1
|
Qiao Q, Song A, An K, Xu N, Jia W, Ruan Y, Bao P, Tao Y, Zhang Y, Wang X, Xu Z. Spontaneously Blinkogenic Probe for Wash-Free Single-Molecule Localization-Based Super-Resolution Imaging in Living Cells. Angew Chem Int Ed Engl 2025; 64:e202417469. [PMID: 39537575 DOI: 10.1002/anie.202417469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Single-molecule localization super-resolution fluorescence imaging relies on the fluorescence ON/OFF switching of fluorescent probes to break the diffraction limit. However, the unreacted or nonspecifically bound probes cause non-targeted ON/OFF switching, resulting in substantial fluorescence background that significantly reduces localization precision and accuracy. Here, we report a blinkogenic probe HM-DS655-Halo that remains blinking OFF until it binds to HaloTag, thereby triggering its self-blinking activity and enabling its application in direct SMLM imaging in living cells without wash-out steps. We employed the ratio of the duty cycle before and after self-blinking activation, termed as the parameter "RDC" to characterize blinkogenicity. The covalent binding to HaloTag induces HM-DS655-Halo to transition from a fluorescent OFF state to a fluorescence blinking state. This transition also leads to a change in the RDC value, which is calculated to be 12, ensuring super blinkogenicity to effectively suppress background signals in living cells. HM-DS655-Halo was successfully applied in dynamic SMLM imaging of diverse intracellular sub-structures with minimal background noise, including mitochondrial fission and contact, cell migration, and pseudopod growth.
Collapse
Affiliation(s)
- Qinglong Qiao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Aoxuan Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai An
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenhao Jia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiyan Ruan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengjun Bao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Tao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinchan Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
2
|
Tian X, Lin TY, Lin PT, Tsai MJ, Chen H, Chen WJ, Lee CM, Tu CH, Hsu JC, Hsieh TH, Tung YC, Wang CK, Lin S, Chu LA, Tseng FG, Hsueh YP, Lee CH, Chen P, Chen BC. Rapid lightsheet fluorescence imaging of whole Drosophila brains at nanoscale resolution by potassium acrylate-based expansion microscopy. Nat Commun 2024; 15:10911. [PMID: 39738207 PMCID: PMC11685761 DOI: 10.1038/s41467-024-55305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio. Here we show that at a tile scanning speed of ~1 min/mm3 with 1012 pixels over 14 hours, we image the centimeter-sized fly brain at an effective resolution comparable to electron microscopy, allowing us to visualize mitochondria within presynaptic compartments and Bruchpilot (Brp) scaffold proteins distributed in the central complex, enabling robust analyses of neurobiological topics.
Collapse
Affiliation(s)
- Xuejiao Tian
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Ting Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Min-Ju Tsai
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Jie Chen
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Ming Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chiao-Hui Tu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jui-Cheng Hsu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Tung-Han Hsieh
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chien-Kai Wang
- Department of Mechanical Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Fan-Gang Tseng
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
3
|
Shih CP, Tang WC, Chen P, Chen BC. Applications of Lightsheet Fluorescence Microscopy by High Numerical Aperture Detection Lens. J Phys Chem B 2024; 128:8273-8289. [PMID: 39177503 PMCID: PMC11382282 DOI: 10.1021/acs.jpcb.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
This Review explores the evolution, improvements, and recent applications of Light Sheet Fluorescence Microscopy (LSFM) in biological research using a high numerical aperture detection objective (lens) for imaging subcellular structures. The Review begins with an overview of the development of LSFM, tracing its evolution from its inception to its current state and emphasizing key milestones and technological advancements over the years. Subsequently, we will discuss various improvements of LSFM techniques, covering advancements in hardware such as illumination strategies, optical designs, and sample preparation methods that have enhanced imaging capabilities and resolution. The advancements in data acquisition and processing are also included, which provides a brief overview of the recent development of artificial intelligence. Fluorescence probes that were commonly used in LSFM will be highlighted, together with some insights regarding the selection of potential probe candidates for future LSFM development. Furthermore, we also discuss recent advances in the application of LSFM with a focus on high numerical aperture detection objectives for various biological studies. For sample preparation techniques, there are discussions regarding fluorescence probe selection, tissue clearing protocols, and some insights into expansion microscopy. Integrated setups such as adaptive optics, single objective modification, and microfluidics will also be some of the key discussion points in this Review. We hope that this comprehensive Review will provide a holistic perspective on the historical development, technical enhancements, and cutting-edge applications of LSFM, showcasing its pivotal role and future potential in advancing biological research.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106319, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 11529, Taiwan
