1
|
Collins RL, Talkowski ME. Diversity and consequences of structural variation in the human genome. Nat Rev Genet 2025:10.1038/s41576-024-00808-9. [PMID: 39838028 DOI: 10.1038/s41576-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/23/2025]
Abstract
The biomedical community is increasingly invested in capturing all genetic variants across human genomes, interpreting their functional consequences and translating these findings to the clinic. A crucial component of this endeavour is the discovery and characterization of structural variants (SVs), which are ubiquitous in the human population, heterogeneous in their mutational processes, key substrates for evolution and adaptation, and profound drivers of human disease. The recent emergence of new technologies and the remarkable scale of sequence-based population studies have begun to crystalize our understanding of SVs as a mutational class and their widespread influence across phenotypes. In this Review, we summarize recent discoveries and new insights into SVs in the human genome in terms of their mutational patterns, population genetics, functional consequences, and impact on human traits and disease. We conclude by outlining three frontiers to be explored by the field over the next decade.
Collapse
Affiliation(s)
- Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Chen Y, Khan MZ, Wang X, Liang H, Ren W, Kou X, Liu X, Chen W, Peng Y, Wang C. Structural variations in livestock genomes and their associations with phenotypic traits: a review. Front Vet Sci 2024; 11:1416220. [PMID: 39600883 PMCID: PMC11588642 DOI: 10.3389/fvets.2024.1416220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Genomic structural variation (SV) refers to differences in gene sequences between individuals on a genomic scale. It is widely distributed in the genome, primarily in the form of insertions, deletions, duplications, inversions, and translocations. Due to its characterization by long segments and large coverage, SVs significantly impact the genetic characteristics and production performance of livestock, playing a crucial role in studying breed diversity, biological evolution, and disease correlation. Research on SVs contributes to an enhanced understanding of chromosome function and genetic characteristics and is important for understanding hereditary diseases mechanisms. In this article, we review the concept, classification, main formation mechanisms, detection methods, and advancement of research on SVs in the genomes of cattle, buffalo, equine, sheep, and goats, aiming to reveal the genetic basis of differences in phenotypic traits and adaptive genetic mechanisms through genomic research, which will provide a theoretical basis for better understanding and utilizing the genetic resources of herbivorous livestock.
Collapse
Affiliation(s)
| | - Muhammad Zahoor Khan
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| | | | | | | | | | | | | | - Yongdong Peng
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Gagnon M, Bouhamdani N, Kolev DP, Askree SH, Ben Amor M. Identification of an intronic Alu insertion in the SYNE1 gene associated with autosomal recessive spinocerebellar ataxia type 8. GENETICS IN MEDICINE OPEN 2024; 2:101893. [PMID: 39669622 PMCID: PMC11613682 DOI: 10.1016/j.gimo.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Maryse Gagnon
- Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
| | - Nadia Bouhamdani
- Université de Sherbrooke, Sherbrooke, QC, Canada
- Vitalité Health Network, Moncton, NB, Canada
- Université de Moncton, Department of Chemistry and Biochemistry, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Dimiter P. Kolev
- MNG Laboratories (Medical Neurogenetics, LLC.), a Labcorp subsidiary, Atlanta, GA
| | - S. Hussain Askree
- MNG Laboratories (Medical Neurogenetics, LLC.), a Labcorp subsidiary, Atlanta, GA
| | - Mouna Ben Amor
- Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
- Vitalité Health Network, Moncton, NB, Canada
| |
Collapse
|
4
|
Fernández-Suárez E, González-Del Pozo M, Méndez-Vidal C, Martín-Sánchez M, Mena M, de la Morena-Barrio B, Corral J, Borrego S, Antiñolo G. Long-read sequencing improves the genetic diagnosis of retinitis pigmentosa by identifying an Alu retrotransposon insertion in the EYS gene. Mob DNA 2024; 15:9. [PMID: 38704576 PMCID: PMC11069205 DOI: 10.1186/s13100-024-00320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Biallelic variants in EYS are the major cause of autosomal recessive retinitis pigmentosa (arRP) in certain populations, a clinically and genetically heterogeneous disease that may lead to legal blindness. EYS is one of the largest genes (~ 2 Mb) expressed in the retina, in which structural variants (SVs) represent a common cause of disease. However, their identification using short-read sequencing (SRS) is not always feasible. Here, we conducted targeted long-read sequencing (T-LRS) using adaptive sampling of EYS on the MinION sequencing platform (Oxford Nanopore Technologies) to definitively diagnose an arRP family, whose affected individuals (n = 3) carried the heterozygous pathogenic deletion of exons 32-33 in the EYS gene. As this was a recurrent variant identified in three additional families in our cohort, we also aimed to characterize the known deletion at the nucleotide level to assess a possible founder effect. RESULTS T-LRS in family A unveiled a heterozygous AluYa5 insertion in the coding exon 43 of EYS (chr6(GRCh37):g.64430524_64430525ins352), which segregated with the disease in compound heterozygosity with the previously identified deletion. Visual inspection of previous SRS alignments using IGV revealed several reads containing soft-clipped bases, accompanied by a slight drop in coverage at the Alu insertion site. This prompted us to develop a simplified program using grep command to investigate the recurrence of this variant in our cohort from SRS data. Moreover, LRS also allowed the characterization of the CNV as a ~ 56.4kb deletion spanning exons 32-33 of EYS (chr6(GRCh37):g.64764235_64820592del). The results of further characterization by Sanger sequencing and linkage analysis in the four families were consistent with a founder variant. CONCLUSIONS To our knowledge, this is the first report of a mobile element insertion into the coding sequence of EYS, as a likely cause of arRP in a family. Our study highlights the value of LRS technology in characterizing and identifying hidden pathogenic SVs, such as retrotransposon insertions, whose contribution to the etiopathogenesis of rare diseases may be underestimated.
Collapse
Affiliation(s)
- Elena Fernández-Suárez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - María González-Del Pozo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - Cristina Méndez-Vidal
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - Marta Martín-Sánchez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - Marcela Mena
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - Belén de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, Murcia, Spain
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, Murcia, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain.
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain.
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain.
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain.
| |
Collapse
|
5
|
Chu C, Ljungström V, Tran A, Jin H, Park PJ. Contribution of de novo retroelements to birth defects and childhood cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.15.24305733. [PMID: 38699361 PMCID: PMC11065029 DOI: 10.1101/2024.04.15.24305733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Insertion of active retroelements-L1s, Alus, and SVAs-can disrupt proper genome function and lead to various disorders including cancer. However, the role of de novo retroelements (DNRTs) in birth defects and childhood cancers has not been well characterized due to the lack of adequate data and efficient computational tools. Here, we examine whole-genome sequencing data of 3,244 trios from 12 birth defect and childhood cancer cohorts in the Gabriella Miller Kids First Pediatric Research Program. Using an improved version of our tool xTea (x-Transposable element analyzer) that incorporates a deep-learning module, we identified 162 DNRTs, as well as 2 pseudogene insertions. Several variants are likely to be causal, such as a de novo Alu insertion that led to the ablation of a whole exon in the NF1 gene in a proband with brain tumor. We observe a high de novo SVA insertion burden in both high-intolerance loss-of-function genes and exons as well as more frequent de novo Alu insertions of paternal origin. We also identify potential mosaic DNRTs from embryonic stages. Our study reveals the important roles of DNRTs in causing birth defects and predisposition to childhood cancers.
Collapse
Affiliation(s)
- Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Viktor Ljungström
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Antuan Tran
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Hu Jin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Backlund MP, Repo P, Kangas H, Donner K, Sankila EM, Krootila J, Paavo M, Wartiovaara K, Kivelä TT, Turunen JA. Characterisation of a LINE-1 Insertion in the RP1 Gene by Targeted Adaptive Nanopore Sequencing in a Family with Retinitis Pigmentosa. Hum Mutat 2024; 2024:6580561. [PMID: 40225919 PMCID: PMC11919084 DOI: 10.1155/2024/6580561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 04/15/2025]
Abstract
Retinitis pigmentosa (RP) is a group of inherited degenerative retinal disorders affecting more than 1.5 million people worldwide. For 30-50% of individuals with RP, the genetic cause remains unresolved by current clinical diagnostic gene panels. It is likely explained by variants in novel RP-associated genes or noncoding regulatory regions, or by complex genetic alterations such as large structural variants. Recent developments in long-read sequencing techniques have opened an opportunity for efficient analysis of complex genetic variants. We analysed a Finnish family with dominantly inherited RP affecting six individuals in three generations. Two affected individuals underwent a comprehensive clinical examination in combination with a clinical diagnostic gene panel, followed by whole exome sequencing in our laboratory. They exhibited typical signs of RP, yet initial sequence analysis found no causative variants. Reanalysis of the sequencing data detected a LINE-1 (L1) retrotransposon insertion of unknown size in exon 4 of the RP1 axonemal microtubule-associated (RP1) gene. The large chimeric L1 insertion that segregated with the disease was further characterised using targeted adaptive nanopore sequencing of RP1, allowing us to identify a 5.6 kb L1 transposable element insertion in RP1 as the cause of RP in this family with dominantly inherited RP.
