1
|
Tran TV, Dang HH, Nguyen H, Nguyen NTT, Nguyen DH, Nguyen TTT. Synthesis methods, structure, and recent trends of ZIF-8-based materials in the biomedical field. NANOSCALE ADVANCES 2025:d4na01015a. [PMID: 40438665 PMCID: PMC12109618 DOI: 10.1039/d4na01015a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/19/2025] [Indexed: 06/01/2025]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) is a highly porous material with remarkable structural properties and high drug-loading capacity, and hence this material presents as an exceptional candidate for advanced drug delivery systems. Herein, we comprehensively review the recent developments in ZIF-8 synthesis techniques and critically discuss innovative approaches such as the use of green solvents and advanced methods such as microwave- and ultrasound-assisted syntheses. The multifunctional applications of ZIF-8-based biomaterials in biomedical engineering are critically explored with their pivotal roles in antibacterial and anticancer therapies, drug delivery systems, bone tissue engineering, and diagnostic platforms such as biosensing and bioimaging. The present review also clarifies some innovations of ZIF-8-based materials in pH-sensitive and glucose-responsive drug delivery systems and scaffolds for bone regeneration. Despite these promising advancements, we analyze critical concerns, such as the release of Zn(ii) ions, potential cytotoxicity, and biocompatibility challenges, which remain significant hurdles to the broader adoption of ZIF-8. Addressing these outlined challenges may be necessary in realizing the potential of ZIF-8 in biomedical applications.
Collapse
Affiliation(s)
- Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| | - Hoang Huy Dang
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| | - Huy Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
- Nong Lam University Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Dai Hai Nguyen
- Institute of Advanced Technology, Vietnam Academy of Science and Technology 1B TL29 Street, Thanh Loc Ward, District 12 Ho Chi Minh City 700000 Vietnam
| | | |
Collapse
|
2
|
Yang J, Zaremba O, Andreo J, Gröger H, Wuttke S. Unravelling the Potential of Crude Enzyme Extracts for Biocatalyst Entrapment in Metal-Organic Frameworks. ACS NANO 2025; 19:14817-14828. [PMID: 40215205 DOI: 10.1021/acsnano.4c18266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
To bolster the applicability of enzymes as catalysts, it is imperative not only to address their inherent fragility, particularly when used under harsh organic-synthetic reaction conditions, but also to mitigate deactivation during purification and enable applicability in a broad range of organic-synthetic transformations. Currently, the process of purification of crude enzyme extracts and subsequent heterogenization to obtain immobilized biocatalysts often leads to partial enzyme deactivation and represents, at least in part, a resource-intensive process that is driving up the overall production efforts. To tackle both the enzyme fragility and deactivation during purification and immobilization, we propose the direct use of crude enzyme extracts obtained from cell lysis instead of pure enzymes and their entrapment in metal-organic framework (MOF) structures. We focus on three enzyme types with varying sensitivities: aldoxime dehydratase, imine reductase, and lipase. We evaluate the effects of different metal sources (Al, Fe, Co, Ni, Cu, and Zn), their oxidation state and counterions, and MOF synthesis parameters on enzyme stability and activity during their entrapment in the MOF structures. Based on this, we optimize protocols for enzyme entrapment in Fe-MIL-88A, Fe-MIL-100, Zn-MOF-74, and Zn-ZIF-8 and develop a fast-aqueous room temperature synthesis of Al-MIL-53. Investigation of the biocatalytic performance of the enzyme@MOF biocomposites suggests that enzyme entrapment in MOFs using crude enzyme extracts can effectively maintain enzyme activity and stability in various catalytic reactions, offering a perspective for an efficient pathway for industrial applications.
Collapse
Affiliation(s)
- Jianing Yang
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Orysia Zaremba
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Jacopo Andreo
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Stefan Wuttke
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Academic Centre for Materials and Nanotechnology, A. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
3
|
Murty R, Walton KS, Prausnitz MR. Thermostability of tetanus toxoid vaccine encapsulated in metal-organic frameworks. Drug Deliv Transl Res 2025:10.1007/s13346-025-01838-4. [PMID: 40155559 DOI: 10.1007/s13346-025-01838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Most vaccines require refrigerated transport and storage, which is costly, challenging in low-resource settings, and results in the loss of up to 50% of vaccines globally due to "cold-chain" failures. Here, tetanus toxoid vaccine (TT) was thermostabilized by encapsulation within a metal-organic framework (MOF), zeolitic imidazolate framework-8 (TT@ZIF-8). Its physicochemical properties were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and confocal microscopy. Unencapsulated TT fell below the 80% activity threshold within 4 days at 40˚C and 60˚C according to immunoassay analysis. Aqueous suspensions of TT@ZIF-8 also declined below 80% activity within a week at both temperatures, likely due to MOF degradation in water. Dried TT@ZIF-8 performed better, retaining 80% stability for 33 days at 40˚C and 22 days at 60˚C. When TT@ZIF-8 was suspended in a non-aqueous mixture of propylene glycol and ethanol, it remained 80% stable for approximately 4 months at 40˚C and 2.5 months at 60˚C. Arrhenius modeling predicted this formulation may qualify for "controlled temperature chain" designation, allowing partial vaccine removal from the cold chain. These studies suggest that MOF encapsulation of vaccines like TT can enable dramatic improvements in vaccine stability during storage without refrigeration.
Collapse
Affiliation(s)
- Rohan Murty
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Li N, Li Q, Ge F, Cui X. Immobilization of β-glucosidase and β-xylosidase on inorganic nanoparticles for glycosylated substances conversion. Int J Biol Macromol 2025; 292:139173. [PMID: 39732227 DOI: 10.1016/j.ijbiomac.2024.139173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
There are abundant glycosylated substances such as cellulose, hemicellulose, and phytochemical glycosides in plants, which could be converted into functional chemicals such as monosaccharides, oligosaccharides, and bioactive aglycones by cleavage of glycosidic bonds using glycoside hydrolases (GHs). Among those GHs, β-glucosidase and β-xylosidase are the rate-limiting enzymes for degrading cellulose and hemicellulose, respectively, and can convert a variety of glycosylated substances. These two enzymes play important roles in the high value use of plant resources and have great potential applications. However, the fragility of enzymes suggests there is an urgent need to improve the activity, stability and reusability of GHs under industrial conditions. Enzyme immobilization is an efficient approach to meet the need. Inorganic materials are preferred carriers for enzyme immobilization, since they possess high surface area, pore size, stability and long service life. Recently, many reports have showed that GHs immobilized on inorganic materials exhibit potential applications on industry and will benefit the process economy. The present review provides an overview of these reports from the perspectives of materials, strategies, activities, stability and reusability, as well as an insight into the related mechanisms, with a view to providing a reference for the GHs immobilization and their applications.
Collapse
Affiliation(s)
- Na Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Qiwen Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
5
|
Xu Z, Zhou J. Unraveling the orientation of an enzyme adsorbed onto a metal-organic framework. Phys Chem Chem Phys 2025; 27:4603-4613. [PMID: 39380469 DOI: 10.1039/d4cp01649a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Bio-conversion of lignocellulosic biomass to bioethanol fuel is a highly desirable yet challenging objective because of the low catalytic activity and high cost of β-glucosidase (BGL). Recently, ZIF-8, an emerging organic porous material, has been proposed as a promising candidate for enzyme immobilization to improve associated activity and stability. However, the underlying interaction mechanism of binding BGL on the ZIF-8 surface is yet to be clarified. Here, the adsorption of BGL onto ZIF-8 is explored for the first time by molecular dynamics simulations. The results show that BGL adsorbs on the ZIF-8 surface with a "back-on" orientation. The adsorption free energy analysis shows that the adsorption process is enthalpy driven. In addition, the electrostatic interaction between negatively charged residues and Zn2+ on the surface of ZIF-8 is found to play a decisive role in surface binding, which accounts for 98% of the total interaction energy. The secondary structure of BGL is not affected despite the strong adsorption, suggesting the good biocompatibility of ZIF-8. This study not only provides a reliable theoretical insight into understanding the interaction mechanism between BGL and ZIF-8, but also helps the rational design of ZIF-8-based materials for bio-related applications.
Collapse
Affiliation(s)
- Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
6
|
Tong L, Huang S, Chen G, Ouyang G. Integrating Enzymes with Reticular Frameworks To Govern Biocatalysis. Angew Chem Int Ed Engl 2025; 64:e202421192. [PMID: 39805800 DOI: 10.1002/anie.202421192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Integrating enzymes with reticular frameworks offers promising avenues for access to functionally tailorable biocatalysis. This Minireview explores recent advances in enzyme-reticular framework hybrid biocomposites, focusing on the utilization of porous reticular frameworks, including metal-organic frameworks, covalent-organic frameworks, and hydrogen-bonded organic frameworks, to regulate the reactivity of an enzyme encapsulated inside mainly by pore infiltration and in situ encapsulation strategies. We highlight how pore engineering and host-guest interfacial interactions within reticular frameworks create tailored microenvironments that substantially impact the mass transfer and enzyme conformation, leading to biocatalytic rate enhancement, or imparting enzymes with non-native biocatalytic functions, including substrate selectivity and new activity. Additionally, the feasibility of leveraging the photothermal effect of a framework to optimize the local reaction temperature and photoelectric effect to elicit diverse photoenzyme-coupled reactions is also summarized in detail, which can expand the functional repertoire of biocatalytic transformations under light irradiation. This Minireview underscores the potential of reticular frameworks as tunable and reliable platforms to govern biocatalysis, offering pathways for engineering sustainable, efficient, and selective biocatalytic reactors in pharmaceutical, environmental, and energy-related applications.
