel ternary heterogeneous photocatalyst, a-TiO2 /H-TiO2 /Ti3 C2 MXene (MXTi), is presented using an electrostatic self-assembly method. Compared to commercial P25, pristine anatase, and rutile TiO2 , as-prepared MXTi exhibit exceptional photocatalytic hydrogen evolution performance, achieving a rate of 0.387 mmol h-1 . The significant improvement is attributable to the synergistic effect of homo-interface engineering and Ti3 C2 MXene, which leads to widened light absorption and efficient carrier transportation. The findings highlight the potential of interface engineering and MXene cocatalyst loading as a proactive approach to enhance the performance of photocatalytic water splitting, paving the way for more sustainable and efficient hydrogen production.
Collapse
Affiliation(s)
- Xiaowen Ruan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
- School of Energy and Environment, City University of Hong Kong, Kowloon, SAR, Hong Kong, 999077, Hong Kong
| | - Depeng Meng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Minghua Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Xin Wen
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Kaikai Ba
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - David J Singh
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
- Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Haiyan Zhang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Lei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tengfeng Xie
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wei Zhang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Kowloon, SAR, Hong Kong, 999077, Hong Kong
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
23
|
Ravikumar MP, Quach TA, Urupalli B, Murikinati MK, Muthukonda Venkatakrishnan S, Do TO, Mohan S. Observation of inherited plasmonic properties of TiN in titanium oxynitride (TiO xN y) for solar-drive photocatalytic applications. ENVIRONMENTAL RESEARCH 2023; 229:115961. [PMID: 37086885 DOI: 10.1016/j.envres.2023.115961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
This study demonstrates the synthesis of titanium oxynitride (TiOxNy) via a controlled step-annealing of commercial titanium nitride (TiN) powders under normal ambience. The structure of the formed TiOxNy system is confirmed via XRD, Rietveld refinements, XPS, Raman, and HRTEM analysis. A distinct plasmonic band corresponding to TiN is observed in the absorption spectrum of TiOxNy, indicating that the surface plasmonic resonance (SPR) property of TiN is being inherited in the resulting TiOxNy system. The prerequisites such as reduced band gap energy, suitable band edge positions, reduced recombination, and enhanced carrier-lifetime manifested by the TiOxNy system are investigated using Mott-Schottky, XPS, time-resolved and steady-state PL spectroscopy techniques. The obtained TiOxNy photocatalyst is found to degrade around 98% of 10 ppm rhodamine B dye in 120 min and produce H2 at a rate of ∼1546 μmolg-1h-1 under solar light irradiation along with consistent recycle abilities. The results of cyclic voltammetry, linear sweep voltammetry, electrochemical impedance and photocurrent studies suggest that this evolved TiOxNy system could be functioning via plasmonic Ohmic interface rather than the typical plasmonic Schottky interface due to their amalgamated band structures in the oxynitride phase.
Collapse
Affiliation(s)
- Mithun Prakash Ravikumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Toan-Anh Quach
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Bharagav Urupalli
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Mamatha Kumari Murikinati
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Shankar Muthukonda Venkatakrishnan
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Trong-On Do
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Sakar Mohan
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
24
|
Chen C, Wu M, Ma C, Song M, Jiang G. Efficient Photo-Assisted Thermal Selective Oxidation of Toluene Using N-Doped TiO 2. ACS OMEGA 2023; 8:21026-21031. [PMID: 37332816 PMCID: PMC10268642 DOI: 10.1021/acsomega.3c01887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Selective oxidation of toluene is a key reaction to produce high value-added products but remains a big challenge. In this study, we introduce a nitrogen-doped TiO2 (N-TiO2) catalyst to create more Ti3+ and oxygen vacancy (OV), which act as active sites for selective oxidation of toluene via activating O2 to superoxide radical (•O2-). Interestingly, the resulting N-TiO2-2 exhibited an outstanding photo-assisted thermal performance with a product yield of 209.6 mmol·gcat-1 and a toluene conversion of 10960.0 μmol·gcat-1·h-1, which are 1.6 and 1.8 times greater than those obtained under thermal catalysis. We showed that the enhanced performance under photo-assisted thermal catalysis was attributed to more active species generation by making full use of photogenerated carriers. Our work suggests a viewpoint to apply a noble-metal-free TiO2 system in the selective oxidation of toluene under solvent-free conditions.
Collapse
Affiliation(s)
- Cheng Chen
- Key
Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingge Wu
- Key
Laboratory of Photochemistry, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
| | - Chunyan Ma
- Key
Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Maoyong Song
- Key
Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| |
Collapse
|
25
|
Zhang S, Leng W, Liu K. Unconventional rate law of water photooxidation at TiO 2 electrodes. Phys Chem Chem Phys 2023. [PMID: 37185623 DOI: 10.1039/d3cp00095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photoelectrochemical oxidation of water over semiconductors is a promising route for the production of sustainable solar fuels. TiO2 water photooxidation has been intensively studied over the past 50 years, but its rate law and mechanism are still undetermined. The main challenges are that there is no appropriate reaction kinetic model currently, and that both the reaction rate constant and reactant photohole concentration/density are not readily quantified with respect to conventional chemical reactions. Here we report that the rate law and photohole transfer mechanism could be determined by a combination of multiple (photo-) electrochemical techniques. We demonstrate that the kinetics of TiO2 water oxidation by photogenerated holes can be well-described by a model of surface state mediating charge transfer and recombination. The rate law, in terms of steady-state photocurrent, is the product of the surface hole density exponential dependent rate constant and the surface hole density, with first order for all the surface hole densities studied. This reactant concentration dependent rate constant is conceptually unexpected for an elementary step in conventional chemical reactions. In addition, we find that hydroxyl ions in bulk solutions are involved in the reaction as indicated by observation of the solution pH dependent apparent rate constant. This study may thus lead to key insights both for strategies to evaluate and/or enhance photoelectrochemical performances and for understanding reaction mechanisms.