| | - Wei-Chun Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Peilin Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
4
|
Hsu KY, Shih CT, Chen NY, Lo CC. LYNSU: automated 3D neuropil segmentation of fluorescent images for Drosophila brains. Front Neuroinform 2024; 18:1429670. [PMID: 39135968 PMCID: PMC11317296 DOI: 10.3389/fninf.2024.1429670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The brain atlas, which provides information about the distribution of genes, proteins, neurons, or anatomical regions, plays a crucial role in contemporary neuroscience research. To analyze the spatial distribution of those substances based on images from different brain samples, we often need to warp and register individual brain images to a standard brain template. However, the process of warping and registration may lead to spatial errors, thereby severely reducing the accuracy of the analysis. To address this issue, we develop an automated method for segmenting neuropils in the Drosophila brain for fluorescence images from the FlyCircuit database. This technique allows future brain atlas studies to be conducted accurately at the individual level without warping and aligning to a standard brain template. Our method, LYNSU (Locating by YOLO and Segmenting by U-Net), consists of two stages. In the first stage, we use the YOLOv7 model to quickly locate neuropils and rapidly extract small-scale 3D images as input for the second stage model. This stage achieves a 99.4% accuracy rate in neuropil localization. In the second stage, we employ the 3D U-Net model to segment neuropils. LYNSU can achieve high accuracy in segmentation using a small training set consisting of images from merely 16 brains. We demonstrate LYNSU on six distinct neuropils or structures, achieving a high segmentation accuracy comparable to professional manual annotations with a 3D Intersection-over-Union (IoU) reaching up to 0.869. Our method takes only about 7 s to segment a neuropil while achieving a similar level of performance as the human annotators. To demonstrate a use case of LYNSU, we applied it to all female Drosophila brains from the FlyCircuit database to investigate the asymmetry of the mushroom bodies (MBs), the learning center of fruit flies. We used LYNSU to segment bilateral MBs and compare the volumes between left and right for each individual. Notably, of 8,703 valid brain samples, 10.14% showed bilateral volume differences that exceeded 10%. The study demonstrated the potential of the proposed method in high-throughput anatomical analysis and connectomics construction of the Drosophila brain.
Collapse
Affiliation(s)
- Kai-Yi Hsu
- Institute of Systems Neuroscience, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Tin Shih
- Department of Applied Physics, Tunghai University, Taichung, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Nan-Yow Chen
- National Applied Research Laboratories, National Center for High-Performance Computing, Hsinchu, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Chang GH, Wu MY, Yen LH, Huang DY, Lin YH, Luo YR, Liu YD, Xu B, Leong KW, Lai WS, Chiang AS, Wang KC, Lin CH, Wang SL, Chu LA. Isotropic multi-scale neuronal reconstruction from high-ratio expansion microscopy with contrastive unsupervised deep generative models. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107991. [PMID: 38185040 DOI: 10.1016/j.cmpb.2023.107991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND OBJECTIVE Current methods for imaging reconstruction from high-ratio expansion microscopy (ExM) data are limited by anisotropic optical resolution and the requirement for extensive manual annotation, creating a significant bottleneck in the analysis of complex neuronal structures. METHODS We devised an innovative approach called the IsoGAN model, which utilizes a contrastive unsupervised generative adversarial network to sidestep these constraints. This model leverages multi-scale and isotropic neuron/protein/blood vessel morphology data to generate high-fidelity 3D representations of these structures, eliminating the need for rigorous manual annotation and supervision. The IsoGAN model introduces simplified structures with idealized morphologies as shape priors to ensure high consistency in the generated neuronal profiles across all points in space and scalability for arbitrarily large volumes. RESULTS The efficacy of the IsoGAN model in accurately reconstructing complex neuronal structures was quantitatively assessed by examining the consistency between the axial and lateral views and identifying a reduction in erroneous imaging artifacts. The IsoGAN model accurately reconstructed complex neuronal structures, as evidenced by the consistency between the axial and lateral views and a reduction in erroneous imaging artifacts, and can be further applied to various biological samples. CONCLUSION With its ability to generate detailed 3D neurons/proteins/blood vessel structures using significantly fewer axial view images, IsoGAN can streamline the process of imaging reconstruction while maintaining the necessary detail, offering a transformative solution to the existing limitations in high-throughput morphology analysis across different structures.
