1
|
Smith NT, Boukherissa A, Antaya K, Howe GW, Mergaert P, Rodríguez de la Vega RC, Shykoff JA, Alunni B, diCenzo GC. Taxonomic distribution of SbmA/BacA and BacA-like antimicrobial peptide transporters suggests independent recruitment and convergent evolution in host-microbe interactions. Microb Genom 2025; 11:001380. [PMID: 40238647 PMCID: PMC12003926 DOI: 10.1099/mgen.0.001380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 04/18/2025] Open
Abstract
Antimicrobial peptides (AMPs) are often produced by eukaryotes to control bacterial populations in both pathogenic and mutualistic symbioses. Several pathogens and nitrogen-fixing legume symbionts depend on transporters called SbmA (or BacA) or BclA (BacA-like) to survive exposure to AMPs. However, how broadly these transporters are distributed amongst bacteria, and their evolutionary history, is poorly understood. We used computational approaches, including phylogenetic and sequence similarity analyses, to examine the distribution of SbmA/BacA and BclA proteins across 1,255 species spanning the domain Bacteria, leading to the identification of 71 and 177 SbmA/BacA and BclA proteins, respectively. In vitro sensitivity assays using legume AMPs and several BclA proteins confirmed that AMP transport is a common feature of BclA homologues. Our analyses indicated that SbmA/BacA homologues are encoded only by species in the phylum Pseudomonadota and are primarily found in just two orders: Hyphomicrobiales and Enterobacterales. BclA homologues are somewhat more broadly distributed and were found in clusters across four phyla. These included several orders of the phyla Pseudomonadota and Cyanobacteriota, the order Mycobacteriales (phylum Actinomycetota) and the class Negativicutes (phylum Bacillota). Many of the clades enriched for species encoding SbmA/BacA or BclA homologues are rich in species that interact with eukaryotic hosts in mutualistic or pathogenic interactions. These observations suggest that SbmA/BacA and BclA proteins have been repeatedly co-opted to facilitate associations with eukaryotic hosts by allowing bacteria to cope with host-encoded AMPs.
Collapse
Affiliation(s)
- Nicholas T. Smith
- Department of Biology, Queen’s University, Kingston, ON, K7L 3N6, Canada
- Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Amira Boukherissa
- Institute for Integrative Biology of the Cell, CNRS, CEA, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Écologie Systématique et Évolution, Université Paris-Saclay, CNRS, AgroParisTech, 91198, Gif-sur-Yvette, France
| | - Kiera Antaya
- Department of Biology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Graeme W. Howe
- Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Peter Mergaert
- Institute for Integrative Biology of the Cell, CNRS, CEA, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | | | - Jacqui A. Shykoff
- Écologie Systématique et Évolution, Université Paris-Saclay, CNRS, AgroParisTech, 91198, Gif-sur-Yvette, France
| | - Benoît Alunni
- Institute for Integrative Biology of the Cell, CNRS, CEA, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - George C. diCenzo
- Department of Biology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
2
|
Boyko K, Bernstein RA, Kim M, Cate JHD. Role of Ribosomal Protein bS1 in Orthogonal mRNA Start Codon Selection. Biochemistry 2025; 64:710-718. [PMID: 39854700 PMCID: PMC11800381 DOI: 10.1021/acs.biochem.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
In many bacteria, the location of the mRNA start codon is determined by a short ribosome binding site sequence that base pairs with the 3'-end of 16S rRNA (rRNA) in the 30S subunit. Many groups have changed these short sequences, termed the Shine-Dalgarno (SD) sequence in the mRNA and the anti-Shine-Dalgarno (ASD) sequence in 16S rRNA, to create "orthogonal" ribosomes to enable the synthesis of orthogonal polymers in the presence of the endogenous translation machinery. However, orthogonal ribosomes are prone to SD-independent translation. Ribosomal protein bS1, which binds to the 30S ribosomal subunit, is thought to promote translation initiation by shuttling the mRNA to the ribosome. Thus, a better understanding of how the SD and bS1 contribute to start codon selection could help efforts to improve the orthogonality of ribosomes. Here, we engineered the Escherichia coli ribosome to prevent binding of bS1 to the 30S subunit and separate the activity of bS1 binding to the ribosome from the role of the mRNA SD sequence in start codon selection. We find that ribosomes lacking bS1 are slightly less active than wild-type ribosomes in vitro. Furthermore, orthogonal 30S subunits lacking bS1 do not have an improved orthogonality. Our findings suggest that mRNA features outside the SD sequence and independent of binding of bS1 to the ribosome likely contribute to start codon selection and the lack of orthogonality of present orthogonal ribosomes.
Collapse
MESH Headings
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomes/metabolism
- Ribosomes/genetics
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Protein Biosynthesis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Peptide Chain Initiation, Translational
Collapse
Affiliation(s)
- Kristina
V. Boyko
- Biophysics
Graduate Group, University of California, Berkeley, California 94720, United States
| | - Rebecca A. Bernstein
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Minji Kim
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Jamie H. D. Cate
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Innovative
Genomics Institute, University of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Fachrial E, Ismawati, Jati AP, Nugroho TT, Saryono. Isolation and Characterization of Lactic Acid Bacteria From " Trites" Having the Ability to Produce α-Glucosidase Inhibitors. Int J Microbiol 2025; 2025:8864668. [PMID: 39810844 PMCID: PMC11732287 DOI: 10.1155/ijm/8864668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Alpha-glucosidase inhibitors are one of the therapies used for treating type 2 diabetes by inhibiting the absorption of carbohydrates in the gastrointestinal tract. In addition to antimicrobial activity, some probiotic species show α-glucosidase inhibitor activity, making them potential alternative therapies for type 2 diabetes. This study aimed to characterize probiotics from "trites," a traditional food from North Sumatra, Indonesia, that exhibit α-glucosidase inhibition, potentially useful for type 2 diabetes treatment. The probiotic potential of the isolates was evaluated through antagonistic activity, acid tolerance, bile tolerance, and susceptibility to antimicrobial agents. α-Glucosidase inhibition was tested with acarbose as a control. The best-performing isolate, LBSU8, was identified as Pediococcus acidilactici through 16S rRNA gene sequencing. Gene analysis using genome sequencing for LBSU8 revealed antimicrobial secondary metabolites, including RiPPs, polyketide, and NRP, while capsular polysaccharide might contribute to its antidiabetic activity. Though no specific α-glucosidase inhibitory secondary metabolites were identified, enzymes like dTDP-glucose 4,6-dehydratase, transketolase, and glucose-1-phosphate thymidylyltransferase may contribute to this activity. P. acidilactici LBSU8 shows potential as an alternative diabetes therapy in the food and drug industries. Further studies are needed to elucidate the exact mechanism behind its α-glucosidase inhibitory activity and to explore its efficacy in clinical settings.
Collapse
Affiliation(s)
- Edy Fachrial
- Doctoral Program of Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau 28293, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Dentistry, and Health Sciences, Universitas Prima Indonesia, Medan, Indonesia
| | - Ismawati
- Department of Biochemistry, Faculty of Medicine, Universitas Riau, Pekanbaru, Riau 28293, Indonesia
| | - Afif Pranaya Jati
- Indonesian Society of Bioinformatics and Biodiversity, Malang, Indonesia
- Synthetic Biology Division, Bioinformatics Research Center, Indonesian Institute of Bioinformatics, Malang, Indonesia
| | - Titania Tjandrawati Nugroho
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau 28293, Indonesia
| | - Saryono
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau 28293, Indonesia
| |
Collapse
|
4
|
Bisesi AT, Chacón JM, Smanski MJ, Kinkel L, Harcombe WR. Selection for toxin production in spatially structured environments increases with growth rate. THE ISME JOURNAL 2025; 19:wraf061. [PMID: 40197752 PMCID: PMC12041421 DOI: 10.1093/ismejo/wraf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Microbes adopt diverse strategies to successfully compete with coexisting strains for space and resources. One common strategy is the production of toxic compounds to inhibit competitors, but the strength and direction of selection for this strategy vary depending on the environment. Existing theoretical and experimental evidence suggests that growth in spatially structured environments makes toxin production more beneficial because competitive interactions are localized. Because higher growth rates reduce the length scale of interactions in structured environments, theory predicts that toxin production should be especially beneficial under these conditions. We tested this hypothesis by developing a genome-scale metabolic modeling approach and complementing it with comparative genomics to investigate the impact of growth rate on selection for costly toxin production. Our modeling approach expands the current abilities of the dynamic flux balance analysis platform Computation Of Microbial Ecosystems in Time and Space (COMETS) to incorporate signaling and toxin production. Using this capability, we find that our modeling framework predicts that the strength of selection for toxin production increases as growth rate increases. This finding is supported by comparative genomics analyses that include diverse microbial species. Our work emphasizes that toxin production is more likely to be maintained in rapidly growing, spatially structured communities, thus improving our ability to manage microbial communities and informing natural product discovery.