Collapse
Affiliation(s)
- Michael P. Backlund
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
| | - Pauliina Repo
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Kangas
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Kati Donner
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Eeva-Marja Sankila
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Julia Krootila
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
| | - Maarjaliis Paavo
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kirmo Wartiovaara
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tero T. Kivelä
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joni A. Turunen
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
Wijngaard R, Demidov G, O'Gorman L, Corominas-Galbany J, Yaldiz B, Steyaert W, de Boer E, Vissers LELM, Kamsteeg EJ, Pfundt R, Swinkels H, den Ouden A, Te Paske IBAW, de Voer RM, Faivre L, Denommé-Pichon AS, Duffourd Y, Vitobello A, Chevarin M, Straub V, Töpf A, van der Kooi AJ, Magrinelli F, Rocca C, Hanna MG, Vandrovcova J, Ossowski S, Laurie S, Gilissen C. Mobile element insertions in rare diseases: a comparative benchmark and reanalysis of 60,000 exome samples. Eur J Hum Genet 2024; 32:200-208. [PMID: 37853102 PMCID: PMC10853235 DOI: 10.1038/s41431-023-01478-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.
Collapse
Affiliation(s)
- Robin Wijngaard
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - German Demidov
- Universitätsklinikum Tübingen - Institut für Medizinische Genetik und angewandte Genomik, Tübingen, Germany
| | - Luke O'Gorman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Burcu Yaldiz
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Steyaert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elke de Boer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hilde Swinkels
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amber den Ouden
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris B A W Te Paske
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurence Faivre
- Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs", Centre de Génétique, FHU-TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Yannis Duffourd
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Antonio Vitobello
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Martin Chevarin
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anneke J van der Kooi
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Clinical Pharmacology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Stephan Ossowski
- Universitätsklinikum Tübingen - Institut für Medizinische Genetik und angewandte Genomik, Tübingen, Germany
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Jiang T, Zhou ZM, Ling ZQ, Zhang Q, Wu ZZ, Yang JW, Yang SY, Yang B, Huang LS. Pig H3K4me3, H3K27ac, and gene expression profiles reveal reproductive tissue-specific activity of transposable elements. Zool Res 2024; 45:138-151. [PMID: 38155423 PMCID: PMC10839656 DOI: 10.24272/j.issn.2095-8137.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 12/30/2023] Open
Abstract
Regulatory sequences and transposable elements (TEs) account for a large proportion of the genomic sequences of species; however, their roles in gene transcription, especially tissue-specific expression, remain largely unknown. Pigs serve as an excellent animal model for studying genomic sequence biology due to the extensive diversity among their wild and domesticated populations. Here, we conducted an integrated analysis using H3K27ac ChIP-seq, H3K4me3 ChIP-seq, and RNA-seq data from 10 different tissues of seven fetuses and eight closely related adult pigs. We aimed to annotate the regulatory elements and TEs to elucidate their associations with histone modifications and mRNA expression across different tissues and developmental stages. Based on correlation analysis between mRNA expression and H3K27ac and H3K4me3 peak activity, results indicated that H3K27ac exhibited stronger associations with gene expression than H3K4me3. Furthermore, 1.45% of TEs overlapped with either the H3K27ac or H3K4me3 peaks, with the majority displaying tissue-specific activity. Notably, a TE subfamily (LTR4C_SS), containing binding motifs for SIX1 and SIX4, showed specific enrichment in the H3K27ac peaks of the adult and fetal ovaries. RNA-seq analysis also revealed widespread expression of TEs in the exons or promoters of genes, including 4 688 TE-containing transcripts with distinct development stage-specific and tissue-specific expression. Of note, 1 967 TE-containing transcripts were enriched in the testes. We identified a long terminal repeat (LTR), MLT1F1, acting as a testis-specific alternative promoter in SRPK2 (a cell cycle-related protein kinase) in our pig dataset. This element was also conserved in humans and mice, suggesting either an ancient integration of TEs in genes specifically expressed in the testes or parallel evolutionary patterns. Collectively, our findings demonstrate that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions, particularly in the reproductive organs.
Collapse
Affiliation(s)
- Tao Jiang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhi-Min Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zi-Qi Ling
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Qing Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhong-Zi Wu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jia-Wen Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Si-Yu Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Bin Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| | - Lu-Sheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| |
Collapse
|
9
|
Mandal AK. Recent insights into crosstalk between genetic parasites and their host genome. Brief Funct Genomics 2024; 23:15-23. [PMID: 36307128 PMCID: PMC10799329 DOI: 10.1093/bfgp/elac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 01/21/2024] Open
Abstract
The bulk of higher order organismal genomes is comprised of transposable element (TE) copies, i.e. genetic parasites. The host-parasite relation is multi-faceted, varying across genomic region (genic versus intergenic), life-cycle stages, tissue-type and of course in health versus pathological state. The reach of functional genomics though, in investigating genotype-to-phenotype relations, has been limited when TEs are involved. The aim of this review is to highlight recent progress made in understanding how TE origin biochemical activity interacts with the central dogma stages of the host genome. Such interaction can also bring about modulation of the immune context and this could have important repercussions in disease state where immunity has a role to play. Thus, the review is to instigate ideas and action points around identifying evolutionary adaptations that the host genome and the genetic parasite have evolved and why they could be relevant.
Collapse
Affiliation(s)
- Amit K Mandal
- Corresponding author: A.K. Mandal, Nuffield Department of Surgical Sciences (NDS), University of Oxford, Old Road Campus Research building (ORCRB), Oxford OX3 7DQ, UK. Tel: +44 (0)1865 617123; Fax: +44 (0)1865 768876; E-mail:
| |
Collapse
|
10
|
Gill ME, Rohmer A, Erkek-Ozhan S, Liang CY, Chun S, Ozonov EA, Peters AHFM. De novo transcriptome assembly of mouse male germ cells reveals novel genes, stage-specific bidirectional promoter activity, and noncoding RNA expression. Genome Res 2023; 33:2060-2078. [PMID: 38129075 PMCID: PMC10760527 DOI: 10.1101/gr.278060.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/29/2023] [Indexed: 12/23/2023]
Abstract
In mammals, the adult testis is the tissue with the highest diversity in gene expression. Much of that diversity is attributed to germ cells, primarily meiotic spermatocytes and postmeiotic haploid spermatids. Exploiting a newly developed cell purification method, we profiled the transcriptomes of such postmitotic germ cells of mice. We used a de novo transcriptome assembly approach and identified thousands of novel expressed transcripts characterized by features distinct from those of known genes. Novel loci tend to be short in length, monoexonic, and lowly expressed. Most novel genes have arisen recently in evolutionary time and possess low coding potential. Nonetheless, we identify several novel protein-coding genes harboring open reading frames that encode proteins containing matches to conserved protein domains. Analysis of mass-spectrometry data from adult mouse testes confirms protein production from several of these novel genes. We also examine overlap between transcripts and repetitive elements. We find that although distinct families of repeats are expressed with differing temporal dynamics during spermatogenesis, we do not observe a general mode of regulation wherein repeats drive expression of nonrepetitive sequences in a cell type-specific manner. Finally, we observe many fairly long antisense transcripts originating from canonical gene promoters, pointing to pervasive bidirectional promoter activity during spermatogenesis that is distinct and more frequent compared with somatic cells.
Collapse
Affiliation(s)
- Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Alexia Rohmer
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Serap Erkek-Ozhan
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Ching-Yeu Liang
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Sunwoo Chun
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
11
|
Zhao B, Nguyen MA, Woo S, Kim J, Yu TW, Lee EA. Contribution and therapeutic implications of retroelement insertions in ataxia telangiectasia. Am J Hum Genet 2023; 110:1976-1982. [PMID: 37802069 PMCID: PMC10645548 DOI: 10.1016/j.ajhg.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
Certain classes of genetic variation still escape detection in clinical sequencing analysis. One such class is retroelement insertion, which has been reported as a cause of Mendelian diseases and may offer unique therapeutic implications. Here, we conducted retroelement profiling on whole-genome sequencing data from a cohort of 237 individuals with ataxia telangiectasia (A-T). We found 15 individuals carrying retroelement insertions in ATM, all but one of which integrated in noncoding regions. Systematic functional characterization via RNA sequencing, RT-PCR, and/or minigene splicing assays showed that 12 out of 14 intronic insertions led or contributed to ATM loss of function by exon skipping or activating cryptic splice sites. We also present proof-of-concept antisense oligonucleotides that suppress cryptic exonization caused by a deep intronic retroelement insertion. These results provide an initial systematic estimate of the contribution of retroelements to the genetic architecture of recessive Mendelian disorders as ∼2.1%-5.5%. Our study highlights the importance of retroelement insertions as causal variants and therapeutic targets in genetic diseases.