Collapse
Affiliation(s)
- Shufeng Zhang
- College of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China.
| | - Wenhua Leng
- Department of Chemistry, Yuquan Campus, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kai Liu
- College of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
26
|
Zhao J, Bai Y, Li Z, Liu J, Wang W, Wang P, Yang B, Shi R, Waterhouse GIN, Wen XD, Dai Q, Zhang T. Plasmonic Cu Nanoparticles for the Low-temperature Photo-driven Water-gas Shift Reaction. Angew Chem Int Ed Engl 2023; 62:e202219299. [PMID: 36734471 DOI: 10.1002/anie.202219299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
The activation of water molecules in thermal catalysis typically requires high temperatures, representing an obstacle to catalyst development for the low-temperature water-gas shift reaction (WGSR). Plasmonic photocatalysis allows activation of water at low temperatures through the generation of light-induced hot electrons. Herein, we report a layered double hydroxide-derived copper catalyst (LD-Cu) with outstanding performance for the low-temperature photo-driven WGSR. LD-Cu offered a lower activation energy for WGSR to H2 under UV/Vis irradiation (1.4 W cm-2 ) compared to under dark conditions. Detailed experimental studies revealed that highly dispersed Cu nanoparticles created an abundance of hot electrons during light absorption, which promoted *H2 O dissociation and *H combination via a carboxyl pathway, leading to the efficient production of H2 . Results demonstrate the benefits of exploiting plasmonic phenomena in the development of photo-driven low-temperature WGSR catalysts.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Synfuels China, Beijing, 100195, China
| | - Zhenhua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinjia Liu
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Synfuels China, Beijing, 100195, China.,College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Wei Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Xiao-Dong Wen
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Synfuels China, Beijing, 100195, China
| | - Qing Dai
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Musa EN, Kaur S, Gallagher TC, Anthony TM, Stickle WF, Árnadóttir L, Stylianou KC. Two Birds, One Stone: Coupling Hydrogen Production with Herbicide Degradation over Metal–Organic Framework-Derived Titanium Dioxide. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
| | - Sumandeep Kaur
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | | | | | - William F. Stickle
- HP Inc., 1000 NE Circle Boulevard, Corvallis, Oregon 97330, United States
| | - Líney Árnadóttir
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | | |
Collapse
|
28
|
Guan M, Wang J, Wang K, Wang J, Devasenathipathy R, He S, Yu L, Zhang L, Xie H, Li Z, Lu G. Selective adsorption of cysteamine molecules on Au/TiO 2 boosts visible light-driven photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 633:1033-1041. [PMID: 36516679 DOI: 10.1016/j.jcis.2022.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Photocatalytic evolution of hydrogen is becoming a research hotspot because it can help to produce clean energy and reduce environmental pollution. Titanium dioxide (TiO2) and its composites are photocatalysts that are widely used in hydrogen evolution because of their high abundance in nature, low price, and high photo/chemical stability. However, their catalytic performances still need to be further improved, particularly in the visible light spectrum. Herein, visible light-driven photocatalytic evolution of hydrogen on Au/TiO2 nanocomposite is enhanced ∼ 10 folds by selectively functionalizing the nanocomposite with cysteamine molecules. It is revealed that the amine group (-NH2) in cysteamine favors the transfer and separation of photo-generated hot carriers. The rate of hydrogen produced can be further tuned by varying the ionization of the functionalized molecules at different pH values. This work provides a simple, convenient, and effective method that can be used to improve the photocatalytic evolution of hydrogen. This method can also be used for many other nanocatalysts (e.g., Au-MoS2, Au-BiVO4) and catalytic reactions (e.g., carbon dioxide reduction, nitrogen reduction).