Collapse
Affiliation(s)
- Ave T Bisesi
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, United States
| | - Jeremy M Chacón
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, United States
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, United States
- Biotechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
| | - Linda Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States
| | - William R Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, United States
- Biotechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
5
|
Delawská K, Hájek J, Voráčová K, Kuzma M, Mareš J, Vicková K, Kádek A, Tučková D, Gallob F, Divoká P, Moos M, Opekar S, Koch L, Saurav K, Sedlák D, Novák P, Urajová P, Dean J, Gažák R, Niedermeyer TJH, Kameník Z, Šimek P, Villunger A, Hrouzek P. Discovery of nostatin A, an azole-containing proteusin with prominent cytostatic and pro-apoptotic activity. Org Biomol Chem 2025; 23:449-460. [PMID: 39576263 PMCID: PMC11583998 DOI: 10.1039/d4ob01395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are intriguing compounds with potential pharmacological applications. While many RiPPs are known as antimicrobial agents, a limited number of RiPPs with anti-proliferative effects in cancer cells are available. Here we report the discovery of nostatin A (NosA), a highly modified RiPP belonging among nitrile hydratase-like leader peptide RiPPs (proteusins), isolated from a terrestrial cyanobacterium Nostoc sp. Its structure was established based on the core peptide sequence encoded in the biosynthetic gene cluster recovered from the producing strain and subsequent detailed nuclear magnetic resonance and high-resolution mass spectrometry analyses. NosA, composed of a 30 amino-acid peptide core, features a unique combination of moieties previously not reported in RiPPs: the simultaneous presence of oxazole/thiazole heterocycles, dehydrobutyrine/dehydroalanine residues, and a sactionine bond. NosA includes an isobutyl-modified proline residue, highly unusual in natural products. NosA inhibits proliferation of multiple cancer cell lines at low nanomolar concentration while showing no hemolysis. It induces cell cycle arrest in S-phase followed by mitochondrial apoptosis employing a mechanism different from known tubulin binding and DNA damaging compounds. NosA also inhibits Staphylococcus strains while it exhibits no effect in other tested bacteria or yeasts. Due to its novel structure and selective bioactivity, NosA represents an excellent candidate for combinatorial chemistry approaches leading to development of novel NosA-based lead compounds.
Collapse
Affiliation(s)
- Kateřina Delawská
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Jan Hájek
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| | - Kateřina Voráčová
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Praha 4, Czech Republic
| | - Jan Mareš
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic
| | - Kateřina Vicková
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| | - Alan Kádek
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Praha 4, Czech Republic
| | - Dominika Tučková
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Filip Gallob
- CeMM - Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 14, 1090 Wien, Austria
| | - Petra Divoká
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Martin Moos
- Institute of Entomology, Laboratory of Analytical Biochemistry and Metabolomics, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Stanislav Opekar
- Institute of Entomology, Laboratory of Analytical Biochemistry and Metabolomics, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Lukas Koch
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, (Saale), Germany
| | - Kumar Saurav
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| | - David Sedlák
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Praha 4, Czech Republic
| | - Petra Urajová
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| | - Jason Dean
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| | - Radek Gažák
- Laboratory of Antibiotic Resistance and Microbial Metabolomics, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Praha 4, Czech Republic
| | - Timo J H Niedermeyer
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, (Saale), Germany
| | - Zdeněk Kameník
- Laboratory of Antibiotic Resistance and Microbial Metabolomics, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Praha 4, Czech Republic
| | - Petr Šimek
- Institute of Entomology, Laboratory of Analytical Biochemistry and Metabolomics, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Andreas Villunger
- CeMM - Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 14, 1090 Wien, Austria
- Institute for Developmental Immunology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradká 237, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 01 Třeboň, Czech Republic.
| |
Collapse
|
6
|
Zakalyukina YV, Alferova VA, Nikandrova AA, Kiriy AR, Chernyshova AP, Kabilov MR, Baturina OA, Biryukov MV, Sergiev PV, Lukianov DA. Genomic and Phenotypic Characterization of Streptomyces sirii sp. nov., Amicetin-Producing Actinobacteria Isolated from Bamboo Rhizospheric Soil. Microorganisms 2024; 12:2628. [PMID: 39770830 PMCID: PMC11677201 DOI: 10.3390/microorganisms12122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
In our large-scale search for antimicrobial-producing bacteria, we isolated an actinomycete strain from rhizospheric soil of Bambusa vulgaris. The strain designated BP-8 showed noticeable antibacterial activity. BP-8 was subjected to a whole-genome analysis via a polyphasic taxonomy approach, and its antibacterial metabolite was identified by HRLS-MS. The results of the physiological and morphological analyses indicated that BP-8 is an aerobic, neutrophilic, mesophilic organism that is tolerant to 8% NaCl and can use a wide range of carbohydrates. It forms curly sporophores with a warty surface. The results of the phylogenetic and average nucleotide identity analyses and in silico DNA-DNA hybridization calculation indicated that BP-8 represents the type strain of a novel Streptomyces species. A comparative in silico analysis of the genome sequences of BP-8 and its closest related strains revealed the presence of genes encoding chemotaxonomic markers characteristic of Streptomyces. The antibacterial compound was identified as amicetin. Genomic mining also revealed more than 10 biosynthetic gene clusters that have not been described previously and may lead to the discovery of new valuable compounds. On the basis of these results, strain BP-8T (=VKM Ac-3066T = CCTCC AA 2024094T) is proposed as the type strain of the novel species Streptomyces sirii sp. nov.
Collapse
Affiliation(s)
- Yuliya V. Zakalyukina
- Department of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vera A. Alferova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (P.V.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, 117997 Moscow, Russia;
| | - Arina A. Nikandrova
- Center for Molecular and Cellular Biology, 121205 Moscow, Skolkovo, Russia; (A.A.N.); (D.A.L.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Albina R. Kiriy
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Alisa P. Chernyshova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, 117997 Moscow, Russia;
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.R.K.); (O.A.B.)
| | - Olga A. Baturina
- Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.R.K.); (O.A.B.)
| | - Mikhail V. Biryukov
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Petr V. Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (P.V.S.)
- Center for Molecular and Cellular Biology, 121205 Moscow, Skolkovo, Russia; (A.A.N.); (D.A.L.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitrii A. Lukianov
- Center for Molecular and Cellular Biology, 121205 Moscow, Skolkovo, Russia; (A.A.N.); (D.A.L.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Manetsberger J, Gómez NC, Benomar N, Christie G, Abriouel H. Phenotypic and Genomic Insights Into Bacillus spp. and Peribacillus spp. of Spanish Olive Groves With Biotechnological Potential. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70053. [PMID: 39604090 PMCID: PMC11602404 DOI: 10.1111/1758-2229.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Spore-forming organisms are an integral component of the rhizosphere, providing plants with significant advantages. Previous studies determined the antimicrobial activity of the olive sporobiota, identifying five candidates of particular relevance, belonging to the Bacillus subtilis, Peribacillus simplex and Bacillus cereus clade. This study aimed to determine their biotechnological properties, safety aspects, spore structure and resistance, and interaction with the environment through a combined microbiological and genomic approach. We report on the ability of these strains to produce hydrolytic and surface-active enzymes and provide evidence for differences in population behaviour through the formation of strong sessile or floating biofilms. Electron microscopic analysis revealed for the first time the presence of an exosporium layer in olive sporobiota isolates belonging to the P. simplex and B. cereus clade, including numerous pili-like structures on the latter. Spores showed significant differences in their resistance to wet heat, oxidising agents, and UV exposure. Whole genome sequencing of isolate Peribacillus frigoritolerans yielded information on its antimicrobial compound biosynthesis and environmental safety. Overall, our findings provide insights into the phenotypic, morphological and genetic variations of spore-formers from Spanish olive groves, which can be useful for the development of bioactive compounds in sustainable agriculture.
Collapse
Affiliation(s)
- Julia Manetsberger
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental SciencesUniversity of JaénJaénSpain
| | - Natacha Caballero Gómez
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental SciencesUniversity of JaénJaénSpain
| | - Nabil Benomar
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental SciencesUniversity of JaénJaénSpain
| | - Graham Christie
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
| | - Hikmate Abriouel
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental SciencesUniversity of JaénJaénSpain
| |
Collapse
|
8
|
Calcino A, Cooke I, Cowman P, Higgie M, Massault C, Schmitz U, Whittaker M, Field MA. Harnessing genomic technologies for one health solutions in the tropics. Global Health 2024; 20:78. [PMID: 39543642 PMCID: PMC11566161 DOI: 10.1186/s12992-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The targeted application of cutting-edge high-throughput molecular data technologies provides an enormous opportunity to address key health, economic and environmental issues in the tropics within the One Health framework. The Earth's tropical regions are projected to contain > 50% of the world's population by 2050 coupled with 80% of its biodiversity however these regions are relatively less developed economically, with agricultural productivity substantially lower than temperate zones, a large percentage of its population having limited health care options and much of its biodiversity understudied and undescribed. The generation of high-throughput molecular data and bespoke bioinformatics capability to address these unique challenges offers an enormous opportunity for people living in the tropics. MAIN: In this review we discuss in depth solutions to challenges to populations living in tropical zones across three critical One Health areas: human health, biodiversity and food production. This review will examine how some of the challenges in the tropics can be addressed through the targeted application of advanced omics and bioinformatics and will discuss how local populations can embrace these technologies through strategic outreach and education ensuring the benefits of the One Health approach is fully realised through local engagement. CONCLUSION Within the context of the One Health framework, we will demonstrate how genomic technologies can be utilised to improve the overall quality of life for half the world's population.
