1
|
Lott ME, Vratsanos MA, Hughes RW, Gianneschi NC, Sumerlin BS. In Situ Monitoring of Droplet Behavior in Inverse Microemulsions. ACS NANO 2025; 19:19168-19176. [PMID: 40358018 DOI: 10.1021/acsnano.5c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Thermoresponsive polymer assemblies are of growing interest in fields ranging from photonics to drug delivery, with their phase transitions often attributed to upper- or lower-critical solution temperatures and cloud-point behaviors. However, the direct imaging of these nanoscale transitions remains underexplored. This study addresses that gap by developing a temperature-sensitive inverse microemulsion system and elucidating its dynamic structural transitions under heating. We present a temperature-sensitive inverse microemulsion system composed of the nonionic surfactants Brij 010 and Span 80. Upon heating within a stable microemulsion temperature range, the decrease in hydrogen bonding between the hydrophilic surfactant head and the dispersed phase results in an initial droplet contraction. Above a critical destabilization temperature, the droplets expand and destabilize as the affinity of the surfactant for the continuous phase increases. This intriguing behavior was observed via dynamic light scattering and liquid-phase transmission electron microscopy, which revealed a rapid and reversible droplet transformation during heating cycles. This versatile inverse microemulsion system also serves as a modular nanoreactor for polymerizations, demonstrated through both conventional radical and photoiniferter polymerization. Our research contributes to the understanding of inverse microemulsions, which offer a platform for precise nanoparticle synthesis.
Collapse
Affiliation(s)
- Megan E Lott
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Maria A Vratsanos
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Rhys W Hughes
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nathan C Gianneschi
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Zhang X, Yang Z, Lin J, Zhou W, Sun N, Jia Y. Probing Peptide Assembly and Interaction via High-Resolution Imaging Techniques: A Mini Review. Int J Mol Sci 2025; 26:3998. [PMID: 40362238 PMCID: PMC12071768 DOI: 10.3390/ijms26093998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Peptide molecules, as fundamental structural units in biological systems, play pivotal roles in diverse biological processes and have garnered substantial attention in biomolecular self-assembly research. Their structural simplicity and high design flexibility make peptides key players in the development of novel biomaterials. High-resolution imaging techniques have provided profound insights into peptide assembly. Recently, the development of cutting-edge technologies, such as super-resolution microscopy (SRM) with unparalleled spatiotemporal resolution, has further advanced peptide assembly research. These advancements enable both the mechanistic exploration of peptide assembly pathways and the rational design of peptide-based functional materials. In this mini review, we systematically examine the structural diversity of peptide assemblies, including micelles, tubes, particles, fibers and hydrogel, as investigated by various high-resolution imaging techniques, with a focus on their assembly characterization and dynamic process. We also summarize the interaction networks of peptide assemblies with proteins, polymers and microbes, providing further insight into the interactions between peptide assemblies and other molecules. Furthermore, we emphasize the transformative role of high-resolution imaging techniques in addressing long-standing challenges in peptide nanotechnology. We anticipate that this review will accelerate the advancement of peptide assembly characterization, thereby fostering the creation of next-generation functional biomaterials.
Collapse
Affiliation(s)
- Xiaoming Zhang
- School of Science, Minzu University of China, Beijing 100081, China; (Z.Y.); (J.L.); (W.Z.)
- Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China
| | - Zhanshu Yang
- School of Science, Minzu University of China, Beijing 100081, China; (Z.Y.); (J.L.); (W.Z.)
| | - Jiaxuan Lin
- School of Science, Minzu University of China, Beijing 100081, China; (Z.Y.); (J.L.); (W.Z.)
| | - Wei Zhou
- School of Science, Minzu University of China, Beijing 100081, China; (Z.Y.); (J.L.); (W.Z.)
- Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China
| | - Nan Sun
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Sarretto T, Westerhausen MT, Mckinnon JC, Bishop DP, Ellis SR. Evaluation of combined workflows for multimodal mass spectrometry imaging of elements and lipids from the same tissue section. Anal Bioanal Chem 2025; 417:705-719. [PMID: 39831956 PMCID: PMC11772510 DOI: 10.1007/s00216-024-05696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025]
Abstract
The wide range of mass spectrometry imaging (MSI) technologies enables the spatial distributions of many analyte classes to be investigated. However, as each approach is best suited to certain analytes, combinations of different MSI techniques are increasingly being explored to obtain more chemical information from a sample. In many cases, performing a sequential analysis of the same tissue section is ideal to enable a direct correlation of multimodal data. In this work, we explored different workflows that allow sequential lipid and elemental imaging on the same tissue section using atmospheric pressure laser desorption/ionisation-plasma post-ionisation-MSI (AP-MALDI-PPI-MSI) and laser ablation-inductively coupled plasma-MSI (LA-ICP-MSI), respectively. It is found that performing lipid imaging first using matrix-coated samples, followed by elemental imaging on matrix-coated samples, provides high-quality MSI datasets for both lipids and elements, with the resulting distributions being similar to those obtained when each is performed in isolation. The effect of matrix removal prior to elemental imaging, and of performing elemental imaging first were also investigated but found to generally yield lower quality elemental imaging data but comparable lipid imaging data. Finally, we used the ability to acquire both elemental and lipid imaging data from the same section to investigate the spatial correlations between different lipids (including ceramides, phosphatidylethanolamine, and hexosylceramides) and elements within mouse brain tissue.
Collapse
Affiliation(s)
- Tassiani Sarretto
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Mika T Westerhausen
- Hyphenated Mass Spectrometry Laboratory, University of Technology Sydney, Ultimo, Sydney, NSW, Australia
| | - Jayden C Mckinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, University of Technology Sydney, Ultimo, Sydney, NSW, Australia
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
4
|
Morin E, Muzzy E, Carlini AS. Surface Functionalization of Elastomers with Biopolymers. Methods Mol Biol 2025; 2902:197-227. [PMID: 40029605 DOI: 10.1007/978-1-0716-4402-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Biopolymer coatings on elastomeric surfaces have significant impact for advancements in biomedicine as they combine flexible devices with complex biological functionality. Biopolymers offer increased ability for antimicrobial coatings, sensing of relevant biological markers, and controlled drug delivery. The methodologies available to conjugate these important biopolymers to flexible elastomeric substrates are vast and rapidly evolving. This chapter aims to compile methodologies across the application space of biopolymer conjugation to elastomers. We present a guide to the field and methods ranging from surface activation and functionalization, grafting-to and grafting-from of biopolymers, and characterization of the resulting substrates.
Collapse
Affiliation(s)
- Emilie Morin
- Department of Chemistry & Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Elana Muzzy
- Department of Biological Engineering, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Andrea S Carlini
- Department of Chemistry & Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, USA.
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA, USA.
- Interdisciplinary Program in Quantitative Biosciences, University of California at Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
5
|
Wu H, Sun H, Oerlemans RAJF, Li S, Shao J, Wang J, Joosten RRM, Lou X, Luo Y, Zheng H, Abdelmohsen LKEA, Garza HHP, van Hest JCM, Friedrich H. Understanding, Mimicking, and Mitigating Radiolytic Damage to Polymers in Liquid Phase Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402987. [PMID: 39548916 DOI: 10.1002/adma.202402987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Advances in liquid phase transmission electron microscopy (LP-TEM) have enabled the monitoring of polymer dynamics in solution at the nanoscale, but radiolytic damage during LP-TEM imaging limits its routine use in polymer science. This study focuses on understanding, mimicking, and mitigating radiolytic damage observed in functional polymers in LP-TEM. It is quantitatively demonstrated how polymer damage occurs across all conceivable (LP-)TEM environments, and the key characteristics and differences between polymer degradation in water vapor and liquid water are elucidated. Importantly, it is shown that the hydroxyl radical-rich environment in LP-TEM can be approximated by UV light irradiation in the presence of hydrogen peroxide, allowing the use of bulk techniques to probe damage at the polymer chain level. Finally, the protective effects of commonly used hydroxyl radical scavengers are compared, revealing that the effectiveness of graphene's protection is distance-dependent. The work provides detailed methodological guidance and establishes a baseline for polymer degradation in LP-TEM, paving the way for future research on nanoscale tracking of shape transitions and drug encapsulation of polymer assemblies in solution.