Collapse
Affiliation(s)
- Linjing Tong
- Sun Yat-sen University MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangzhou 510275, China
| | - Siming Huang
- Guangzhou Medical University Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou 511436, China
| | - Guosheng Chen
- Sun Yat-sen University MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangzhou 510275, China
- Sun Yat-sen University Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Zhuhai 519082, China
| | - Gangfeng Ouyang
- Sun Yat-sen University MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangzhou 510275, China
- Sun Yat-sen University Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Zhuhai 519082, China
| |
Collapse
|
7
|
Li W, Chen J, Guo J, Chan KT, Liang Y, Chen M, Wang J, Gadipelli S, Zhou X, Cheng L. Exploring the multifaceted roles of metal-organic frameworks in ecosystem regulation. J Mater Chem B 2025; 13:2272-2294. [PMID: 39831794 DOI: 10.1039/d4tb01882f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Achieving microecological balance is a complex environmental challenge. This is because the equilibrium of microecological systems necessitates both the eradication of harmful microorganisms and preservation of the beneficial ones. Conventional materials predominantly target the elimination of pathogenic microorganisms and often neglect the protection of advantageous microbial species. Metal-organic frameworks (MOFs) with excellent physicochemical properties (such as crystalline particles of various dimensions with highly porous network topology, variable local networking structures, diverse compositions with functional groups, high specific surface areas and pore volumes for surface and porous guest molecular adsorption/adhesion/affinity/binding and separation) have been extensively studied as a type of bactericidal material. However, only recently, studies on using MOFs to protect microorganisms have been reported. This review provides a comprehensive analysis of the mechanisms and applications of various MOFs (such as ZIF-8, ZIF-90, HKUST-1, MOF-5, and MIL-101) in both microbial eradication and protection. Insights into previous studies on MOF development, the material-bacteria interaction mechanisms, and potential clinical and environmental applications are also elucidated. MOFs with different framework structures/topologies (zeolite, sodalite, scaffolding, diamond, one-dimensional, and spherical/cylindrical cavities/pore networks), particle dimensions, polyhedral, cubic, rod and open/uncoordinated metal centers or fully coordinated metal centers, and ligand functional groups are discussed to understand the varying degrees of activation and interaction of microorganisms. This review holds potential in guiding future research on the design, synthesis, utilization, and integration of MOFs for the targeted eradication and protection of microorganisms and generating novel MOFs with selective antimicrobial and protective properties. Moreover, this review delivers a timely update and outlines future prospects for MOFs and their interaction with microorganisms, emphasizing their potential as a promising candidate among the next generation of smart materials in the field of ecosystem regulation.
Collapse
Affiliation(s)
- Wanjing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Guo
- College of Electronics and Information & Key Laboratory of Information Materials of Sichuan Province, Southwest Minzu University, Chengdu 610225, China.
- College of Physics, Sichuan University, Chengdu 610064, China
| | - Ka Teng Chan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Yini Liang
- College of Electronics and Information & Key Laboratory of Information Materials of Sichuan Province, Southwest Minzu University, Chengdu 610225, China.
| | - Meixuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jing Wang
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha 410008, China
| | - Srinivas Gadipelli
- College of Physics, Sichuan University, Chengdu 610064, China
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Hieu Vo T, Lin SW, Lin MC, Kuan PY, Chen JH, Huang HK, Liu WT, Xu H, Li A, Hsu YA, Wan L, Khanh Lam P, Chou LY, Yang HC, Shieh FK. Exploring Enzyme Encapsulation Efficiency in MOFs Using Eco-Friendly Approaches. CHEMSUSCHEM 2025; 18:e202401568. [PMID: 39327838 DOI: 10.1002/cssc.202401568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The encapsulation of protein enzymes in metal-organic frameworks (MOFs) has been recognized as an effective enzyme immobilization approach. In this study, we demonstrated the influence of enzyme amount and the isoelectric points (pI) of different enzymes on the enzyme loading capacity in both mechanochemical (ball-milling) and water-based approaches. We found that increasing enzyme amounts enhances MOF enzyme loading without compromising activity, while the MOF shell protects encapsulated enzymes from proteinase K degradation through its size-sheltering mechanism. However, an excess of enzymes can hinder the formation of ZIF-90. Moreover, enzymes with low pI values (e. g., catalase, pI 5.4) facilitate encapsulation in MOFs, whereas enzymes with high pI values (e. g., lysozyme, pI 11.35) are more challenging to encapsulate. The simulation results revealed that increasing the enzyme amounts and pI values raises the activation energy necessary for MOF formation. This study highlights the crucial role of enzyme properties in the encapsulation process within MOFs, providing valuable insights for fabricating enzyme-MOF biocomposites for diverse applications, such as protein drug delivery.
Collapse
Affiliation(s)
- Trung Hieu Vo
- Department of Chemistry, National Central University, Taoyuan, Taiwan
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Shang-Wei Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Miao-Chun Lin
- Department of Chemistry, National Central University, Taoyuan, Taiwan
| | - Pu-Yun Kuan
- Department of Chemistry, National Central University, Taoyuan, Taiwan
| | - Jing-Hui Chen
- Department of Chemistry, National Central University, Taoyuan, Taiwan
| | - Hsin-Kai Huang
- Department of Chemistry, National Central University, Taoyuan, Taiwan
| | - Wen-Tzu Liu
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Hui Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu-An Hsu
- Department of Chemistry, National Central University, Taoyuan, Taiwan
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Lei Wan
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Phuc Khanh Lam
- Department of Chemistry, National Central University, Taoyuan, Taiwan
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Fa-Kuen Shieh
- Department of Chemistry, National Central University, Taoyuan, Taiwan
| |
Collapse
|
9
|
Li YM, Shi D, Yuan J, Zuo RM, Yang H, Hu J, Hu SX, Sheng H, Zhu M. In Situ Encapsulation of Atomically Precise Nanoclusters in Reticular Frameworks via Mechanochemical Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412768. [PMID: 39473311 DOI: 10.1002/adma.202412768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Indexed: 01/11/2025]
Abstract
The combination of atomically precise nanoclusters (APNCs) and reticular frameworks is promising for generating component-specific nanocomposites with emergent properties. However, traditional liquid-phase synthesis often hampers this potential by damaging APNCs and limiting combination diversity. Here, mechanochemical synthesis to explore the encapsulation of diverse oil- and water-soluble APNCs within various reticular frameworks is employed, establishing a database of 21 unique APNC-framework combinations, including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), and multivariate MOFs. These framework coatings not only spatially immobilize APNCs but also secure their structures, preventing aggregation and degradation while enhancing stability and activity. Encapsulating Au25 in HOFs resulted in a remarkable 315-fold increase in catalytic activity compared to Au25 homogeneous catalyst, highlighting the framework's crucial role in catalytic enhancement. The mechanochemical synthesis strategy facilitates tailored support screening, catering to specific needs, and shows promise for developing multifunctional systems, including enzyme-APNC@frameworks material for cascade reactions.
Collapse
Affiliation(s)
- Yi-Ming Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
- School of Chemistry and Materials Engineering and Anhui Provincial Key Laboratory of Green Carbon Chemistry, Fuyang Normal University, Fuyang, Anhui, 236041, P. R. China
| | - Dongxia Shi
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jian Yuan
- Avogadral Solutions, 3130 Grants Lake Boulevard #18641, Sugar Land, TX, 77496, USA
| | - Rui-Min Zuo
- Department of Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hui Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jinhui Hu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hongting Sheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
- School of Chemistry and Materials Engineering and Anhui Provincial Key Laboratory of Green Carbon Chemistry, Fuyang Normal University, Fuyang, Anhui, 236041, P. R. China
| |
Collapse
|
10
|
Feng M, Xing C, Jin Y, Feng X, Zhang Y, Wang B. Reticular Chemistry for Enhancing Bioentity Stability and Functional Performance. J Am Chem Soc 2024. [PMID: 39561393 DOI: 10.1021/jacs.4c09259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Addressing the fragility of bioentities that results in instability and compromised performance during storage and applications, reticular chemistry, specifically through metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), offers versatile platforms for stabilization and enhancement of bioentities. These highly porous frameworks facilitate efficient loading and mass transfer, offer confined environments and selective permeability for stabilization and protection, and enable finely tunable biointerfacial interactions and microenvironments for function optimization, significantly broadening the applications of various bioentities, including enzymes, nucleic acids, cells, etc. This Perspective outlines strategies for integrating bioentities with reticular frameworks, highlighting new design ideas for existing issues within these strategies. It emphasizes the crucial roles of these frameworks for bioentities in enhancing stability, boosting activity, imparting non-native functions, and synergizing bioentity systems. Concluding with a discussion of the challenges and prospects in the design, characterization, and practical applications of these biocomposites, this Perspective aims to inspire further development of high-performance biocomposites in this promising field.
Collapse
Affiliation(s)
- Mengchu Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunyan Xing
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yehao Jin
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanyuan Zhang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
11
|
Abdul Aziz SFN, Salleh AB, Normi YM, Mohammad Latif MA, Alang Ahmad SA. Bioinspired mp20 mimicking uricase in ZIF-8: Metal ion dependent for controllable activity. Enzyme Microb Technol 2024; 178:110439. [PMID: 38579423 DOI: 10.1016/j.enzmictec.2024.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Mini protein mimicking uricase (mp20) has shown significant potential as a replacement for natural enzymes in the development of uric acid biosensors. However, the design of mp20 has resulted to an inactive form of peptide, causing of loss their catalytic activity. Herein, this paper delineates the impact of various metal cofactors on the catalytic activity of mp20. The metal ion-binding site prediction and docking (MIB) web server was employed to identify the metal ion binding sites and their affinities towards mp20 residues. Among the tested metal ions, Cu2+ displayed the highest docking score, indicating its preference for interaction with Thr16 and Asp17 residues of mp20. To assess the catalytic activity of mp20 in the presence of metal ions, uric acid assays was monitored using a colorimetric method. The presence of Cu2+ in the assays promotes the activation of mp20, resulting in a color change based on quinoid production. Furthermore, the encapsulation of the mp20 within zeolitic imidazolate framework-8 (ZIF-8) notably improved the stability of the biomolecule. In comparison to the naked mp20, the encapsulated ZIFs biocomposite (mp20@ZIF-8) demonstrates superior stability, selectivity and sensitivity. ZIF's porous shells provides excellent protection, broad detection (3-100 μM) with a low limit (4.4 μM), and optimal function across pH (3.4-11.4) and temperature (20-100°C) ranges. Cost-effective and stable mp20@ZIF-8 surpasses native uricase, marking a significant biosensor technology breakthrough. This integration of metal cofactor optimization and robust encapsulation sets new standards for biosensing applications.