Collapse
Affiliation(s)
- Andrew Calcino
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Pete Cowman
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Queensland Museum, Townsville, QLD, Australia
| | - Megan Higgie
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Cecile Massault
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University, Townsville, QLD, Australia
| | - Ulf Schmitz
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Maxine Whittaker
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW, Australia.
| |
Collapse
|
9
|
Griffiths DB, Tiwari RP, Murphy DV, Scott C. Comparative genomics of the highly halophilic Haloferacaceae. Sci Rep 2024; 14:27025. [PMID: 39506039 PMCID: PMC11541754 DOI: 10.1038/s41598-024-78438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
The Haloferacaceae are a family of extremely halophilic archaea with many species producing enzymes and products beneficial for industrial biotechnology. They are, however, relatively under-characterised with regards to genetics and gene products. This study aims to use existing sequence data to highlight genetic diversity, create pangenomes for three genera, and provide secondary metabolite and pathway analysis. This will establish current knowledge and identify key gaps in research. We show that the Haloferacaceae have significant genetic diversity between genera, with numerous gene gain and loss events in key genera. It also found that the model genus, Haloferax, has relatively low identified secondary metabolites compared to other genera within the family. Additionally, this study has identified potential biotechnology targets for heterologous expression in model organisms.
Collapse
Affiliation(s)
- Dana B Griffiths
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia.
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, 6150, Australia.
| | - Ravi P Tiwari
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Daniel V Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Colin Scott
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia
- CSIRO Environment, Canberra, ACT, 2601, Australia
| |
Collapse
|
10
|
Maletich G, Pushin A, Rybalkin E, Plugatar Y, Dolgov S, Khvatkov P. Organogenesis in a Broad Spectrum of Grape Genotypes and Agrobacterium-Mediated Transformation of the Podarok Magaracha Grapevine Cultivar. PLANTS (BASEL, SWITZERLAND) 2024; 13:2779. [PMID: 39409649 PMCID: PMC11478747 DOI: 10.3390/plants13192779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
We present data on the ability for organogenesis in 22 genotypes of grapevine and developed a direct organogenesis protocol for the cultivar Podarok Magaracha and the rootstock Kober 5BB. The protocol does not require replacement of culture media and growth regulators, and the duration is 11 weeks. The cultivation of explants occurs on modified MS medium with the addition of 2.0 mg L-1 benzyladenine and indole-3-butyric acid (0.15 mg L-1 for the rootstock Kober 5BB or 0.05 mg L-1 for the cultivar Podarok Magaracha). The direct organogenesis protocol consists of three time periods: (1) culturing explants for 2 weeks in dark conditions for meristematic bulk tissue, (2) followed by 4 weeks of cultivation in light conditions for regeneration, and (3) 5 weeks of cultivation in dark conditions for shoot elongation. Based on this protocol, conditions for the Agrobacterium-mediated transformation of the Podarok Magaracha cultivar were developed with an efficiency of 2.0% transgenic plants per 100 explants. Two stably transformed lines with integration into the genome of the pBin35SGFP plasmid construction, confirmed by Southern blotting, were obtained.
Collapse
Affiliation(s)
- Galina Maletich
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens–National Scientific Center of the RAS”, 298648 Yalta, Russia
| | - Alexander Pushin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 142290 Puschino, Russia
| | - Evgeniy Rybalkin
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens–National Scientific Center of the RAS”, 298648 Yalta, Russia
| | - Yuri Plugatar
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens–National Scientific Center of the RAS”, 298648 Yalta, Russia
| | - Sergey Dolgov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens–National Scientific Center of the RAS”, 298648 Yalta, Russia
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 142290 Puschino, Russia
| | - Pavel Khvatkov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens–National Scientific Center of the RAS”, 298648 Yalta, Russia
| |
Collapse
|
11
|
Liang H, Luo Y, van der Donk WA. Substrate Specificity of a Methyltransferase Involved in the Biosynthesis of the Lantibiotic Cacaoidin. Biochemistry 2024; 63:2493-2505. [PMID: 39271288 PMCID: PMC11447909 DOI: 10.1021/acs.biochem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Modification of the N- and C-termini of peptides enhances their stability against degradation by exopeptidases. The biosynthetic pathways of many peptidic natural products feature enzymatic modification of their termini, and these enzymes may represent a valuable pool of biocatalysts. The lantibiotic cacaoidin carries an N,N-dimethylated N-terminal amine group. Its biosynthetic gene cluster encodes the putative methyltransferase Cao4. In this work, we present reconstitution of the activity of the enzyme, which we termed CaoSC following standardized lanthipeptide nomenclature, using a heterologously produced peptide as the model substrate. In vitro methylation of diverse lanthipeptides revealed the substrate requirements of CaoSC. The enzyme accepts peptides of varying lengths and C-terminal sequences but requires dehydroalanine or dehydrobutyrine at the second position. CaoSC-mediated dimethylation of natural lantibiotics resulted in modestly enhanced antimicrobial activity of the lantibiotic haloduracin compared to that of the native compound. Improved activity and/or metabolic stability as a result of methylation illustrates the potential future application of CaoSC in the bioengineering of therapeutic peptides.
Collapse
Affiliation(s)
- Haoqian Liang
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Youran Luo
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Park H, Jin H, Kim D, Lee J. Cell-Free Systems: Ideal Platforms for Accelerating the Discovery and Production of Peptide-Based Antibiotics. Int J Mol Sci 2024; 25:9109. [PMID: 39201795 PMCID: PMC11354240 DOI: 10.3390/ijms25169109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Peptide-based antibiotics (PBAs), including antimicrobial peptides (AMPs) and their synthetic mimics, have received significant interest due to their diverse and unique bioactivities. The integration of high-throughput sequencing and bioinformatics tools has dramatically enhanced the discovery of enzymes, allowing researchers to identify specific genes and metabolic pathways responsible for producing novel PBAs more precisely. Cell-free systems (CFSs) that allow precise control over transcription and translation in vitro are being adapted, which accelerate the identification, characterization, selection, and production of novel PBAs. Furthermore, these platforms offer an ideal solution for overcoming the limitations of small-molecule antibiotics, which often lack efficacy against a broad spectrum of pathogens and contribute to the development of antibiotic resistance. In this review, we highlight recent examples of how CFSs streamline these processes while expanding our ability to access new antimicrobial agents that are effective against antibiotic-resistant infections.
Collapse
Affiliation(s)
- Hyeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
| | - Haneul Jin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Dayeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| |
Collapse
|
13
|
Shi C, Patel VA, Mitchell DA, Zhao H. Enterolyin S, a Polythiazole-containing Hemolytic Peptide from Enterococcus caccae. Chembiochem 2024; 25:e202400212. [PMID: 38648232 PMCID: PMC11186716 DOI: 10.1002/cbic.202400212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The β-hemolytic factor streptolysin S (SLS) is an important linear azol(in)e-containing peptide (LAP) that contributes significantly to the virulence of Streptococcus pyogenes. Despite its discovery 85 years ago, SLS has evaded structural characterizing owing to its notoriously problematic physicochemical properties. Here, we report the discovery and characterization of a structurally analogous hemolytic peptide from Enterococcus caccae, termed enterolysin S (ELS). Through heterologous expression, site-directed mutagenesis, chemoselective modification, and high-resolution mass spectrometry, we found that ELS contains an intriguing contiguous octathiazole moiety. The discovery of ELS expands our knowledge of hemolytic LAPs by adding a new member to this virulence-promoting family of modified peptides.
Collapse
Affiliation(s)
- Chengyou Shi
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
| | - Varshal A Patel
- Department of Biochemistry, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
14
|
Cunha-Ferreira IC, Vizzotto CS, Freitas MAM, Peixoto J, Carvalho LS, Tótola MR, Thompson FL, Krüger RH. Genomic and physiological characterization of Kitasatospora sp. nov., an actinobacterium with potential for biotechnological application isolated from Cerrado soil. Braz J Microbiol 2024; 55:1099-1115. [PMID: 38605254 PMCID: PMC11153394 DOI: 10.1007/s42770-024-01324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
An Actinobacteria - Kitasatospora sp. K002 - was isolated from the soil of Cerrado, a savanna-like Brazilian biome. Herein, we conducted a phylogenetic, phenotypic and physiological characterization, revealing its potential for biotechnological applications. Kitasatospora sp. K002 is an aerobic, non-motile, Gram-positive bacteria that forms grayish-white mycelium on solid cultures and submerged spores with vegetative mycelia on liquid cultures. The strain showed antibacterial activity against Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. Genomic analysis indicated that Kitasatospora xanthocidica JCM 4862 is the closest strain to K002, with a dDDH of 32.8-37.8% and an ANI of 86.86% and the pangenome investigations identified a high number of rare genes. A total of 60 gene clusters of 22 different types were detected by AntiSMASH, and 22 gene clusters showed low similarity (< 10%) with known compounds, which suggests the potential production of novel bioactive compounds. In addition, phylogenetic analysis and morphophysiological characterization clearly distinguished Kitasatospora sp. K002 from other related species. Therefore, we propose that Kitasatospora sp. K002 should be recognized as a new species of the genus Kitasatospora - Kitasatospora brasiliensis sp. nov. (type strains = K002).