Collapse
Affiliation(s)
- Boxun Zhao
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Minh A Nguyen
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Sijae Woo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinkuk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Timothy W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Lowther C, Valkanas E, Giordano JL, Wang HZ, Currall BB, O'Keefe K, Pierce-Hoffman E, Kurtas NE, Whelan CW, Hao SP, Weisburd B, Jalili V, Fu J, Wong I, Collins RL, Zhao X, Austin-Tse CA, Evangelista E, Lemire G, Aggarwal VS, Lucente D, Gauthier LD, Tolonen C, Sahakian N, Stevens C, An JY, Dong S, Norton ME, MacKenzie TC, Devlin B, Gilmore K, Powell BC, Brandt A, Vetrini F, DiVito M, Sanders SJ, MacArthur DG, Hodge JC, O'Donnell-Luria A, Rehm HL, Vora NL, Levy B, Brand H, Wapner RJ, Talkowski ME. Systematic evaluation of genome sequencing for the diagnostic assessment of autism spectrum disorder and fetal structural anomalies. Am J Hum Genet 2023; 110:1454-1469. [PMID: 37595579 PMCID: PMC10502737 DOI: 10.1016/j.ajhg.2023.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
Short-read genome sequencing (GS) holds the promise of becoming the primary diagnostic approach for the assessment of autism spectrum disorder (ASD) and fetal structural anomalies (FSAs). However, few studies have comprehensively evaluated its performance against current standard-of-care diagnostic tests: karyotype, chromosomal microarray (CMA), and exome sequencing (ES). To assess the clinical utility of GS, we compared its diagnostic yield against these three tests in 1,612 quartet families including an individual with ASD and in 295 prenatal families. Our GS analytic framework identified a diagnostic variant in 7.8% of ASD probands, almost 2-fold more than CMA (4.3%) and 3-fold more than ES (2.7%). However, when we systematically captured copy-number variants (CNVs) from the exome data, the diagnostic yield of ES (7.4%) was brought much closer to, but did not surpass, GS. Similarly, we estimated that GS could achieve an overall diagnostic yield of 46.1% in unselected FSAs, representing a 17.2% increased yield over karyotype, 14.1% over CMA, and 4.1% over ES with CNV calling or 36.1% increase without CNV discovery. Overall, GS provided an added diagnostic yield of 0.4% and 0.8% beyond the combination of all three standard-of-care tests in ASD and FSAs, respectively. This corresponded to nine GS unique diagnostic variants, including sequence variants in exons not captured by ES, structural variants (SVs) inaccessible to existing standard-of-care tests, and SVs where the resolution of GS changed variant classification. Overall, this large-scale evaluation demonstrated that GS significantly outperforms each individual standard-of-care test while also outperforming the combination of all three tests, thus warranting consideration as the first-tier diagnostic approach for the assessment of ASD and FSAs.
Collapse
Affiliation(s)
- Chelsea Lowther
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Elise Valkanas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Jessica L Giordano
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Harold Z Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin B Currall
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kathryn O'Keefe
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emma Pierce-Hoffman
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nehir E Kurtas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christopher W Whelan
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie P Hao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ben Weisburd
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vahid Jalili
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack Fu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Isaac Wong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christina A Austin-Tse
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Emily Evangelista
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vimla S Aggarwal
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Laura D Gauthier
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charlotte Tolonen
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nareh Sahakian
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christine Stevens
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joon-Yong An
- School of Biosystem and Biomedical Science, Korea University, Seoul, South Korea
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mary E Norton
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Tippi C MacKenzie
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kelly Gilmore
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bradford C Powell
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alicia Brandt
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michelle DiVito
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel G MacArthur
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Centre for Population Genomics, Garvan Institute of Medical Research, and University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jennelle C Hodge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anne O'Donnell-Luria
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Heidi L Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neeta L Vora
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ronald J Wapner
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA; Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Bilgrav Saether K, Nilsson D, Thonberg H, Tham E, Ameur A, Eisfeldt J, Lindstrand A. Transposable element insertions in 1000 Swedish individuals. PLoS One 2023; 18:e0289346. [PMID: 37506127 PMCID: PMC10381067 DOI: 10.1371/journal.pone.0289346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The majority of rare diseases are genetic, and regardless of advanced high-throughput genomics-based investigations, 60% of patients remain undiagnosed. A major factor limiting our ability to identify disease-causing alterations is a poor understanding of the morbid and normal human genome. A major genomic contributor of which function and distribution remain largely unstudied are the transposable elements (TE), which constitute 50% of our genome. Here we aim to resolve this knowledge gap and increase the diagnostic yield of rare disease patients investigated with clinical genome sequencing. To this end we characterized TE insertions in 1000 Swedish individuals from the SweGen dataset and 2504 individuals from the 1000 Genomes Project (1KGP), creating seven population-specific TE insertion databases. Of note, 66% of TE insertions in SweGen were present at >1% in the 1KGP databases, proving that most insertions are common across populations. Focusing on the rare TE insertions, we show that even though ~0.7% of those insertions affect protein coding genes, they rarely affect known disease casing genes (<0.1%). Finally, we applied a TE insertion identification workflow on two clinical cases where disease causing TE insertions were suspected and could verify the presence of pathogenic TE insertions in both. Altogether we demonstrate the importance of TE insertion detection and highlight possible clinical implications in rare disease diagnostics.
Collapse
Affiliation(s)
- Kristine Bilgrav Saether
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Håkan Thonberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Garret P, Chevarin M, Vitobello A, Verdez S, Fournier C, Verloes A, Tisserant E, Vabres P, Prevel O, Philippe C, Denommé-Pichon AS, Bruel AL, Mau-Them FT, Safraou H, Boughalem A, Costa JM, Trost D, Thauvin-Robinet C, Faivre L, Duffourd Y. A second look at exome sequencing data: detecting mobile elements insertion in a rare disease cohort. Eur J Hum Genet 2023; 31:761-768. [PMID: 36450799 PMCID: PMC10326243 DOI: 10.1038/s41431-022-01250-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
About 0.3% of all variants are due to de novo mobile element insertions (MEIs). The massive development of next-generation sequencing has made it possible to identify MEIs on a large scale. We analyzed exome sequencing (ES) data from 3232 individuals (2410 probands) with developmental and/or neurological abnormalities, with MELT, a tool designed to identify MEIs. The results were filtered by frequency, impacted region and gene function. Following phenotype comparison, two candidates were identified in two unrelated probands. The first mobile element (ME) was found in a patient referred for poikilodermia. A homozygous insertion was identified in the FERMT1 gene involved in Kindler syndrome. RNA study confirmed its pathological impact on splicing. The second ME was a de novo Alu insertion in the GRIN2B gene involved in intellectual disability, and detected in a patient with a developmental disorder. The frequency of de novo exonic MEIs in our study is concordant with previous studies on ES data. This project, which aimed to identify pathological MEIs in the coding sequence of genes, confirms that including detection of MEs in the ES pipeline can increase the diagnostic rate. This work provides additional evidence that ES could be used alone as a diagnostic exam.
Collapse
Affiliation(s)
- Philippine Garret
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France.
- Laboratoire, CERBA, Saint-Ouen l'Aumône, France.
| | - Martin Chevarin
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Antonio Vitobello
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Simon Verdez
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Cyril Fournier
- UMR 1231, Faculty of Medicine, University of Burgundy-iSITE-INSERM, Dijon, France
- Unit for innovation in genetics and epigenetic in oncology, Dijon University Hospital, Dijon, France
| | - Alain Verloes
- INSERM UMR1141, Université de Paris, Paris, France
- Genetics Department, AP-HP Nord, Robert-Debré University Hospital, Paris, France
| | - Emilie Tisserant
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Pierre Vabres
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Centre de Référence maladies rares « maladies dermatologiques en mosaïque », service de dermatologie, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
- Service Dermatologie, Dijon University Hospital, Dijon, France
| | - Orlane Prevel
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Service Dermatologie, Dijon University Hospital, Dijon, France
| | - Christophe Philippe
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
- Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », centre de génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Ange-Line Bruel
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Frédéric Tran Mau-Them
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
- Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », centre de génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
- Centre de Référence maladies rares « Déficiences intellectuelles de cause rare », centre de génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Hana Safraou
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
- Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », centre de génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | | | | | | | - Christel Thauvin-Robinet
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
- Centre de Référence maladies rares « Déficiences intellectuelles de cause rare », centre de génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », centre de génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Yannis Duffourd
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| |
Collapse
|
15
|
Li Z, Xu H, Li J, Xu X, Wang J, Wu D, Zhang J, Liu J, Xue Z, Zhan G, Tan BCP, Chen D, Chan YS, Ng HH, Liu W, Hsu CH, Zhang D, Shen Y, Liang H. Selective binding of retrotransposons by ZFP352 facilitates the timely dissolution of totipotency network. Nat Commun 2023; 14:3646. [PMID: 37339952 DOI: 10.1038/s41467-023-39344-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Acquisition of new stem cell fates relies on the dissolution of the prior regulatory network sustaining the existing cell fates. Currently, extensive insights have been revealed for the totipotency regulatory network around the zygotic genome activation (ZGA) period. However, how the dissolution of the totipotency network is triggered to ensure the timely embryonic development following ZGA is largely unknown. In this study, we identify the unexpected role of a highly expressed 2-cell (2C) embryo specific transcription factor, ZFP352, in facilitating the dissolution of the totipotency network. We find that ZFP352 has selective binding towards two different retrotransposon sub-families. ZFP352 coordinates with DUX to bind the 2C specific MT2_Mm sub-family. On the other hand, without DUX, ZFP352 switches affinity to bind extensively onto SINE_B1/Alu sub-family. This leads to the activation of later developmental programs like ubiquitination pathways, to facilitate the dissolution of the 2C state. Correspondingly, depleting ZFP352 in mouse embryos delays the 2C to morula transition process. Thus, through a shift of binding from MT2_Mm to SINE_B1/Alu, ZFP352 can trigger spontaneous dissolution of the totipotency network. Our study highlights the importance of different retrotransposons sub-families in facilitating the timely and programmed cell fates transition during early embryogenesis.