Collapse
Affiliation(s)
- Hanglong Wu
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, Delft, 2628 ZD, The Netherlands
| | - Roy A J F Oerlemans
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Siyu Li
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jianhong Wang
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Rick R M Joosten
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Xianwen Lou
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Yingtong Luo
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Hongkui Zheng
- DENSsolutions B.V., Informaticalaan 12, Delft, 2628 ZD, The Netherlands
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | | | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
6
|
Gnanasekaran K, Rosenmann ND, Dos Reis R, Gianneschi NC. Extent of Radiolytic Damage from Liquid Cell TEM Experiments on Metal-Organic Frameworks via Post-Mortem 4D-STEM. NANO LETTERS 2024; 24:10161-10168. [PMID: 39105722 DOI: 10.1021/acs.nanolett.4c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We report a systematic analysis of electron beam damage of the zeolitic imidazolate framework (ZIF-8) during liquid cell transmission electron microscopy (LCTEM). Our analysis reveals ZIF-8 morphology is strongly affected by solvent used (water vs dimethylformamide), electron flux applied, and imaging mode (i.e., TEM vs STEM), while ZIF-8 crystallinity is primarily affected by accumulated electron fluence. Our observations indicate that the stability of ZIF-8 morphology is higher in dimethylformamide (DMF) than in water. However, in situ electron diffraction indicates that ZIF-8 nanocrystals lose crystallinity at critical fluence of ∼80 e-Å-2 independent of the presence of solvent. Furthermore, 4D-STEM analysis as a post-mortem method reveals the extent of electron beam damage beyond the imaging area and indicates that radiolytic reactions are more pronounced in TEM mode than in STEM mode. These results illustrate the significance of radiolysis occurring while imaging ZIF-8 and present a workflow for assessing damage in LCTEM experiments.
Collapse
Affiliation(s)
- Karthik Gnanasekaran
- Materials and Structural Analysis, Thermo Fisher Scientific Inc., 5350 NE Dawson Creek Drive Hillsboro, Oregon 97124, United States
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan D Rosenmann
- Department of Materials Science and Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Roberto Dos Reis
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Zhang D, Shao Y, Zhou J, Zhan Q, Wen Z, Mao S, Wei J, Qi L, Shao Y, Wang H. Nanopipette dynamic microscopy unveils nano coffee ring. Proc Natl Acad Sci U S A 2024; 121:e2314320121. [PMID: 38954540 PMCID: PMC11252805 DOI: 10.1073/pnas.2314320121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Liquid-phase electron microscopy (LP-EM) imaging has revolutionized our understanding of nanosynthesis and assembly. However, the current closed geometry limits its application for open systems. The ubiquitous physical process of the coffee-ring phenomenon that underpins materials and engineering science remains elusive at the nanoscale due to the lack of experimental tools. We introduce a quartz nanopipette liquid cell with a tunable dimension that requires only standard microscopes. Depending on the imaging condition, the open geometry of the nanopipette allows the imaging of evaporation-induced pattern formation, but it can also function as an ordinary closed-geometry liquid cell where evaporation is negligible despite the nano opening. The nano coffee-ring phenomenon was observed by tracking individual nanoparticles in an evaporating nanodroplet created from a thin liquid film by interfacial instability. Nanoflows drive the assembly and disruption of a ring pattern with the absence of particle-particle correlations. With surface effects, nanoflows override thermal fluctuations at tens of nanometers, in which nanoparticles displayed a "drunken man trajectory" and performed work at a value much smaller than kBT.
Collapse
Affiliation(s)
- Deyi Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Yi Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Jiayi Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Qiangwei Zhan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Ziyang Wen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Sheng Mao
- College of Engineering, Peking University, Beijing100871, People’s Republic of China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, People’s Republic of China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry and Physics, National Biomedical Imaging Center, Peking University, Beijing100871, People’s Republic of China
| |
Collapse
|
8
|
Sarretto T, Gardner W, Brungs D, Napaki S, Pigram PJ, Ellis SR. A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:466-475. [PMID: 38407924 DOI: 10.1021/jasms.3c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.
Collapse
Affiliation(s)
- Tassiani Sarretto
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia, 2522
| | - Wil Gardner
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, Australia, 3086
| | - Daniel Brungs
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia, 2522
| | - Sarbar Napaki
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia, 2522
| | - Paul J Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, Australia, 3086
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia, 2522
| |
Collapse
|
9
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Kang Z, Zhang J, Guo X, Mao Y, Yang Z, Kankala RK, Zhao P, Chen AZ. Observing the Evolution of Metal Oxides in Liquids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304781. [PMID: 37635095 DOI: 10.1002/smll.202304781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Indexed: 08/29/2023]
Abstract
Metal oxides with diverse compositions and structures have garnered considerable interest from researchers in various reactions, which benefits from transmission electron microscopy (TEM) in determining their morphologies, phase, structural and chemical information. Recent breakthroughs have made liquid-phase TEM a promising imaging platform for tracking the dynamic structure, morphology, and composition evolution of metal oxides in solution under work conditions. Herein, this review introduces the recent advances in liquid cells, especially closed liquid cell chips. Subsequently, the recent progress including particle growth, phase transformation, self-assembly, core-shell nanostructure growth, and chemical etching are introduced. With the late technical advances in TEM and liquid cells, liquid-phase TEM is used to characterize many fundamental processes of metal oxides for CO2 reduction and water-splitting reactions. Finally, the outlook and challenges in this research field are discussed. It is believed this compilation inspires and stimulates more efforts in developing and utilizing in situ liquid-phase TEM for metal oxides at the atomic scale for different applications.
Collapse
Affiliation(s)
- Zewen Kang
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Junyu Zhang
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Xiaohua Guo
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Yangfan Mao
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Zhimin Yang
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Peng Zhao
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| |
Collapse
|
11
|
Schmid SY, Lachowski K, Chiang HT, Pozzo L, De Yoreo J, Zhang S. Mechanisms of Biomolecular Self-Assembly Investigated Through In Situ Observations of Structures and Dynamics. Angew Chem Int Ed Engl 2023; 62:e202309725. [PMID: 37702227 DOI: 10.1002/anie.202309725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Indexed: 09/14/2023]
Abstract
Biomolecular self-assembly of hierarchical materials is a precise and adaptable bottom-up approach to synthesizing across scales with considerable energy, health, environment, sustainability, and information technology applications. To achieve desired functions in biomaterials, it is essential to directly observe assembly dynamics and structural evolutions that reflect the underlying energy landscape and the assembly mechanism. This review will summarize the current understanding of biomolecular assembly mechanisms based on in situ characterization and discuss the broader significance and achievements of newly gained insights. In addition, we will also introduce how emerging deep learning/machine learning-based approaches, multiparametric characterization, and high-throughput methods can boost the development of biomolecular self-assembly. The objective of this review is to accelerate the development of in situ characterization approaches for biomolecular self-assembly and to inspire the next generation of biomimetic materials.