Collapse
Affiliation(s)
- Mengdan Guan
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jin Wang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Rajkumar Devasenathipathy
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Shunhao He
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Liuyingzi Yu
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Linrong Zhang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou 310003, PR China
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China; National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
29
|
Ni M, Zhu Y, Guo C, Chen DL, Ning J, Zhong Y, Hu Y. Efficient Visible-Light-Driven CO 2 Methanation with Self-Regenerated Oxygen Vacancies in Co 3O 4/NiCo 2O 4 Hetero-Nanocages: Vacancy-Mediated Selective Photocatalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Maomao Ni
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Yijia Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Changfa Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Jiqiang Ning
- Department of Optical Science and Engineering, Fudan University, Shanghai200438, China
| | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua321004, China
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou311231, China
| |
Collapse
|
30
|
Ruan X, Huang C, Cheng H, Zhang Z, Cui Y, Li Z, Xie T, Ba K, Zhang H, Zhang L, Zhao X, Leng J, Jin S, Zhang W, Zheng W, Ravi SK, Jiang Z, Cui X, Yu J. A Twin S-Scheme Artificial Photosynthetic System with Self-Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209141. [PMID: 36412928 DOI: 10.1002/adma.202209141] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Designing heterojunction photocatalysts imitating natural photosynthetic systems has been a promising approach for photocatalytic hydrogen generation. However, in the traditional Z-Scheme artificial photosynthetic systems, the poor charge separation, and rapid recombination of photogenerated carriers remain a huge bottleneck. To rationally design S-Scheme (i.e., Step scheme) heterojunctions by avoiding the futile charge transport routes is therefore seen as an attractive approach to achieving high hydrogen evolution rates. Herein, a twin S-scheme heterojunction is proposed involving graphitic C3 N4 nanosheets self-assembled with hydrogen-doped rutile TiO2 nanorods and anatase TiO2 nanoparticles. This catalyst shows an excellent photocatalytic hydrogen evolution rate of 62.37 mmol g-1 h-1 and high apparent quantum efficiency of 45.9% at 365 nm. The significant enhancement of photocatalytic performance is attributed to the efficient charge separation and transfer induced by the unique twin S-scheme structure. The charge transfer route in the twin S-scheme is confirmed by in situ X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) spin-trapping tests. Femtosecond transient absorption (fs-TA) spectroscopy, transient-state surface photovoltage (TPV), and other ex situ characterizations further corroborate the efficient charge transport across the catalyst interface. This work offers a new perspective on constructing artificial photosynthetic systems with S-scheme heterojunctions to enhance photocatalytic performance.
Collapse
Affiliation(s)
- Xiaowen Ruan
- School of Materials Science and Engineering, State Key Laboratory of Automotive Simulation and Control, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- School of Materials Science and Engineering, State Key Laboratory of Automotive Simulation and Control, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Hui Cheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhiquan Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhiyun Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tengfeng Xie
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Kaikai Ba
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Haiyan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Automotive Simulation and Control, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Lei Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xiao Zhao
- School of Materials Science and Engineering, State Key Laboratory of Automotive Simulation and Control, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wei Zhang
- School of Materials Science and Engineering, State Key Laboratory of Automotive Simulation and Control, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- School of Materials Science and Engineering, State Key Laboratory of Automotive Simulation and Control, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Zhifeng Jiang
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiaoqiang Cui
- School of Materials Science and Engineering, State Key Laboratory of Automotive Simulation and Control, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
31
|
Fang S, Zhang W, Sun K, Tong T, Lim AI, Bao J, Du Z, Li Y, Hu YH. Critical role of tetracycline's self-promotion effects in its visible-light driven photocatalytic degradation over ZnO nanorods. CHEMOSPHERE 2022; 309:136691. [PMID: 36209848 DOI: 10.1016/j.chemosphere.2022.136691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide (ZnO), which is widely applied for ultraviolet-light driven photocatalysis, has no activity in visible-light photocatalytic process due to its large band gap of ∼3.2 eV. Herein, however, we demonstrated the multiple self-promotion effects of tetracycline as band adjuster, photo-sensitizer, and charge transfer promoter for ZnO nanorods, realizing its visible-light photocatalytic degradation with an excellent removal efficiency up to 91.1% within only 2 h. Besides, the influence of complex realistic factors on this unique process was evaluated together with tests with realistic water matrices. Furthermore, the active species and degradation products were identified. Both acute and developmental toxicities were found to be reduced as the degradation proceeds. These results pave the path for the brand-new self-driven visible-light photocatalysis.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, 49931, United States
| | - Wei Zhang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, 49931, United States
| | - Kai Sun
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Tian Tong
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, United States
| | - Aniqa Ibnat Lim
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, United States
| | - Jiming Bao
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, United States
| | - Zichen Du
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, United States
| | - Ying Li
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, 49931, United States.
| |
Collapse
|
32
|
Zhang C, Li G, Hu K, Song W, Wang D, Liu Y, Hu G, Wan Y. Efficient Near-Infrared Response Antibacterial Ceramics Based on the Method of Facile In Situ Etching Upconversion Glass-Ceramics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53380-53389. [PMID: 36380466 DOI: 10.1021/acsami.2c14475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As the world is faced with the coronavirus disease 2019 (COVID-19) pandemic, photocatalytic antibacterial ceramics can reduce the consumption of disinfectants and improve the safety of the public health environment. However, these antibacterial ceramics are often limited by poor stability and low light utilization efficiency. Herein, an antibacterial ceramic was developed via the method of facile in situ etching of upconversion glass-ceramics (UGC) (FIEG) with HCl, in which the BiOCl nanosheets were in situ grown on the surface of GC to improve its stability and antibacterial activity. The results suggest that the upconversion antibacterial ceramics can harvest and utilize near-infrared (NIR) photons efficiently, which display notable antibacterial activity for Escherichia coli (E. coli) under NIR (≥780 nm) and visible light (420-780 nm) irradiation, with a maximum inactivation rate of 7.5 log in 30 min. Meanwhile, in the cycle experiment, more than 6 log inactivation of E. coli was achieved using an antibacterial ceramic sheet after 2-h NIR light irradiation, and the stability of the antibacterial ceramic was discussed. Furthermore, the reactive species, fluorescence-based live/dead cells, and cell structure of bacteria were analyzed to verify the antibacterial mechanism. This study provides a promising strategy for the construction of efficient and stable antibacterial ceramics.