Collapse
Affiliation(s)
- Zhengyi Li
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Haiyan Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Jiaqun Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiao Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Junjiao Wang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Danya Wu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jiateng Zhang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Juan Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Ziwei Xue
- Department of Orthopedic Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China
| | - Guankai Zhan
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Bobby Cheng Peow Tan
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore, Singapore
| | - Di Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China
| | - Yun-Shen Chan
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Huck Hui Ng
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117597, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 639798, Singapore
| | - Wanlu Liu
- Department of Orthopedic Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China
| | - Chih-Hung Hsu
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Yang Shen
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore, Singapore.
- Vision Medicals Co., Ltd, G10 BLDG, Huaxin Park, 31 Kefeng Ave, Gaungzhou, 510000, China.
| | - Hongqing Liang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
16
|
Wright CF, Campbell P, Eberhardt RY, Aitken S, Perrett D, Brent S, Danecek P, Gardner EJ, Chundru VK, Lindsay SJ, Andrews K, Hampstead J, Kaplanis J, Samocha KE, Middleton A, Foreman J, Hobson RJ, Parker MJ, Martin HC, FitzPatrick DR, Hurles ME, Firth HV. Genomic Diagnosis of Rare Pediatric Disease in the United Kingdom and Ireland. N Engl J Med 2023; 388:1559-1571. [PMID: 37043637 PMCID: PMC7614484 DOI: 10.1056/nejmoa2209046] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND Pediatric disorders include a range of highly penetrant, genetically heterogeneous conditions amenable to genomewide diagnostic approaches. Finding a molecular diagnosis is challenging but can have profound lifelong benefits. METHODS We conducted a large-scale sequencing study involving more than 13,500 families with probands with severe, probably monogenic, difficult-to-diagnose developmental disorders from 24 regional genetics services in the United Kingdom and Ireland. Standardized phenotypic data were collected, and exome sequencing and microarray analyses were performed to investigate novel genetic causes. We developed an iterative variant analysis pipeline and reported candidate variants to clinical teams for validation and diagnostic interpretation to inform communication with families. Multiple regression analyses were performed to evaluate factors affecting the probability of diagnosis. RESULTS A total of 13,449 probands were included in the analyses. On average, we reported 1.0 candidate variant per parent-offspring trio and 2.5 variants per singleton proband. Using clinical and computational approaches to variant classification, we made a diagnosis in approximately 41% of probands (5502 of 13,449). Of 3599 probands in trios who received a diagnosis by clinical assertion, approximately 76% had a pathogenic de novo variant. Another 22% of probands (2997 of 13,449) had variants of uncertain significance in genes that were strongly linked to monogenic developmental disorders. Recruitment in a parent-offspring trio had the largest effect on the probability of diagnosis (odds ratio, 4.70; 95% confidence interval [CI], 4.16 to 5.31). Probands were less likely to receive a diagnosis if they were born extremely prematurely (i.e., 22 to 27 weeks' gestation; odds ratio, 0.39; 95% CI, 0.22 to 0.68), had in utero exposure to antiepileptic medications (odds ratio, 0.44; 95% CI, 0.29 to 0.67), had mothers with diabetes (odds ratio, 0.52; 95% CI, 0.41 to 0.67), or were of African ancestry (odds ratio, 0.51; 95% CI, 0.31 to 0.78). CONCLUSIONS Among probands with severe, probably monogenic, difficult-to-diagnose developmental disorders, multimodal analysis of genomewide data had good diagnostic power, even after previous attempts at diagnosis. (Funded by the Health Innovation Challenge Fund and Wellcome Sanger Institute.).
Collapse
Affiliation(s)
- Caroline F. Wright
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter UK, EX2 5DW
| | - Patrick Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- Cambridge University Hospitals Foundation Trust, Addenbrooke’s Hospital, Cambridge UK, CB2 0QQ
| | - Ruth Y. Eberhardt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetic and Cancer, University of Edinburgh, Edinburgh UK, EH4 2XU
| | - Daniel Perrett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SD
| | - Simon Brent
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SD
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Eugene J. Gardner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - V. Kartik Chundru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Sarah J. Lindsay
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Katrina Andrews
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Juliet Hampstead
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Joanna Kaplanis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Kaitlin E. Samocha
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Anna Middleton
- Wellcome Connecting Science, Wellcome Genome Campus, Hinxton, Cambridge, UK, CB10 1SA
| | - Julia Foreman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SD
| | - Rachel J. Hobson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Michael J. Parker
- Wellcome Centre for Ethics and Humanities/Ethox Centre, Oxford Population Health, University of Oxford, Big Data Institute, Old Road Campus, Oxford, UK, OX3 7LF
| | - Hilary C. Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - David R. FitzPatrick
- MRC Human Genetics Unit, Institute of Genetic and Cancer, University of Edinburgh, Edinburgh UK, EH4 2XU
| | - Matthew E. Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Helen V. Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- Cambridge University Hospitals Foundation Trust, Addenbrooke’s Hospital, Cambridge UK, CB2 0QQ
| |
Collapse
|
17
|
Klein J, Allister AB, Schmidt G, Otto A, Heinecke K, Bax-Knoche J, Beger C, Becker S, Bartels S, Ripperger T, Bohne J, Dörk T, Schlegelberger B, Hofmann W, Steinemann D. A Novel Alu Element Insertion in ATM Induces Exon Skipping in Suspected HBOC Patients. Hum Mutat 2023; 2023:6623515. [PMID: 40225144 PMCID: PMC11919196 DOI: 10.1155/2023/6623515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 04/15/2025]
Abstract
The vast majority of patients at risk of hereditary breast and/or ovarian cancer (HBOC) syndrome remain without a molecular diagnosis after routine genetic testing. One type of genomic alteration that is commonly missed by diagnostic pipelines is mobile element insertions (MEIs). Here, we reanalyzed multigene panel data from suspected HBOC patients using the MEI detection tool Mobster. A novel Alu element insertion in ATM intron 54 (ATM:c.8010+30_8010+31insAluYa5) was identified as a potential contributing factor in seven patients. Transcript analysis of patient-derived RNA from three heterozygous carriers revealed exon 54 skipping in 38% of total ATM transcripts. To manifest the direct association between the Alu element insertion and the aberrant splice pattern, HEK293T and MCF7 cells were transfected with wild-type or Alu element-carrying minigene constructs. On average, 77% of plasmid-derived transcripts lacked exon 54 in the presence of the Alu element insertion compared to only 4.7% of transcripts expressed by the wild-type minigene. These results strongly suggest ATM:c.8010+30_8010+31insAluYa5 as the main driver of ATM exon 54 skipping. Since this exon loss is predicted to cause a frameshift and a premature stop codon, mutant transcripts are unlikely to translate into functional proteins. Based on its estimated frequency of up to 0.05% in control populations, we propose to consider ATM:c.8010+30_8010+31insAluYa5 in suspected HBOC patients and to clarify its role in carcinogenesis through future epidemiological and functional analyses. Generally, the implementation of MEI detection tools in diagnostic sequencing pipelines could increase the diagnostic yield, as MEIs are likely underestimated contributors to genetic diseases.
Collapse
Affiliation(s)
- Janin Klein
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Annette Otto
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Kai Heinecke
- MVZ Labor Krone GbR, Bad Salzuflen, Bielefeld, Germany
| | | | - Carmela Beger
- MVZ Labor Krone GbR, Bad Salzuflen, Bielefeld, Germany
| | - Sarah Becker
- MVZ Labor Krone GbR, Bad Salzuflen, Bielefeld, Germany
| | - Stephan Bartels
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jens Bohne
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Department of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | | | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Whole Genome Analysis of Dizygotic Twins With Autism Reveals Prevalent Transposon Insertion Within Neuronal Regulatory Elements: Potential Implications for Disease Etiology and Clinical Assessment. J Autism Dev Disord 2023; 53:1091-1106. [PMID: 35759154 DOI: 10.1007/s10803-022-05636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
Transposable elements (TEs) have been implicated in autism spectrum disorder (ASD). However, our understanding of their roles is far from complete. Herein, we explored de novo TE insertions (dnTEIs) and de novo variants (DNVs) across the genomes of dizygotic twins with ASD and their parents. The neuronal regulatory elements had a tendency to harbor dnTEIs that were shared between twins, but ASD-risk genes had dnTEIs that were unique to each twin. The dnTEIs were 4.6-fold enriched in enhancers that are active in embryonic stem cell (ESC)-neurons (p < 0.001), but DNVs were 1.5-fold enriched in active enhancers of astrocytes (p = 0.0051). Our findings suggest that dnTEIs and DNVs play a role in ASD etiology by disrupting enhancers of neurons and astrocytes.