Collapse
Affiliation(s)
- Siti Fatimah Nur Abdul Aziz
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; School of Chemical Sciences, Universiti Sains Malaysia (USM), Gelugor, Pulau Pinang 11800, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Muhammad Alif Mohammad Latif
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Shahrul Ainliah Alang Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
12
|
Navarro-Alapont J, Negro C, Navalón S, Dhakshinamoorthy A, Armentano D, Ferrando-Soria J, Pardo E. Design of Multivariate Biological Metal-Organic Frameworks: Toward Mimicking Active Sites of Enzymes. Inorg Chem 2024; 63:13681-13688. [PMID: 38982342 PMCID: PMC11271005 DOI: 10.1021/acs.inorgchem.4c01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Mimicking enzymatic processes carried out by natural enzymes, which are highly efficient biocatalysts with key roles in living organisms, attracts much interest but constitutes a synthetic challenge. Biological metal-organic frameworks (bioMOFs) are potential candidates to be enzyme catalysis mimics, as they offer the possibility to combine biometals and biomolecules into open-framework porous structures capable of simulating the catalytic pockets of enzymes. In this work, we first study the catalase activity of a previously reported bioMOF, derived from the amino acid L-serine, with formula {CaIICuII6[(S,S)-serimox]3(OH)2(H2O)} · 39H2O (1) (serimox = bis[(S)-serine]oxalyl diamide), which is indeed capable to mimic catalase enzymes, in charge of preventing cell oxidative damage by decomposing, efficiently, hydrogen peroxide to water and oxygen (2H2O2 → 2 H2O + O2). With these results in hand, we then prepared a new multivariate bioMOF (MTV-bioMOF) that combines two different types of bioligands derived from L-serine and L-histidine amino acids with formula CaIICuII6[(S,S)-serimox]2[(S,S)-hismox]1(OH)2(H2O)}·27H2O (2) (hismox = bis[(S)-histidine]oxalyl diamide ligand). MTV-bioMOF 2 outperforms 1 degrading hydrogen peroxide, confirming the importance of the amino acid residue from the histidine amino acid acting as a nucleophile in the catalase degradation mechanism. Despite displaying a more modest catalytic behavior than other reported MOF composites, in which the catalase enzyme is immobilized inside the MOF, this work represents the first example of a MOF in which an attempt is made to replicate the active center of the catalase enzyme with its constituent elements and is capable of moderate catalytic activity.
Collapse
Affiliation(s)
- Javier Navarro-Alapont
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, 46980 Paterna, Valencia, Spain
| | - Cristina Negro
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, 46980 Paterna, Valencia, Spain
| | - Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia 46022, Spain
| | | | - Donatella Armentano
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036 Cosenza, Italy
| | - Jesús Ferrando-Soria
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, 46980 Paterna, Valencia, Spain
| | - Emilio Pardo
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia 46022, Spain
| |
Collapse
|
13
|
Wang H, Kou X, Gao R, Huang S, Chen G, Ouyang G. Enzyme-Immobilized Porous Crystals for Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11869-11886. [PMID: 38940189 DOI: 10.1021/acs.est.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Developing efficient technologies to eliminate or degrade contaminants is paramount for environmental protection. Biocatalytic decontamination offers distinct advantages in terms of selectivity and efficiency; however, it still remains challenging when applied in complex environmental matrices. The main challenge originates from the instability and difficult-to-separate attributes of fragile enzymes, which also results in issues of compromised activity, poor reusability, low cost-effectiveness, etc. One viable solution to harness biocatalysis in complex environments is known as enzyme immobilization, where a flexible enzyme is tightly fixed in a solid carrier. In the case where a reticular crystal is utilized as the support, it is feasible to engineer next-generation biohybrid catalysts functional in complicated environmental media. This can be interpreted by three aspects: (1) the highly crystalline skeleton can shield the immobilized enzyme against external stressors. (2) The porous network ensures the high accessibility of the interior enzyme for catalytic decontamination. And (3) the adjustable and unambiguous structure of the reticular framework favors in-depth understanding of the interfacial interaction between the framework and enzyme, which can in turn guide us in designing highly active biocomposites. This Review aims to introduce this emerging biocatalysis technology for environmental decontamination involving pollutant degradation and greenhouse gas (carbon dioxide) conversion, with emphasis on the enzyme immobilization protocols and diverse catalysis principles including single enzyme catalysis, catalysis involving enzyme cascades, and photoenzyme-coupled catalysis. Additionally, the remaining challenges and forward-looking directions in this field are discussed. We believe that this Review may offer a useful biocatalytic technology to contribute to environmental decontamination in a green and sustainable manner and will inspire more researchers at the intersection of the environment science, biochemistry, and materials science communities to co-solve environmental problems.
Collapse
Affiliation(s)
- Hao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Siming Huang
- Guangzhou Municipal and Guangzhou Province Key Laboratory of Molecular Target & Clinical Phamacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Phamaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
14
|
Zheng D, Zheng Y, Tan J, Zhang Z, Huang H, Chen Y. Co-immobilization of whole cells and enzymes by covalent organic framework for biocatalysis process intensification. Nat Commun 2024; 15:5510. [PMID: 38951487 PMCID: PMC11217415 DOI: 10.1038/s41467-024-49831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Co-immobilization of cells and enzymes is often essential for the cascade biocatalytic processes of industrial-scale feasibility but remains a vast challenge. Herein, we create a facile co-immobilization platform integrating enzymes and cells in covalent organic frameworks (COFs) to realize the highly efficient cascade of inulinase and E. coli for bioconversion of natural products. Enzymes can be uniformly immobilized in the COF armor, which coats on the cell surface to produce cascade biocatalysts with high efficiency, stability and recyclability. Furthermore, this one-pot in situ synthesis process facilitates a gram-scale fabrication of enzyme-cell biocatalysts, which can generate a continuous-flow device conversing inulin to D-allulose, achieving space-time yield of 161.28 g L-1 d-1 and high stability (remaining >90% initial catalytic efficiency after 7 days of continuous reaction). The created platform is applied for various cells (e.g., E. coli, Yeast) and enzymes, demonstrating excellent universality. This study paves a pathway to break the bottleneck of extra- and intracellular catalysis, creates a high-performance and customizable platform for enzyme-cell cascade biomanufacturing, and expands the scope of biocatalysis process intensification.
Collapse
Affiliation(s)
- Dong Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Yunlong Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Junjie Tan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
15
|
Zhang S, Gan Y, Wang H, Qi X, Su P, Song J, Yang Y. Enhancing Chymotrypsin Activity and Stability of Capillary Immobilized Enzyme Microreactors Using Zeolitic Imidazolate Frameworks as Encapsulation Materials. Anal Chem 2024; 96:9228-9235. [PMID: 38779801 DOI: 10.1021/acs.analchem.4c01425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Open-tubular immobilized enzyme microreactors (OT-IMERs) are some of the most widely used enzyme reaction devices due to the advantages of simple preparation and fast sample processing. However, the traditional approaches for OT-IMERs preparation had some defects such as limited enzyme loading amount, susceptibility to complex sample interference, and less stability. Here, we report a strategy for the preparation of highly active and stable OT-IMERs, in which the single-stranded DNA-enzyme composites were immobilized in capillaries and then encapsulated in situ in the capillaries via zeolitic imidazolate frameworks (ZIF-L). The phosphate groups of the DNA adjusted the surface potential of the enzyme to negative values, which could attract cations, such as Zn2+, to promote the formation of ZIF-L for enzyme encapsulation. Using chymotrypsin (ChT) as a model enzyme, the prepared ChT@ZIF-L-IMER has higher activity and better affinity than the free enzyme and ChT-IMER. Moreover, the thermal stability, pH stability, and organic solvent stability of ChT@ZIF-L-IMER were much higher than those of free enzyme and ChT-IMER. Furthermore, the activity of ChT@ZIF-L-IMER was much higher than that of ChT-IMER after ten consecutive reactions. To demonstrate the versatility of this preparation method, we replaced ChT with glucose oxidase (GOx). The stability of GOx@ZIF-L-IMER was also experimentally demonstrated to be superior to that of GOx and GOx-IMER. Finally, ChT@ZIF-L-IMER was used for proteolytic digestion analysis. The results showed that ChT@ZIF-L-IMER had a short digestion time and high digestive efficiency compared with the free enzyme. The present study broadened the synthesis method of OT-IMERs, effectively integrating the advantages of metal-organic frameworks and IMER, and the prepared OT-IMERs significantly improved enzyme stability. All of the results indicated that the IMER prepared by this method had a broad application prospect in capillary electrophoresis-based high-performance enzyme analysis.
Collapse
Affiliation(s)
- Shuyi Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yijia Gan
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Han Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xingyi Qi
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
16
|
Zhang S, Xiong J, Wang S, Li Z, Qin L, Sun B, Wang Z, Liu X, Zheng Y, Jiang H. Four birds with one stone: Aggregation-induced emission-type zeolitic imidazolate framework-8 based bionic nanoreactor for portable detection of olaquindox in environmental water and swine urine by smartphone. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134068. [PMID: 38521040 DOI: 10.1016/j.jhazmat.2024.134068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
The abuse of olaquindox (OLA) as both an antimicrobial agent and a growth promoter poses significant threats to the environment and human health. While nanoreactors have proven effective in hazard detection, their widespread adoption has been hindered by tedious chemical processes and limited functionality. In this study, we introduce a novel green self-assembly strategy utilizing invertase, horseradish peroxidase, antibodies, and gold nanoclusters to form an aggregation-induced emission-type zeolitic imidazolate framework-8 nanoreactor. The results demonstrate that the lateral flow immunoassay not only allows for qualitative naked eye detection but also enables optical analysis through the fluorescence generated by aggregated gold nanoclusters and enzyme-catalyzed enhancement of visible colorimetric signals. To accommodate more detection scenarios, the photothermal effects and redox reactions of the nanoreactor can fulfill the requirements of thermal sensing and electrochemical analysis for smartphone applications. Remarkably, the proposed approach achieves a detection limit 17 times lower than conventional methods. Besides, the maximum linear range spans from 0.25 to 5 μg/L with high specificity, and the recovery is 85.2-112.9% in environmental water and swine urine. The application of this high-performance nanoreactor opens up avenues for the construction of multifunctional biosensors with great potential in monitoring hazardous materials.