Collapse
Affiliation(s)
- Chuanqi Zhang
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
| | - Guobiao Li
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Kaibo Hu
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Weijie Song
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Wang
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yucheng Liu
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Guoping Hu
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yinhua Wan
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
33
|
Zhu W, Jiang Z, Peng X, Li Z, Woldu AR, Lu F, Fang Y, Chu PK, Hu L. Janus (Mo/ β-Mo 2C)@C heterostructure as an efficient electrocatalyst for the hydrogen evolution reaction in acidic and alkaline media. NANOTECHNOLOGY 2022; 34:055704. [PMID: 36327458 DOI: 10.1088/1361-6528/ac9fdc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
To explore low-cost, high-efficiency, and noble-metal-free catalysts for electrocatalytic water splitting in both acidic and alkaline media, the metal-metal carbide Janus hierarchical structure comprising Mo andβ-Mo2C embedded on a carbon layer (Mo/β-Mo2C)@C is synthesized by a hydrothermal reaction and subsequent low-temperature magnesium thermic process. Systematic characterization by XRD, XPS, Raman scattering, and SEM/TEM reveals the successful formation of metallic Mo andβ-Mo2C nanoparticles. The synthesized (Mo/β-Mo2C)@C has a large specific surface area and boasts highly efficient hydrogen evolution reaction activity including low overpotentials of 152 and 171 mV at a current density of 10 mA cm-2and small Tafel slopes of 51.7 and 63.5 mV dec-1in acidic and alkaline media, respectively. In addition, the catalyst shows outstanding stability for 48 h in both acidic and alkaline media. The excellent catalytic activity originates from more active sites and greater electron conductivity bestowed by the carbon layer, which also improves the long-term stability in both acidic and alkaline solutions.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Mechanical Engineering, Shantou University, Guangdong, 515063, People's Republic of China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
| | - Zhongya Jiang
- Department of Mechanical Engineering, Shantou University, Guangdong, 515063, People's Republic of China
| | - Xiang Peng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Zhaorong Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
| | - Abebe Reda Woldu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
- Department of Chemistry, College of Science, Bahir Dar University, Bahir Dar 79, Ethiopia
| | - Fushen Lu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
| | - Yiwen Fang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Liangsheng Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, People's Republic of China
| |
Collapse
|
34
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Cao H, Jiang S, Xue J, Zhu X, Zhang Q, Bao J. Unpaired Electron Engineering Enables Efficient and Selective Photocatalytic CO 2 Reduction to CH 4. J Phys Chem Lett 2022; 13:8397-8402. [PMID: 36047813 DOI: 10.1021/acs.jpclett.2c01983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The photocatalytic CO2 reduction to CH4 reaction is a long process of proton-coupled charge transfer accompanied by various reaction intermediates. Achieving high CH4 selectivity with satisfactory conversion efficiency therefore remains rather challenging. Herein, we propose a novel strategy of unpaired electron engineering to break through such a demanding bottleneck. By taking TiO2 as a photocatalyst prototype, we prove that unpaired electrons stabilize the key intermediate of CH4 production, i.e., CHO*, via chemical bonding, which converts the endothermic step of CHO* formation to an exothermic process, thereby altering the reaction pathway to selectively produce CH4. Meanwhile, these unpaired electrons generate midgap states to restrict charge recombination by trapping free electrons. As an outcome, such an unpaired electron-engineered TiO2 achieves an electron-consumption rate as high as 28.3 μmol·g-1·h-1 (15.7-fold with respect to normal TiO2) with a 97% CH4 selectivity. This work demonstrates that electron regulation holds great promise in attaining efficient and selective heterogeneous photocatalytic conversion.
Collapse
Affiliation(s)
- Heng Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Shenlong Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiawei Xue
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xiaodi Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230029, China
| |
Collapse
|
36
|
Mo-/O-deficient Bi2Mo3(S,O)12 oxysulfide for enhanced visible-light photocatalytic H2 evolution and pollutant reduction via in-situ generated protons: A case of material design in converting an oxidative Bi2Mo3O12 catalyst for the reduction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Zhu G, Jin Y, Ge M. Simple preparation of a CuO@γ-Al 2O 3 Fenton-like catalyst and its photocatalytic degradation function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68636-68651. [PMID: 35545745 DOI: 10.1007/s11356-022-20698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
We designed a photocatalyst and developed sustainable wastewater purification technology, which have significant advantages in effectively solving the global problem of drinking water shortage. In this study, a new nanocomposite was reported and shown to be a catalyst with excellent performance; CuO was coated successively onto functionalized nano γ-Al2O3, and this novel structure could provide abundant active sites. We evaluated the performance of the CuO@γ-Al2O3 nanocomposite catalyst for polyvinyl alcohol (PVA) degradation under visible light irradiation. Under optimized conditions (calcination temperature, 450 °C; mass ratio of γ-Al2O3:Cu(NO3)2·3H2O, 1:15; pH value, 7; catalyst dosage, 2.6 g/L; reaction temperature, 20 °C; and H2O2 dosage, 0.2 g/mL), the CuO@γ-Al2O3 nanocomposite catalyst presented an excellent PVA removal rate of 99.21%. After ten consecutive degradation experiments, the catalyst could still maintain a PVA removal rate of 97.58%, thus demonstrating excellent reusability. This study provides an efficient and easy-to-prepare photocatalyst and proposes a mechanism for the synergistic effect of the photocatalytic reaction and the Fenton-like reaction.