Collapse
|
19
|
Lee HJ, Hou Y, Maeng JH, Shah NM, Chen Y, Lawson HA, Yang H, Yue F, Wang T. Epigenomic analysis reveals prevalent contribution of transposable elements to cis-regulatory elements, tissue-specific expression, and alternative promoters in zebrafish. Genome Res 2022; 32:1424-1436. [PMID: 35649578 PMCID: PMC9341505 DOI: 10.1101/gr.276052.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 05/27/2022] [Indexed: 12/04/2022]
Abstract
Transposable elements (TEs) encode regulatory elements that impact gene expression in multiple species, yet a comprehensive analysis of zebrafish TEs in the context of gene regulation is lacking. Here, we systematically investigate the epigenomic and transcriptomic landscape of TEs across 11 adult zebrafish tissues using multidimensional sequencing data. We find that TEs contribute substantially to a diverse array of regulatory elements in the zebrafish genome and that 37% of TEs are positioned in active regulatory states in adult zebrafish tissues. We identify TE subfamilies enriched in highly specific regulatory elements among different tissues. We use transcript assembly to discover TE-derived transcriptional units expressed across tissues. Finally, we show that novel TE-derived promoters can initiate tissue-specific transcription of alternate gene isoforms. This work provides a comprehensive profile of TE activity across normal zebrafish tissues, shedding light on mechanisms underlying the regulation of gene expression in this widely used model organism.
Collapse
Affiliation(s)
- Hyung Joo Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ju Heon Maeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nakul M Shah
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
20
|
Martinez de Lagran M, Elizalde-Torrent A, Paredes R, Clotet B, Dierssen M. Lamivudine, a reverse transcriptase inhibitor, rescues cognitive deficits in a mouse model of down syndrome. J Cell Mol Med 2022; 26:4210-4215. [PMID: 35762509 PMCID: PMC9344819 DOI: 10.1111/jcmm.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
An elevated activity of retrotransposons is increasingly recognized to be implicated in a wide range of neurodegenerative and neurodevelopmental diseases. Down syndrome (DS) is the most common genetic disorder associated with intellectual disability and a genetic form of Alzheimer's disease. For this reason, we hypothesized that treatment with reverse transcriptase inhibitors could ameliorate DS phenotypes. In this proof of concept study, we treated trisomic (Ts65Dn) mice, a model of DS, with lamivudine, a reverse transcriptase inhibitor. We detected a significant improvement of neurobehavioural phenotypes, and a complete rescue of the hippocampal‐dependent recognition memory upon treatment with lamivudine. Despite clinical studies in patients with DS are warranted, this study lays the groundwork for a novel and actionable therapeutic approach.
Collapse
Affiliation(s)
- Maria Martinez de Lagran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
21
|
Domazet-Lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes (Basel) 2022; 13:719. [PMID: 35627104 PMCID: PMC9141755 DOI: 10.3390/genes13050719] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The major advantage of mRNA vaccines over more conventional approaches is their potential for rapid development and large-scale deployment in pandemic situations. In the current COVID-19 crisis, two mRNA COVID-19 vaccines have been conditionally approved and broadly applied, while others are still in clinical trials. However, there is no previous experience with the use of mRNA vaccines on a large scale in the general population. This warrants a careful evaluation of mRNA vaccine safety properties by considering all available knowledge about mRNA molecular biology and evolution. Here, I discuss the pervasive claim that mRNA-based vaccines cannot alter genomes. Surprisingly, this notion is widely stated in the mRNA vaccine literature but never supported by referencing any primary scientific papers that would specifically address this question. This discrepancy becomes even more puzzling if one considers previous work on the molecular and evolutionary aspects of retroposition in murine and human populations that clearly documents the frequent integration of mRNA molecules into genomes, including clinical contexts. By performing basic comparisons, I show that the sequence features of mRNA vaccines meet all known requirements for retroposition using L1 elements-the most abundant autonomously active retrotransposons in the human genome. In fact, many factors associated with mRNA vaccines increase the possibility of their L1-mediated retroposition. I conclude that is unfounded to a priori assume that mRNA-based therapeutics do not impact genomes and that the route to genome integration of vaccine mRNAs via endogenous L1 retroelements is easily conceivable. This implies that we urgently need experimental studies that would rigorously test for the potential retroposition of vaccine mRNAs. At present, the insertional mutagenesis safety of mRNA-based vaccines should be considered unresolved.
Collapse
Affiliation(s)
- Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
22
|
Niu Y, Teng X, Zhou H, Shi Y, Li Y, Tang Y, Zhang P, Luo H, Kang Q, Xu T, He S. Characterizing mobile element insertions in 5675 genomes. Nucleic Acids Res 2022; 50:2493-2508. [PMID: 35212372 PMCID: PMC8934628 DOI: 10.1093/nar/gkac128] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/30/2022] Open
Abstract
Mobile element insertions (MEIs) are a major class of structural variants (SVs) and have been linked to many human genetic disorders, including hemophilia, neurofibromatosis, and various cancers. However, human MEI resources from large-scale genome sequencing are still lacking compared to those for SNPs and SVs. Here, we report a comprehensive map of 36 699 non-reference MEIs constructed from 5675 genomes, comprising 2998 Chinese samples (∼26.2×, NyuWa) and 2677 samples from the 1000 Genomes Project (∼7.4×, 1KGP). We discovered that LINE-1 insertions were highly enriched in centromere regions, implying the role of chromosome context in retroelement insertion. After functional annotation, we estimated that MEIs are responsible for about 9.3% of all protein-truncating events per genome. Finally, we built a companion database named HMEID for public use. This resource represents the latest and largest genomewide study on MEIs and will have broad utility for exploration of human MEI findings.
Collapse
Affiliation(s)
- Yiwei Niu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyi Teng
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yirong Shi
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiheng Tang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huaxia Luo
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Kang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Liu Z, Roberts R, Mercer TR, Xu J, Sedlazeck FJ, Tong W. Towards accurate and reliable resolution of structural variants for clinical diagnosis. Genome Biol 2022; 23:68. [PMID: 35241127 PMCID: PMC8892125 DOI: 10.1186/s13059-022-02636-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Structural variants (SVs) are a major source of human genetic diversity and have been associated with different diseases and phenotypes. The detection of SVs is difficult, and a diverse range of detection methods and data analysis protocols has been developed. This difficulty and diversity make the detection of SVs for clinical applications challenging and requires a framework to ensure accuracy and reproducibility. Here, we discuss current developments in the diagnosis of SVs and propose a roadmap for the accurate and reproducible detection of SVs that includes case studies provided from the FDA-led SEquencing Quality Control Phase II (SEQC-II) and other consortium efforts.
Collapse
Affiliation(s)
- Zhichao Liu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Ruth Roberts
- ApconiX, BioHub at Alderley Park, Alderley Edge, SK10 4TG, UK
- University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Joshua Xu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Weida Tong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
24
|
A framework to score the effects of structural variants in health and disease. Genome Res 2022; 32:766-777. [PMID: 35197310 PMCID: PMC8997355 DOI: 10.1101/gr.275995.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
Abstract
While technological advances improved the identification of structural variants (SVs) in the human genome, their interpretation remains challenging. Several methods utilize individual mechanistic principles like the deletion of coding sequence or 3D genome architecture disruptions. However, a comprehensive tool using the broad spectrum of available annotations is missing. Here, we describe CADD-SV, a method to retrieve and integrate a wide set of annotations to predict the effects of SVs. Previously, supervised learning approaches were limited due to a small number and biased set of annotated pathogenic or benign SVs. We overcome this problem by using a surrogate training-objective, the Combined Annotation Dependent Depletion (CADD) of functional variants. We use human and chimpanzee derived SVs as proxy-neutral and contrast them with matched simulated variants as proxy-deleterious, an approach that has proven powerful for short sequence variants. Our tool computes summary statistics over diverse variant annotations and uses random forest models to prioritize deleterious structural variants. The resulting CADD-SV scores correlate with known pathogenic and rare population variants. We further show that we can prioritize somatic cancer variants as well as noncoding variants known to affect gene expression. We provide a website and offline-scoring tool for easy application of CADD-SV.
Collapse
|
25
|
Borges-Monroy R, Chu C, Dias C, Choi J, Lee S, Gao Y, Shin T, Park PJ, Walsh CA, Lee EA. Whole-genome analysis reveals the contribution of non-coding de novo transposon insertions to autism spectrum disorder. Mob DNA 2021; 12:28. [PMID: 34838103 PMCID: PMC8627061 DOI: 10.1186/s13100-021-00256-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Retrotransposons have been implicated as causes of Mendelian disease, but their role in autism spectrum disorder (ASD) has not been systematically defined, because they are only called with adequate sensitivity from whole genome sequencing (WGS) data and a large enough cohort for this analysis has only recently become available. RESULTS We analyzed WGS data from a cohort of 2288 ASD families from the Simons Simplex Collection by establishing a scalable computational pipeline for retrotransposon insertion detection. We report 86,154 polymorphic retrotransposon insertions-including > 60% not previously reported-and 158 de novo retrotransposition events. The overall burden of de novo events was similar between ASD individuals and unaffected siblings, with 1 de novo insertion per 29, 117, and 206 births for Alu, L1, and SVA respectively, and 1 de novo insertion per 21 births total. However, ASD cases showed more de novo L1 insertions than expected in ASD genes. Additionally, we observed exonic insertions in loss-of-function intolerant genes, including a likely pathogenic exonic insertion in CSDE1, only in ASD individuals. CONCLUSIONS These findings suggest a modest, but important, impact of intronic and exonic retrotransposon insertions in ASD, show the importance of WGS for their analysis, and highlight the utility of specific bioinformatic tools for high-throughput detection of retrotransposon insertions.