Collapse
Affiliation(s)
- Shuai Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jincheng Xiong
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Sihan Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Zhaoyang Li
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Linqian Qin
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Boyan Sun
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Zile Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Xingxing Liu
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yongjun Zheng
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
17
|
Li N, Chen L, Huang W, Hao M, Tu H, Shen H, Yang F, Yu S. Enzyme-integrated metal-organic framework platform for cascade detection of α-amylase. Int J Biol Macromol 2024; 268:131870. [PMID: 38670199 DOI: 10.1016/j.ijbiomac.2024.131870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
As one of the most important industrial enzymes, α-amylase is widely used in food processing, such as starch sugar and fermentation, bringing high added value to industry of more than a trillion dollars. We developed a multi-enzyme system (Glu&Gox@Cu-MOF-74) prepared by embedding α-glucosidase (Glu) and glucose oxidase (Gox) into the biomimetic metal-organic framework Cu-MOF-74 using in situ encapsulation within 15 min at room temperature for efficient and sensitive detection of α-amylase activity. Benefitting from the remarkable peroxidase-mimicking property and rigid skeleton of Cu-MOF-74, the biocatalytic platform exhibited excellent cascade activity and tolerance in various extremely harsh environments compared to natural enzymes. On this basis, a cascade biocatalytic platform was constructed for the detection of α-amylase activity with wide linear range (5-100 U/L) and low limit of detection (1.45 U/L). The colorimetric cascade scheme is important for the sensitive and selective determination of α-amylase in complex fermentation samples, and the detection time is short (∼0.5 h). This work provides new ideas for the detection of α-amylase based on the cascade amplification method.
Collapse
Affiliation(s)
- Nana Li
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Liangqiang Chen
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Wanqiu Huang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Mengdi Hao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Huabin Tu
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Hao Shen
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
18
|
Weng Y, Chen R, Hui Y, Chen D, Zhao CX. Boosting Enzyme Activity in Enzyme Metal-Organic Framework Composites. CHEM & BIO ENGINEERING 2024; 1:99-112. [PMID: 38566967 PMCID: PMC10983012 DOI: 10.1021/cbe.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Enzymes, as highly efficient biocatalysts, excel in catalyzing diverse reactions with exceptional activity and selective properties under mild conditions. Nonetheless, their broad applications are hindered by their inherent fragility, including low thermal stability, limited pH tolerance, and sensitivity to organic solvents and denaturants. Encapsulating enzymes within metal-organic frameworks (MOFs) can protect them from denaturation in these harsh environments. However, this often leads to a compromised enzyme activity. In recent years, extensive research efforts have been dedicated to enhancing enzymatic activity within MOFs, leading to the development of new enzyme-MOF composites that not only preserve their catalytic potential but also outperform their free counterparts. This Review provides a comprehensive review on recent developments in enzyme-MOF composites with a specific emphasis on their enhanced enzymatic activity compared to free enzymes.
Collapse
Affiliation(s)
- Yilun Weng
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Rui Chen
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Yue Hui
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Dong Chen
- State
Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310003, China
| | - Chun-Xia Zhao
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
19
|
Lenertz M, Li Q, Armstrong Z, Scheiwiller A, Ni G, Wang J, Feng L, MacRae A, Yang Z. Magnetic Multienzyme@Metal-Organic Material for Sustainable Biodegradation of Insoluble Biomass. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11617-11626. [PMID: 38410049 DOI: 10.1021/acsami.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Biodegradation of insoluble biomass such as cellulose via carbohydrase enzymes is an effective approach to break down plant cell walls and extract valuable materials therein. Yet, the high cost and poor reusability of enzymes are practical concerns. We recently proved that immobilizing multiple digestive enzymes on metal-organic materials (MOMs) allows enzymes to be reused via gravimetric separation, improving the cost efficiency of cereal biomass degradation [ACS Appl. Mater. Interfaces 2021, 13, 36, 43085-43093]. However, this strategy cannot be adapted for enzymes whose substrates or products are insoluble (e.g., cellulose crystals). Recently, we described an alternative approach based on magnetic metal-organic frameworks (MOFs) using model enzymes/substrates [ACS Appl. Mater. Interfaces 2020, 12, 37, 41794-41801]. Here, we aim to prove the effectiveness of combining these two strategies in cellulose degradation. We immobilized multiple carbohydrase enzymes that cooperate in cellulose degradation via cocrystallization with Ca2+, a carboxylate ligand (BDC) in the absence and presence of magnetic nanoparticles (MNPs). We then compared the separation efficiency and enzyme reusability of the resultant multienzyme@Ca-BDC and multienzyme@MNP-Ca-BDC composites via gravimetric and magnetic separation, respectively, and found that, although both composites were effective in cellulose degradation in the first round, the multienzyme@MNP-Ca-BDC composites displayed significantly enhanced reusability. This work provides the first experimental demonstration of using magnetic solid supports to immobilize multiple carbohydrase enzymes simultaneously and degrade cellulose and promotes green/sustainable chemistry in three ways: (1) reusing the enzymes saves energy/sources to prepare them, (2) the synthetic conditions are "green" without generating unwanted wastes, and (3) using our composites to degrade cellulose is the first step of extracting valuable materials from sustainable biomasses such as plants whose growth does not rely on nonregeneratable resources.
Collapse
Affiliation(s)
- Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Allison Scheiwiller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Gigi Ni
- Department of Chemistry and Chemical Biology, Harvard University, Boston, Massachusetts 02138, United States
| | - Jien Wang
- California State University, San Marcos, San Marcos, California 92096, United States
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
20
|
Wang D, Wu Q, Ren X, Niu M, Ren J, Meng X. Tunable Zeolitic Imidazolate Framework-8 Nanoparticles for Biomedical Applications. SMALL METHODS 2024; 8:e2301270. [PMID: 37997211 DOI: 10.1002/smtd.202301270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Indexed: 11/25/2023]
Abstract
Zeolite imidazole framework-8 (ZIF-8) is the most prestigious one among zeolitic imidazolate framework (ZIF) with tunable dimensions and unique morphological features. Utilizing its synthetic adjustability and structural regularity, ZIF-8 exhibits enhanced flexibility, allowing for a wide range of functionalities, such as loading of nanoparticle components while preserving biomolecules activity. Extensive efforts are made from investigating synthesis techniques to develop novel applications over decades. In this review, the development and recent progress of various synthesis approaches are briefly summarized. In addition, its interesting properties such as adjustable porosity, excellent thermal, and chemical stabilities are introduced. Further, five representative biomedical applications are highlighted based on above physicochemical properties. Finally, the remaining challenges and offered insights into the future outlook are also discussed. This review aims to understand the co-relationships between structures and biomedical functionalities, offering the opportunity to construct attractive materials with promising characteristics.
Collapse
Affiliation(s)
- Dongdong Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang, 110001, China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Ren S, Wang F, Gao H, Han X, Zhang T, Yuan Y, Zhou Z. Recent Progress and Future Prospects of Laccase Immobilization on MOF Supports for Industrial Applications. Appl Biochem Biotechnol 2024; 196:1669-1684. [PMID: 37378720 DOI: 10.1007/s12010-023-04607-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Laccase is a multicopper oxidoreductase enzyme that can oxidize organics such as phenolic compounds. Laccases appear to be unstable at room temperature, and their conformation often changes in a strongly acidic or alkaline environment, making them less effective. Therefore, rationally linking enzymes with supports can effectively improve the stability and reusability of native enzymes and add important industrial value. However, in the process of immobilization, many factors may lead to a decrease in enzymatic activity. Therefore, the selection of a suitable support can ensure the activity and economic utilization of immobilized catalysts. Metal-organic frameworks (MOFs) are porous and simple hybrid support materials. Moreover, the characteristics of the metal ion ligand of MOFs can enable a potential synergistic effect with the metal ions of the active center of metalloenzymes, enhancing the catalytic activity of such enzymes. Therefore, in addition to summarizing the biological characteristics and enzymatic properties of laccase, this article reviews laccase immobilization using MOF supports, as well as the application prospects of immobilized laccase in many fields.
Collapse
Affiliation(s)
- Sizhu Ren
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000, Hebei Province, People's Republic of China
- Edible and Medicinal Fungi Research and Development Center of Hebei Universities, Langfang, 065000, Hebei Province, People's Republic of China
| | - Fangfang Wang
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Hui Gao
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Xiaoling Han
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Tong Zhang
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Yanlin Yuan
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China.
| | - Zhiguo Zhou
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China.
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000, Hebei Province, People's Republic of China.