Collapse
Affiliation(s)
- I C Cunha-Ferreira
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil
| | - C S Vizzotto
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, University of Brasília (UNB), Brasília, Brazil
| | - M A M Freitas
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - J Peixoto
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil
| | - L S Carvalho
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil
| | - M R Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - F L Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - R H Krüger
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil.
| |
Collapse
|
15
|
Tang M, Chen Q, Zhong H, Liu S, Sun W. CPR bacteria and DPANN archaea play pivotal roles in response of microbial community to antibiotic stress in groundwater. WATER RESEARCH 2024; 251:121137. [PMID: 38246077 DOI: 10.1016/j.watres.2024.121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The accumulation of antibiotics in the natural environment can disrupt microbial population dynamics. However, our understanding of how microbial communities adapt to the antibiotic stress in groundwater ecosystems remains limited. By recovering 2675 metagenome-assembled genomes (MAGs) from 66 groundwater samples, we explored the effect of antibiotics on bacterial, archaeal, and fungal communities, and revealed the pivotal microbes and their mechanisms in coping with antibiotic stress. The results indicated that antibiotics had the most significant influence on bacterial and archaeal communities, while the impact on the fungal community was minimal. Analysis of co-occurrence networks between antibiotics and microbes revealed the critical roles of Candidate Phyla Radiation (CPR) bacteria and DPANN archaea, two representative microbial groups in groundwater ecosystem, in coping with antibiotic resistance and enhancing network connectivity and complexity. Further genomic analysis demonstrated that CPR bacteria carried approximately 6 % of the identified antibiotic resistance genes (ARGs), indicating their potential to withstand antibiotics on their own. Meanwhile, the genomes of CPR bacteria and DPANN archaea were found to encode diverse biosynthetic gene clusters (BGCs) responsible for producing antimicrobial metabolites, which could not only assist CPR and DPANN organisms but also benefit the surrounding microbes in combating antibiotic stress. These findings underscore the significant impact of antibiotics on prokaryotic microbial communities in groundwater, and highlight the importance of CPR bacteria and DPANN archaea in enhancing the overall resilience and functionality of the microbial community in the face of antibiotic stress.
Collapse
Affiliation(s)
- Moran Tang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Qian Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| | - Haohui Zhong
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Shufeng Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| |
Collapse
|
16
|
Li H, Ding W, Zhang Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem Biol 2024; 5:90-108. [PMID: 38333193 PMCID: PMC10849128 DOI: 10.1039/d3cb00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a diverse superfamily of natural products with immense potential for drug development. This review provides a concise overview of the recent advances in the discovery of RiPP natural products, focusing on rational strategies such as bioactivity guided screening, enzyme or precursor-based genome mining, and biosynthetic engineering. The challenges associated with activating silent biosynthetic gene clusters and the development of elaborate catalytic systems are also discussed. The logical frameworks emerging from these research studies offer valuable insights into RiPP biosynthesis and engineering, paving the way for broader pharmaceutic applications of these peptide natural products.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
17
|
Nissley A, Penev P, Watson Z, Banfield J, Cate JD. Rare ribosomal RNA sequences from archaea stabilize the bacterial ribosome. Nucleic Acids Res 2023; 51:1880-1894. [PMID: 36660825 PMCID: PMC9976906 DOI: 10.1093/nar/gkac1273] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
The ribosome serves as the universally conserved translator of the genetic code into proteins and supports life across diverse temperatures ranging from below freezing to above 120°C. Ribosomes are capable of functioning across this wide range of temperatures even though the catalytic site for peptide bond formation, the peptidyl transferase center, is nearly universally conserved. Here we find that Thermoproteota, a phylum of thermophilic Archaea, substitute cytidine for uridine at large subunit rRNA positions 2554 and 2555 (Escherichia coli numbering) in the A loop, immediately adjacent to the binding site for the 3'-end of A-site tRNA. We show by cryo-EM that E. coli ribosomes with uridine to cytidine mutations at these positions retain the proper fold and post-transcriptional modification of the A loop. Additionally, these mutations do not affect cellular growth, protect the large ribosomal subunit from thermal denaturation, and increase the mutational robustness of nucleotides in the peptidyl transferase center. This work identifies sequence variation across archaeal ribosomes in the peptidyl transferase center that likely confers stabilization of the ribosome at high temperatures and develops a stable mutant bacterial ribosome that can act as a scaffold for future ribosome engineering efforts.
Collapse
Affiliation(s)
- Amos J Nissley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Petar I Penev
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zoe L Watson
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Environmental Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jamie H D Cate
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Dual-Uptake Mode of the Antibiotic Phazolicin Prevents Resistance Acquisition by Gram-Negative Bacteria. mBio 2023; 14:e0021723. [PMID: 36802165 PMCID: PMC10128002 DOI: 10.1128/mbio.00217-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Phazolicin (PHZ) is a peptide antibiotic exhibiting narrow-spectrum activity against rhizobia closely related to its producer, Rhizobium sp. strain Pop5. Here, we show that the frequency of spontaneous PHZ-resistant mutants in Sinorhizobium meliloti is below the detection limit. We find that PHZ can enter S. meliloti cells through two distinct promiscuous peptide transporters, BacA and YejABEF, which belong to the SLiPT (SbmA-like peptide transporter) and ABC (ATP-binding cassette) transporter families, respectively. The dual-uptake mode explains the lack of observed resistance acquisition because the simultaneous inactivation of both transporters is necessary for resistance to PHZ. Since both BacA and YejABEF are essential for the development of functional symbiosis of S. meliloti with leguminous plants, the unlikely acquisition of PHZ resistance via the inactivation of these transporters is further disfavored. A whole-genome transposon sequencing screen did not reveal additional genes that can provide strong PHZ resistance when inactivated. However, it was found that the capsular polysaccharide KPS, the novel putative envelope polysaccharide PPP (PHZ-protecting polysaccharide), as well as the peptidoglycan layer jointly contribute to the sensitivity of S. meliloti to PHZ, most likely serving as barriers that reduce the amount of PHZ transported inside the cell. IMPORTANCE Many bacteria produce antimicrobial peptides to eliminate competitors and create an exclusive niche. These peptides act either by membrane disruption or by inhibiting essential intracellular processes. The Achilles' heel of the latter type of antimicrobials is their dependence on transporters to enter susceptible cells. Transporter inactivation results in resistance. Here, we show that a rhizobial ribosome-targeting peptide, phazolicin (PHZ), uses two different transporters, BacA and YejABEF, to enter the cells of a symbiotic bacterium, Sinorhizobium meliloti. This dual-entry mode dramatically reduces the probability of the appearance of PHZ-resistant mutants. Since these transporters are also crucial for S. meliloti symbiotic associations with host plants, their inactivation in natural settings is strongly disfavored, making PHZ an attractive lead for the development of biocontrol agents for agriculture.
Collapse
|
19
|
Zhong G, Wang ZJ, Yan F, Zhang Y, Huo L. Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS BIO & MED CHEM AU 2023; 3:1-31. [PMID: 37101606 PMCID: PMC10125368 DOI: 10.1021/acsbiomedchemau.2c00062] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 04/28/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are of increasing interest in natural products as well as drug discovery. This empowers not only the unique chemical structures and topologies in natural products but also the excellent bioactivities such as antibacteria, antifungi, antiviruses, and so on. Advances in genomics, bioinformatics, and chemical analytics have promoted the exponential increase of RiPPs as well as the evaluation of biological activities thereof. Furthermore, benefiting from their relatively simple and conserved biosynthetic logic, RiPPs are prone to be engineered to obtain diverse analogues that exhibit distinct physiological activities and are difficult to synthesize. This Review aims to systematically address the variety of biological activities and/or the mode of mechanisms of novel RiPPs discovered in the past decade, albeit the characteristics of selective structures and biosynthetic mechanisms are briefly covered as well. Almost one-half of the cases are involved in anti-Gram-positive bacteria. Meanwhile, an increasing number of RiPPs related to anti-Gram-negative bacteria, antitumor, antivirus, etc., are also discussed in detail. Last but not least, we sum up some disciplines of the RiPPs' biological activities to guide genome mining as well as drug discovery and optimization in the future.
Collapse
Affiliation(s)
- Guannan Zhong
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
| | - Zong-Jie Wang
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fu Yan
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- CAS
Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liujie Huo
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
20
|
Koller TO, Scheid U, Kösel T, Herrmann J, Krug D, Boshoff HIM, Beckert B, Evans JC, Schlemmer J, Sloan B, Weiner DM, Via LE, Moosa A, Ioerger TR, Graf M, Zinshteyn B, Abdelshahid M, Nguyen F, Arenz S, Gille F, Siebke M, Seedorf T, Plettenburg O, Green R, Warnke AL, Ullrich J, Warrass R, Barry CE, Warner DF, Mizrahi V, Kirschning A, Wilson DN, Müller R. The Myxobacterial Antibiotic Myxovalargin: Biosynthesis, Structural Revision, Total Synthesis, and Molecular Characterization of Ribosomal Inhibition. J Am Chem Soc 2023; 145:851-863. [PMID: 36603206 PMCID: PMC9853869 DOI: 10.1021/jacs.2c08816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Resistance of bacterial pathogens against antibiotics is declared by WHO as a major global health threat. As novel antibacterial agents are urgently needed, we re-assessed the broad-spectrum myxobacterial antibiotic myxovalargin and found it to be extremely potent against Mycobacterium tuberculosis. To ensure compound supply for further development, we studied myxovalargin biosynthesis in detail enabling production via fermentation of a native producer. Feeding experiments as well as functional genomics analysis suggested a structural revision, which was eventually corroborated by the development of a concise total synthesis. The ribosome was identified as the molecular target based on resistant mutant sequencing, and a cryo-EM structure revealed that myxovalargin binds within and completely occludes the exit tunnel, consistent with a mode of action to arrest translation during a late stage of translation initiation. These studies open avenues for structure-based scaffold improvement toward development as an antibacterial agent.