Collapse
Affiliation(s)
- Gary Han Chang
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC; Graduate School of Advanced Technology, National Taiwan University, Taipei, Taiwan, ROC.
| | - Meng-Yun Wu
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Ling-Hui Yen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, ROC; Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Da-Yu Huang
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Ya-Hui Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, ROC; Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yi-Ru Luo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, ROC; Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ya-Ding Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, ROC; Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan, ROC
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC; Institute of System Neuroscience, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Kuo-Chuan Wang
- Department of Neurosurgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chin-Hsien Lin
- Department of Neurosurgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Shih-Luen Wang
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, ROC; Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC.
| |
Collapse
|
6
|
Kikuchi K, Adair LD, Lin J, New EJ, Kaur A. Photochemical Mechanisms of Fluorophores Employed in Single-Molecule Localization Microscopy. Angew Chem Int Ed Engl 2023; 62:e202204745. [PMID: 36177530 PMCID: PMC10100239 DOI: 10.1002/anie.202204745] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
Decoding cellular processes requires visualization of the spatial distribution and dynamic interactions of biomolecules. It is therefore not surprising that innovations in imaging technologies have facilitated advances in biomedical research. The advent of super-resolution imaging technologies has empowered biomedical researchers with the ability to answer long-standing questions about cellular processes at an entirely new level. Fluorescent probes greatly enhance the specificity and resolution of super-resolution imaging experiments. Here, we introduce key super-resolution imaging technologies, with a brief discussion on single-molecule localization microscopy (SMLM). We evaluate the chemistry and photochemical mechanisms of fluorescent probes employed in SMLM. This Review provides guidance on the identification and adoption of fluorescent probes in single molecule localization microscopy to inspire the design of next-generation fluorescent probes amenable to single-molecule imaging.
Collapse
Affiliation(s)
- Kai Kikuchi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D Adair
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jiarun Lin
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J New
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Choosing the Probe for Single-Molecule Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms232314949. [PMID: 36499276 PMCID: PMC9735909 DOI: 10.3390/ijms232314949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Indeed, fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for advanced single-molecule applications. There are different reasons for this, linked, e.g., to fluorophore aspecific interactions, brightness, photostability, blinking, and emission and excitation spectra. In particular, these spectra and the excitation source are interdependent, and the latter affects the autofluorescence of sample substrate, medium, and/or biological specimen. Here, we review these and other critical points for fluorophore selection in single-molecule microscopy. We also describe the possible kinds of fluorophores and the microscopy techniques based on single-molecule fluorescence. We explain the importance and impact of the various issues in fluorophore choice, and discuss how this can become more effective and decisive for increasingly demanding experiments in single- and multiple-color applications.
Collapse
|
8
|
Light-field microscopy with correlated beams for high-resolution volumetric imaging. Sci Rep 2022; 12:16823. [PMID: 36207387 PMCID: PMC9547068 DOI: 10.1038/s41598-022-21240-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Light-field microscopy represents a promising solution for microscopic volumetric imaging, thanks to its capability to encode information on multiple planes in a single acquisition. This is achieved through its peculiar simultaneous capture of information on light spatial distribution and propagation direction. However, state-of-the-art light-field microscopes suffer from a detrimental loss of spatial resolution compared to standard microscopes. In this article, we experimentally demonstrate the working principle of a new scheme, called Correlation Light-field Microscopy (CLM), where the correlation between two light beams is exploited to achieve volumetric imaging with a resolution that is only limited by diffraction. In CLM, a correlation image is obtained by measuring intensity correlations between a large number of pairs of ultra-short frames; each pair of frames is illuminated by the two correlated beams, and is exposed for a time comparable with the source coherence time. We experimentally show the capability of CLM to recover the information contained in out-of-focus planes within three-dimensional test targets and biomedical phantoms. In particular, we demonstrate the improvement of the depth of field enabled by CLM with respect to a conventional microscope characterized by the same resolution. Moreover, the multiple perspectives contained in a single correlation image enable reconstructing over 50 distinguishable transverse planes within a 1 mm3 sample.
Collapse
|
9
|
Khayenko V, Schulte C, Reis SL, Avraham O, Schietroma C, Worschech R, Nordblom NF, Kachler S, Villmann C, Heinze KG, Schlosser A, Schueler‐Furman O, Tovote P, Specht CG, Maric HM. A Versatile Synthetic Affinity Probe Reveals Inhibitory Synapse Ultrastructure and Brain Connectivity**. Angew Chem Int Ed Engl 2022; 61:e202202078. [PMID: 35421279 PMCID: PMC9400903 DOI: 10.1002/anie.202202078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/10/2022]
Abstract
Visualization of inhibitory synapses requires protocol tailoring for different sample types and imaging techniques, and usually relies on genetic manipulation or the use of antibodies that underperform in tissue immunofluorescence. Starting from an endogenous ligand of gephyrin, a universal marker of the inhibitory synapse, we developed a short peptidic binder and dimerized it, significantly increasing affinity and selectivity. We further tailored fluorophores to the binder, yielding “Sylite”—a probe with outstanding signal‐to‐background ratio that outperforms antibodies in tissue staining with rapid and efficient penetration, mitigation of staining artifacts, and simplified handling. In super‐resolution microscopy Sylite precisely localizes the inhibitory synapse and enables nanoscale measurements. Sylite profiles inhibitory inputs and synapse sizes of excitatory and inhibitory neurons in the midbrain and combined with complimentary tracing techniques reveals the synaptic connectivity.