Collapse
Affiliation(s)
- Gaofeng Zhu
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yang Jin
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Mingqiao Ge
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
38
|
Pyro-catalysis for tooth whitening via oral temperature fluctuation. Nat Commun 2022; 13:4419. [PMID: 35906221 PMCID: PMC9338087 DOI: 10.1038/s41467-022-32132-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Tooth whitening has recently become one of the most popular aesthetic dentistry procedures. Beyond classic hydrogen peroxide-based whitening agents, photo-catalysts and piezo-catalysts have been demonstrated for non-destructive on-demand tooth whitening. However, their usage has been challenged due to the relatively limited physical stimuli of light irradiation and ultrasonic mechanical vibration. To address this challenge, we report here a non-destructive and convenient tooth whitening strategy based on the pyro-catalysis effect, realized via ubiquitous oral motion-induced temperature fluctuations. Degradation of organic dyes via pyro-catalysis is performed under cooling/heating cycling to simulate natural temperature fluctuations associated with intake and speech. Teeth stained by habitual beverages and flavorings can be whitened by the pyroelectric particles-embedded hydrogel under a small surrounding temperature fluctuation. Furthermore, the pyro-catalysis-based tooth whitening procedure exhibits a therapeutic biosafety and sustainability. In view of the exemplary demonstration, the most prevalent oral temperature fluctuation will enable the pyro-catalysis-based tooth whitening strategy to have tremendous potential for practical applications.
Collapse
|
39
|
Saratovskii AS, Senchik KY, Karavaeva AV, Evstropiev SK, Nikonorov NV. Photo-oxygenation of water media using photoactive plasmonic nanocomposites. J Chem Phys 2022; 156:201103. [DOI: 10.1063/5.0094408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmonic nanocomposites ZnO–Ag and ZnO–SnO2–Ag(AgCl) were prepared by the polymer–salt method, and their structure and morphology were studied using XRD and SEM analyses. It was found that the addition of photoactive inorganic nanocomposites ZnO–Ag and ZnO–SnO2–Ag(AgCl) in pure water significantly enhances the effectiveness of its disinfection and purification during UV treatment and provides the effective water oxygenation. Oxygen photogeneration under blue light (λex. = 405 nm) can be related to the plasmon-excitation processes in ZnO–SnO2–Ag(AgCl) composites. Prepared composites demonstrate antibacterial activity against both Gram-positive and Gram-negative bacteria. The increase of Ag content in ZnO–Ag and ZnO–SnO2–Ag(AgCl) composites significantly enhances their antibacterial activity.
Collapse
Affiliation(s)
- A. S. Saratovskii
- Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - K. Yu. Senchik
- Petrov National Medical Research Center of Oncology, Ministry of Health of Russia, Pesochny, Saint Petersburg, Russia
| | - A. V. Karavaeva
- Saint-Petersburg State Chemical-Pharmaceutical University, Saint Petersburg, Russia
| | - S. K. Evstropiev
- ITMO University, Saint Petersburg, Russia
- JVC “RPA Vavilov State Optical Institute,” Saint Petersburg, Russia
- Saint-Petersburg State Technological Institute (Technical University), Saint Petersburg, Russia
| | | |
Collapse
|
40
|
N-Rich Doped Anatase TiO2 with Smart Defect Engineering as Efficient Photocatalysts for Acetaldehyde Degradation. NANOMATERIALS 2022; 12:nano12091564. [PMID: 35564273 PMCID: PMC9105496 DOI: 10.3390/nano12091564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/31/2022]
Abstract
Nitrogen (N) doping is an effective strategy for improving the solar-driven photocatalytic performance of anatase TiO2, but controllable methods for nitrogen-rich doping and associated defect engineering are highly desired. In this work, N-rich doped anatase TiO2 nanoparticles (4.2 at%) were successfully prepared via high-temperature nitridation based on thermally stable H3PO4-modified TiO2. Subsequently, the associated deep-energy-level defects such as oxygen vacancies and Ti3+ were successfully healed by smart photo-Fenton oxidation treatment. Under visible-light irradiation, the healed N-doped TiO2 exhibited a ~2-times higher activity of gas-phase acetaldehyde degradation than the non-treated one and even better than standard P25 TiO2 under UV-visible-light irradiation. The exceptional performance is attributed to the extended spectral response range from N-rich doping, the enhanced charge separation from hole capturing by N-doped species, and the healed defect levels with the proper thermodynamic ability for facilitating O2 reduction, depending on the results of ∙O2− radicals and defect measurement by electron spin resonance, X-ray photoelectron spectroscopy, atmosphere-controlled surface photovoltage spectra, etc. This work provides an easy and efficient strategy for the preparation of high-performance solar-driven TiO2 photocatalysts.