Collapse
Affiliation(s)
- Sakshi Yadav Schmid
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kacper Lachowski
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
| | - Huat Thart Chiang
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Lilo Pozzo
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Jim De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
12
|
Korpanty J, Gianneschi NC. Exploration of Organic Nanomaterials with Liquid-Phase Transmission Electron Microscopy. Acc Chem Res 2023; 56:2298-2312. [PMID: 37580021 DOI: 10.1021/acs.accounts.3c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
ConspectusOrganic, soft materials with solution-phase nanoscale structures, such as emulsions, hydrogels, and thermally responsive materials, are inherently difficult to directly image via dry state and cryogenic-transmission electron microscopy (TEM). Therefore, we lack a routine microscopy method with sufficient resolution that can, in tandem with scattering techniques, probe the morphology and dynamics of these and many related systems. These challenges motivate liquid cell (LC) TEM method development, aimed at making the technique generally available and routine. To date, the field has been and continues to be dominantly focused on analyzing solution-phase inorganic materials. These mostly metallic nanoparticles have been studied at electron fluxes that can allow for high-resolution imaging, in the range of hundreds to thousands of e- Å-2 s-1. Despite excellent contrast, in these cases, one often contends with knock-on damage, direct radiolysis, and sensitization of the solvent by virtue of enhanced secondary electron production by the impinging electron beam. With an interest in soft materials, we face both related and distinct challenges, especially in achieving a high-enough contrast within solvated liquid cells. Additionally, we must be aware of artifacts associated with high-flux imaging conditions in terms of direct radiolysis of the solvent and the sensitive materials themselves. Regardless, with care, it has become possible to gain real insight into both static and dynamic organic nanomaterials in solution. This is due, in large part, to key advances that have been made, including improved sample preparation protocols, image capture technologies, and image analysis, which have allowed LCTEM to have utility. To enable solvated soft matter characterization by LCTEM, a generalizable multimodal workflow was developed by leveraging both experimental and theoretical precedents from across the LCTEM field and adjacent works concerned with solution radiolysis and nanoparticle tracking analyses. This workflow consists of (1) modeling electron beam-solvent interactions, (2) studying electron beam-sample interactions via LCTEM coupled with post-mortem analysis, (3) the construction of "damage plots" displaying sample integrity under varied imaging and sample conditions, (4) optimized LCTEM imaging, (5) image processing, and (6) correlative analysis via X-ray or light scattering. In this Account, we present this outlook and the challenges we continue to overcome in the direct imaging of dynamic solvated nanoscale soft materials.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Korpanty J, Wang C, Gianneschi NC. Upper critical solution temperature polymer assemblies via variable temperature liquid phase transmission electron microscopy and liquid resonant soft X-ray scattering. Nat Commun 2023; 14:3441. [PMID: 37301949 DOI: 10.1038/s41467-023-38781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Here, we study the upper critical solution temperature triggered phase transition of thermally responsive poly(ethylene glycol)-block-poly(ethylene glycol) methyl ether acrylate-co-poly(ethylene glycol) phenyl ether acrylate-block-polystyrene nanoassemblies in isopropanol. To gain mechanistic insight into the organic solution-phase dynamics of the upper critical solution temperature polymer, we leverage variable temperature liquid-cell transmission electron microscopy correlated with variable temperature liquid resonant soft X-ray scattering. Heating above the upper critical solution temperature triggers a reduction in particle size and a morphological transition from a spherical core shell particle with a complex, multiphase core to a micelle with a uniform core and Gaussian polymer chains attached to the surface. These correlated solution phase methods, coupled with mass spectral validation and modeling, provide unique insight into these thermoresponsive materials. Moreover, we detail a generalizable workflow for studying complex, solution-phase nanomaterials via correlative methods.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
14
|
Vratsanos M, Xue W, Rosenmann ND, Zarzar LD, Gianneschi NC. Ouzo Effect Examined at the Nanoscale via Direct Observation of Droplet Nucleation and Morphology. ACS CENTRAL SCIENCE 2023; 9:457-465. [PMID: 36968532 PMCID: PMC10037490 DOI: 10.1021/acscentsci.2c01194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Indexed: 06/12/2023]
Abstract
Herein, we present the direct observation via liquid-phase transmission electron microscopy (LPTEM) of the nucleation and growth pathways of structures formed by the so-called "ouzo effect", which is a classic example of surfactant-free, spontaneous emulsification. Such liquid-liquid phase separation occurs in ternary systems with an appropriate cosolvent such that the addition of the third component extracts the cosolvent and makes the other component insoluble. Such droplets are homogeneously sized, stable, and require minimal energy to disperse compared to conventional emulsification methods. Thus, ouzo precipitation processes are an attractive, straightforward, and energy-efficient technique for preparing dispersions, especially those made on an industrial scale. While this process and the resulting emulsions have been studied by numerous indirect techniques (e.g., X-ray and light scattering), direct observation of such structures and their formation at the nanoscale has remained elusive. Here, we employed the nascent technique of LPTEM to simultaneously evaluate droplet growth and nanostructure. Observation of such emulsification and its rate dependence is a promising indication that similar LPTEM methodologies may be used to investigate emulsion formation and kinetics.
Collapse
Affiliation(s)
- Maria
A. Vratsanos
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Wangyang Xue
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nathan D. Rosenmann
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lauren D. Zarzar
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
| | - Nathan C. Gianneschi
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Simpson Querrey Institute, Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United
States
- Department
of Chemistry, Department of Biomedical Engineering, Department of
Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Crook MF, Moreno-Hernandez IA, Ondry JC, Ciston J, Bustillo KC, Vargas A, Alivisatos AP. EELS Studies of Cerium Electrolyte Reveal Substantial Solute Concentration Effects in Graphene Liquid Cells. J Am Chem Soc 2023; 145:6648-6657. [PMID: 36939571 DOI: 10.1021/jacs.2c07778] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Graphene liquid cell transmission electron microscopy is a powerful technique to visualize nanoscale dynamics and transformations at atomic resolution. However, the solution in liquid cells is known to be affected by radiolysis, and the stochastic formation of graphene liquid cells raises questions about the solution chemistry in individual pockets. In this study, electron energy loss spectroscopy (EELS) was used to evaluate a model encapsulated solution, aqueous CeCl3. First, the ratio between the O K-edge and Ce M-edge was used to approximate the concentration of cerium salt in the graphene liquid cell. It was determined that the ratio between oxygen and cerium was orders of magnitude lower than what is expected for a dilute solution, indicating that the encapsulated solution is highly concentrated. To probe how this affects the chemistry within graphene liquid cells, the oxidation of Ce3+ was measured using time-resolved parallel EELS. It was determined that Ce3+ oxidizes faster under high electron fluxes, but reaches the same steady-state Ce4+ concentration regardless of flux. The time-resolved concentration profiles enabled direct comparison to radiolysis models, which indicate rate constants and g-values of certain molecular species are substantially different in the highly concentrated environment. Finally, electron flux-dependent gold nanocrystal etching trajectories showed that gold nanocrystals etch faster at higher electron fluxes, correlating well with the Ce3+ oxidation kinetics. Understanding the effects of the highly concentrated solution in graphene liquid cells will provide new insight on previous studies and may open up opportunities to systematically study systems in highly concentrated solutions at high resolution.