Collapse
Affiliation(s)
- Vladimir Khayenko
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Clemens Schulte
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Sara L. Reis
- Institute of Clinical Neurobiology University Hospital Versbacher Str. 5 97078 Wuerzburg Germany
| | - Orly Avraham
- Department of Microbiology and Molecular Genetics Institute for Medical Research Israel-Canada the Hebrew University Hadassah Medical School Jerusalem 91120 Israel
| | | | - Rafael Worschech
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Noah F. Nordblom
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Sonja Kachler
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology University Hospital Versbacher Str. 5 97078 Wuerzburg Germany
| | - Katrin G. Heinze
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Andreas Schlosser
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Ora Schueler‐Furman
- Department of Microbiology and Molecular Genetics Institute for Medical Research Israel-Canada the Hebrew University Hadassah Medical School Jerusalem 91120 Israel
| | - Philip Tovote
- Institute of Clinical Neurobiology University Hospital Versbacher Str. 5 97078 Wuerzburg Germany
- Center of Mental Health University of Wuerzburg Margarete-Höppel-Platz 1 97080 Wuerzburg Germany
| | - Christian G. Specht
- Diseases and Hormones of the Nervous System (DHNS) Inserm U1195 Université Paris-Saclay 80 rue du Général Leclerc 94276 Le Kremlin-Bicêtre France
| | - Hans M. Maric
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| |
Collapse
|
10
|
Li M, Shang M, Li L, Wang Y, Song Q, Zhou Z, Kuang W, Zhang Y, Huang ZL. Real-time image resolution measurement for single molecule localization microscopy. OPTICS EXPRESS 2022; 30:28079-28090. [PMID: 36236964 DOI: 10.1364/oe.463996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Recent advancements in single molecule localization microscopy (SMLM) have demonstrated outstanding potential applications in high-throughput and high-content screening imaging. One major limitation to such applications is to find a way to optimize imaging throughput without scarifying image quality, especially the homogeneity in image resolution, during the imaging of hundreds of field-of-views (FOVs) in heterogeneous samples. Here we introduce a real-time image resolution measurement method for SMLM to solve this problem. This method is under the heuristic framework of overall image resolution that counts on localization precision and localization density. Rather than estimating the mean localization density after completing the entire SMLM process, this method uses the spatial Poisson process to model the random activation of molecules and thus determines the localization density in real-time. We demonstrate that the method is valid in real-time resolution measurement and is effective in guaranteeing homogeneous image resolution across multiple representative FOVs with optimized imaging throughput.
Collapse
|
11
|
Wang W, Chan YH, Kwon S, Tandukar J, Gao R. Nanoscale fluorescence imaging of biological ultrastructure via molecular anchoring and physical expansion. NANO CONVERGENCE 2022; 9:30. [PMID: 35810234 PMCID: PMC9271151 DOI: 10.1186/s40580-022-00318-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 05/25/2023]
Abstract
Nanoscale imaging of biological samples can provide rich morphological and mechanistic information about biological functions and dysfunctions at the subcellular and molecular level. Expansion microscopy (ExM) is a recently developed nanoscale fluorescence imaging method that takes advantage of physical enlargement of biological samples. In ExM, preserved cells and tissues are embedded in a swellable hydrogel, to which the molecules and fluorescent tags in the samples are anchored. When the hydrogel swells several-fold, the effective resolution of the sample images can be improved accordingly via physical separation of the retained molecules and fluorescent tags. In this review, we focus on the early conception and development of ExM from a biochemical and materials perspective. We first examine the general workflow as well as the numerous variations of ExM developed to retain and visualize a broad range of biomolecules, such as proteins, nucleic acids, and membranous structures. We then describe a number of inherent challenges facing ExM, including those associated with expansion isotropy and labeling density, as well as the ongoing effort to address these limitations. Finally, we discuss the prospect and possibility of pushing the resolution and accuracy of ExM to the single-molecule scale and beyond.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Yat Ho Chan
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - SoYoung Kwon
- Department of Biomedical and Health Information Sciences, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Jamuna Tandukar
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Ruixuan Gao
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA.