Collapse
Affiliation(s)
- Timm O. Koller
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Ullrich Scheid
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center
for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Teresa Kösel
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany
| | - Jennifer Herrmann
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center
for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany,German
Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Daniel Krug
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center
for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany,Department
of Pharmacy, Saarland University, 66123 Saarbrücken, Germany,German
Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bertrand Beckert
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Joanna C. Evans
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, University
of Cape Town, Rondebosch 7700, South Africa
| | - Jan Schlemmer
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center
for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany,German
Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Becky Sloan
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Danielle M. Weiner
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Laura E. Via
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Atica Moosa
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, University
of Cape Town, Rondebosch 7700, South Africa
| | - Thomas R. Ioerger
- Department
of Computer Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Michael Graf
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Boris Zinshteyn
- Department
of Molecular Biology and Genetics, Johns Hopkins University, Baltimore,
Maryland 21205, United States; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Maha Abdelshahid
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Fabian Nguyen
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Stefan Arenz
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Franziska Gille
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany
| | - Maik Siebke
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany,Institute
of Medicinal Chemistry, Helmholtz Zentrum
München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Tim Seedorf
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany
| | - Oliver Plettenburg
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany,Institute
of Medicinal Chemistry, Helmholtz Zentrum
München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Rachel Green
- Department
of Molecular Biology and Genetics, Johns Hopkins University, Baltimore,
Maryland 21205, United States; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Anna-Luisa Warnke
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany,Institute
of Medicinal Chemistry, Helmholtz Zentrum
München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Joachim Ullrich
- MSD
Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Ralf Warrass
- MSD
Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Clifton E. Barry
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Digby F. Warner
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, University
of Cape Town, Rondebosch 7700, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, University
of Cape Town, Rondebosch 7700, South Africa
| | - Andreas Kirschning
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany,
| | - Daniel N. Wilson
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany,
| | - Rolf Müller
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center
for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany,Department
of Pharmacy, Saarland University, 66123 Saarbrücken, Germany,German
Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany,
| |
Collapse
|
21
|
DiIorio MC, Kulczyk AW. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron Microscopy. MICROMACHINES 2022; 14:118. [PMID: 36677177 PMCID: PMC9866264 DOI: 10.3390/mi14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Biological macromolecules and assemblies precisely rearrange their atomic 3D structures to execute cellular functions. Understanding the mechanisms by which these molecular machines operate requires insight into the ensemble of structural states they occupy during the functional cycle. Single-particle cryo-electron microscopy (cryo-EM) has become the preferred method to provide near-atomic resolution, structural information about dynamic biological macromolecules elusive to other structure determination methods. Recent advances in cryo-EM methodology have allowed structural biologists not only to probe the structural intermediates of biochemical reactions, but also to resolve different compositional and conformational states present within the same dataset. This article reviews newly developed sample preparation and single-particle analysis (SPA) techniques for high-resolution structure determination of intrinsically dynamic and heterogeneous samples, shedding light upon the intricate mechanisms employed by molecular machines and helping to guide drug discovery efforts.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry and Microbiology, Rutgers University, 75 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
22
|
Elashal HE, Koos JD, Cheung-Lee WL, Choi B, Cao L, Richardson MA, White HL, Link AJ. Biosynthesis and characterization of fuscimiditide, an aspartimidylated graspetide. Nat Chem 2022; 14:1325-1334. [PMID: 35982233 PMCID: PMC10078976 DOI: 10.1038/s41557-022-01022-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Microviridins and other ω-ester-linked peptides, collectively known as graspetides, are characterized by side-chain-side-chain linkages installed by ATP-grasp enzymes. Here we report the discovery of a family of graspetides, the gene clusters of which also encode an O-methyltransferase with homology to the protein repair catalyst protein L-isoaspartyl methyltransferase. Using heterologous expression, we produced fuscimiditide, a ribosomally synthesized and post-translationally modified peptide (RiPP). NMR analysis of fuscimiditide revealed that the peptide contains two ester cross-links forming a stem-loop macrocycle. Furthermore, an unusually stable aspartimide moiety is found within the loop macrocycle. We fully reconstituted fuscimiditide biosynthesis in vitro including formation of the ester and aspartimide moieties. The aspartimide moiety embedded in fuscimiditide hydrolyses regioselectively to isoaspartate. Surprisingly, this isoaspartate-containing peptide is also a substrate for the L-isoaspartyl methyltransferase homologue, thus driving any hydrolysis products back to the aspartimide form. Whereas an aspartimide is often considered a nuisance product in protein formulations, our data suggest that some RiPPs have aspartimide residues intentionally installed via enzymatic activity.
Collapse
Affiliation(s)
- Hader E Elashal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Joseph D Koos
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Wai Ling Cheung-Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Brian Choi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Michelle A Richardson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Heather L White
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
23
|
Complete Genome Sequences of Two
Rhizobium
Strains Producing Azol(in)e-Modified Antibiotics. Microbiol Resour Announc 2022; 11:e0072222. [DOI: 10.1128/mra.00722-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Rhizobia are known for their ability to establish symbiotic relationships with plants. The specialized metabolism of these bacteria remains understudied. Here, we report whole-genome sequences of two rhizobia producing narrow-spectrum antirhizobial azol(in)e-modified peptides: that of
Rhizobium
sp. Pop5, a phazolicin producer, and another of
Rhizobium anhuiense
T24, a trifolitoxin producer.
Collapse
|
24
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
25
|
Liu B, Zhang D, Pan X. Nodules of wild legumes as unique natural hotspots of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156036. [PMID: 35597353 DOI: 10.1016/j.scitotenv.2022.156036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Root nodules (RN) of legumes have distinct microenvironment from their symbiotic roots and surrounding soils. The rhizobia can withstand the host-produced phytoalexins and antimicrobial compounds. We thus hypothesize that the wild legume RN may develop unique natural resistome and be antibiotic resistance gene (ARG) hotspots. In this study, in comparison with rhizosphere soil (RS) and bulk soil (BS), we characterized the feature of antibiotic resistance in the RN of two wild legumes, Medicago polymorpha and Astragalus sinicus, by metagenomics. It was shown that the total relative abundance of ARGs followed the order of RN > RS > BS for both legumes. ARGs encoding antibiotic efflux pump predominated in all samples with increased proportion from BS to RN samples for both legumes. Totally 275 ARG subtypes were detected, and diversity of ARGs in RN was significantly lower than in BS samples for both legumes. 32 and 25 unique ARGs subtypes were detected in RN of both legumes. Bacterial community played a key role in shaping nodule-associated resistome because both ARG profiles and bacterial community differed greatly among BS, RS and RN. Rhizobia potentially hosted 10 and 15 ARGs subtypes for both legumes. The number and proportion of plasmid- and ARG-carrying contigs (ACCs) were higher in RN than in BS. Host tracking analysis of plasmid-ACCs suggests that proportion of rhizobial bacteria identified as their hosts decreased from BS to RN samples. No plasmid-ACCs with multiple ARGs were observed in BS samples, whereas they were detected in RN samples of both legumes. Our study showed that even wild legume nodules are unique natural ARG hotspots and enough attention should be paid to the dissemination risk of ARGs posed by globally produced legume crops.
Collapse
Affiliation(s)
- Bingshen Liu
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
26
|
Comparative Metagenomic Analysis of Biosynthetic Diversity across Sponge Microbiomes Highlights Metabolic Novelty, Conservation, and Diversification. mSystems 2022; 7:e0035722. [PMID: 35862823 PMCID: PMC9426513 DOI: 10.1128/msystems.00357-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine sponges and their microbial symbiotic communities are rich sources of diverse natural products (NPs) that often display biological activity, yet little is known about the global distribution of NPs and the symbionts that produce them. Since the majority of sponge symbionts remain uncultured, it is a challenge to characterize their NP biosynthetic pathways, assess their prevalence within the holobiont, and measure the diversity of NP biosynthetic gene clusters (BGCs) across sponge taxa and environments. Here, we explore the microbial biosynthetic landscapes of three high-microbial-abundance (HMA) sponges from the Atlantic Ocean and the Mediterranean Sea. This data set reveals striking novelty, with <1% of the recovered gene cluster families (GCFs) showing similarity to any characterized BGC. When zooming in on the microbial communities of each sponge, we observed higher variability of specialized metabolic and taxonomic profiles between sponge species than within species. Nonetheless, we identified conservation of GCFs, with 20% of sponge GCFs being shared between at least two sponge species and a GCF core comprised of 6% of GCFs shared across all species. Within this functional core, we identified a set of widespread and diverse GCFs encoding nonribosomal peptide synthetases that are potentially involved in the production of diversified ether lipids, as well as GCFs putatively encoding the production of highly modified proteusins. The present work contributes to the small, yet growing body of data characterizing NP landscapes of marine sponge symbionts and to the cryptic biosynthetic potential contained in this environmental niche. IMPORTANCE Marine sponges and their microbial symbiotic communities are a rich source of diverse natural products (NPs). However, little is known about the sponge NP global distribution landscape and the symbionts that produce them. Here, we make use of recently developed tools to perform untargeted mining and comparative analysis of sponge microbiome metagenomes of three sponge species in the first study considering replicate metagenomes of multiple sponge species. We present an overview of the biosynthetic diversity across these sponge holobionts, which displays extreme biosynthetic novelty. We report not only the conservation of biosynthetic and taxonomic diversity but also a core of conserved specialized metabolic pathways. Finally, we highlight several novel GCFs with unknown ecological function, and observe particularly high biosynthetic potential in Acidobacteriota and Latescibacteria symbionts. This study paves the way toward a better understanding of the marine sponge holobionts' biosynthetic potential and the functional and ecological role of sponge microbiomes.