Collapse
Affiliation(s)
- Michelle F Crook
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ivan A Moreno-Hernandez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Jim Ciston
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karen C Bustillo
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alfred Vargas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Xu Z, Ou Z. Direct Imaging of the Kinetic Crystallization Pathway: Simulation and Liquid-Phase Transmission Electron Microscopy Observations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2026. [PMID: 36903141 PMCID: PMC10004038 DOI: 10.3390/ma16052026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The crystallization of materials from a suspension determines the structure and function of the final product, and numerous pieces of evidence have pointed out that the classical crystallization pathway may not capture the whole picture of the crystallization pathways. However, visualizing the initial nucleation and further growth of a crystal at the nanoscale has been challenging due to the difficulties of imaging individual atoms or nanoparticles during the crystallization process in solution. Recent progress in nanoscale microscopy had tackled this problem by monitoring the dynamic structural evolution of crystallization in a liquid environment. In this review, we summarized several crystallization pathways captured by the liquid-phase transmission electron microscopy technique and compared the observations with computer simulation. Apart from the classical nucleation pathway, we highlight three nonclassical pathways that are both observed in experiments and computer simulations: formation of an amorphous cluster below the critical nucleus size, nucleation of the crystalline phase from an amorphous intermediate, and transition between multiple crystalline structures before achieving the final product. Among these pathways, we also highlight the similarities and differences between the experimental results of the crystallization of single nanocrystals from atoms and the assembly of a colloidal superlattice from a large number of colloidal nanoparticles. By comparing the experimental results with computer simulations, we point out the importance of theory and simulation in developing a mechanistic approach to facilitate the understanding of the crystallization pathway in experimental systems. We also discuss the challenges and future perspectives for investigating the crystallization pathways at the nanoscale with the development of in situ nanoscale imaging techniques and potential applications to the understanding of biomineralization and protein self-assembly.
Collapse
Affiliation(s)
- Zhangying Xu
- Qian Weichang College, Shanghai University, Shanghai 200444, China
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Wang H, Xu Z, Mao S, Granick S. Experimental Guidelines to Image Transient Single-Molecule Events Using Graphene Liquid Cell Electron Microscopy. ACS NANO 2022; 16:18526-18537. [PMID: 36256532 DOI: 10.1021/acsnano.2c06766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In quest of the holy grail to "see" how individual molecules interact in liquid environments, single-molecule imaging methods now include liquid-phase electron microscopy, whose resolution can be nanometers in space and several frames per second in time using an ordinary electron microscope that is routinely available to many researchers. However, with the current state of the art, protocols that sound similar to those described in the literature lead to outcomes that can differ. The key challenge is to achieve sample contrast under a safe electron dose within a frame rate adequate to capture the molecular process. Here, we present such examples from different systems─synthetic polymer, lipid assembly, DNA-enzyme─in which we have done this using graphene liquid cells. We describe detailed experimental procedures and share empirical experience for conducting successful experiments, starting from fabrication of a graphene liquid cell, to identification of high-quality liquid pockets from desirable shapes and sizes, to effective searching for target sample pockets under electron microscopy, and to discrimination of sample molecules and molecular processes of interest. These experimental tips can assist others who wish to make use of this method.
Collapse
Affiliation(s)
- Huan Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, Center for Spectroscopy, Beijing Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Zhun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Sheng Mao
- Department of Mechanics and Engineering Sciences, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Steve Granick
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Korea, 44919
- Department of Chemistry and Physics, Ulsan National Institute of Science and Technology, Ulsan, Korea 44919
| |
Collapse
|
18
|
Das S, Noh J, Cao W, Sun H, Gianneschi NC, Abbott NL. Using Nanoscopic Solvent Defects for the Spatial and Temporal Manipulation of Single Assemblies of Molecules. NANO LETTERS 2022; 22:7506-7514. [PMID: 36094850 DOI: 10.1021/acs.nanolett.2c02454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here we report the use of defects in ordered solvents to form, manipulate, and characterize individual molecular assemblies of either small-molecule amphiphiles or polymers. The approach exploits nanoscopic control of the structure of nematic solvents (achieved by the introduction of topological defects) to trigger the formation of molecular assemblies and the subsequent manipulation of defects using electric fields. We show that molecular assemblies formed in solvent defects slow defect motion in the presence of an electric field and that time-of-flight measurements correlate with assembly size, suggesting methods for the characterization of single assemblies of molecules. Solvent defects are also used to transport single assemblies of molecules between solvent locations that differ in composition, enabling the assembly and disassembly of molecular "nanocontainers". Overall, our results provide new methods for studying molecular self-assembly at the single-assembly level and new principles for integrated nanoscale chemical systems that use solvent defects to transport and position molecular cargo.
Collapse
Affiliation(s)
- Soumik Das
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - JungHyun Noh
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wei Cao
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Hao Sun
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas L Abbott
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Dachraoui W, Bodnarchuk MI, Erni R. Direct Imaging of the Atomic Mechanisms Governing the Growth and Shape of Bimetallic Pt-Pd Nanocrystals by In Situ Liquid Cell STEM. ACS NANO 2022; 16:14198-14209. [PMID: 36036793 DOI: 10.1021/acsnano.2c04291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the atomic mechanisms governing the growth of bimetallic nanoalloys is of great interest for scientists. As a promising material for photocatalysis applications, Pt-Pd bimetallic nanoparticles (NPs) have been in the spotlight for many years due to their catalytic performance, which is typically superior to that of pure Pt NPs. In this work, we use in situ liquid cell scanning transmission electron microscopy to track the exact atomic mechanisms governing the formation of bimetallic Pt-Pd NPs. We find that the formation process of the bimetallic Pt-Pd is divided into three stages. First, the nucleation and growth of ultrasmall primary nanoclusters are formed by the agglomeration of Pt and Pd atoms. Second, the primary nanoclusters are involved in a coalescence process to form two types of bigger agglomerates, namely, amorphous (a-NC) and crystalline (c-NC) nanoclusters. In the third stage, these clusters undergo a coalescence process leading to the formation of Pt-Pd NPs, while, in parallel, monomer attachment continues. We found that the third stage contains three types of coalescence processes, a-NC-a-NC, a-NC-c-NC, and c-NC-c-NC coalescence, which eventually give rise to crystalline bimetallic alloys. However, each type of coalescence gave distinct NPs in terms of shape and defects. Our results thus reveal the exact growth mechanisms of bimetallic alloys on the atomic scale, unravel the origin of their structure, and overall are of key interest to tailor the structure of bimetallic NPs.
Collapse
Affiliation(s)
- Walid Dachraoui
- Electron Microscopy Center, Empa─Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maryna I Bodnarchuk
- Laboratory for Thin Films and Photovoltaics, Empa─Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa─Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
20
|
Kunnas P, Moradi MA, Sommerdijk N, de Jonge N. Strategy for optimizing experimental settings for studying low atomic number colloidal assemblies using liquid phase scanning transmission electron microscopy. Ultramicroscopy 2022; 240:113596. [PMID: 35908325 DOI: 10.1016/j.ultramic.2022.113596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Observing processes of nanoscale materials of low atomic number is possible using liquid phase electron microscopy (LP-EM). However, the achievable spatial resolution (d) is limited by radiation damage. Here, we examine a strategy for optimizing LP-EM experiments based on an analytical model and experimental measurements, and develop a method for quantifying image quality at ultra low electron dose De using scanning transmission electron microscopy (STEM). As experimental test case we study the formation of a colloidal binary system containing 30 nm diameter SiO2 nanoparticles (SiONPs), and 100 nm diameter polystyrene microspheres (PMs). We show that annular dark field (DF) STEM is preferred over bright field (BF) STEM for practical reasons. Precise knowledge of the material's density is crucial for the calculations in order to match experimental data. To calculate the detectability of nano-objects in an image, the Rose criterion for single pixels is expanded to a model of the signal to noise ratio obtained for multiple pixels spanning the image of an object. Using optimized settings, it is possible to visualize the radiation-sensitive, hierarchical low-Z binary structures, and identify both components.