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Kohmura Y, Yang SM, Chen HH, Takano H, Chang CJ, Wang YS, Lee TT, Chiu CY, Yang KE, Chien YT, Hu HM, Su TL, Petibois C, Chen YY, Hsu CH, Chen P, Hueng DY, Chen SJ, Yang CL, Chin AL, Low CM, Tan FCK, Teo A, Tok ES, Cai XX, Lin HM, Boeckl J, Stampfl AP, Yamada J, Matsuyama S, Ishikawa T, Margaritondo G, Chiang AS, Hwu Y. The new X-ray/visible microscopy MAXWELL technique for fast three-dimensional nanoimaging with isotropic resolution. Sci Rep 2022; 12:9668. [PMID: 35690597 PMCID: PMC9188605 DOI: 10.1038/s41598-022-13377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Microscopy by Achromatic X-rays With Emission of Laminar Light (MAXWELL) is a new X-ray/visible technique with attractive characteristics including isotropic resolution in all directions, large-volume imaging and high throughput. An ultrathin, laminar X-ray beam produced by a Wolter type I mirror irradiates the sample stimulating the emission of visible light by scintillating nanoparticles, captured by an optical system. Three-dimensional (3D) images are obtained by scanning the specimen with respect to the laminar beam. We implemented and tested the technique with a high-brightness undulator at SPring-8, demonstrating its validity for a variety of specimens. This work was performed under the Synchrotrons for Neuroscience-an Asia-Pacific Strategic Enterprise (SYNAPSE) collaboration.
Collapse
Affiliation(s)
| | - Shun-Min Yang
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Hsiang-Hsin Chen
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | | | - Chia-Ju Chang
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Ya-Sian Wang
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Tsung-Tse Lee
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Ching-Yu Chiu
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Kai-En Yang
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yu-Ting Chien
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Huan-Ming Hu
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Tzu-Ling Su
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Cyril Petibois
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yi-Yun Chen
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Cheng-Huan Hsu
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Peilin Chen
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Dueng-Yuan Hueng
- Department of Surgery, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, Taiwan
| | - Chi Lin Yang
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - An-Lun Chin
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Chian-Ming Low
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Francis Chee Kuan Tan
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alvin Teo
- School of Chemical and Life Sciences, Nanyang Polytechnic, Singapore, Singapore
| | - Eng Soon Tok
- ƐMaGIC-Lab, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Xu Xiang Cai
- Mechanical and Materials Department, Tatung University, Taipei, Taiwan
| | - Hong-Ming Lin
- Mechanical and Materials Department, Tatung University, Taipei, Taiwan
| | - John Boeckl
- US Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Fairborn, OH, 43455, USA
| | - Anton P Stampfl
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, 2234, Australia
| | | | - Satoshi Matsuyama
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | | | | | - Ann-Shyn Chiang
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Yeukuang Hwu
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
13
|
Khayenko V, Schulte C, Reis SL, Avraham O, Schietroma C, Worschech R, Nordblom NF, Kachler S, Villmann C, Heinze KG, Schlosser A, Schueler-Furman O, Tovote P, Specht CG, Maric HM. A Versatile Synthetic Affinity Probe Reveals Inhibitory Synapse Ultrastructure and Brain Connectivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vladimir Khayenko
- University of Wurzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center Josef-Schneider-Strasse. 2 97080 Würzburg GERMANY
| | - Clemens Schulte
- University of Wurzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center Josef-Schneider-Strasse. 2 97080 Würzburg GERMANY
| | - Sara L. Reis
- University Hospital Wurzburg: Universitatsklinikum Wurzburg Clinical Neurobiology Versbacherstr.5 97078 Würzburg GERMANY
| | - Orly Avraham
- The Hebrew University of Jerusalem Microbiology and Molecular Genetics ISRAEL
| | | | - Rafael Worschech
- University of Wurzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Noah F. Nordblom
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Sonja Kachler
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Carmen Villmann
- University Hospital Wurzburg: Universitatsklinikum Wurzburg Clinical Neurobiology GERMANY