- Edible and Medicinal Fungi Research and Development Center of Hebei Universities, Langfang, 065000, Hebei Province, People's Republic of China.
| |
Collapse
|
22
|
Pina-Vidal C, Berned-Samatán V, Piera E, Caballero MÁ, Téllez C. Mechanochemical Encapsulation of Caffeine in UiO-66 and UiO-66-NH 2 to Obtain Polymeric Composites by Extrusion with Recycled Polyamide 6 or Polylactic Acid Biopolymer. Polymers (Basel) 2024; 16:637. [PMID: 38475320 DOI: 10.3390/polym16050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The development of capsules with additives that can be added to polymers during extrusion processing can lead to advances in the manufacturing of textile fabrics with improved and durable properties. In this work, caffeine (CAF), which has anti-cellulite properties, has been encapsulated by liquid-assisted milling in zirconium-based metal-organic frameworks (MOFs) with different textural properties and chemical functionalization: commercial UiO-66, UiO-66 synthesized without solvents, and UiO-66-NH2 synthesized in ethanol. The CAF@MOF capsules obtained through the grinding procedure have been added during the extrusion process to recycled polyamide 6 (PA6) and to a biopolymer based on polylactic acid (PLA) to obtain a load of approximately 2.5 wt% of caffeine. The materials have been characterized by various techniques (XRD, NMR, TGA, FTIR, nitrogen sorption, UV-vis, SEM, and TEM) that confirm the caffeine encapsulation, the preservation of caffeine during the extrusion process, and the good contact between the polymer and the MOF. Studies of the capsules and PA6 polymer+capsules composites have shown that release is slower when caffeine is encapsulated than when it is free, and the textural properties of UiO-66 influence the release more prominently than the NH2 group. However, an interaction is established between the biopolymer PLA and caffeine that delays the release of the additive.
Collapse
Affiliation(s)
- Cristina Pina-Vidal
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Víctor Berned-Samatán
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Elena Piera
- Research and Development Department, Nurel S.A., Ctra. Barcelona km 329, 50016 Zaragoza, Spain
| | - Miguel Ángel Caballero
- Research and Development Department, Nurel S.A., Ctra. Barcelona km 329, 50016 Zaragoza, Spain
| | - Carlos Téllez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
23
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
24
|
Sterin I, Hadynski J, Tverdokhlebova A, Masi M, Katz E, Wriedt M, Smutok O. Electrochemical and Biocatalytic Signal-Controlled Payload Release from a Metal-Organic Framework. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308640. [PMID: 37747462 DOI: 10.1002/adma.202308640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/12/2023] [Indexed: 09/26/2023]
Abstract
A metal-organic framework (MOF), ZIF-8, which is stable at neutral and slightly basic pH values in aqueous solutions and destabilized/dissolved under acidic conditions, is loaded with a pH-insensitive fluorescent dye, rhodamine-B isothiocyanate, as a model payload species. Then, the MOF species are immobilized at an electrode surface. The local (interfacial) pH value is rapidly decreased by means of an electrochemically stimulated ascorbate oxidation at +0.4 V (Ag/AgCl/KCl). Oxygen reduction upon switching the applied potential to -0.8 V allows to return the local pH to the neutral/basic pH, then stopping rapidly the release process. The developed method allows electrochemical control over stimulated or inhibited payload release processes from the MOF. The pH variation proceeds in a thin film of the solution near the electrode surface. The switchable release process is realized in a buffer solution and undiluted human serum. As the second option, the pH decrease stimulating the release process is achieved upon an enzymatic reaction using esterase and ester substrate. This approach potentially allows the release activation controlled by numerous enzymes assembled in complex biocatalytic cascades. It is expected that related electrochemical or biocatalytic systems can represent novel signal-responding materials with switchable features for delivering (bio)molecules within biomedical applications.
Collapse
Affiliation(s)
- Ilya Sterin
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - John Hadynski
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Anna Tverdokhlebova
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Madeline Masi
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Mario Wriedt
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699, USA
| |
Collapse
|
25
|
Saddique Z, Imran M, Javaid A, Rizvi NB, Akhtar MN, Iqbal HMN, Bilal M. Enzyme-Linked Metal Organic Frameworks for Biocatalytic Degradation of Antibiotics. Catal Letters 2024; 154:81-93. [DOI: 10.1007/s10562-022-04261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 02/13/2023]
Abstract
AbstractMetal organic frameworks (MOFs) are multi-dimensional network of crystalline material held together by bonding of metal atoms and organic ligands. Owing to unique structural, chemical, and physical properties, MOFs has been used for enzyme immobilization to be employed in different catalytic process, including catalytic degradation of antibiotics. Immobilization process other than providing large surface provides enzyme with enhanced stability, catalytic activity, reusability, and selectivity. There are various approaches of enzyme immobilization over MOFs including physical adsorption, chemical bonding, diffusion and in situ encapsulation. In situ encapsulation is one the best approach that provides extra stability from unfolding and denaturation in harsh industrial conditions. Presence of antibiotic in environment is highly damaging for human in particular and ecosystem in general. Different methods such as ozonation, oxidation, chlorination and catalysis are available for degradation or removal of antibiotics from environment, however these are associated with several issues. Contrary to these, enzyme immobilized MOFs are novel system to be used in catalytic degradation of antibiotics. Enzyme@MOFs are more stable, reusable and more efficient owing to additional support of MOFs to natural enzymes in well-established process of photocatalysis for degradation of antibiotics aimed at environmental remediation. Prime focus of this review is to present catalytic degradation of antibiotics by enzyme@MOFs while outlining their synthetics approaches, characterization, and mechanism of degradation. Furthermore, this review highlights the significance of enzyme@MOFs system for antibiotics degradation in particular and environmental remediation in general. Current challenges and future perspective of research in this field are also outlined along with concluding comments.
Graphical Abstract
Collapse
|
26
|
Abdul Aziz SFN, Hui OS, Salleh AB, Normi YM, Yusof NA, Ashari SE, Alang Ahmad SA. Enhancing uric acid electrochemical detection with copper ion-activated mini protein mimicking uricase within ZIF-8: response surface methodology (RSM) optimization. Anal Bioanal Chem 2024; 416:227-241. [PMID: 37938411 DOI: 10.1007/s00216-023-05011-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
This study aims to investigate the influence of copper(II) ions as a cofactor on the electrochemical performance of a biocomposite consisting of a mini protein mimicking uricase (mp20) and zeolitic immidazolate framework-8 (ZIF-8) for the detection of uric acid. A central composite design (CCD) was utilized to optimize the independent investigation, including pH, deposition potential, and deposition time, while the current response resulting from the electrocatalytic oxidation of uric acid was used as the response. The statistical analysis of variance (ANOVA) showed a good correlation between the experimental and predicted data, with a residual standard error percentage (RSE%) of less than 2% for predicting optimal conditions. The synergistic effect of the nanoporous ZIF-8 host, Cu(II)-activated mp20, and reduced graphene oxide (rGO) layer resulted in a highly sensitive biosensor with a limit of detection (LOD) of 0.21 μM and a reproducibility of the response (RSD = 0.63%). The Cu(II)-activated mp20@ZIF-8/rGO/SPCE was highly selective in the presence of common interferents, and the fabricated layer exhibited remarkable stability with signal changes below 4.15% after 60 days. The biosensor's reliable performance was confirmed through real sample analyses of human serum and urine, with comparable recovery values to conventional HPLC.
Collapse
Affiliation(s)
- Siti Fatimah Nur Abdul Aziz
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800, Gelugor, Pulau Pinang, Malaysia.
| | - Ong Sin Hui
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Efliza Ashari
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Shahrul Ainliah Alang Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
27
|
Nwoye E, Raghuraman S, Costales M, Batteas J, Felts JR. Mechanistic model for quantifying the effect of impact force on mechanochemical reactivity. Phys Chem Chem Phys 2023; 25:29088-29097. [PMID: 37862006 DOI: 10.1039/d3cp02549g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Conventional mechanochemical synthetic tools, such as ball mills, offer no methodology to quantitatively link macroscale reaction parameters, such as shaking frequency or milling ball radius, to fundamental drivers of reactivity, namely the force vectors applied to the reactive molecules. As a result, although mechanochemistry has proven to be a valuable method to make a wide variety of products, the results are seldom reproduceable between reactors, difficult to rationally optimize, and hard to ascribe to a specific reaction pathway. Here we have developed a controlled force reactor, which is a mechanochemical ball mill reactor with integrated force measurement and control during each impact. We relate two macroscale reactor parameters-impact force and impact time-to thermodynamic and kinetic transition state theories of mechanochemistry utilizing continuum contact mechanics principles. We demonstrate force controlled particle fracture of NaCl to characterize particle size evolution during reactions, and force controlled reaction between anhydrous copper(II) chloride and (1, 10) phenanthroline. During the fracture of NaCl, we monitor the evolution of particle size as a function of impact force and find that particles quickly reach a particle size of ∼100 μm largely independent of impact force, and reach steady state 10-100× faster than reaction kinetics of typical mechanochemical reactions. We monitor the copper(II) chloride reactivity by measuring color change during reaction. Applying our transition state theory developed here to the reaction curves of copper(II) chloride and (1, 10) phenanthroline at multiple impact forces results in an activation energy barrier of 0.61 ± 0.07 eV, distinctly higher than barriers for hydrated metal salts and organic ligands and distinctly lower than the direct cleavage of the CuCl bond, indicating that the reaction may be mediated by the higher affinity of Fe in the stainless steel vessel to Cl. We further show that the results in the controlled force reactor match rudimentary estimations of impact force within a commercial ball mill reactor Retsch MM400. These results demonstrate the ability to quantitatively link macroscale reactor parameters to reaction properties, motivating further work to make mechanochemical synthesis quantitative, predictable, and fundamentally insightful.
Collapse
Affiliation(s)
- Emmanuel Nwoye
- Advanced Nanomanufacturing Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, Texas-77843-3123, USA.
| | | | - Maya Costales
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - James Batteas
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Jonathan R Felts
- Advanced Nanomanufacturing Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, Texas-77843-3123, USA.
| |
Collapse
|
28
|
Gao R, Kou X, He R, Shen Y, Guo L, Wang H, Huang S, Chen G, Ouyang G. Protocol for mechanochemistry-guided assembly strategy for enzyme encapsulation using covalent organic frameworks. STAR Protoc 2023; 4:102421. [PMID: 37432851 PMCID: PMC10362197 DOI: 10.1016/j.xpro.2023.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/16/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Enzyme immobilization into porous frameworks is an emerging strategy for enhancing the stability of dynamic conformation and prolonging the lifespan of enzymes. Here, we present a protocol for a de novo mechanochemistry-guided assembly strategy for enzyme encapsulation using covalent organic frameworks. We describe steps for mechanochemical synthesis, enzyme loading measurements, and material characterizations. We then detail evaluations of biocatalytic activity and recyclability. For complete details on the use and execution of this protocol, please refer to Gao et al. (2022).1.