Collapse
|
41
|
Qin Y, Deng L, Wei S, Bai H, Gao W, Jiao W, Yu T. An effective strategy for improving charge separation efficiency and photocatalytic degradation performance using a facilely synthesized oxidative TiO 2 catalyst. Dalton Trans 2022; 51:6899-6907. [PMID: 35441633 DOI: 10.1039/d2dt00488g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Titanium dioxide (TiO2) has attracted enormous interest in abundant photocatalytic reactions, but its photocatalytic efficiency is limited by its wide bandgap and the rapid recombination of electron-hole pairs. To overcome the disadvantages of its rapid electron-hole recombination rate, herein, oxidative TiO2 was one-step fabricated using potassium permanganate (KMnO4), exhibiting improved charge separation efficiency and photocatalytic degradation performance towards methyl orange (MO). Remarkably, the first-order photodegradation rate of oxidative TiO2 is 3.68 times higher than that of pristine TiO2 under the irradiation of simulated sunlight and 2.15 times higher under ultraviolet light. This exceptional photocatalytic activity is attributed to the additional oxygen doped into the interstices of the TiO2 lattice, creating impurity states in the bandgap acting as trapping sites, thus facilitating charge separation. This work provides a promising strategy for the insertion of O atoms into the TiO2 lattice and expands the photocatalytic application of the related materials.
Collapse
Affiliation(s)
- Yongqi Qin
- Lvliang Key Laboratory of Comprehensive Utilization of Organic Waste Resources, Department of Chemistry and Chemical Engineering, Lvliang University, Lvliang 033001, Shanxi, China. .,Lvliang Key Laboratory of Optical and Electronic Materials and Devices, Lvliang University, Lvliang 033001, Shanxi, China
| | - Liqiang Deng
- Lvliang Key Laboratory of Comprehensive Utilization of Organic Waste Resources, Department of Chemistry and Chemical Engineering, Lvliang University, Lvliang 033001, Shanxi, China. .,Lvliang Key Laboratory of Optical and Electronic Materials and Devices, Lvliang University, Lvliang 033001, Shanxi, China
| | - Shaodong Wei
- Lvliang Key Laboratory of Comprehensive Utilization of Organic Waste Resources, Department of Chemistry and Chemical Engineering, Lvliang University, Lvliang 033001, Shanxi, China. .,Lvliang Key Laboratory of Optical and Electronic Materials and Devices, Lvliang University, Lvliang 033001, Shanxi, China
| | - Hui Bai
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Wenqiang Gao
- Lvliang Key Laboratory of Comprehensive Utilization of Organic Waste Resources, Department of Chemistry and Chemical Engineering, Lvliang University, Lvliang 033001, Shanxi, China. .,Lvliang Key Laboratory of Optical and Electronic Materials and Devices, Lvliang University, Lvliang 033001, Shanxi, China.,Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Weizhou Jiao
- Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Tanlai Yu
- Lvliang Key Laboratory of Comprehensive Utilization of Organic Waste Resources, Department of Chemistry and Chemical Engineering, Lvliang University, Lvliang 033001, Shanxi, China. .,Lvliang Key Laboratory of Optical and Electronic Materials and Devices, Lvliang University, Lvliang 033001, Shanxi, China
| |
Collapse
|
42
|
Fang S, Hu YH. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem Soc Rev 2022; 51:3609-3647. [PMID: 35419581 DOI: 10.1039/d1cs00782c] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-photo catalysis, which is the catalysis with the participation of both thermal and photo energies, not only reduces the large energy consumption of thermal catalysis but also addresses the low efficiency of photocatalysis. As a whole greater than the sum of its parts, thermo-photo catalysis has been proven as an effective and promising technology to drive chemical reactions. In this review, we first clarify the definition (beyond photo-thermal catalysis and plasmonic catalysis), classification, and principles of thermo-photo catalysis and then reveal its superiority over individual thermal catalysis and photocatalysis. After elucidating the design principles and strategies toward highly efficient thermo-photo catalytic systems, an ample discussion on the synergetic effects of thermal and photo energies is provided from two perspectives, namely, the promotion of photocatalysis by thermal energy and the promotion of thermal catalysis by photo energy. Subsequently, state-of-the-art techniques applied to explore thermo-photo catalytic mechanisms are reviewed, followed by a summary on the broad applications of thermo-photo catalysis and its energy management toward industrialization. In the end, current challenges and potential research directions related to thermo-photo catalysis are outlined.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| |
Collapse
|
43
|
Brandão LMDS, Barbosa MDS, de Jesus RA, Bharad PA, Lima ÁS, Soares CMF, Yerga RMN, Bilal M, Ferreira LFR, Iqbal HM, Gopinath CS, Figueiredo RT. Enhanced hydrogen fuel production using synergistic combination of solar radiation and TiO2 photocatalyst coupled with Burkholderia cepacia lipase. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2022; 47:14483-14492. [DOI: 10.1016/j.ijhydene.2022.02.220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Abulikemu M, Tietze ML, Waiprasoet S, Pattanasattayavong P, E.A. Tabrizi B, D’Elia V, Del Gobbo S, Jabbour GE. Microwave-Assisted Non-aqueous and Low-Temperature Synthesis of Titania and Niobium-Doped Titania Nanocrystals and Their Application in Halide Perovskite Solar Cells as Electron Transport Layers. ACS OMEGA 2022; 7:6616-6626. [PMID: 35252657 PMCID: PMC8892854 DOI: 10.1021/acsomega.1c05970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Undoped and Nb-doped TiO2 nanocrystals are prepared by a microwave-assisted non-aqueous sol-gel method based on a slow alkyl chloride elimination reaction between metal chlorides and benzyl alcohol. Sub-4 nm nanoparticles are grown under microwave irradiation at 80 °C in only 3 h with precise control of growth parameters and yield. The obtained nanocrystals could be conveniently used to cast compact TiO2 or Nb-doped TiO2 electron transport layers for application in formamidinium lead iodide-based photovoltaic devices. Niobium doping is found to improve the cell performance by increasing the conductivity and mobility of the electron transport layer. At the same time, a measurable decrease in parasitic light absorption in the low wavelength portion of the spectrum was observed.