| | - Katrin G. Heinze
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Andreas Schlosser
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center Rudolf Virchow Zentrum Gebäude D15Josef-Schneider-Strasse 2 97080 Würzburg GERMANY
| | - Ora Schueler-Furman
- The Hebrew University of Jerusalem Microbiology and Molecular Genetics ISRAEL
| | - Philip Tovote
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Clinical Neurobiology GERMANY
| | - Christian G. Specht
- INSERM U1195: Maladies et hormones du systeme nerveux NSERM U1195: Maladies et hormones du systeme nerveux FRANCE
| | - Hans Michael Maric
- University of Würzburg Biotechnology and Biophysics Rudolf Virchow Zentrum Gebäude D15Josef-Schneider-Strasse 2 97080 Würzburg GERMANY
| |
Collapse
|
14
|
Gagliano G, Nelson T, Saliba N, Vargas-Hernández S, Gustavsson AK. Light Sheet Illumination for 3D Single-Molecule Super-Resolution Imaging of Neuronal Synapses. Front Synaptic Neurosci 2021; 13:761530. [PMID: 34899261 PMCID: PMC8651567 DOI: 10.3389/fnsyn.2021.761530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/27/2021] [Indexed: 01/02/2023] Open
Abstract
The function of the neuronal synapse depends on the dynamics and interactions of individual molecules at the nanoscale. With the development of single-molecule super-resolution microscopy over the last decades, researchers now have a powerful and versatile imaging tool for mapping the molecular mechanisms behind the biological function. However, imaging of thicker samples, such as mammalian cells and tissue, in all three dimensions is still challenging due to increased fluorescence background and imaging volumes. The combination of single-molecule imaging with light sheet illumination is an emerging approach that allows for imaging of biological samples with reduced fluorescence background, photobleaching, and photodamage. In this review, we first present a brief overview of light sheet illumination and previous super-resolution techniques used for imaging of neurons and synapses. We then provide an in-depth technical review of the fundamental concepts and the current state of the art in the fields of three-dimensional single-molecule tracking and super-resolution imaging with light sheet illumination. We review how light sheet illumination can improve single-molecule tracking and super-resolution imaging in individual neurons and synapses, and we discuss emerging perspectives and new innovations that have the potential to enable and improve single-molecule imaging in brain tissue.
Collapse
Affiliation(s)
- Gabriella Gagliano
- Department of Chemistry, Rice University, Houston, TX, United States
- Applied Physics Program, Rice University, Houston, TX, United States
- Smalley-Curl Institute, Rice University, Houston, TX, United States
| | - Tyler Nelson
- Department of Chemistry, Rice University, Houston, TX, United States
- Applied Physics Program, Rice University, Houston, TX, United States
- Smalley-Curl Institute, Rice University, Houston, TX, United States
| | - Nahima Saliba
- Department of Chemistry, Rice University, Houston, TX, United States
| | - Sofía Vargas-Hernández
- Department of Chemistry, Rice University, Houston, TX, United States
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, United States
- Institute of Biosciences & Bioengineering, Rice University, Houston, TX, United States
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, Houston, TX, United States
- Smalley-Curl Institute, Rice University, Houston, TX, United States
- Institute of Biosciences & Bioengineering, Rice University, Houston, TX, United States
- Department of Biosciences, Rice University, Houston, TX, United States
- Laboratory for Nanophotonics, Rice University, Houston, TX, United States
| |
Collapse
|
15
|
Tyson J, Hu K, Zheng S, Kidd P, Dadina N, Chu L, Toomre D, Bewersdorf J, Schepartz A. Extremely Bright, Near-IR Emitting Spontaneously Blinking Fluorophores Enable Ratiometric Multicolor Nanoscopy in Live Cells. ACS CENTRAL SCIENCE 2021; 7:1419-1426. [PMID: 34471685 PMCID: PMC8393207 DOI: 10.1021/acscentsci.1c00670] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 05/16/2023]
Abstract
New bright, photostable, emission-orthogonal fluorophores that blink without toxic additives are needed to enable multicolor, live-cell, single-molecule localization microscopy (SMLM). Here we report the design, synthesis, and biological evaluation of Yale676sb, a photostable, near-IR-emitting fluorophore that achieves these goals in the context of an exceptional quantum yield (0.59). When used alongside HMSiR, Yale676sb enables simultaneous, live-cell, two-color SMLM of two intracellular organelles (ER + mitochondria) with only a single laser and no chemical additives.