Collapse
Affiliation(s)
- Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongwei He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yujiang Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lihong Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
29
|
Escamilla P, Bartella L, Sanz-Navarro S, Percoco RM, Di Donna L, Prejanò M, Marino T, Ferrando-Soria J, Armentano D, Leyva-Pérez A, Pardo E. Degradation of Penicillinic Antibiotics and β-Lactamase Enzymatic Catalysis in a Biomimetic Zn-Based Metal-Organic Framework. Chemistry 2023; 29:e202301325. [PMID: 37279057 DOI: 10.1002/chem.202301325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
β-Lactam antibiotics are one of the most commonly prescribed drugs to treat bacterial infections. However, their use has been somehow limited given the emergence of bacteria with resistance mechanisms, such as β-lactamases, which inactivate them by degrading their four-membered β-lactam rings. So, a total knowledge of the mechanisms governing the catalytic activity of β-lactamases is required. Here, we report a novel Zn-based metal-organic framework (MOF, 1), possessing functional channels capable to accommodate and interact with antibiotics, which catalyze the selective hydrolysis of the penicillinic antibiotics amoxicillin and ceftriaxone. In particular, MOF 1 degrades, very efficiently, the four-membered β-lactam ring of amoxicillin, acting as a β-lactamase mimic, and expands the very limited number of MOFs capable to mimic catalytic enzymatic processes. Combined single-crystal X-ray diffraction (SCXRD) studies and density functional (DFT) calculations offer unique snapshots on the host-guest interactions established between amoxicillin and the functional channels of 1. This allows to propose a degradation mechanism based on the activation of a water molecule, promoted by a Zn-bridging hydroxyl group, concertedly to the nucleophilic attack to the carbonyl moiety and the cleaving of C-N bond of the lactam ring.
Collapse
Affiliation(s)
- Paula Escamilla
- Instituto de Ciencia Molecular (ICMOL), Universitat deValència Paterna, 46980, València, Spain
| | - Lucia Bartella
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
- QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Sergio Sanz-Navarro
- Instituto de Tecnología Química, Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), 46022, Valencia, Spain
| | - Rita Maria Percoco
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Leonardo Di Donna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
- QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Jesús Ferrando-Soria
- Instituto de Ciencia Molecular (ICMOL), Universitat deValència Paterna, 46980, València, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), 46022, Valencia, Spain
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMOL), Universitat deValència Paterna, 46980, València, Spain
| |
Collapse
|
30
|
Li X, Jing X, Yu Z, Huang Y. Diverse Antibacterial Treatments beyond Antibiotics for Diabetic Foot Ulcer Therapy. Adv Healthc Mater 2023; 12:e2300375. [PMID: 37141030 DOI: 10.1002/adhm.202300375] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/06/2023] [Indexed: 05/05/2023]
Abstract
Diabetic foot ulcer (DFU), a common complication of diabetes, has become a great burden to both patients and the society. The delayed wound closure of ulcer sites resulting from vascular damage and neutrophil dysfunction facilitates bacterial infection. Once drug resistance occurs or bacterial biofilm is formed, conventional therapy tends to fail and amputation is unavoidable. Therefore, effective antibacterial treatment beyond antibiotics is of utmost importance to accelerate the wound healing process and prevent amputation. Considering the complexity of multidrug resistance, biofilm formation, and special microenvironments (such as hyperglycemia, hypoxia, and abnormal pH value) at the infected site of DFU, several antibacterial agents and different mechanisms have been explored to achieve the desired outcome. The present review focuses on the recent progress of antibacterial treatments, including metal-based medications, natural and synthesized antimicrobial peptides, antibacterial polymers, and sensitizer-based therapy. This review provides a valuable reference for the innovation of antibacterial material design for DFU therapy.
Collapse
Affiliation(s)
- Xiaoyuan Li
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Xin Jing
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Ziqian Yu
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| |
Collapse
|
31
|
Fan X, Zhang P, Fan M, Jiang P, Leng Y. Immobilized lipase for sustainable hydrolysis of acidified oil to produce fatty acid. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02891-4. [PMID: 37329348 DOI: 10.1007/s00449-023-02891-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
Acidified oil is obtained from by-product of crops oil refining industry, which is considered as a low-cost material for fatty acid production. Hydrolysis of acidified oil by lipase catalysis for producing fatty acid is a sustainable and efficient bioprocess that is an alternative of continuous countercurrent hydrolysis. In this study, lipase from Candida rugosa (CRL) was immobilized on magnetic Fe3O4@SiO2 via covalent binding strategy for highly efficient hydrolysis of acidified soybean oil. FTIR, XRD, SEM and VSM were used to characterize the immobilized lipase (Fe3O4@SiO2-CRL). The enzyme properties of the Fe3O4@SiO2-CRL were determined. Fe3O4@SiO2-CRL was used to catalyze the hydrolysis of acidified soybean oil to produce fatty acids. Catalytic reaction conditions were studied, including amount of catalyst, reaction time, and water/oil ratio. The results of optimization indicated that the hydrolysis rate reached 98% under 10 wt.% (oil) of catalyst, 3:1 (v/v) of water/oil ratio, and 313 K after 12 h. After 5 cycles, the hydrolysis activity of Fe3O4@SiO2-CRL remained 55%. Preparation of fatty acids from high-acid-value by-products through biosystem shows great industrial potential.
Collapse
Affiliation(s)
- Xiulin Fan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Pingbo Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Mingming Fan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Pingping Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Leng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
32
|
Huang Q, Yang Y, Qian J. Structure-directed growth and morphology of multifunctional metal-organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
33
|
Gumbo M, Makhubela BCE, Amombo Noa FM, Öhrström L, Al-Maythalony B, Mehlana G. Hydrogenation of Carbon Dioxide to Formate by Noble Metal Catalysts Supported on a Chemically Stable Lanthanum Rod-Metal-Organic Framework. Inorg Chem 2023. [PMID: 37256920 DOI: 10.1021/acs.inorgchem.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The conversion of carbon dioxide to formate is of great importance for hydrogen storage as well as being a step to access an array of olefins. Herein, we have prepared a JMS-5 metal-organic framework (MOF) using a bipyridyl dicarboxylate linker, with the molecular formula [La2(bpdc)3/2(dmf)2(OAc)3]·dmf. The MOF was functionalized by cyclometalation using Pd(II), Pt(II), Ru(II), Rh(III), and Ir(III) complexes. All metal catalysts supported on JMS-5 showed activity for CO2 hydrogenation to formate, with Rh(III)@JMS-5a and Ir(III)@JMS-5a yielding 4319 and 5473 TON, respectively. X-ray photoelectron spectroscopy of the most active catalyst Ir(III)@JMS-5a revealed that the iridium binding energies shifted to lower values, consistent with formation of Ir-H active species during catalysis. The transmission electron microscopy images of the recovered catalysts of Ir(III)@JMS-5a and Rh(III)@JMS-5a did not show any nanoparticles. This suggests that the catalytic activity observed was due to Ir(III) and Rh(III). The high activity displayed by Ir(III)@JMS-5a and Rh(III)@JMS-5a compared to using the Ir(III) and Rh(III) complexes on their own is attributed to the stabilization of the Ir(III) and Rh(III) on the nitrogen and carbon atom of the MOF backbone.
Collapse
Affiliation(s)
- Maureen Gumbo
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University, Private Bag 9055, Senga Road, Gweru 263, Zimbabwe
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Kingsway Campus: C2 Lab 328, Auckland Park, Johannesburg 2006, South Africa
| | - Banothile C E Makhubela
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Kingsway Campus: C2 Lab 328, Auckland Park, Johannesburg 2006, South Africa
| | - Francoise M Amombo Noa
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Lars Öhrström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Bassem Al-Maythalony
- Materials Discovery Research Unit, Advanced Research Centre, Royal Scientific Society, Amman 11941, Jordan
| | - Gift Mehlana
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University, Private Bag 9055, Senga Road, Gweru 263, Zimbabwe
| |
Collapse
|
34
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
35
|
Ling Y, Nie D, Huang Y, Deng M, Liu Q, Shi J, Ouyang S, Yang Y, Deng S, Lu Z, Yang J, Wang Y, Huang R, Shi W. Antioxidant Cascade Nanoenzyme Antagonize Inflammatory Pain by Modulating MAPK/p-65 Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206934. [PMID: 36808856 PMCID: PMC10131840 DOI: 10.1002/advs.202206934] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Chronic pain has attracted wide interest because it is a major obstacle affecting the quality of life. Consequently, safe, efficient, and low-addictive drugs are highly desirable. Nanoparticles (NPs) with robust anti-oxidative stress and anti-inflammatory properties possess therapeutic possibilities for inflammatory pain. Herein, a bioactive zeolitic imidazolate framework (ZIF)-8-capped superoxide dismutase (SOD) and Fe3 O4 NPs (SOD&Fe3 O4 @ZIF-8, SFZ) is developed to achieve enhanced catalytic, antioxidative activities, and inflammatory environment selectivity, ultimately improving analgesic efficacy. SFZ NPs reduce tert-butyl hydroperoxide (t-BOOH)-induced reactive oxygen species (ROS) overproduction, thereby depressing the oxidative stress and inhibiting the lipopolysaccharide (LPS)-induced inflammatory response in microglia. After intrathecal injection, SFZ NPs efficiently accumulate at the lumbar enlargement of the spinal cord and significantly relieve complete Freund's adjuvant (CFA)-induced inflammatory pain in mice. Moreover, the detailed mechanism of inflammatory pain therapy via SFZ NPs is further studied, where SFZ NPs inhibit the activation of the mitogen-activated protein kinase (MAPK)/p-65 signaling pathway, leading to reductions in phosphorylated protein levels (p-65, p-ERK, p-JNK, and p-p38) and inflammatory factors (tumor necrosis factor [TNF]-α, interleukin [IL]-6, and IL-1β), thereby preventing microglia and astrocyte activation for acesodyne. This study provides a new cascade nanoenzyme for antioxidant treatments and explores its potential applications as non-opioid analgesics.