Collapse
Affiliation(s)
- Peter Kunnas
- INM- Leibniz Institute for New Materials, Saarbrücken 66123, Germany; Faculty of Physics, Quantum Imaging and Biophysics, University of Vienna, Vienna 1090, Austria
| | - Mohammad-Amin Moradi
- Department of Chemical Engineering and Chemistry, Laboratory of Physical Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Nico Sommerdijk
- Department of Biochemistry, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Niels de Jonge
- INM- Leibniz Institute for New Materials, Saarbrücken 66123, Germany; Department of Physics, Saarland University, Saarbrücken 66123, Germany.
| |
Collapse
|
21
|
Sung J, Bae Y, Park H, Kang S, Choi BK, Kim J, Park J. Liquid-Phase Transmission Electron Microscopy for Reliable In Situ Imaging of Nanomaterials. Annu Rev Chem Biomol Eng 2022; 13:167-191. [PMID: 35700529 DOI: 10.1146/annurev-chembioeng-092120-034534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liquid-phase transmission electron microscopy (LPTEM) is a powerful in situ visualization technique for directly characterizing nanomaterials in the liquid state. Despite its successful application in many fields, several challenges remain in achieving more accurate and reliable observations. We present LPTEM in chemical and biological applications, including studies for the morphological transformation and dynamics of nanoparticles, battery systems, catalysis, biomolecules, and organic systems. We describe the possible interactions and effects of the electron beam on specimens during observation and present sample-specific approaches to mitigate and control these electron-beam effects. We provide recent advances in achieving atomic-level resolution for liquid-phase investigation of structures anddynamics. Moreover, we discuss the development of liquid cell platforms and the introduction of machine-learning data processing for quantitative and objective LPTEM analysis.
Collapse
Affiliation(s)
- Jongbaek Sung
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Yuna Bae
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Hayoung Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Back Kyu Choi
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
22
|
Moser T, Evans JE. Inactivation of Fluorescent Lipid Bilayers by Irradiation With 300 keV Electrons Using Liquid Cell Transmission Electron Microscopy. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.772469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Liquid cell transmission electron microscopy allows for imaging of samples in a fully hydrated state at high resolution and has the potential for visualizing static or dynamic biological structures. However, the ionizing nature of the electron beam makes it difficult to discern real physiological dynamics from radiation induced artifacts within liquid cell samples. Electron flux thresholds for achieving high resolution structures from biological samples frozen in ice have been described extensively by the cryo-electron microscopy field, while electron flux thresholds which do not result in a functional change for biological samples within the hydrated environment of a transmission electron microscope liquid cell is less clear. Establishing these functional thresholds for biologically relevant samples is important for accurate interpretation of results from liquid cell experiments. Here we demonstrate the electron damage threshold of fluorescently tagged lipid bilayers by quantifying the change in fluorescence before and after electron exposure. We observe the reduction of fluorescent signal in bilayers by 25% after only 0.0005 e−/Å2 and a reduction of over 90% after 0.01 e−/Å2. These results indicate that the loss of function occurs at irradiation thresholds far below a typical single high resolution (scanning) transmission electron microscopy image and orders of magnitude below fluxes used for preserving structural features with cryo-electron microscopy.
Collapse
|
23
|
Zheng H, Zhao J, Wang X, Yan S, Chu H, Gao M, Zhang X. Integrated Pipeline of Rapid Isolation and Analysis of Human Plasma Exosomes for Cancer Discrimination Based on Deep Learning of MALDI-TOF MS Fingerprints. Anal Chem 2022; 94:1831-1839. [PMID: 35025210 DOI: 10.1021/acs.analchem.1c04762] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plasma exosomes have shown great potential for liquid biopsy in clinical cancer diagnosis. Herein, we present an integrated strategy for isolating and analyzing exosomes from human plasma rapidly and then discriminating different cancers excellently based on deep learning fingerprints of plasma exosomes. Sequential size-exclusion chromatography (SSEC) was developed efficiently for separating exosomes from human plasma. SSEC isolated plasma exosomes, taking as less as 2 h for a single sample with high purity such that the discard rates of high-density lipoproteins and low/very low-density lipoproteins were 93 and 85%, respectively. Benefitting from the rapid and high-purity isolation, the contents encapsulated in exosomes, covered by plasma proteins, were well profiled by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS). We further analyzed 220 clinical samples, including 79 breast cancer patients, 57 pancreatic cancer patients, and 84 healthy controls. After MS data pre-processing and feature selection, the extracted MS feature peaks were utilized as inputs for constructing a multi-classifier artificial neural network (denoted as Exo-ANN) model. The optimized model avoided overfitting and performed well in both training cohorts and test cohorts. For the samples in the independent test cohort, it realized a diagnosed accuracy of 80.0% with an area under the curve of 0.91 for the whole group. These results suggest that our integrated pipeline may become a generic tool for liquid biopsy based on the analysis of plasma exosomes in clinics.
Collapse
Affiliation(s)
- Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Jiandong Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuantang Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Shaohan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Huimin Chu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
24
|
Supramolecular systems chemistry through advanced analytical techniques. Anal Bioanal Chem 2022; 414:5105-5119. [DOI: 10.1007/s00216-021-03824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/01/2022]
|
25
|
Dachraoui W, Henninen TR, Keller D, Erni R. Multi-step atomic mechanism of platinum nanocrystals nucleation and growth revealed by in-situ liquid cell STEM. Sci Rep 2021; 11:23965. [PMID: 34907274 PMCID: PMC8671505 DOI: 10.1038/s41598-021-03455-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
The understanding of crystal growth mechanisms has broadened substantially. One significant advancement is based in the conception that the interaction between particles plays an important role in the growth of nanomaterials. This is in contrast to the classical model, which neglects this process. Direct imaging of such processes at atomic-level in liquid-phase is essential for establishing new theoretical models that encompass the full complexity of realistic scenarios and eventually allow for tailoring nanoparticle growth. Here, we investigate at atomic-scale the exact growth mechanisms of platinum nanocrystals from single atom to final crystals by in-situ liquid phase scanning transmission electron microscopy. We show that, after nucleation, the nanocrystals grow via two main stages: atomic attachment in the first stage, where the particles initially grow by attachment of the atoms until depletion of the surrounding zone. Thereafter, follows the second stage of growth, which is based on particle attachment by different atomic pathways to finally form mature nanoparticles. The atomic mechanisms underlying these growth pathways are distinctly different and have different driving forces and kinetics as evidenced by our experimental observations.
Collapse
Affiliation(s)
- Walid Dachraoui
- Electron Microscopy Center, Empa--Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Trond R Henninen
- Electron Microscopy Center, Empa--Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Debora Keller
- Electron Microscopy Center, Empa--Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa--Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| |
Collapse
|
26
|
Saha S, Chen YT, Ganta S, Gilles M, Holzapfel B, Lill P, Rehage H, Gatsogiannis C, Clever GH. Coordination Cage-Based Emulsifiers: Templated Formation of Metal Oxide Microcapsules Monitored by In Situ LC-TEM. Chemistry 2021; 28:e202103406. [PMID: 34825743 PMCID: PMC9299919 DOI: 10.1002/chem.202103406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/10/2022]
Abstract
Metallo‐supramolecular self‐assembly has yielded a plethora of discrete nanosystems, many of which show competence in capturing guests and catalyzing chemical reactions. However, the potential of low‐molecular bottom‐up self‐assemblies in the development of structured inorganic materials has rarely been methodically explored so far. Herein, we present a new type of metallo‐supramolecular surfactant with the ability to stabilize non‐aqueous emulsions for a significant period. The molecular design of the surfactant is based on a heteroleptic coordination cage (CGA‐3; CGA=Cage‐based Gemini Amphiphile), assembled from two pairs of organic building blocks, grouped around two Pd(II) cations. Shape‐complementarity between the differently functionalized components generates discrete amphiphiles with a tailor‐made polarity profile, able to stabilize non‐aqueous emulsions, such as hexadecane‐in‐DMSO. These emulsions were used as a medium for the synthesis of spherical metal oxide microcapsules (titanium oxide, zirconium oxide, and niobium oxide) from soluble, water‐sensitive alkoxide precursors by allowing a controlled dosage of water to the liquid‐liquid phase boundary. Synthesized materials were analyzed by a combination of electron microscopic techniques. In situ liquid cell transmission electron microscopy (LC‐TEM) was utilized for the first time to visualize the dynamics of the emulsion‐templated formation of hollow inorganic titanium oxide and zirconium oxide microspheres.