Collapse
Affiliation(s)
- Jonathan Tyson
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kevin Hu
- Department
of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, United States
- Department
of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Shuai Zheng
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Phylicia Kidd
- Department
of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Neville Dadina
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ling Chu
- Department
of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Derek Toomre
- Department
of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, United States
- Nanobiology
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Joerg Bewersdorf
- Department
of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, United States
- Department
of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
- Kavli
Institute for Neuroscience, Yale School
of Medicine, New Haven, Connecticut 06510, United States
- Nanobiology
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Alanna Schepartz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department
of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
16
|
Lee KM, Talikoti A, Shelton K, Grotewiel M. Tyramine synthesis, vesicular packaging, and the SNARE complex function coordinately in astrocytes to regulate Drosophila alcohol sedation. Addict Biol 2021; 26:e13019. [PMID: 33538092 PMCID: PMC8225576 DOI: 10.1111/adb.13019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Identifying mechanisms underlying alcohol-related behaviors could provide important insights regarding the etiology of alcohol use disorder. To date, most genetic studies on alcohol-related behavior in model organisms have focused on neurons, leaving the causal roles of glial mechanisms less comprehensively investigated. Here, we report our studies on the role of Tyrosine decarboxylase 2 (Tdc2), which converts tyrosine to the catecholamine tyramine, in glial cells in Drosophila alcohol sedation. Using genetic approaches that drove transgene expression constitutively in all glia, constitutively in astrocytes and conditionally in glia during adulthood, we found that knockdown and overexpression of Tdc2, respectively, increased and decreased the sensitivity to alcohol sedation in flies. Manipulation of the genes tyramine β-hydroxylase and tyrosine hydroxylase, which respectively synthesize octopamine and dopamine from tyramine and tyrosine, had no discernable effect on alcohol sedation, suggesting that Tdc2 affects alcohol sedation by regulating tyramine production. We also found that knockdown of the vesicular monoamine transporter (VMAT) and disruption of the SNARE complex in all glia or selectively in astrocytes increased sensitivity to alcohol sedation and that both VMAT and the SNARE complex functioned downstream of Tdc2. Our studies support a model in which the synthesis of tyramine and vesicle-mediated release of tyramine from adult astrocytes regulates alcohol sedation in Drosophila. Considering that tyramine is functionally orthologous to norepinephrine in mammals, our results raise the possibility that gliotransmitter synthesis release could be a conserved mechanism influencing behavioral responses to alcohol as well as alcohol use disorder.
Collapse
Affiliation(s)
- Kristen M. Lee
- Neuroscience Graduate Program, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ananya Talikoti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Keith Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mike Grotewiel
- Neuroscience Graduate Program, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
- Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
17
|
Matryba P, Łukasiewicz K, Pawłowska M, Tomczuk J, Gołąb J. Can Developments in Tissue Optical Clearing Aid Super-Resolution Microscopy Imaging? Int J Mol Sci 2021; 22:ijms22136730. [PMID: 34201632 PMCID: PMC8268743 DOI: 10.3390/ijms22136730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
The rapid development of super-resolution microscopy (SRM) techniques opens new avenues to examine cell and tissue details at a nanometer scale. Due to compatibility with specific labelling approaches, in vivo imaging and the relative ease of sample preparation, SRM appears to be a valuable alternative to laborious electron microscopy techniques. SRM, however, is not free from drawbacks, with the rapid quenching of the fluorescence signal, sensitivity to spherical aberrations and light scattering that typically limits imaging depth up to few micrometers being the most pronounced ones. Recently presented and robustly optimized sets of tissue optical clearing (TOC) techniques turn biological specimens transparent, which greatly increases the tissue thickness that is available for imaging without loss of resolution. Hence, SRM and TOC are naturally synergistic techniques, and a proper combination of these might promptly reveal the three-dimensional structure of entire organs with nanometer resolution. As such, an effort to introduce large-scale volumetric SRM has already started; in this review, we discuss TOC approaches that might be favorable during the preparation of SRM samples. Thus, special emphasis is put on TOC methods that enhance the preservation of fluorescence intensity, offer the homogenous distribution of molecular probes, and vastly decrease spherical aberrations. Finally, we review examples of studies in which both SRM and TOC were successfully applied to study biological systems.
Collapse
Affiliation(s)
- Paweł Matryba
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.T.); (J.G.)
- The Doctoral School of the Medical University of Warsaw, Medical University of Warsaw, 02-097 Warsaw, Poland
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland;
- Correspondence:
| | - Kacper Łukasiewicz
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Monika Pawłowska
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland;
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Jacek Tomczuk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.T.); (J.G.)
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.T.); (J.G.)
| |
Collapse
|
18
|
Takanezawa S, Saitou T, Imamura T. Wide field light-sheet microscopy with lens-axicon controlled two-photon Bessel beam illumination. Nat Commun 2021; 12:2979. [PMID: 34016994 PMCID: PMC8137944 DOI: 10.1038/s41467-021-23249-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
Two-photon excitation can lower phototoxicity and improve penetration depth, but its narrow excitation range restricts its applications in light-sheet microscopy. Here, we propose simple illumination optics, a lens-axicon triplet composed of an axicon and two convex lenses, to generate longer extent Bessel beams. This unit can stretch the beam full width at half maximum of 600-1000 μm with less than a 4-μm waist when using a 10× illumination lens. A two-photon excitation digital scanned light-sheet microscope possessing this range of field of view and ~2-3-μm axial resolution is constructed and used to analyze the cellular dynamics over the whole body of medaka fish. We demonstrate long-term time-lapse observations over several days and high-speed recording with ~3 mm3 volume per 4 s of the embryos. Our system is minimal and suppresses laser power loss, which can broaden applications of two-photon excitation in light-sheet microscopy.