Collapse
|
27
|
Johnston CW, Badran AH. Natural and engineered precision antibiotics in the context of resistance. Curr Opin Chem Biol 2022; 69:102160. [PMID: 35660248 DOI: 10.1016/j.cbpa.2022.102160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Antibiotics are essential weapons in our fight against infectious disease, yet the consequences of broad-spectrum antibiotic use on microbiome stability and pathogen resistance are prompting investigations into more selective alternatives. Echoing the advent of precision medicine in oncology, precision antibiotics with focused activities are emerging as a means of addressing infections without damaging microbiomes or incentivizing resistance. Historically, antibiotic design principles have been gleaned from Nature, and reinvestigation of overlooked antibacterials is now providing scaffolds and targets for the design of pathogen-specific drugs. In this perspective, we summarize the biosynthetic and antibacterial mechanisms used to access these activities, and discuss how such strategies may be co-opted through engineering approaches to afford precision antibiotics.
Collapse
Affiliation(s)
- Chad W Johnston
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ahmed H Badran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Lethbridge BJ, Asenstorfer RE, Bailey LS, Breil BT, Johnson JV, Jones GP, Rumjanek V, Sims JJ, Tate ME, Triplett EW. Post translational modifications of Trifolitoxin: a blue fluorescent peptide antibiotic. J Antibiot (Tokyo) 2022; 75:125-135. [PMID: 35022574 PMCID: PMC8816728 DOI: 10.1038/s41429-021-00497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022]
Abstract
Trifolitoxin (TFX, C41H63N15O15S) is a selective, ribosomally-synthesized, post-translationally modified, peptide antibiotic, produced by Rhizobium leguminosarum bv. trifolii T24. TFX specifically inhibits α-proteobacteria, including the plant symbiont Rhizobium spp., the plant pathogen Agrobacterium spp. and the animal pathogen Brucella abortus. TFX-producing strains prevent legume root nodulation by TFX-sensitive rhizobia. TFX has been isolated as a pair of geometric isomers, TFX1 and TFX2, which are derived from the biologically inactive primary amino acid sequence: Asp-Ile-Gly-Gly-Ser-Arg-Gln-Gly-Cys-Val-Ala. Gly-Cys is present as a thiazoline ring and the Arg-Gln-Gly sequence is extensively modified to a UV absorbing, blue fluorescent chromophore. The chromophore consists of a conjugated, 5-membered heterocyclic ring and side chain of modified glutamine.
Collapse
Affiliation(s)
- Benjamin J Lethbridge
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Robert E Asenstorfer
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.
| | - Laura S Bailey
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Brenda T Breil
- PK Yonge Developmental Research School, University of Florida, Gainesville, FL, 32601-7845, USA
| | - Jodie V Johnson
- Mass Spectrometry Research and Education Center, Chemistry Department, University of Florida, Florida, FL, 32611-7200, USA
| | - Graham P Jones
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Victor Rumjanek
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 23851-970, RJ, Brazil
| | - James J Sims
- Department of Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Max E Tate
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Eric W Triplett
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-7200, USA
| |
Collapse
|
29
|
Ghilarov D, Inaba-Inoue S, Stepien P, Qu F, Michalczyk E, Pakosz Z, Nomura N, Ogasawara S, Walker GC, Rebuffat S, Iwata S, Heddle JG, Beis K. Molecular mechanism of SbmA, a promiscuous transporter exploited by antimicrobial peptides. SCIENCE ADVANCES 2021; 7:eabj5363. [PMID: 34516884 PMCID: PMC8442886 DOI: 10.1126/sciadv.abj5363] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/16/2021] [Indexed: 05/12/2023]
Abstract
Antibiotic metabolites and antimicrobial peptides mediate competition between bacterial species. Many of them hijack inner and outer membrane proteins to enter cells. Sensitivity of enteric bacteria to multiple peptide antibiotics is controlled by the single inner membrane protein SbmA. To establish the molecular mechanism of peptide transport by SbmA and related BacA, we determined their cryo–electron microscopy structures at 3.2 and 6 Å local resolution, respectively. The structures show a previously unknown fold, defining a new class of secondary transporters named SbmA-like peptide transporters. The core domain includes conserved glutamates, which provide a pathway for proton translocation, powering transport. The structures show an outward-open conformation with a large cavity that can accommodate diverse substrates. We propose a molecular mechanism for antibacterial peptide uptake paving the way for creation of narrow-targeted therapeutics.
Collapse
Affiliation(s)
- Dmitry Ghilarov
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Satomi Inaba-Inoue
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198, Japan
| | - Piotr Stepien
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Feng Qu
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| | | | - Zuzanna Pakosz
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Ogasawara
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Graham Charles Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Rebuffat
- Molecules of Communication and Adaptation of Microorganisms Laboratory (MCAM, UMR 7245 CNRS-MNHN), Muséum National d’Histoire Naturelle, Sorbonne Universités, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, Paris 75005, France
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Research Acceleration Program, Membrane Protein Crystallography Project, Japan Science and Technology Agency, Kyoto, Japan
| | | | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| |
Collapse
|
30
|
Pellegrino S, Terrosu S, Yusupova G, Yusupov M. Inhibition of the Eukaryotic 80S Ribosome as a Potential Anticancer Therapy: A Structural Perspective. Cancers (Basel) 2021; 13:cancers13174392. [PMID: 34503202 PMCID: PMC8430933 DOI: 10.3390/cancers13174392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Unravelling the molecular basis of ribosomal inhibition by small molecules is crucial to characterise the function of potential anticancer drugs. After approval of the ribosome inhibitor homoharringtonine for treatment of CML, it became clear that acting on the rate of protein synthesis can be a valuable way to prevent indefinite growth of cancers. The present review discusses the state-of-the-art structural knowledge of the binding modes of inhibitors targeting the cytosolic ribosome, with the ambition of providing not only an overview of what has been achieved so far, but to stimulate further investigations to yield more potent and specific anticancer drugs. Abstract Protein biosynthesis is a vital process for all kingdoms of life. The ribosome is the massive ribonucleoprotein machinery that reads the genetic code, in the form of messenger RNA (mRNA), to produce proteins. The mechanism of translation is tightly regulated to ensure that cell growth is well sustained. Because of the central role fulfilled by the ribosome, it is not surprising that halting its function can be detrimental and incompatible with life. In bacteria, the ribosome is a major target of inhibitors, as demonstrated by the high number of small molecules identified to bind to it. In eukaryotes, the design of ribosome inhibitors may be used as a therapy to treat cancer cells, which exhibit higher proliferation rates compared to healthy ones. Exciting experimental achievements gathered during the last few years confirmed that the ribosome indeed represents a relevant platform for the development of anticancer drugs. We provide herein an overview of the latest structural data that helped to unveil the molecular bases of inhibition of the eukaryotic ribosome triggered by small molecules.
Collapse
Affiliation(s)
- Simone Pellegrino
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- Correspondence: (S.P.); (M.Y.)
| | - Salvatore Terrosu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
| | - Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
| | - Marat Yusupov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Correspondence: (S.P.); (M.Y.)
| |
Collapse
|
31
|
Cao L, Do T, Link AJ. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J Ind Microbiol Biotechnol 2021; 48:6121428. [PMID: 33928382 PMCID: PMC8183687 DOI: 10.1093/jimb/kuab005] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products remain a critical source of medicines and drug leads. One of the most rapidly growing superclasses of natural products is RiPPs: ribosomally synthesized and posttranslationally modified peptides. RiPPs have rich and diverse bioactivities. This review highlights examples of the molecular mechanisms of action that underly those bioactivities. Particular emphasis is placed on RiPP/target interactions for which there is structural information. This detailed mechanism of action work is critical toward the development of RiPPs as therapeutics and can also be used to prioritize hits in RiPP genome mining studies.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
32
|
Nguyen NA, Lin Z, Mohanty I, Garg N, Schmidt EW, Agarwal V. An Obligate Peptidyl Brominase Underlies the Discovery of Highly Distributed Biosynthetic Gene Clusters in Marine Sponge Microbiomes. J Am Chem Soc 2021; 143:10221-10231. [PMID: 34213321 DOI: 10.1021/jacs.1c03474] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Marine sponges are prolific sources of bioactive natural products, several of which are produced by bacteria symbiotically associated with the sponge host. Bacteria-derived natural products, and the specialized bacterial symbionts that synthesize them, are not shared among phylogenetically distant sponge hosts. This is in contrast to nonsymbiotic culturable bacteria in which the conservation of natural products and natural product biosynthetic gene clusters (BGCs) is well established. Here, we demonstrate the widespread conservation of a BGC encoding a cryptic ribosomally synthesized and post-translationally modified peptide (RiPP) in microbiomes of phylogenetically and geographically dispersed sponges from the Pacific and Atlantic oceans. Detection of this BGC was enabled by mining for halogenating enzymes in sponge metagenomes, which, in turn, allowed for the description of a broad-spectrum regiospecific peptidyl tryptophan-6-brominase which possessed no chlorination activity. In addition, we demonstrate the cyclodehydrative installation of azoline heterocycles in proteusin RiPPs. This is the first demonstration of halogenation and cyclodehydration for proteusin RiPPs and the enzymes catalyzing these transformations were found to competently interact with other previously described proteusin substrate peptides. Within a sponge microbiome, many different generalized bacterial taxa harbored this BGC with often more than 50 copies of the BGC detected in individual sponge metagenomes. Moreover, the BGC was found in all sponges queried that possess high diversity microbiomes but it was not detected in other marine invertebrate microbiomes. These data shed light on conservation of cryptic natural product biosynthetic potential in marine sponges that was not detected by traditional natural product-to-BGC (meta)genome mining.