Collapse
Affiliation(s)
- Mutalifu Abulikemu
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave., Ottawa, Ontario, K1N 6N5 Canada
| | - Max Lutz Tietze
- Centre
for Membrane Separations, Adsorption, Catalysis, and Spectroscopy, KU Leuven—University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Saran Waiprasoet
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Pichaya Pattanasattayavong
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Bita E.A. Tabrizi
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave., Ottawa, Ontario, K1N 6N5 Canada
| | - Valerio D’Elia
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Silvano Del Gobbo
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Ghassan E. Jabbour
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave., Ottawa, Ontario, K1N 6N5 Canada
| |
Collapse
|
45
|
Amorphous nickel borate as a high-efficiency cocatalyst for H2 generation and fine chemical synthesis. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2021.106389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
46
|
Hong J, Xu C, Deng B, Gao Y, Zhu X, Zhang X, Zhang Y. Photothermal Chemistry Based on Solar Energy: From Synergistic Effects to Practical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103926. [PMID: 34825527 PMCID: PMC8787404 DOI: 10.1002/advs.202103926] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/23/2021] [Indexed: 05/07/2023]
Abstract
With the development of society, energy shortage and environmental problems have become more and more outstanding. Solar energy is a clean and sustainable energy resource, potentially driving energy conversion and environmental remediation reactions. Thus, solar-driven chemistry is an attractive way to solve the two problems. Photothermal chemistry (PTC) is developed to achieve full-spectral utilization of the solar radiation and drive chemical reactions more efficiently under relatively mild conditions. In this review, the mechanisms of PTC are summarized from the aspects of thermal and non-thermal effects, and then the interaction and synergy between these two effects are sorted out. In this paper, distinguishing and quantifying these two effects is discussed to understand PTC processes better and to design PTC catalysts more methodically. However, PTC is still a little far away from practical. Herein, several key points, which must be considered when pushing ahead with the engineering application of PTC, are proposed, along with some workable suggestions on the practical application. This review provides a unique perspective on PTC, focusing on the synergistic effects and pointing out a possible direction for practical application.
Collapse
Affiliation(s)
- Jianan Hong
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Chenyu Xu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Bowen Deng
- Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporo060‐0814Japan
| | - Yuan Gao
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Xuan Zhu
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Xuhan Zhang
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Yanwei Zhang
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| |
Collapse
|
47
|
Maarisetty D, Baral SS. Effect of Defects on Optical, Electronic, and Interface Properties of NiO/SnO 2 Heterostructures: Dual-Functional Solar Photocatalytic H 2 Production and RhB Degradation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60002-60017. [PMID: 34894647 DOI: 10.1021/acsami.1c19544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalytic H2 evolution and organic pollutant oxidation have witnessed a radical surge in recent times. However, this integration demands spatial charge separation and unique interface properties for a trade-off between oxidation and reduction reactions. In the current work, defect engineering of NiO/SnO2 nanoparticles aided in altering the optoelectronics and interface properties and enhanced photocatalytic activity. After annealing the catalysts in a N2 atmosphere, the hydroxyl groups were replaced by water molecules through surface modification. The photoexcited holes accumulated on SnO2 break the water molecules and facilitate the reduction of protons on NiO; this is known as spatial separation. Meanwhile, direct hole oxidation, an oxygen reduction reaction, ensures the degradation activity in this 2-fold system. By defect engineering, the limitations of SnO2 such as higher H2O adsorption, wide bandgap (reduced from 3.02 to 1.88 eV), and electronic properties were addressed. The H2 production in the current work has attained a value of 3732 μmol/(g h), which is 2.9 times that of the previous best reported under sunlight. Recyclability tests confirmed the stability of vacancies by promoting the reoxidation of defect states during photocatalytic activity. Additionally, efforts were made to study the effect of defect density on the photocurrent, the electrical resistance, and the mechanism of photocatalytic reactions. Electrochemical characterizations, UPS, XPS, UV-DRS, and PL were employed to understand the influence of defects on the bandgap, charge recombination, charge transport, charge carrier lifetime, and the interface properties that are responsible for photocatalytic activity. In this regard, it was understood that maintaining the optimal defect concentration is important for higher photocatalytic efficiencies, as the defect optimality preserves key photocatalytic properties. Apart from characterizations, the photocatalytic results suggest that excess defect density triggers the undesired thermodynamically favored back reactions, which greatly hampered the H2 yield of the process.
Collapse
Affiliation(s)
- Dileep Maarisetty
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, Goa 403726, India
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharastra, India
| | - Saroj Sundar Baral
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, Goa 403726, India
| |
Collapse
|
48
|
Defective Grey TiO2 with Minuscule Anatase–Rutile Heterophase Junctions for Hydroxyl Radicals Formation in a Visible Light-Triggered Photocatalysis. Catalysts 2021. [DOI: 10.3390/catal11121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The novelty of this work was to prepare a series of defect-rich colored TiO2 nanostructures, using a peroxo solvothermal-assisted, high-pressure nitrogenation method. Among these solids, certain TiO2 materials possessed a trace quantity of anatase–rutile heterojunctions, which are beneficial in obtaining high reaction rates in photocatalytic reactions. In addition, high surface area (above 100 m2/g), even when utilizing a high calcination temperature (500 °C), and absorption of light at higher wavelengths, due to the grey color of the synthesized titania, were observed as an added advantage for photocatalytic hydroxyl radical formation. In this work, we adopted a photoluminescent probe method to monitor the temporal evolution of hydroxyl radicals. As a result, promising hydroxyl radical formations were observed for all the colored samples synthesized at 400 and 500 °C, irrespective of the duration of calcination.