Collapse
Affiliation(s)
- Sota Takanezawa
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Matsuyama, Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Matsuyama, Japan.
- Translational Research Center, Ehime University Hospital, Toon, Japan.
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Matsuyama, Japan
- Translational Research Center, Ehime University Hospital, Toon, Japan
| |
Collapse
|
19
|
Choquet D, Sainlos M, Sibarita JB. Advanced imaging and labelling methods to decipher brain cell organization and function. Nat Rev Neurosci 2021; 22:237-255. [PMID: 33712727 DOI: 10.1038/s41583-021-00441-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The brain is arguably the most complex organ. The branched and extended morphology of nerve cells, their subcellular complexity, the multiplicity of brain cell types as well as their intricate connectivity and the scattering properties of brain tissue present formidable challenges to the understanding of brain function. Neuroscientists have often been at the forefront of technological and methodological developments to overcome these hurdles to visualize, quantify and modify cell and network properties. Over the last few decades, the development of advanced imaging methods has revolutionized our approach to explore the brain. Super-resolution microscopy and tissue imaging approaches have recently exploded. These instrumentation-based innovations have occurred in parallel with the development of new molecular approaches to label protein targets, to evolve new biosensors and to target them to appropriate cell types or subcellular compartments. We review the latest developments for labelling and functionalizing proteins with small localization and functionalized reporters. We present how these molecular tools are combined with the development of a wide variety of imaging methods that break either the diffraction barrier or the tissue penetration depth limits. We put these developments in perspective to emphasize how they will enable step changes in our understanding of the brain.
Collapse
Affiliation(s)
- Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France. .,University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, Bordeaux, France.
| | - Matthieu Sainlos
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| | - Jean-Baptiste Sibarita
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
20
|
Huang Q, Garrett A, Bose S, Blocker S, Rios AC, Clevers H, Shen X. The frontier of live tissue imaging across space and time. Cell Stem Cell 2021; 28:603-622. [PMID: 33798422 PMCID: PMC8034393 DOI: 10.1016/j.stem.2021.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
What you see is what you get-imaging techniques have long been essential for visualization and understanding of tissue development, homeostasis, and regeneration, which are driven by stem cell self-renewal and differentiation. Advances in molecular and tissue modeling techniques in the last decade are providing new imaging modalities to explore tissue heterogeneity and plasticity. Here we describe current state-of-the-art imaging modalities for tissue research at multiple scales, with a focus on explaining key tradeoffs such as spatial resolution, penetration depth, capture time/frequency, and moieties. We explore emerging tissue modeling and molecular tools that improve resolution, specificity, and throughput.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Aliesha Garrett
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Stephanie Blocker
- Center for In Vitro Microscopy, Duke University, Durham, NC 27708, USA
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584, the Netherlands; Department of Cancer Research, Oncode Institute, Hubrecht Institute-KNAW Utrecht, Utrecht 3584, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584, the Netherlands; Department of Cancer Research, Oncode Institute, Hubrecht Institute-KNAW Utrecht, Utrecht 3584, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht 3584, the Netherlands
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
21
|
Chu LA, Chang SW, Tang WC, Tseng YT, Chen P, Chen BC. 5D superresolution imaging for a live cell nucleus. Curr Opin Genet Dev 2020; 67:77-83. [PMID: 33383256 DOI: 10.1016/j.gde.2020.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 11/16/2022]
Abstract
With a spatial resolution breaking the diffraction limit of light, superresolution imaging allows the visualization of detailed structures of organelles such as mitochondria, cytoskeleton, nucleus, and so on. With multi-dimensional imaging (x, y, z, t, λ), namely, multi-color 3D live imaging enables us fully understand the function of the cell. It is necessary to analyze structural changes or molecular interactions across a large volume in 3D with different labelled targets. To achieve this goal, scientists recently have expanded the original 2D superresolution microscopic tools into 3D imaging techniques. In this review, we will discuss recent development in superresolution microscopy for live imaging with minimal phototoxicity. We will focus our discussion on the cell nucleus where the genetic materials are stored and processed. Machine learning algorism will be introduced to improve the axial resolution of superresolution imaging.
Collapse
Affiliation(s)
- Li-An Chu
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, 30013, Taiwan; Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Shu-Wei Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Chun Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Ting Tseng
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Bi-Chang Chen
- Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan; Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
22
|
Liu Z, Liu J, Wang X, Mi F, Wang D, Wu C. Fluorescent Bioconjugates for Super-Resolution Optical Nanoscopy. Bioconjug Chem 2020; 31:1857-1872. [DOI: 10.1021/acs.bioconjchem.0c00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhihe Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Jie Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaodong Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Feixue Mi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Dan Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| |
Collapse
|