Collapse
Affiliation(s)
- Subhadeep Saha
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Yen-Ting Chen
- Center of Molecular Spectroscopy and Simulation of Solvent-driven Processes (ZEMOS), Ruhr-University, Bochum, 44801, Bochum, Germany
| | - Sudhakar Ganta
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Markus Gilles
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Björn Holzapfel
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Pascal Lill
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227, Dortmund, Germany
| | - Heinz Rehage
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227, Dortmund, Germany.,Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms-University Münster, Busso-Peus Str. 10, 48149, Münster, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
27
|
Sinha NJ, Langenstein MG, Pochan DJ, Kloxin CJ, Saven JG. Peptide Design and Self-assembly into Targeted Nanostructure and Functional Materials. Chem Rev 2021; 121:13915-13935. [PMID: 34709798 DOI: 10.1021/acs.chemrev.1c00712] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptides have been extensively utilized to construct nanomaterials that display targeted structure through hierarchical assembly. The self-assembly of both rationally designed peptides derived from naturally occurring domains in proteins as well as intuitively or computationally designed peptides that form β-sheets and helical secondary structures have been widely successful in constructing nanoscale morphologies with well-defined 1-d, 2-d, and 3-d architectures. In this review, we discuss these successes of peptide self-assembly, especially in the context of designing hierarchical materials. In particular, we emphasize the differences in the level of peptide design as an indicator of complexity within the targeted self-assembled materials and highlight future avenues for scientific and technological advances in this field.
Collapse
Affiliation(s)
- Nairiti J Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew G Langenstein
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
28
|
Korpanty J, Parent LR, Hampu N, Weigand S, Gianneschi NC. Thermoresponsive polymer assemblies via variable temperature liquid-phase transmission electron microscopy and small angle X-ray scattering. Nat Commun 2021; 12:6568. [PMID: 34772926 PMCID: PMC8589985 DOI: 10.1038/s41467-021-26773-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
Herein, phase transitions of a class of thermally-responsive polymers, namely a homopolymer, diblock, and triblock copolymer, were studied to gain mechanistic insight into nanoscale assembly dynamics via variable temperature liquid-cell transmission electron microscopy (VT-LCTEM) correlated with variable temperature small angle X-ray scattering (VT-SAXS). We study thermoresponsive poly(diethylene glycol methyl ether methacrylate) (PDEGMA)-based block copolymers and mitigate sample damage by screening electron flux and solvent conditions during LCTEM and by evaluating polymer survival via post-mortem matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). Our multimodal approach, utilizing VT-LCTEM with MS validation and VT-SAXS, is generalizable across polymeric systems and can be used to directly image solvated nanoscale structures and thermally-induced transitions. Our strategy of correlating VT-SAXS with VT-LCTEM provided direct insight into transient nanoscale intermediates formed during the thermally-triggered morphological transformation of a PDEGMA-based triblock. Notably, we observed the temperature-triggered formation and slow relaxation of core-shell particles with complex microphase separation in the core by both VT-SAXS and VT-LCTEM.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Lucas R Parent
- Innovation Partnership Building, University of Connecticut, Storrs, CT, 06269, USA
| | - Nicholas Hampu
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Steven Weigand
- DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center, Northwestern University, Argonne, IL, 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
29
|
Pytskii IS, Kuznetsova ES, Buryak AK. Surface Signal Integration As a Way of Evening Physical and Chemical Factors when Analyzing Stainless Steel for Chlorine Content. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421110170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Gnanasekaran K, Korpanty J, Berger O, Hampu N, Halperin-Sternfeld M, Cohen-Gerassi D, Adler-Abramovich L, Gianneschi NC. Dipeptide Nanostructure Assembly and Dynamics via in Situ Liquid-Phase Electron Microscopy. ACS NANO 2021; 15:16542-16551. [PMID: 34623126 PMCID: PMC9836046 DOI: 10.1021/acsnano.1c06130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, we report the in situ growth of FF nanotubes examined via liquid-cell transmission electron microscopy (LCTEM). This direct, high spatial, and temporal resolution imaging approach allowed us to observe the growth of peptide-based nanofibrillar structures through directional elongation. Furthermore, the radial growth profile of FF nanotubes through the addition of monomers perpendicular to the tube axis has been observed in real-time with sufficient resolution to directly observe the increase in diameter. Our study demonstrates that the kinetics, dynamics, structure formation, and assembly mechanism of these supramolecular assemblies can be directly monitored using LCTEM. The performance of the peptides and the assemblies they form can be verified and evaluated using post-mortem techniques including time-of-flight secondary ion mass spectrometry (ToF-SIMS).
Collapse
Affiliation(s)
- Karthikeyan Gnanasekaran
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Or Berger
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas Hampu
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Cohen-Gerassi
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Ender AM, Kaygisiz K, Räder HJ, Mayer FJ, Synatschke CV, Weil T. Cell-Instructive Surface Gradients of Photoresponsive Amyloid-like Fibrils. ACS Biomater Sci Eng 2021; 7:4798-4808. [PMID: 34515483 PMCID: PMC8512672 DOI: 10.1021/acsbiomaterials.1c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gradients of bioactive molecules play a crucial role in various biological processes like vascularization, tissue regeneration, or cell migration. To study these complex biological systems, it is necessary to control the concentration of bioactive molecules on their substrates. Here, we created a photochemical strategy to generate gradients using amyloid-like fibrils as scaffolds functionalized with a model epitope, that is, the integrin-binding peptide RGD, to modulate cell adhesion. The self-assembling β-sheet forming peptide (CKFKFQF) was connected to the RGD epitope via a photosensitive nitrobenzyl linker and assembled into photoresponsive nanofibrils. The fibrils were spray-coated on glass substrates and macroscopic gradients were generated by UV-light over a centimeter-scale. We confirmed the gradient formation using matrix-assisted laser desorption ionization mass spectroscopy imaging (MALDI-MSI), which directly visualizes the molecular species on the surface. The RGD gradient was used to instruct cells. In consequence, A549 adapted their adhesion properties in dependence of the RGD-epitope density.
Collapse
Affiliation(s)
- Adriana Maria Ender
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Joachim Räder
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Franz J Mayer
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christopher V Synatschke
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
32
|
Lopez-Silva TL, Schneider JP. From structure to application: Progress and opportunities in peptide materials development. Curr Opin Chem Biol 2021; 64:131-144. [PMID: 34329941 PMCID: PMC8585687 DOI: 10.1016/j.cbpa.2021.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 01/12/2023]
Abstract
For over 20 years, peptide materials in their hydrogel or soluble fibril form have been used for biomedical applications such as drug delivery, cell culture, vaccines, and tissue regeneration. To facilitate the translation of these materials, key areas of research still need to be addressed. Their structural characterization lags compared to amyloid proteins. Many of the structural features designed to guide materials formation are primarily being characterized by their observation in atomic resolution structures of amyloid assemblies. Herein, these motifs are examined in relation to peptide designs identifying common interactions that drive assembly and provide structural specificity. Current efforts to design complex structures, as reviewed here, highlight the need to extend the structural revolution of amyloid proteins to peptide assemblies to validate design principles. With respect to clinical applications, the fundamental interactions and responses of proteins, cells, and the immune system to peptide materials are still not well understood. Only a few trends are just now emerging for peptide materials interactions with biological systems. Understanding how peptide material properties influence these interactions will enable the translation of materials towards current and emerging applications.