Collapse
|
49
|
Seiß V, Helbig U, Lösel R, Eichelbaum M. Investigating and correlating photoelectrochemical, photocatalytic, and antimicrobial properties of [Formula: see text] nanolayers. Sci Rep 2021; 11:22200. [PMID: 34772987 PMCID: PMC8589999 DOI: 10.1038/s41598-021-01165-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Semiconducting transition metal oxides such as [Formula: see text] are promising photo(electro)catalysts for solar water splitting and photoreduction of [Formula: see text] as well as for antibacterial, self-, water and air-cleaning coatings and admixtures in paints, building materials, on window glass or medical devices. In photoelectrocatalytic applications [Formula: see text] is usually used as photoanode only catalyzing the oxidation reaction. In coatings and admixtures [Formula: see text] works as heterogeneous catalyst and has to catalyze a complete redox cycle. While photoelectrochemical charge transport parameters are usually quite well accessible by electrochemical measurements, the quantitative description of photocatalytic properties is more challenging. Here, we present a systematic structural, photoelectrocatalytic, photocatalytic and antimicrobial study to understand if and how photoelectrochemical parameters can be used to predict the photocatalytic activity of [Formula: see text]. For this purpose [Formula: see text] thin films on flourine-doped tin oxide substrates were prepared and annealed at temperatures between 200 and 600 [Formula: see text]. The film morphologies and thicknesses were studied by GIXRD, FESEM, and EDX. Photoelectrochemical properties were measured by linear sweep voltammetry, photoelectrochemical impedance spectroscopy, chopped light chronoamperometry, and intensity modulated photocurrent/ photovoltage spectroscopy. For comparison, photocatalytic rate constants were determined by methylene blue degradation and Escherichea coli inactivation and correlated with the deduced photoelectrocatalytic parameters. We found that the respective photoactivities of amorphous and crystalline [Formula: see text] nanolayers can be best correlated, if the extracted photoelectrochemical parameters such as charge transfer and recombination rates, charge transfer efficiencies and resistances are measured close to the open circuit potential (OCP). Hence, the interfacial charge transport parameters at the OCP can be indeed used as descriptors for predicting and understanding the photocatalytic activity of [Formula: see text] coatings.
Collapse
Affiliation(s)
- Volker Seiß
- Faculty of Applied Chemistry, Georg Simon Ohm University of Applied Sciences Nuremberg, 90489 Nuremberg, Germany
| | - Uta Helbig
- Faculty of Materials Engineering, Georg Simon Ohm University of Applied Sciences Nuremberg, 90489 Nuremberg, Germany
| | - Ralf Lösel
- Faculty of Applied Chemistry, Georg Simon Ohm University of Applied Sciences Nuremberg, 90489 Nuremberg, Germany
| | - Maik Eichelbaum
- Faculty of Applied Chemistry, Georg Simon Ohm University of Applied Sciences Nuremberg, 90489 Nuremberg, Germany
| |
Collapse
|
50
|
Sampaio MJ, Yu Z, Lopes JC, Tavares PB, Silva CG, Liu L, Faria JL. Light-driven oxygen evolution from water oxidation with immobilised TiO 2 engineered for high performance. Sci Rep 2021; 11:21306. [PMID: 34716398 PMCID: PMC8556285 DOI: 10.1038/s41598-021-99841-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
Calcination treatments in the range of 500–900 °C of TiO2 synthesised by the sol–gel resulted in materials with variable physicochemical (i.e., optical, specific surface area, crystallite size and crystalline phase) and morphological properties. The photocatalytic performance of the prepared materials was evaluated in the oxygen evolution reaction (OER) following UV-LED irradiation of aqueous solutions containing iron ions as sacrificial electron acceptors. The highest activity for water oxidation was obtained with the photocatalyst thermally treated at 700 °C (TiO2-700). Photocatalysts with larger anatase to rutile ratio of the crystalline phases and higher surface density of oxygen vacancies (defects) displayed the best performance in OER. The oxygen defects at the photocatalyst surface have proven to be responsible for the enhanced photoactivity, acting as important active adsorption sites for water oxidation. Seeking technological application, water oxidation was accomplished by immobilising the photocatalyst with the highest OER rate measured under the established batch conditions (TiO2-700). Experiments operating under continuous mode revealed a remarkable efficiency for oxygen production, exceeding 12% of the apparent quantum efficiency (AQE) at 384 nm (UV-LED system) compared to the batch operation mode.
Collapse
Affiliation(s)
- Maria J Sampaio
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
| | - Zhipeng Yu
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.,Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330, Braga, Portugal
| | - Joana C Lopes
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Pedro B Tavares
- Departamento de Química, Centro de Química-Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5001-911, Vila Real, Portugal
| | - Cláudia G Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Lifeng Liu
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330, Braga, Portugal
| | - Joaquim L Faria
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| |
Collapse
|