Collapse
Affiliation(s)
- Yuejuan Ling
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
- Institute of Pain Medicine and Special Environmental MedicineNantong UniversityNantong226001P. R. China
| | - Dekang Nie
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
- Department of NeurosurgeryYancheng First HospitalAffiliated Hospital of Nanjing University Medical SchoolThe First people's Hospital of Yancheng224001YanchengP. R. China
| | - Yue Huang
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Mengyuan Deng
- Center for Advanced Low‐dimension MaterialsState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of ChemistryChemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| | - Qianqian Liu
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Jinlong Shi
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Siguang Ouyang
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Yu Yang
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Song Deng
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Zhichao Lu
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Junling Yang
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Yi Wang
- Center for Advanced Low‐dimension MaterialsState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of ChemistryChemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| | - Rongqin Huang
- Department of PharmaceuticsSchool of PharmacyKey Laboratory of Smart Drug DeliveryMinistry of EducationFudan UniversityShanghai215537P. R. China
| | - Wei Shi
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| |
Collapse
|
36
|
Tang Y, Wang P, Zeng H, Rui Z. Construction of porous chitosan macrospheres via dual pore-forming strategy as host for alkaline protease immobilization with high activity and stability. Carbohydr Polym 2023; 305:120476. [PMID: 36737178 DOI: 10.1016/j.carbpol.2022.120476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Fabrication of highly-efficient enzymatic supports having excellent affinity to enzymes and superior mass transfer properties is highly desirable for enzymatic bio-catalysis. Herein, newly engineered chitosan macrospheres having interconnected and interlaced network pores are prepared via dual pore-forming strategy and applied as novel host for the effective immobilization of alkaline protease. The synergetic effect of SiO2 templates and gas-induced pore-forming agents play an important role in inhibiting the over-crosslinking of chitosan chains and promoting the elevation of interior porosity. Benefited from the highly exposed surface and abundant available binding sites, the as-developed porous support P2CSM achieves a maximum loading capacity of 43.8 ± 0.8 mg/g and ultra-high activity recovery of 92.4 % for alkaline protease. P2CSM is competent to effectively stabilize the structural conformation of alkaline protease from inactivation through the flexible covalent interaction. Considering these attributes, Protease@P2CSM demonstrates remarkably better structural stability, reusability and SDS-resistance than free alkaline protease, as well as excellent proteolytic ability, and the residual activity of Protease@P2CSM is evaluated as high as 70.3 % after 7 consecutive reuses. This work provides a promising avenue to construct highly-active enzyme-composites for widespread utilization in various practical applications.
Collapse
Affiliation(s)
- Ying Tang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and their Functionalization, Sun Yat-sen University, Zhuhai 519082, China
| | - Penghui Wang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and their Functionalization, Sun Yat-sen University, Zhuhai 519082, China
| | - Hui Zeng
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and their Functionalization, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Engineering Technology Research Center of Concentrated Detergents, Foshan 528244, China.
| | - Zebao Rui
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and their Functionalization, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
37
|
Tocco D, Chelazzi D, Mastrangelo R, Casini A, Salis A, Fratini E, Baglioni P. Conformational changes and location of BSA upon immobilization on zeolitic imidazolate frameworks. J Colloid Interface Sci 2023; 641:685-694. [PMID: 36965340 DOI: 10.1016/j.jcis.2023.03.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
The location and the conformational changes of proteins/enzymes immobilized within Metal Organic Frameworks (MOFs) are still poorly investigated and understood. Bovine serum albumin (BSA), used as a model protein, was immobilized within two different zeolitic imidazolate frameworks (ZIF-zni and ZIF-8). Pristine ZIFs and BSA@ZIFs were characterized by X-ray diffraction, small-angle X-ray scattering, scanning electron microscopy, confocal laser scanning microscopy, thermogravimetric analysis, micro-FTIR and confocal Raman spectroscopy to characterize MOFs structure and the protein location in the materials. Moreover, the secondary structure and conformation changes of BSA after immobilization on both ZIFs were studied with FTIR. BSA is located both in the inner and on the outer surface of MOFs, forming domains that span from the micro- to the nanoscale. BSA crystallinity (β-sheets + α-helices) increases up to 25 % and 40 % due to immobilization within ZIF-zni and ZIF-8, respectively, with a consequent reduction of β-turns.
Collapse
Affiliation(s)
- Davide Tocco
- Department of Chemical and Geological Sciences, University of Cagliari & CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy; Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| | - Rosangela Mastrangelo
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| | - Andrea Casini
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari & CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy.
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy.
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| |
Collapse
|
38
|
Zhan P, Liu X, Zhang S, Zhu Q, Zhao H, Ren C, Zhang J, Lu L, Cai D, Qin P. Electroenzymatic Reduction of Furfural to Furfuryl Alcohol by an Electron Mediator and Enzyme Orderly Assembled Biocathode. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12855-12863. [PMID: 36859767 DOI: 10.1021/acsami.3c00320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electroenzymatic valorization of biomass derivatives into valuable biochemicals has a promising outlook. However, bottlenecks including poor electron transfer between the electrode surface and oxidoreductase, inefficient regeneration of cofactors, and high cost of enzymes and electron mediators hindered the realistic applications of the technique. Herein, to address the above technical barriers, a novel bio-electrocatalytic system that integrates the electrochemical NADH regeneration and enzymatic reaction was constructed, using an orderly assembled composite bioelectrode consisting of an outer immobilized enzyme layer and a sandwiched redox mediator rhodium complex layer. The as-prepared composite bioelectrode was further applied for the highly selective hydrogenation of furfural into furfural alcohol. Results indicated that the enzyme activity was significantly improved, while the furfural valorization was promoted by effective interfacial electron transition and co-factor regeneration on the composite bioelectrode. Considerable high furfural conversion (96.4%) can be achieved accompanied by a furfural alcohol selectivity of 90.0% at -1.2 V (vs Ag/AgCl). The novel composite bioelectrode also showed good stability and reusability. Up to 85.1% of the original furfural alcohol selectivity can be preserved after 10 times of recycling. This work presents a promising green alternative for the valorization of furfural, which also shows great potential extending to the valorization of other biomass compounds.
Collapse
Affiliation(s)
- Peng Zhan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiangshi Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shiding Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qian Zhu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hongqing Zhao
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Cong Ren
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiawen Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lu Lu
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Peiyong Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
39
|
Wu PH, Cheng PF, Kaveevivitchai W, Chen TH. MOF-based nanozyme grafted with cooperative Pt(IV) prodrug for synergistic anticancer therapy. Colloids Surf B Biointerfaces 2023; 225:113264. [PMID: 36921426 DOI: 10.1016/j.colsurfb.2023.113264] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Manipulating Fenton chemistry in tumor microenvironment (TME) for the generation of reactive oxygen species is an effective strategy for chemodynamic therapy. However, this is usually restricted by limited intracellular content of H2O2 and insufficient acidic environment at the tumor site. Herein, a ferric metal-organic framework (MOF) is covalently grafted with a prodrug of cisplatin (Pt(IV) prodrug) and loaded with a biocatalyst glucose oxidase (GOx) to afford a nanozyme MOF-Pt(IV)@GOx for cascade reactions. In this system, the attached Pt(IV) prodrug on MOF plays a significant role in the cooperative enhancement of GOx loading and chemotherapy. The high concentration of glutathione in TME reduces Fe(III) to Fe(II) for Fenton reaction, and converts Pt(IV) prodrug to cisplatin for DNA targeting and H2O2 production. Meanwhile, glucose oxidation catalyzed by GOx not only consumes glucose for starvation therapy, but also promotes the intracellular acidity and H2O2 supply in TME, which are in favor of Fenton reaction. Both in vitro and in vivo studies demonstrate that MOF-Pt(IV)@GOx enables remarkable anticancer efficacy due to the synergistic trimodal therapy consisting of ferroptosis, starvation therapy, and chemotherapy.
Collapse
Affiliation(s)
- Ping-Hsuan Wu
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City 70101, Taiwan; School of Pharmacy, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Pei-Fen Cheng
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City 70101, Taiwan; School of Pharmacy, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Watchareeya Kaveevivitchai
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Teng-Hao Chen
- School of Pharmacy, National Cheng Kung University, Tainan City 70101, Taiwan.
| |
Collapse
|
40
|
Xu R, Ahn H, Kim S, Lee JW, Kang YT. CO2 capture enhancement by encapsulation of nanoparticles in metal–organic frameworks suspended in physical absorbents. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Mannias G, Scano A, Pilloni M, Magner E, Ennas G. Tailoring MOFs to Biomedical Applications: A Chimera or a Concrete Reality? The Case Study of Fe-BTC by bio-friendly Mechanosynthesis. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2153837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Giada Mannias
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM unit, Monserrato, Italy
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Alessandra Scano
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM unit, Monserrato, Italy
| | - Martina Pilloni
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM unit, Monserrato, Italy
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Guido Ennas
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM unit, Monserrato, Italy
| |
Collapse
|
42
|
Ji J, Qi C, Yan X, Zheng T. A 3D uranyl phosphonate framework: Structure, characterization, and fluorescence performance. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Di Palma G, Geels S, Carpenter BP, Talosig RA, Chen C, Marangoni F, Patterson JP. Cyclodextrin metal-organic framework-based protein biocomposites. Biomater Sci 2022; 10:6749-6754. [PMID: 36286095 PMCID: PMC9717710 DOI: 10.1039/d2bm01240e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Materials are needed to increase the stability and half-life of therapeutic proteins during delivery. These materials should be biocompatible and biodegradable. Here, we demonstrate that enzymes and immunoproteins can be encapsulated inside cyclodextrin based metal-organic frameworks using potassium as the metal node. The release profile can be controlled with the solubility of the cyclodextrin linker. The activity of the proteins after release is determined using catalytic and in vitro assays. The results show that cyclodextrin metal-organic framework-based protein biocomposites are a promising class of materials to deliver therapeutic proteins.