Collapse
Affiliation(s)
- Rebeca Borges-Monroy
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Caroline Dias
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaejoon Choi
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Genetics, Harvard Medical School, MA, Boston, USA
| | - Soohyun Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yue Gao
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Pediatrics, Harvard Medical School, MA, Boston, USA
| | - Taehwan Shin
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Pediatrics, Harvard Medical School, MA, Boston, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Department of Pediatrics, Harvard Medical School, MA, Boston, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Department of Pediatrics, Harvard Medical School, MA, Boston, USA.
| |
Collapse
|
26
|
Gardner EJ, Sifrim A, Lindsay SJ, Prigmore E, Rajan D, Danecek P, Gallone G, Eberhardt RY, Martin HC, Wright CF, FitzPatrick DR, Firth HV, Hurles ME. Detecting cryptic clinically relevant structural variation in exome-sequencing data increases diagnostic yield for developmental disorders. Am J Hum Genet 2021; 108:2186-2194. [PMID: 34626536 PMCID: PMC8595893 DOI: 10.1016/j.ajhg.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
Structural variation (SV) describes a broad class of genetic variation greater than 50 bp in size. SVs can cause a wide range of genetic diseases and are prevalent in rare developmental disorders (DDs). Individuals presenting with DDs are often referred for diagnostic testing with chromosomal microarrays (CMAs) to identify large copy-number variants (CNVs) and/or with single-gene, gene-panel, or exome sequencing (ES) to identify single-nucleotide variants, small insertions/deletions, and CNVs. However, individuals with pathogenic SVs undetectable by conventional analysis often remain undiagnosed. Consequently, we have developed the tool InDelible, which interrogates short-read sequencing data for split-read clusters characteristic of SV breakpoints. We applied InDelible to 13,438 probands with severe DDs recruited as part of the Deciphering Developmental Disorders (DDD) study and discovered 63 rare, damaging variants in genes previously associated with DDs missed by standard SNV, indel, or CNV discovery approaches. Clinical review of these 63 variants determined that about half (30/63) were plausibly pathogenic. InDelible was particularly effective at ascertaining variants between 21 and 500 bp in size and increased the total number of potentially pathogenic variants identified by DDD in this size range by 42.9%. Of particular interest were seven confirmed de novo variants in MECP2, which represent 35.0% of all de novo protein-truncating variants in MECP2 among DDD study participants. InDelible provides a framework for the discovery of pathogenic SVs that are most likely missed by standard analytical workflows and has the potential to improve the diagnostic yield of ES across a broad range of genetic diseases.
Collapse
Affiliation(s)
- Eugene J Gardner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton CB10 1SA, UK
| | - Alejandro Sifrim
- Department of Human Genetics, KU Leuven, Herestraat 49, Box 602, Leuven 3000, Belgium
| | - Sarah J Lindsay
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton CB10 1SA, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton CB10 1SA, UK
| | - Diana Rajan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton CB10 1SA, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton CB10 1SA, UK
| | - Giuseppe Gallone
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton CB10 1SA, UK
| | - Ruth Y Eberhardt
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton CB10 1SA, UK
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton CB10 1SA, UK
| | - Caroline F Wright
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, WGH, Edinburgh EH4 2SP, UK
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton CB10 1SA, UK; East Anglian Medical Genetics Service, Box 134, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton CB10 1SA, UK.
| |
Collapse
|
27
|
Autio MI, Bin Amin T, Perrin A, Wong JY, Foo RSY, Prabhakar S. Transposable elements that have recently been mobile in the human genome. BMC Genomics 2021; 22:789. [PMID: 34732136 PMCID: PMC8567694 DOI: 10.1186/s12864-021-08085-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
Background Transposable elements (TE) comprise nearly half of the human genome and their insertions have profound effects to human genetic diversification and as well as disease. Despite their abovementioned significance, there is no consensus on the TE subfamilies that remain active in the human genome. In this study, we therefore developed a novel statistical test for recently mobile subfamilies (RMSs), based on patterns of overlap with > 100,000 polymorphic indels. Results Our analysis produced a catalogue of 20 high-confidence RMSs, which excludes many false positives in public databases. Intriguingly though, it includes HERV-K, an LTR subfamily previously thought to be extinct. The RMS catalogue is strongly enriched for contributions to germline genetic disorders (P = 1.1e-10), and thus constitutes a valuable resource for diagnosing disorders of unknown aetiology using targeted TE-insertion screens. Remarkably, RMSs are also highly enriched for somatic insertions in diverse cancers (P = 2.8e-17), thus indicating strong correlations between germline and somatic TE mobility. Using CRISPR/Cas9 deletion, we show that an RMS-derived polymorphic TE insertion increased the expression of RPL17, a gene associated with lower survival in liver cancer. More broadly, polymorphic TE insertions from RMSs were enriched near genes with allele-specific expression, suggesting widespread effects on gene regulation. Conclusions By using a novel statistical test we have defined a catalogue of 20 recently mobile transposable element subfamilies. We illustrate the gene regulatory potential of RMS-derived polymorphic TE insertions, using CRISPR/Cas9 deletion in vitro on a specific candidate, as well as by genome wide analysis of allele-specific expression. Our study presents novel insights into TE mobility and regulatory potential and provides a key resource for human disease genetics and population history studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08085-0.
Collapse
Affiliation(s)
- Matias I Autio
- Laboratory of Epigenomics and Chromatin Organization, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore.,Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Talal Bin Amin
- Spatial and Single Cell Systems, Genome Institute of Singapore, A*STAR, 60 Biopolis St, Genome #02-01, Singapore, 138672, Singapore
| | - Arnaud Perrin
- Laboratory of Epigenomics and Chromatin Organization, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore.,Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Jen Yi Wong
- Spatial and Single Cell Systems, Genome Institute of Singapore, A*STAR, 60 Biopolis St, Genome #02-01, Singapore, 138672, Singapore
| | - Roger S-Y Foo
- Laboratory of Epigenomics and Chromatin Organization, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore.,Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Shyam Prabhakar
- Spatial and Single Cell Systems, Genome Institute of Singapore, A*STAR, 60 Biopolis St, Genome #02-01, Singapore, 138672, Singapore.
| |
Collapse
|
28
|
Feliciello I, Procino A. mRNA vaccines: Why and how they should be modified. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2021. [DOI: 10.4081/jbr.2021.10072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has stimulated the production of different therapeutic approaches for the resolution of coronavirus infections. On one hand, nanobiomolecules have been proposed as bait material for viruses,1,2 on the other hand unconventional messenger RNA vaccines have been produced like SARS-CoV-2 mRNA vaccines (BioNTech/Pfizer BNT162b2 and Moderna mRNA-1273). [...]
Collapse
|
29
|
Demidov G, Park J, Armeanu-Ebinger S, Roggia C, Faust U, Cordts I, Blandfort M, Haack TB, Schroeder C, Ossowski S. Detection of mobile elements insertions for routine clinical diagnostics in targeted sequencing data. Mol Genet Genomic Med 2021; 9:e1807. [PMID: 34491624 PMCID: PMC8683623 DOI: 10.1002/mgg3.1807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/01/2022] Open
Abstract
Background Targeted sequencing approaches such as gene panel or exome sequencing have become standard of care for the diagnosis of rare and common genetic disease. The detection and interpretation of point mutations, small insertions and deletions, and even exon‐level copy number variants are well established in clinical genetic testing. Other types of genetic variation such as mobile elements insertions (MEIs) are technically difficult to detect. In addition, their downstream clinical interpretation is more complex compared to point mutations due to a larger genomic footprint that can not only predict a clear loss of protein function but might disturb gene regulation and splicing even when located within the non‐coding regions. As a consequence, the contribution of MEIs to disease and tumor development remains largely unexplored in routine diagnostics. Methods In this study, we investigated the occurrence of MEIs in 7,693 exome datasets from individuals with rare diseases and healthy relatives as well as 788 cancer patients analyzed by panel sequencing. Results We present several exemplary cases highlighting the diagnostic value of MEIs and propose a strategy for the detection, prioritization, and clinical interpretation of MEIs in routine clinical diagnostics. Conclusion In this paper, we state that detection and interpretation of MEIs in clinical practice in targeted NGS data can be performed relatively easy despite the fact that MEIs very rarely occur in coding parts of the human genome. Large scale reanalysis of MEIs in existing cohorts may solve otherwise unsolvable cases.