Collapse
Affiliation(s)
- Tania L Lopez-Silva
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States.
| |
Collapse
|
33
|
Rizvi A, Mulvey JT, Carpenter BP, Talosig R, Patterson JP. A Close Look at Molecular Self-Assembly with the Transmission Electron Microscope. Chem Rev 2021; 121:14232-14280. [PMID: 34329552 DOI: 10.1021/acs.chemrev.1c00189] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular self-assembly is pervasive in the formation of living and synthetic materials. Knowledge gained from research into the principles of molecular self-assembly drives innovation in the biological, chemical, and materials sciences. Self-assembly processes span a wide range of temporal and spatial domains and are often unintuitive and complex. Studying such complex processes requires an arsenal of analytical and computational tools. Within this arsenal, the transmission electron microscope stands out for its unique ability to visualize and quantify self-assembly structures and processes. This review describes the contribution that the transmission electron microscope has made to the field of molecular self-assembly. An emphasis is placed on which TEM methods are applicable to different structures and processes and how TEM can be used in combination with other experimental or computational methods. Finally, we provide an outlook on the current challenges to, and opportunities for, increasing the impact that the transmission electron microscope can have on molecular self-assembly.
Collapse
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Justin T Mulvey
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
34
|
Subramanian V, Martin DC. Direct Observation of Liquid-to-Solid Phase Transformations during the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) (PEDOT) by Liquid-Phase Transmission Electron Microscopy (LPTEM). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vivek Subramanian
- Department of Materials Science and Engineering, The University of Delaware, Newark, Delaware 19716, United States
| | - David C. Martin
- Department of Materials Science and Engineering, The University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, The University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
35
|
Wu H, Li T, Maddala SP, Khalil ZJ, Joosten RRM, Mezari B, Hensen EJM, de With G, Friedrich H, van Bokhoven JA, Patterson JP. Studying Reaction Mechanisms in Solution Using a Distributed Electron Microscopy Method. ACS NANO 2021; 15:10296-10308. [PMID: 34077193 DOI: 10.1021/acsnano.1c02461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electron microscopy (EM) of materials undergoing chemical reactions provides knowledge of the underlying mechanisms. However, the mechanisms are often complex and cannot be fully resolved using a single method. Here, we present a distributed electron microscopy method for studying complex reactions. The method combines information from multiple stages of the reaction and from multiple EM methods, including liquid phase EM (LP-EM), cryogenic EM (cryo-EM), and cryo-electron tomography (cryo-ET). We demonstrate this method by studying the desilication mechanism of zeolite crystals. Collectively, our data reveal that the reaction proceeds via a two-step anisotropic etching process and that the defects in curved surfaces and between the subunits in the crystal control the desilication kinetics by directing mass transport.
Collapse
Affiliation(s)
- Hanglong Wu
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Teng Li
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sai P Maddala
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Zafeiris J Khalil
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Rick R M Joosten
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Brahim Mezari
- Inorganic Materials & Catalysis Group, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Emiel J M Hensen
- Inorganic Materials & Catalysis Group, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jeroen A van Bokhoven
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
36
|
Gibson W, Patterson JP. Liquid Phase Electron Microscopy Provides Opportunities in Polymer Synthesis and Manufacturing. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wyeth Gibson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P. Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
37
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
38
|
Dachraoui W, Keller D, Henninen TR, Ashton OJ, Erni R. Atomic Mechanisms of Nanocrystallization via Cluster-Clouds in Solution Studied by Liquid-Phase Scanning Transmission Electron Microscopy. NANO LETTERS 2021; 21:2861-2869. [PMID: 33818087 DOI: 10.1021/acs.nanolett.0c04965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The formation of nanocrystals is at the heart of various scientific disciplines, but the atomic mechanisms underlying the early stages of crystallization from supersaturated solutions are still rather unclear. Here, we used in situ liquid-phase scanning transmission electron microscopy to study at the atomic level the very early stages of gold nanocrystal growth, and the evolution of its crystallinity. We found that the nucleation is initiated by the formation of poorly crystalline nanoparticles. These are transformed into monocrystals via nanocrystallization governed by a complex process of multiple out-and-in exchanges of matter between a crystalline-core and a disordered-shell, referred to as the cluster-cloud. Our observations at the crystal/cluster-cloud interface during growth demonstrate that the initially formed nanocrystals expel the poorly crystallized phases as nanoclusters into the cluster-cloud, then readsorb it by two distinct pathways, namely, by (i) monomer attachments and (ii) nanocluster coalescence. This growth process eventually leads to the formation of monocrystalline nanoparticles.
Collapse
Affiliation(s)
- Walid Dachraoui
- Electron Microscopy Center, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Debora Keller
- Electron Microscopy Center, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Trond R Henninen
- Electron Microscopy Center, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Olivia J Ashton
- Electron Microscopy Center, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| |
Collapse
|
39
|
Barbee MH, Wright ZM, Allen BP, Taylor HF, Patteson EF, Knight AS. Protein-Mimetic Self-Assembly with Synthetic Macromolecules. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meredith H. Barbee
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe M. Wright
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin P. Allen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hailey F. Taylor
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily F. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
40
|
Korpanty J, Parent LR, Gianneschi NC. Enhancing and Mitigating Radiolytic Damage to Soft Matter in Aqueous Phase Liquid-Cell Transmission Electron Microscopy in the Presence of Gold Nanoparticle Sensitizers or Isopropanol Scavengers. NANO LETTERS 2021; 21:1141-1149. [PMID: 33448858 DOI: 10.1021/acs.nanolett.0c04636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we describe the radiolytic environment experienced by a polymer in water during liquid-cell transmission electron microscopy (LCTEM). We examined the radiolytic environment of aqueous solutions of poly(ethylene glycol) (PEG, 2400 g/mol) in the presence of sensitizing gold nanoparticles (GNPs, 100 nm) or radical scavenging isopropanol (IPA). To quantify polymer damage, we employed post-mortem analysis via matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). This approach confirms IPA (1-10% w/v) can significantly mitigate radiolysis-induced damage to polymers in water, while GNPs significantly enhance damage. We couple LCTEM experiments with simulations to provide a generalizable strategy for assessing radiolysis mitigation or enhancement. This study highlights the caution required for LCTEM experiments on inorganic nanoparticles where solution phase properties of surrounding organic materials or the solvent itself are under investigation. Furthermore, we anticipate an increased use of scavengers for LCTEM studies of all kinds.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas R Parent
- Innovation Partnership Building, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
41
|
Parent LR, Gnanasekaran K, Korpanty J, Gianneschi NC. 100th Anniversary of Macromolecular Science Viewpoint: Polymeric Materials by In Situ Liquid-Phase Transmission Electron Microscopy. ACS Macro Lett 2021; 10:14-38. [PMID: 35548998 DOI: 10.1021/acsmacrolett.0c00595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A century ago, Hermann Staudinger proposed the macromolecular theory of polymers, and now, as we enter the second century of polymer science, we face a different set of opportunities and challenges for the development of functional soft matter. Indeed, many fundamental questions remain open, relating to physical structures and mechanisms of phase transformations at the molecular and nanoscale. In this Viewpoint, we describe efforts to develop a dynamic, in situ microscopy tool suited to the study of polymeric materials at the nanoscale that allows for direct observation of discrete structures and processes in solution, as a complement to light, neutron, and X-ray scattering methods. Liquid-phase transmission electron microscopy (LPTEM) is a nascent in situ imaging technique for characterizing and examining solvated nanomaterials in real time. Though still under development, LPTEM has been shown to be capable of several modes of imaging: (1) imaging static solvated materials analogous to cryo-TEM, (2) videography of nanomaterials in motion, (3) observing solutions or nanomaterials undergoing physical and chemical transformations, including synthesis, assembly, and phase transitions, and (4) observing electron beam-induced chemical-materials processes. Herein, we describe opportunities and limitations of LPTEM for polymer science. We review the basic experimental platform of LPTEM and describe the origin of electron beam effects that go hand in hand with the imaging process. These electron beam effects cause perturbation and damage to the sample and solvent that can manifest as artefacts in images and videos. We describe sample-specific experimental guidelines and outline approaches to mitigate, characterize, and quantify beam damaging effects. Altogether, we seek to provide an overview of this nascent field in the context of its potential to contribute to the advancement of polymer science.