Collapse
Affiliation(s)
- Giuseppe Di Palma
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
| | - Shannon Geels
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| | - Brooke P Carpenter
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
| | - Rain A Talosig
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
| | - Charles Chen
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
| | - Francesco Marangoni
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| | - Joseph P Patterson
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
44
|
Jiao R, Pang Y, Yang D, Li Z, Lou H. Boosting Hydrolysis of Cellulose at High Temperature by β-Glucosidase Induced Metal-Organic Framework In-Situ Co-Precipitation Encapsulation. CHEMSUSCHEM 2022; 15:e202201354. [PMID: 35934832 DOI: 10.1002/cssc.202201354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Due to the poor enzyme thermal stability, the efficient conversion of high crystallinity cellulose into glucose in aqueous phase over 50 °C is challenging. Herein, an enzyme-induced MOFs encapsulation of β-glucosidase (β-G) strategy was proposed for the first time. By using various methods, including SEM, XRD, XPS, NMR, FTIR and BET, the successful preparation of a porous channel-type flower-like enzyme complex (β-G@MOFs) was confirmed. The prepared enzyme complex (β-G@MOFs) materials showed improved thermal stability (from 50 °C to 100 °C in the aqueous phase) and excellent resistance to ionic liquids (the reaction temperature was as high as 110 °C) compared to the free enzyme (β-G). Not only the catalytic hydrolysis of cellulose by single enzyme (β-G) in ionic liquid was realized, but also the high-temperature continuous reaction performance of the enzyme was significantly improved. Benefiting from the significantly improved heat resistance, the β-G@MOFs exhibited 32.1 times and 34.2 times higher enzymatic hydrolysis rate compared to β-G for cellobiose and cellulose substrates, respectively. Besides, the catalytic activity of β-G@MOFs was retained up to 86 % after five cycles at 110 °C. This was remarkable because the fixation of the enzyme by the MOFs ensured that the folded structure of the enzyme would not expand at high temperatures, allowing the native conformation of the encapsulated protein well-maintained. Furthermore, we believe that this structural stability was caused by the confinement of flower-like porous MOFs.
Collapse
Affiliation(s)
- Rui Jiao
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Yuxia Pang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Dongjie Yang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhixian Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Hongming Lou
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
45
|
Tai T, Sha F, Wang X, Wang X, Ma K, Kirlikovali KO, Su S, Islamoglu T, Kato S, Farha OK. Leveraging Isothermal Titration Calorimetry to Explore Structure–Property Relationships of Protein Immobilization in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202209110. [DOI: 10.1002/anie.202209110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Tzu‐Yi Tai
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xiaoliang Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Kent O. Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Shengyi Su
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Satoshi Kato
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
46
|
Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible" Reactions. CHEMSUSCHEM 2022; 15:e202200362. [PMID: 35867602 PMCID: PMC9542358 DOI: 10.1002/cssc.202200362] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Indexed: 05/10/2023]
Abstract
Mechanochemical transformations have made chemists enter unknown territories, forcing a different chemistry perspective. While questioning or revisiting familiar concepts belonging to solution chemistry, mechanochemistry has broken new ground, especially in the panorama of organic synthesis. Not only does it foster new "thinking outside the box", but it also has opened new reaction paths, allowing to overcome the weaknesses of traditional chemistry exactly where the use of well-established solution-based methodologies rules out progress. In this Review, the reader is introduced to an intriguing research subject not yet fully explored and waiting for improved understanding. Indeed, the study is mainly focused on organic transformations that, although impossible in solution, become possible under mechanochemical processing conditions, simultaneously entailing innovation and expanding the chemical space.
Collapse
Affiliation(s)
- Federico Cuccu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Lidia De Luca
- Dipartimento di Chimica e FarmaciaUniversità degli Studi di Sassarivia Vienna 207100SassariItaly
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità degli Studi di CagliariVia Marengo 209123CagliariItaly
| | | | - Niclas Solin
- Department of PhysicsChemistry and Biology (IFM)Electronic and Photonic Materials (EFM)Building Fysikhuset, Room M319, CampusVallaSweden
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| |
Collapse
|
47
|
Li JJ, Yin L, Wang ZF, Jing YC, Jiang ZL, Ding Y, Wang HS. Enzyme-immobilized metal-organic frameworks: From preparation to application. Chem Asian J 2022; 17:e202200751. [PMID: 36029234 DOI: 10.1002/asia.202200751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/27/2022] [Indexed: 11/09/2022]
Abstract
As a class of widely used biocatalysts, enzymes possess advantages including high catalytic efficiency, strong specificity and mild reaction condition. However, most free enzymes have high requirements on the reaction environment and are easy to deactivate. Immobilization of enzymes on nanomaterial-based substrates is a good way to solve this problem. Metal-organic framework (MOFs), with ultra-high specific surface area and adjustable porosity, can provide a large space to carry enzymes. And the tightly surrounded protective layer of MOFs can stabilize the enzyme structure to a great extent. In addition, the unique porous network structure enables selective mass transfer of substrates and facilitates catalytic processes. Therefore, these enzyme-immobilized MOFs have been widely used in various research fields, such as molecule/biomolecule sensing and imaging, disease treatment, energy and environment protection. In this review, the preparation strategies and applications of enzymes-immobilized MOFs are illustrated and the prospects and current challenges are discussed.
Collapse
Affiliation(s)
- Jia-Jing Li
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Li Yin
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zi-Fan Wang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Yi-Chen Jing
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zhuo-Lin Jiang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Ya Ding
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Huai-Song Wang
- China Parmaceutical University, Pharmaceutical analysis, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing Jiangsu, CHINA
| |
Collapse
|
48
|
Huang S, Chen G, Ouyang G. Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chem Soc Rev 2022; 51:6824-6863. [PMID: 35852480 DOI: 10.1039/d1cs01011e] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enzymes are a class of natural catalysts with high efficiency, specificity, and selectivity unmatched by their synthetic counterparts and dictate a myriad of reactions that constitute various cascades in living cells. The development of suitable supports is significant for the immobilization of structurally flexible enzymes, enabling biomimetic transformation in the extracellular environment. Accordingly, porous organic frameworks, including metal organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), have emerged as ideal supports for the immobilization of enzymes because of their structural features including ultrahigh surface area, tailorable porosity, and versatile framework compositions. Specially, organic framework-encased enzymes have shown significant enhancement in stability and reusability, and their tailorable pore opening provides a gatekeeper-like effect for guest sieving, which is beneficial for mimicking intracellular biocatalysis processes. This immobilization technique brings new insight into the development of next-generation enzyme materials and shows huge potential in healthcare applications, such as biomarker diagnosis, biostorage, and cancer and antibacterial therapies. In this review, we describe the state-of-the-art strategies for the structural immobilization of enzymes using the well-explored MOFs and burgeoning COFs and HOFs as scaffolds, with special emphasis on how these porous framework-confined technologies can provide a favorable microenvironment for mimicking natural biocatalysis. Subsequently, advanced characterization techniques for enzyme conformation, the effect of the confined microenvironment on the activity of enzymes, and the emerging healthcare applications will be surveyed.
Collapse
Affiliation(s)
- Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
49
|
Tai TY, Sha F, Wang X, Wang X, Ma K, Kirlikovali KO, Su S, Islamoglu T, Kato S, Farha OK. Leveraging Isothermal Titration Calorimetry to Explore Structure‐Property Relationships of Protein Immobilization in Metal‐Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tzu-Yi Tai
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Fanrui Sha
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Xiaoliang Wang
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Xingjie Wang
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Kaikai Ma
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Kent O. Kirlikovali
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Shengyi Su
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Timur Islamoglu
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Satoshi Kato
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Omar K Farha
- Northwestern University Chemistry 2145 sheridan rd 60208 Evanston UNITED STATES
| |
Collapse
|
50
|
Gu C, She Y, Chen XC, Zhou BY, Zhu YX, Ding XQ, Tan P, Liu XQ, Sun LB. Modulating the Activity of Enzyme in Metal-Organic Frameworks Using the Photothermal Effect of Ti 3C 2 Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30090-30098. [PMID: 35736643 DOI: 10.1021/acsami.2c06375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Enzymes are versatile catalysts with high potential in various applications, and much attention has been paid to the stability improvement of native enzymes and activity modulation. Encapsulation in metal-organic frameworks (MOFs) as an efficient strategy for protecting fragile native enzymes while modulating the activity of enzymes remotely, which is practically demanded, has rarely been explored in MOF-encapsulated enzymes. Herein, Ti3C2 nanosheets exhibiting photothermal effect and biocompatibility were encapsulated in Cyt c-embedded ZIF-8 to tailor the enzymatic activity remotely by near-infrared (NIR) irradiation for the first time. By exposure to NIR light, the temperature of an aqueous solution containing Ti3C2/Cyt c@ZIF-8 increases obviously (up to 15 °C), while that of Cyt c@ZIF-8 shows no change. The enzymatic activity in the composites with a certain amount of nanosheets increases, which is attributed to the created defect and transformed microenvironment caused by the introduction of nanosheets. Importantly, the enzymatic activity in ZIF-8 can be further enhanced up to 150% under NIR light irradiation, and this enhancement can be modulated flexibly by varying laser power density. Our investigations indicate that Ti3C2 nanosheets are promising candidates for modulating the activity of encapsulated enzymes remotely.
Collapse
Affiliation(s)
- Chen Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Material (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ya She
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Material (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiang-Cheng Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Material (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bo-Yan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Material (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu-Xuan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Material (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin-Quan Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Material (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Material (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Material (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Material (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|