Collapse
Affiliation(s)
- German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sorin Armeanu-Ebinger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Cristiana Roggia
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ulrike Faust
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Isabell Cordts
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | | | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
In Silico identification of a common mobile element insertion in exon 4 of RP1. Sci Rep 2021; 11:13381. [PMID: 34183725 PMCID: PMC8238996 DOI: 10.1038/s41598-021-92834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Mobile element insertions (MEIs) typically exceed the read lengths of short-read sequencing technologies and are therefore frequently missed. Recently, a founder Alu insertion in exon 4 of RP1 has been detected in Japanese patients with macular dystrophy by PCR and gel electrophoresis. We aimed to develop a grep search program for the detection of the Alu insertion in exon 4 of RP1 using unprocessed short reads. Among 494 unrelated Korean patients with inherited eye diseases, 273 patients with specific retinal phenotypes who were previously genotyped by targeted panel or whole exome sequencing were selected. Five probands had a single heterozygous truncating RP1 variant, and one of their unaffected parents also carry this variant. To find a hidden genetic variant, whole genome sequencing was performed in two patients, and it revealed AluY c.4052_4053ins328/p.(Tyr1352Alafs*9) insertion in RP1 exon 4. This AluY insertion was additionally identified in other 3 families, which was confirmed by PCR and gel electrophoresis. We developed simplified grep search program to detect this AluY insertion in RP1 exon 4. The simple grep search revealed a median variant allele frequency of 0.282 (interquartile range, 0.232–0.383), with no false-positive results using 120 control samples. The MEI in RP1 exon 4 was a common founder mutation in Korean, occurring in 1.8% of our cohort. The RP1-Alu grep program efficiently detected the AluY insertion, without the preprocessing of raw data or complex installation processes.
Collapse
|
31
|
Chu C, Zhao B, Park PJ, Lee EA. Identification and Genotyping of Transposable Element Insertions From Genome Sequencing Data. ACTA ACUST UNITED AC 2021; 107:e102. [PMID: 32662945 DOI: 10.1002/cphg.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transposable element (TE) mobilization is a significant source of genomic variation and has been associated with various human diseases. The exponential growth of population-scale whole-genome sequencing and rapid innovations in long-read sequencing technologies provide unprecedented opportunities to study TE insertions and their functional impact in human health and disease. Identifying TE insertions, however, is challenging due to the repetitive nature of the TE sequences. Here, we review computational approaches to detecting and genotyping TE insertions using short- and long-read sequencing and discuss the strengths and weaknesses of different approaches. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Boxun Zhao
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
32
|
Page NF, Gandal MJ, Estes ML, Cameron S, Buth J, Parhami S, Ramaswami G, Murray K, Amaral DG, Van de Water JA, Schumann CM, Carter CS, Bauman MD, McAllister AK, Geschwind DH. Alterations in Retrotransposition, Synaptic Connectivity, and Myelination Implicated by Transcriptomic Changes Following Maternal Immune Activation in Nonhuman Primates. Biol Psychiatry 2021; 89:896-910. [PMID: 33386132 PMCID: PMC8052273 DOI: 10.1016/j.biopsych.2020.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Maternal immune activation (MIA) is a proposed risk factor for multiple neuropsychiatric disorders, including schizophrenia. However, the molecular mechanisms through which MIA imparts risk remain poorly understood. A recently developed nonhuman primate model of exposure to the viral mimic poly:ICLC during pregnancy shows abnormal social and repetitive behaviors and elevated striatal dopamine, a molecular hallmark of human psychosis, providing an unprecedented opportunity for studying underlying molecular correlates. METHODS We performed RNA sequencing across psychiatrically relevant brain regions (prefrontal cortex, anterior cingulate, hippocampus) and primary visual cortex for comparison from 3.5- to 4-year-old male MIA-exposed and control offspring-an age comparable to mid adolescence in humans. RESULTS We identify 266 unique genes differentially expressed in at least one brain region, with the greatest number observed in hippocampus. Co-expression networks identified region-specific alterations in synaptic signaling and oligodendrocytes. Although we observed temporal and regional differences, transcriptomic changes were shared across first- and second-trimester exposures, including for the top differentially expressed genes-PIWIL2 and MGARP. In addition to PIWIL2, several other regulators of retrotransposition and endogenous transposable elements were dysregulated following MIA, potentially connecting MIA to retrotransposition. CONCLUSIONS Together, these results begin to elucidate the brain-level molecular processes through which MIA may impart risk for psychiatric disease.
Collapse
Affiliation(s)
- Nicholas F Page
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, New Jersey
| | - Michael J Gandal
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California
| | - Myka L Estes
- Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California
| | - Scott Cameron
- Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California
| | - Jessie Buth
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California
| | - Sepideh Parhami
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California
| | - Gokul Ramaswami
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California
| | - Karl Murray
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Judy A Van de Water
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Cameron S Carter
- Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - A Kimberley McAllister
- Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Daniel H Geschwind
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California; Department of Neurology, Center for Autism Research and Treatment, Los Angeles, California; Department of Human Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
33
|
Hiatt SM, Lawlor JM, Handley LH, Ramaker RC, Rogers BB, Partridge EC, Boston LB, Williams M, Plott CB, Jenkins J, Gray DE, Holt JM, Bowling KM, Bebin EM, Grimwood J, Schmutz J, Cooper GM. Long-read genome sequencing for the molecular diagnosis of neurodevelopmental disorders. HGG ADVANCES 2021; 2:100023. [PMID: 33937879 PMCID: PMC8087252 DOI: 10.1016/j.xhgg.2021.100023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Exome and genome sequencing have proven to be effective tools for the diagnosis of neurodevelopmental disorders (NDDs), but large fractions of NDDs cannot be attributed to currently detectable genetic variation. This is likely, at least in part, a result of the fact that many genetic variants are difficult or impossible to detect through typical short-read sequencing approaches. Here, we describe a genomic analysis using Pacific Biosciences circular consensus sequencing (CCS) reads, which are both long (>10 kb) and accurate (>99% bp accuracy). We used CCS on six proband-parent trios with NDDs that were unexplained despite extensive testing, including genome sequencing with short reads. We identified variants and created de novo assemblies in each trio, with global metrics indicating these datasets are more accurate and comprehensive than those provided by short-read data. In one proband, we identified a likely pathogenic (LP), de novo L1-mediated insertion in CDKL5 that results in duplication of exon 3, leading to a frameshift. In a second proband, we identified multiple large de novo structural variants, including insertion-translocations affecting DGKB and MLLT3, which we show disrupt MLLT3 transcript levels. We consider this extensive structural variation likely pathogenic. The breadth and quality of variant detection, coupled to finding variants of clinical and research interest in two of six probands with unexplained NDDs, support the hypothesis that long-read genome sequencing can substantially improve rare disease genetic discovery rates.
Collapse
Affiliation(s)
- Susan M. Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Lori H. Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Ryne C. Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Brianne B. Rogers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35924, USA
| | | | - Lori Beth Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Melissa Williams
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - David E. Gray
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - James M. Holt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kevin M. Bowling
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - E. Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35924, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | |
Collapse
|
34
|
Watson CM, Crinnion LA, Lindsay H, Mitchell R, Camm N, Robinson R, Joyce C, Tanteles GA, Halloran DJO, Pena SDJ, Carr IM, Bonthron DT. Assessing the utility of long-read nanopore sequencing for rapid and efficient characterization of mobile element insertions. J Transl Med 2021; 101:442-449. [PMID: 32989232 DOI: 10.1038/s41374-020-00489-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
Short-read next generation sequencing (NGS) has become the predominant first-line technique used to diagnose patients with rare genetic conditions. Inherent limitations of short-read technology, notably for the detection and characterization of complex insertion-containing variants, are offset by the ability to concurrently screen many disease genes. "Third-generation" long-read sequencers are increasingly being deployed as an orthogonal adjunct technology, but their full potential for molecular genetic diagnosis has yet to be exploited. Here, we describe three diagnostic cases in which pathogenic mobile element insertions were refractory to characterization by short-read sequencing. To validate the accuracy of the long-read technology, we first used Sanger sequencing to confirm the integration sites and derive curated benchmark sequences of the variant-containing alleles. Long-read nanopore sequencing was then performed on locus-specific amplicons. Pairwise comparison between these data and the previously determined benchmark alleles revealed 100% identity of the variant-containing sequences. We demonstrate a number of technical advantages over existing wet-laboratory approaches, including in silico size selection of a mixed pool of amplification products, and the relative ease with which an automated informatics workflow can be established. Our findings add to a growing body of literature describing the diagnostic utility of long-read sequencing.
Collapse
Affiliation(s)
- Christopher M Watson
- Yorkshire and North East Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, LS9 7TF, UK.
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, LS9 7TF, UK.
| | - Laura A Crinnion
- Yorkshire and North East Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, LS9 7TF, UK
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Helen Lindsay
- Yorkshire and North East Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Rowena Mitchell
- Yorkshire and North East Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Nick Camm
- Yorkshire and North East Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Rachel Robinson
- Yorkshire and North East Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Caroline Joyce
- Department of Endocrinology, Cork University Hospital, Wilton, Cork, Ireland
| | - George A Tanteles
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, PO Box 23462, CY1683, Nicosia, Cyprus
| | | | | | - Ian M Carr
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - David T Bonthron
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, LS9 7TF, UK
| |
Collapse
|
35
|
Bergant G, Maver A, Peterlin B. Whole-Genome Sequencing in Diagnostics of Selected Slovenian Undiagnosed Patients with Rare Disorders. Life (Basel) 2021; 11:life11030205. [PMID: 33807868 PMCID: PMC8001615 DOI: 10.3390/life11030205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Several patients with rare genetic disorders remain undiagnosed following comprehensive diagnostic testing using whole-exome sequencing (WES). In these patients, pathogenic genetic variants may reside in intronic or regulatory regions or they may emerge through mutational mechanisms not detected by WES. For this reason, we implemented whole-genome sequencing (WGS) in routine clinical diagnostics of patients with undiagnosed genetic disorders and report on the outcome in 30 patients. Criteria for consideration included (1) negative WES, (2) a high likelihood of a genetic cause for the disorders, (3) positive family history, (4) detection of large blocks of homozygosity or (5) detection of a single pathogenic variant in a gene associated with recessive conditions. We successfully discovered a causative genetic variant in 6 cases, a retrotranspositional event in the APC gene, non-coding variants in the intronic region of the OTC gene and the promotor region of the UFM1 gene, repeat expansion in the RFC1 gene and a single exon duplication in the CNGB3 gene. We also discovered one coding variant, an indel, which was missed by variant caller during WES data analysis. Our study demonstrates the impact of WGS in the group of patients with undiagnosed genetic diseases after WES in the clinical setting and the diversity of mutational mechanisms discovered, which would remain undetected using other methods.