Collapse
Affiliation(s)
- Nguyet A Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ipsita Mohanty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
33
|
Si Y, Kretsch AM, Daigh LM, Burk MJ, Mitchell DA. Cell-Free Biosynthesis to Evaluate Lasso Peptide Formation and Enzyme-Substrate Tolerance. J Am Chem Soc 2021; 143:5917-5927. [PMID: 33823110 DOI: 10.1021/jacs.1c01452] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lasso peptides are ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that display a unique lariat-like, threaded conformation. Owing to a locked three-dimensional structure, lasso peptides can be unusually stable toward heat and proteolytic degradation. Some lasso peptides have been shown to bind human cell-surface receptors and exhibit anticancer properties, while others display antibacterial or antiviral activities. All known lasso peptides are produced by bacteria and genome-mining studies indicate that lasso peptides are a relatively prevalent class of RiPPs; however, the discovery, isolation, and characterization of lasso peptides are constrained by the lack of an efficient production system. In this study, we employ a cell-free biosynthesis (CFB) strategy to address longstanding challenges associated with lasso peptide production. We report the successful use of CFB for the formation of an array of sequence-diverse lasso peptides that include known examples as well as a new predicted lasso peptide from Thermobifida halotolerans. We further demonstrate the utility of CFB to rapidly generate and characterize multisite precursor peptide variants to evaluate the substrate tolerance of the biosynthetic pathway. By evaluating more than 1000 randomly chosen variants, we show that the lasso-forming cyclase from the fusilassin pathway is capable of producing millions of sequence-diverse lasso peptides via CFB. These data lay a firm foundation for the creation of large lasso peptide libraries using CFB to identify new variants with unique properties.
Collapse
Affiliation(s)
- Yuanyuan Si
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Ashley M Kretsch
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Laura M Daigh
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Mark J Burk
- Lassogen, Inc., San Diego, California 92121, United States of America
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| |
Collapse
|
34
|
Zhang L, He J, Bai L, Ruan S, Yang T, Luo Y. Ribosome-targeting antibacterial agents: Advances, challenges, and opportunities. Med Res Rev 2021; 41:1855-1889. [PMID: 33501747 DOI: 10.1002/med.21780] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Ribosomes, which synthesize proteins, are critical organelles for the survival and growth of bacteria. About 60% of approved antibiotics discovered so far combat pathogenic bacteria by targeting ribosomes. However, several issues, such as drug resistance and toxicity, have impeded the clinical use of ribosome-targeting antibiotics. Moreover, the complexity of the bacteria ribosome structure has retarded the discovery of new ribosome-targeting agents that are considered as the key to the drug-resistance and toxicity. To deal with these challenges, efforts such as medicinal chemistry optimization, combination treatment, and new drug delivery system have been developed. But not enough, the development of structural biology and new screening methods bring powerful tools, such as cryo-electron microscopy technology, advanced computer-aided drug design, and cell-free in vitro transcription/translation systems, for the discovery of novel ribosome-targeting antibiotics. Thus, in this paper, we overview the research on different aspects of bacterial ribosomes, especially focus on discussing the challenges in the discovery of ribosome-targeting antibacterial drugs and advances made to address issues such as drug-resistance and selectivity, which, we believe, provide perspectives for the discovery of novel antibiotics.
Collapse
Affiliation(s)
- Laiying Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lang Bai
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shihua Ruan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Human Diseases and Immunotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Isolation and structure determination of new linear azole-containing peptides spongiicolazolicins A and B from Streptomyces sp. CWH03. Appl Microbiol Biotechnol 2020; 105:93-104. [PMID: 33215256 DOI: 10.1007/s00253-020-11016-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Linear azole-containing peptides are a class of ribosomally synthesized and post-translationally modified peptides. We performed a chemical investigation on marine actinomycetes, and new linear azole-containing peptides named spongiicolazolicins A and B were found in the MeOH extracts of a newly isolated strain Streptomyces sp. CWH03 (NBRC 114659) and two strains of S. spongiicola (strain HNM0071T: DSM 103383T and strain 531S: NBRC 113560). The strain Streptomyces sp. CWH03 was indicated to be a new species closely related to S. spongiicola by phylogenetic analysis using the genome sequence. The new peptides named spongiicolazolicins A and B were isolated from the cell of Streptomyces sp. CWH03. The partial structure of spongiicolazolicin A was determined by 2D NMR experiments. Based on data of MS/MS experiments, the chemical structures of spongiicolazolicins A and B were proposed using the amino acid sequence deduced from the precursor-encoding gene, which was found from whole-genome sequence data of Streptomyces sp. CWH03. The biosynthetic gene cluster of spongiicolazolicins was proposed based on comparative analysis with that of a known linear azole peptide goadsporin. KEY POINTS: • Streptomyces sp. CWH03 was a new species isolated from marine sediment. • New linear azole-containing peptides named spongiicolazolicins A and B were isolated. • Biosynthetic pathway of spongiicolazolicins was proposed.
Collapse
|
36
|
Telhig S, Ben Said L, Zirah S, Fliss I, Rebuffat S. Bacteriocins to Thwart Bacterial Resistance in Gram Negative Bacteria. Front Microbiol 2020; 11:586433. [PMID: 33240239 PMCID: PMC7680869 DOI: 10.3389/fmicb.2020.586433] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
An overuse of antibiotics both in human and animal health and as growth promoters in farming practices has increased the prevalence of antibiotic resistance in bacteria. Antibiotic resistant and multi-resistant bacteria are now considered a major and increasing threat by national health agencies, making the need for novel strategies to fight bugs and super bugs a first priority. In particular, Gram-negative bacteria are responsible for a high proportion of nosocomial infections attributable for a large part to Enterobacteriaceae, such as pathogenic Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To cope with their highly competitive environments, bacteria have evolved various adaptive strategies, among which the production of narrow spectrum antimicrobial peptides called bacteriocins and specifically microcins in Gram-negative bacteria. They are produced as precursor peptides that further undergo proteolytic cleavage and in many cases more or less complex posttranslational modifications, which contribute to improve their stability and efficiency. Many have a high stability in the gastrointestinal tract where they can target a single pathogen whilst only slightly perturbing the gut microbiota. Several microcins and antibiotics can bind to similar bacterial receptors and use similar pathways to cross the double-membrane of Gram-negative bacteria and reach their intracellular targets, which they also can share. Consequently, bacteria may use common mechanisms of resistance against microcins and antibiotics. This review describes both unmodified and modified microcins [lasso peptides, siderophore peptides, nucleotide peptides, linear azole(in)e-containing peptides], highlighting their potential as weapons to thwart bacterial resistance in Gram-negative pathogens and discusses the possibility of cross-resistance and co-resistance occurrence between antibiotics and microcins in Gram-negative bacteria.
Collapse
Affiliation(s)
- Soufiane Telhig
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Laila Ben Said
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
37
|
Liu Y, Shi J, Tong Z, Jia Y, Yang B, Wang Z. The revitalization of antimicrobial peptides in the resistance era. Pharmacol Res 2020; 163:105276. [PMID: 33161137 DOI: 10.1016/j.phrs.2020.105276] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/14/2023]
Abstract
The antibiotic resistance crisis is becoming incredibly thorny due to the indiscriminate employment of antibiotics in agriculture and aquaculture, such as growth promoters, and the emergence of bacteria that are capable of enduring antibiotic treatment in an endless stream. Hence, to reverse this situation, vigorous efforts should be made in the process of identifying other alternative strategies with a lower frequency of resistance. Antimicrobial peptides (AMPs), originated from host defense peptides, are generally produced by a variety of organisms as defensive weapons to protect the host from other pathogenic bacteria. The unique ability of AMPs to control bacterial infections, as well as low propensity to acquire resistance, provides the basis for it to become one of the promising antibacterial substances. Herein, we present new insights into the biological functions, structural properties, distinct mechanisms of action of AMPs and their resistance determinants. Besides, we separately discuss natural and synthetic AMPs, including their source, screening pathway and antibacterial activity. Lastly, challenges and perspectives to identify novel potent AMPs are highlighted, which will expand our understanding of the chemical space of antimicrobials and provide a pipeline for discovering the next-generation of AMPs.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Bingqing Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
38
|
Poitevin F, Kushner A, Li X, Dao Duc K. Structural Heterogeneities of the Ribosome: New Frontiers and Opportunities for Cryo-EM. Molecules 2020; 25:E4262. [PMID: 32957592 PMCID: PMC7570653 DOI: 10.3390/molecules25184262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The extent of ribosomal heterogeneity has caught increasing interest over the past few years, as recent studies have highlighted the presence of structural variations of the ribosome. More precisely, the heterogeneity of the ribosome covers multiple scales, including the dynamical aspects of ribosomal motion at the single particle level, specialization at the cellular and subcellular scale, or evolutionary differences across species. Upon solving the ribosome atomic structure at medium to high resolution, cryogenic electron microscopy (cryo-EM) has enabled investigating all these forms of heterogeneity. In this review, we present some recent advances in quantifying ribosome heterogeneity, with a focus on the conformational and evolutionary variations of the ribosome and their functional implications. These efforts highlight the need for new computational methods and comparative tools, to comprehensively model the continuous conformational transition pathways of the ribosome, as well as its evolution. While developing these methods presents some important challenges, it also provides an opportunity to extend our interpretation and usage of cryo-EM data, which would more generally benefit the study of molecular dynamics and evolution of proteins and other complexes.