Collapse
Affiliation(s)
- Lucas R. Parent
- Innovation Partnership Building, The University of Connecticut, Storrs, Connecticut 06269, United States
| | | | | | | |
Collapse
|
42
|
Lebedeva M, Palmieri E, Kukura P, Fletcher SP. Emergence and Rearrangement of Dynamic Supramolecular Aggregates Visualized by Interferometric Scattering Microscopy. ACS NANO 2020; 14:11160-11168. [PMID: 32790332 PMCID: PMC7513470 DOI: 10.1021/acsnano.0c02414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Studying dynamic self-assembling systems in their native environment is essential for understanding the mechanisms of self-assembly and thereby exerting full control over these processes. Traditional ensemble-based analysis methods often struggle to reveal critical features of the self-assembly that occur at the single particle level. Here, we describe a label-free single-particle assay to visualize real-time self-assembly in aqueous solutions by interferometric scattering microscopy. We demonstrate how the assay can be applied to biphasic reactions yielding micellar or vesicular aggregates, detecting the onset of aggregate formation, quantifying the kinetics at the single particle level, and distinguishing sigmoidal and exponential growth of aggregate populations. Furthermore, we can follow the evolution in aggregate size in real time, visualizing the nucleation stages of the self-assembly processes and record phenomena such as incorporation of oily components into the micelle or vesicle lumen.
Collapse
|
43
|
Gnanasekaran K, Vailonis KM, Jenkins DM, Gianneschi NC. In Situ Monitoring of the Seeding and Growth of Silver Metal-Organic Nanotubes by Liquid-Cell Transmission Electron Microscopy. ACS NANO 2020; 14:8735-8743. [PMID: 32578423 PMCID: PMC9836044 DOI: 10.1021/acsnano.0c03209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Metal-organic nanotubes (MONTs) are highly ordered one-dimensional crystalline porous frameworks. Despite being nanomaterials, virtually all studies of MONTs rely on characterization of the bulk crystalline material (micron-sized) by single-crystal X-ray diffraction. For MONTs to achieve their raison d'être as tunable one-dimensional nanomaterials, individual tubes or small finite bundles of tubes must be synthesized and characterized. Therefore, to directly observe their formation under a variety of reaction conditions in solution, we employ liquid-cell transmission electron microscopy (LCTEM), which allows the early stages of MONT assembly to be monitored in real time. Notably, changing the metal-to-ligand ratio alters the local concentrations of reactant monomers, resulting in multiple nucleation and growth pathways and diverse morphologies at the nanoscale. These various initial seeds grow to form the same nanocrystalline needle phase. This approach of employing LCTEM to study these nanomaterials is analogous to monitoring typical homogeneous solution phase reactions by NMR for controlled nanomaterial formation.
Collapse
Affiliation(s)
- Karthikeyan Gnanasekaran
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Kristina M Vailonis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
44
|
Kumar M, Sementa D, Narang V, Riedo E, Ulijn RV. Self-Assembly Propensity Dictates Lifetimes in Transient Naphthalimide-Dipeptide Nanofibers. Chemistry 2020; 26:8372-8376. [PMID: 32428282 DOI: 10.1002/chem.202001008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Transient self-assembly of dipeptide nanofibers with lifetimes that are predictably variable through dipeptide sequence design are presented. This was achieved using 1,8-naphthalimide (NI) amino acid methyl-esters (Phe, Tyr, Leu) that are biocatalytically coupled to amino acid-amides (Phe, Tyr, Leu, Val, Ala, Ser) to form self-assembling NI-dipeptides. However, competing hydrolysis of the dipeptides results in disassembly. It was demonstrated that the kinetic parameters like lifetimes of these nanofibers can be predictably regulated by the thermodynamic parameter, namely the self-assembly propensity of the constituent dipeptide sequence. These lifetimes could vary from minutes, to hours, to permanent gels that do not degrade. Moreover, the in-built NI fluorophore was utilized to image the transient nanostructures in solution with stimulated emission depletion (STED) based super-resolution fluorescence microscopy.
Collapse
Affiliation(s)
- Mohit Kumar
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA
| | - Deborah Sementa
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA
| | - Vishal Narang
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA
| | - Elisa Riedo
- Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Rein V Ulijn
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
| |
Collapse
|
45
|
Wu H, Friedrich H, Patterson JP, Sommerdijk NAJM, de Jonge N. Liquid-Phase Electron Microscopy for Soft Matter Science and Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001582. [PMID: 32419161 DOI: 10.1002/adma.202001582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
Innovations in liquid-phase electron microscopy (LP-EM) have made it possible to perform experiments at the optimized conditions needed to examine soft matter. The main obstacle is conducting experiments in such a way that electron beam radiation can be used to obtain answers for scientific questions without changing the structure and (bio)chemical processes in the sample due to the influence of the radiation. By overcoming these experimental difficulties at least partially, LP-EM has evolved into a new microscopy method with nanometer spatial resolution and sub-second temporal resolution for analysis of soft matter in materials science and biology. Both experimental design and applications of LP-EM for soft matter materials science and biological research are reviewed, and a perspective of possible future directions is given.
Collapse
Affiliation(s)
- Hanglong Wu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Nico A J M Sommerdijk
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Saarbrücken, 66123, Germany
- Department of Physics, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
46
|
Haddad R, Ferraro E, Halmans A, Smith‐Carpenter JE. Modifying the surface of peptide nanofibers utilizing a thiol‐thioester exchange. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ramiz Haddad
- Chemistry and Biochemistry Department Fairfield University Fairfield CT USA
| | - Elizabeth Ferraro
- Chemistry and Biochemistry Department Fairfield University Fairfield CT USA
| | - Ashley Halmans
- Chemistry and Biochemistry Department Fairfield University Fairfield CT USA
| | | |
Collapse
|
47
|
|
48
|
Smith JW, Chen Q. Liquid-phase electron microscopy imaging of cellular and biomolecular systems. J Mater Chem B 2020; 8:8490-8506. [DOI: 10.1039/d0tb01300e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liquid-phase electron microscopy, a new method for real-time nanoscopic imaging in liquid, makes it possible to study cells or biomolecules with a singular combination of spatial and temporal resolution. We review the state of the art in biological research in this growing and promising field.
Collapse
Affiliation(s)
- John W. Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign
- Urbana
- USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign
- Urbana
- USA
- Department of Chemistry
- University of Illinois at Urbana–Champaign
| |
Collapse
|
49
|
Carlini AS, Touve MA, Fernández-Caro H, Thompson MP, Cassidy MF, Cao W, Gianneschi NC. UV-responsive cyclic peptide progelator bioinks. Faraday Discuss 2019; 219:44-57. [PMID: 31549115 PMCID: PMC7363176 DOI: 10.1039/c9fd00026g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We describe cyclic peptide progelators which cleave in response to UV light to generate linearized peptides which then self-assemble into gel networks. Cyclic peptide progelators were synthesized, where the peptides were sterically constrained, but upon UV irradiation, predictable cleavage products were generated. Amino acid sequences and formulation conditions were altered to tune the mechanical properties of the resulting gels. Characterization of the resulting morphologies and chemistry was achieved through liquid phase and standard TEM methods, combined with matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS).
Collapse
Affiliation(s)
- Andrea S Carlini
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|