Collapse
|
36
|
Delvallée C, Nicaise S, Antin M, Leuvrey AS, Nourisson E, Leitch CC, Kellaris G, Stoetzel C, Geoffroy V, Scheidecker S, Keren B, Depienne C, Klar J, Dahl N, Deleuze JF, Génin E, Redon R, Demurger F, Devriendt K, Mathieu-Dramard M, Poitou-Bernert C, Odent S, Katsanis N, Mandel JL, Davis EE, Dollfus H, Muller J. A BBS1 SVA F retrotransposon insertion is a frequent cause of Bardet-Biedl syndrome. Clin Genet 2020; 99:318-324. [PMID: 33169370 DOI: 10.1111/cge.13878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinitis pigmentosa, obesity, polydactyly, cognitive impairment and renal failure. Pathogenic variants in 24 genes account for the molecular basis of >80% of cases. Toward saturated discovery of the mutational basis of the disorder, we carefully explored our cohorts and identified a hominid-specific SINE-R/VNTR/Alu type F (SVA-F) insertion in exon 13 of BBS1 in eight families. In six families, the repeat insertion was found in trans with c.1169 T > G, p.Met390Arg and in two families the insertion was found in addition to other recessive BBS loci. Whole genome sequencing, de novo assembly and SNP array analysis were performed to characterize the genomic event. This insertion is extremely rare in the general population (found in 8 alleles of 8 BBS cases but not in >10 800 control individuals from gnomAD-SV) and due to a founder effect. Its 2435 bp sequence contains hallmarks of LINE1 mediated retrotransposition. Functional studies with patient-derived cell lines confirmed that the BBS1 SVA-F is deleterious as evidenced by a significant depletion of both mRNA and protein levels. Such findings highlight the importance of dedicated bioinformatics pipelines to identify all types of variation.
Collapse
Affiliation(s)
- Clarisse Delvallée
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France
| | - Samuel Nicaise
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France
| | - Manuela Antin
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne-Sophie Leuvrey
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elsa Nourisson
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Carmen C Leitch
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Georgios Kellaris
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France
| | - Sophie Scheidecker
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Boris Keren
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Christel Depienne
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, Paris, France.,Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de biologie François Jacob, Evry, France
| | | | - Richard Redon
- Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Florence Demurger
- Service de Génétique Médicale, Centre Hospitalier Bretagne Atlantique, Vannes, France
| | - Koenraad Devriendt
- Center for Human Genetics, University Hospital Leuven and KU Leuven, Leuven, Belgium
| | | | - Christine Poitou-Bernert
- Assistance Publique Hôpitaux de Paris, Nutrition Department Pitié-Salpêtrière Hospital; Sorbonne Université, INSERM, NutriOmics Research Unit, Paris, France
| | - Sylvie Odent
- Centre de Référence Maladies Rares CLAD-Ouest, Service de Génétique Clinique, CHU Rennes, Rennes, France.,CNRS, IGDR (Institut de Génétique et Développement de Rennes) UMR 6290, Université de Rennes, Rennes, France
| | - Nicholas Katsanis
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jean-Louis Mandel
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Dept Transl Med and Neurogenetics Illkirch, France
| | - Erica E Davis
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France.,Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Filière SENSGENE, Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
37
|
Ní Ghrálaigh F, Gallagher L, Lopez LM. Autism spectrum disorder genomics: The progress and potential of genomic technologies. Genomics 2020; 112:5136-5142. [DOI: 10.1016/j.ygeno.2020.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022]
|
38
|
Groopman EE, Povysil G, Goldstein DB, Gharavi AG. Rare genetic causes of complex kidney and urological diseases. Nat Rev Nephrol 2020; 16:641-656. [PMID: 32807983 PMCID: PMC7772719 DOI: 10.1038/s41581-020-0325-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
Abstract
Although often considered a single-entity, chronic kidney disease (CKD) comprises many pathophysiologically distinct disorders that result in persistently abnormal kidney structure and/or function, and encompass both monogenic and polygenic aetiologies. Rare inherited forms of CKD frequently span diverse phenotypes, reflecting genetic phenomena including pleiotropy, incomplete penetrance and variable expressivity. Use of chromosomal microarray and massively parallel sequencing technologies has revealed that genomic disorders and monogenic aetiologies contribute meaningfully to seemingly complex forms of CKD across different clinically defined subgroups and are characterized by high genetic and phenotypic heterogeneity. Investigations of prevalent genomic disorders in CKD have integrated genetic, bioinformatic and functional studies to pinpoint the genetic drivers underlying their renal and extra-renal manifestations, revealing both monogenic and polygenic mechanisms. Similarly, massively parallel sequencing-based analyses have identified gene- and allele-level variation that contribute to the clinically diverse phenotypes observed for many monogenic forms of nephropathy. Genome-wide sequencing studies suggest that dual genetic diagnoses are found in at least 5% of patients in whom a genetic cause of disease is identified, highlighting the fact that complex phenotypes can also arise from multilocus variation. A multifaceted approach that incorporates genetic and phenotypic data from large, diverse cohorts will help to elucidate the complex relationships between genotype and phenotype for different forms of CKD, supporting personalized medicine for individuals with kidney disease.
Collapse
Affiliation(s)
- Emily E Groopman
- Division of Nephrology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gundula Povysil
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Ali G Gharavi
- Division of Nephrology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
- Institute for Genomic Medicine, Columbia University, New York, NY, USA.
- Center for Precision Medicine and Genomics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
39
|
Mobile element insertion detection in 89,874 clinical exomes. Genet Med 2020; 22:974-978. [PMID: 31965078 PMCID: PMC7200591 DOI: 10.1038/s41436-020-0749-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose Exome sequencing (ES) is increasingly used for the diagnosis of rare genetic disease. However, some pathogenic sequence variants within the exome go undetected due to the technical difficulty of identifying them. Mobile element insertions (MEIs) are a known cause of genetic disease in humans but have been historically difficult to detect via ES and similar targeted sequencing methods. Methods We developed and applied a novel MEI detection method prospectively to samples received for clinical ES beginning in November 2017. Positive MEI findings were confirmed by an orthogonal method and reported back to the ordering provider. In this study, we examined 89,874 samples from 38,871 cases. Results Diagnostic MEIs were present in 0.03% (95% binomial test confidence interval: 0.02–0.06%) of all cases and account for 0.15% (95% binomial test confidence interval: 0.08–0.25%) of cases with a molecular diagnosis. One diagnostic MEI was a novel founder event. Most patients with pathogenic MEIs had prior genetic testing, three of whom had previous negative DNA sequencing analysis of the diagnostic gene. Conclusion MEI detection from ES is a valuable diagnostic tool, reveals molecular findings that may be undetected by other sequencing assays, and increases diagnostic yield by 0.15%.
Collapse
|
40
|
Dierssen M. Top ten discoveries of the year: Neurodevelopmental disorders. FREE NEUROPATHOLOGY 2020; 1:13. [PMID: 37283674 PMCID: PMC10209851 DOI: 10.17879/freeneuropathology-2020-2672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/12/2020] [Indexed: 06/08/2023]
Abstract
Developmental brain disorders, a highly heterogeneous group of disorders with a prevalence of around 3% of worldwide population, represent a growing medical challenge. They are characterized by impaired neurodevelopmental processes leading to deficits in cognition, social interaction, behavior and motor functioning as a result of abnormal development of brain. This can include developmental brain dysfunction, which can manifest as neuropsychiatric problems or impaired motor function, learning, language or non-verbal communication. Several of these phenotypes can often co-exist in the same patient and characterize the same disorder. Here I discuss some contributions in 2019 that are shaking our basic understanding of the pathogenesis of neurodevelopmental disorders. Recent developments in sophisticated in-utero imaging diagnostic tools have raised the possibility of imaging the fetal human brain growth, providing insights into the developing anatomy and improving diagnostics but also allowing a better understanding of antenatal pathology. On the other hand, advances in our understanding of the pathogenetic mechanisms reveal a remarkably complex molecular neuropathology involving a myriad of genetic architectures and regulatory elements that will help establish more rigorous genotype-phenotype correlations.
Collapse
Affiliation(s)
- Mara Dierssen
- Centre for Genomic Regulation (CRG); The Barcelona Institute of Science and Technology, and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|