Collapse
Affiliation(s)
- Frédéric Poitevin
- Department of LCLS Data Analytics, Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA;
| | - Artem Kushner
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.K.); (X.L.)
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xinpei Li
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.K.); (X.L.)
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.K.); (X.L.)
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
39
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JH. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:60482. [PMID: 32924932 DOI: 10.1101/2020.06.26.174334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 05/24/2023] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Omer Ad
- Department of Chemistry, Yale University, New Haven, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, United States
| | - Jamie Hd Cate
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
40
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JHD. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:e60482. [PMID: 32924932 PMCID: PMC7550191 DOI: 10.7554/elife.60482] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
| | - Omer Ad
- Department of Chemistry, Yale UniversityNew HavenUnited States
| | - Alanna Schepartz
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
- Environmental Science, Policy and Management, University of California BerkeleyBerkeleyUnited States
| | - Jamie HD Cate
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
41
|
Hansen BL, Pessotti RDC, Fischer MS, Collins A, El-Hifnawi L, Liu MD, Traxler MF. Cooperation, Competition, and Specialized Metabolism in a Simplified Root Nodule Microbiome. mBio 2020; 11:e01917-20. [PMID: 32843548 PMCID: PMC7448283 DOI: 10.1128/mbio.01917-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
Microbiomes associated with various plant structures often contain members with the potential to make specialized metabolites, e.g., molecules with antibacterial, antifungal, or siderophore activities. However, when and where microbes associated with plants produce specialized metabolites, and the potential role of these molecules in mediating intramicrobiome interactions, is not well understood. Root nodules of legume plants are organs devoted to hosting symbiotic bacteria that fix atmospheric nitrogen and have recently been shown to harbor a relatively simple accessory microbiome containing members with the ability to produce specialized metabolites in vitro On the basis of these observations, we sought to develop a model nodule microbiome system for evaluating specialized microbial metabolism in planta Starting with an inoculum derived from field-grown Medicago sativa nodules, serial passaging through gnotobiotic nodules yielded a simplified accessory community composed of four members: Brevibacillus brevis, Paenibacillus sp., Pantoea agglomerans, and Pseudomonas sp. Some members of this community exhibited clear cooperation in planta, while others were antagonistic and capable of disrupting cooperation between other partners. Using matrix-assisted laser desorption ionization-imaging mass spectrometry, we found that metabolites associated with individual taxa had unique distributions, indicating that some members of the nodule community were spatially segregated. Finally, we identified two families of molecules produced by B. brevisin planta as the antibacterial tyrocidines and a novel set of gramicidin-type molecules, which we term the britacidins. Collectively, these results indicate that in addition to nitrogen fixation, legume root nodules are likely also sites of active antimicrobial production.
Collapse
Affiliation(s)
- Bridget L Hansen
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Rita de Cassia Pessotti
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Monika S Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Alyssa Collins
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, USA
| | - Laila El-Hifnawi
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, USA
| | - Mira D Liu
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
42
|
Johnston CW, Badran AH, Collins JJ. Continuous bioactivity-dependent evolution of an antibiotic biosynthetic pathway. Nat Commun 2020; 11:4202. [PMID: 32826900 PMCID: PMC7443133 DOI: 10.1038/s41467-020-18018-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023] Open
Abstract
Antibiotic biosynthetic gene clusters (BGCs) produce bioactive metabolites that impart a fitness advantage to their producer, providing a mechanism for natural selection. This selection drives antibiotic evolution and adapts BGCs for expression in different organisms, potentially providing clues to improve heterologous expression of antibiotics. Here, we use phage-assisted continuous evolution (PACE) to achieve bioactivity-dependent adaptation of the BGC for the antibiotic bicyclomycin (BCM), facilitating improved production in a heterologous host. This proof-of-principle study demonstrates that features of natural bioactivity-dependent evolution can be engineered to access unforeseen routes of improving metabolic pathways and product yields. Biosynthetic gene clusters (BGCs) make small molecules with fitness-enhancing activities that drive BGC evolution. Here, the authors show that synthetic biology can leverage bioactivity to achieve continuous evolution of an antibiotic BGC in the lab and improve antibiotic production in a new host.
Collapse
Affiliation(s)
- Chad W Johnston
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Ahmed H Badran
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - James J Collins
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. .,Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. .,Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. .,Harvard-MIT Program in Health Sciences and Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.
| |
Collapse
|
43
|
Sharrar AM, Crits-Christoph A, Méheust R, Diamond S, Starr EP, Banfield JF. Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type. mBio 2020; 11:e00416-20. [PMID: 32546614 PMCID: PMC7298704 DOI: 10.1128/mbio.00416-20] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/08/2020] [Indexed: 01/12/2023] Open
Abstract
Bacteria isolated from soils are major sources of specialized metabolites, including antibiotics and other compounds with clinical value that likely shape interactions among microbial community members and impact biogeochemical cycles. Yet, isolated lineages represent a small fraction of all soil bacterial diversity. It remains unclear how the production of specialized metabolites varies across the phylogenetic diversity of bacterial species in soils and whether the genetic potential for production of these metabolites differs with soil depth and vegetation type within a geographic region. We sampled soils and saprolite from three sites in a northern California Critical Zone Observatory with various vegetation and bedrock characteristics and reconstructed 1,334 metagenome-assembled genomes containing diverse biosynthetic gene clusters (BGCs) for secondary metabolite production. We obtained genomes for prolific producers of secondary metabolites, including novel groups within the Actinobacteria, Chloroflexi, and candidate phylum "Candidatus Dormibacteraeota." Surprisingly, one genome of a candidate phyla radiation (CPR) bacterium coded for a ribosomally synthesized linear azole/azoline-containing peptide, a capacity we found in other publicly available CPR bacterial genomes. Overall, bacteria with higher biosynthetic potential were enriched in shallow soils and grassland soils, with patterns of abundance of BGC type varying by taxonomy.IMPORTANCE Microbes produce specialized compounds to compete or communicate with one another and their environment. Some of these compounds, such as antibiotics, are also useful in medicine and biotechnology. Historically, most antibiotics have come from soil bacteria which can be isolated and grown in the lab. Though the vast majority of soil bacteria cannot be isolated, we can extract their genetic information and search it for genes which produce these specialized compounds. These understudied soil bacteria offer a wealth of potential for the discovery of new and important microbial products. Here, we identified the ability to produce these specialized compounds in diverse and novel bacteria in a range of soil environments. This information will be useful to other researchers who wish to isolate certain products. Beyond their use to humans, understanding the distribution and function of microbial products is key to understanding microbial communities and their effects on biogeochemical cycles.
Collapse
Affiliation(s)
- Allison M Sharrar
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
| | - Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, Berkeley, California, USA
| | - Spencer Diamond
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
| | - Evan P Starr
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, Berkeley, California, USA
| |
Collapse
|
44
|
Travin DY, Bikmetov D, Severinov K. Translation-Targeting RiPPs and Where to Find Them. Front Genet 2020; 11:226. [PMID: 32296456 PMCID: PMC7136475 DOI: 10.3389/fgene.2020.00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 11/15/2022] Open
Abstract
Prokaryotic translation is among the major targets of diverse natural products with antibacterial activity including several classes of clinically relevant antibiotics. In this review, we summarize the information about the structure, biosynthesis, and modes of action of translation inhibiting ribosomally synthesized and post-translationally modified peptides (RiPPs). Azol(in)e-containing RiPPs are known to target translation, and several new compounds inhibiting the ribosome have been characterized recently. We performed a systematic search for biosynthetic gene clusters (BGCs) of azol(in)e-containing RiPPs. This search uncovered several groups of clusters that likely direct the synthesis of novel compounds, some of which may be targeting the ribosome.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Bikmetov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Waksman Institute for Microbiology, Rutgers, Piscataway, NJ, United States
| |
Collapse
|
45
|
Li Y, Rebuffat S. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology. J Biol Chem 2020; 295:34-54. [PMID: 31784450 PMCID: PMC6952617 DOI: 10.1074/jbc.rev119.006545] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ribosomally synthesized and posttranslationally modified peptides (RiPPs), also called ribosomal peptide natural products (RPNPs), form a growing superfamily of natural products that are produced by many different organisms and particularly by bacteria. They are derived from precursor polypeptides whose modification by various dedicated enzymes helps to establish a vast array of chemical motifs. RiPPs have attracted much interest as a source of potential therapeutic agents, and in particular as alternatives to conventional antibiotics to address the bacterial resistance crisis. However, their ecological roles in nature are poorly understood and explored. The present review describes major RiPP actors in competition within microbial communities, the main ecological and physiological functions currently evidenced for RiPPs, and the microbial ecosystems that are the sites for these functions. We envision that the study of RiPPs may lead to discoveries of new biological functions and highlight that a better knowledge of how bacterial RiPPs mediate inter-/intraspecies and interkingdom interactions will hold promise for devising alternative strategies in antibiotic development.
Collapse
Affiliation(s)
- Yanyan Li
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France.
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|