1
|
Liang X, Yang S, Radosevich M, Wang Y, Duan N, Jia Y. Bacteriophage-driven microbial phenotypic heterogeneity: ecological and biogeochemical importance. NPJ Biofilms Microbiomes 2025; 11:82. [PMID: 40399330 DOI: 10.1038/s41522-025-00727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
Bacteriophages (phages) reprogram host metabolism and generate phenotypic heterogeneity, yet the mechanisms and ecological implications remain poorly understood representing a major knowledge gap in microbial ecology. This review explores how phage infection alters microbial physiology, contributes to single-cell variation, and influences population dynamics. We highlight the potential consequences of phage-driven heterogeneity for microbial community structure and biogeochemical cycling, underscoring the importance of integrating phage-host interactions into ecological and ecosystem models.
Collapse
Affiliation(s)
- Xiaolong Liang
- CAS Key Laboratory of Forest Ecology and Silviculture, Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China.
| | - Shuo Yang
- School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Yongfeng Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China
| | - Ning Duan
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Yongfeng Jia
- CAS Key Laboratory of Forest Ecology and Silviculture, Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China.
| |
Collapse
|
2
|
Fung DK, Barra JT, Yang J, Schroeder JW, She F, Young M, Ying D, Stevenson DM, Amador-Noguez D, Wang JD. A shared alarmone-GTP switch controls persister formation in bacteria. Nat Microbiol 2025:10.1038/s41564-025-02015-6. [PMID: 40374742 DOI: 10.1038/s41564-025-02015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Persisters are phenotypically switched bacteria that survive antibiotic exposure despite being genetically susceptible. Three pathways to persistence-triggered, spontaneous and antibiotic-induced-have been described, but the underlying molecular mechanisms are poorly understood. Here, we used antibiotic time-kill assays as well as single-cell approaches to show that all of the pathways depend on a common switch involving the alarmone guanosine tetra/penta-phosphate ((p)ppGpp) in Bacillus subtilis, each stemming from different alarmone synthetase(s). The accumulation of (p)ppGpp promotes persistence through depletion of intracellular GTP. We developed a fluorescent GTP reporter to visualize rare events of persister formation in wild-type bacteria, revealing a rapid switch from growth to dormancy in single cells as their GTP levels drop beneath a threshold. While a decrease in GTP in the bulk population slows growth and promotes antibiotic tolerance, (p)ppGpp drives persistence by driving rapid, switch-like decreases in GTP levels beneath the persister threshold in single cells. Persistence through alarmone-GTP antagonism is probably a widespread mechanism to survive antibiotics in B. subtilis and potentially beyond.
Collapse
Affiliation(s)
- Danny K Fung
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jessica T Barra
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Fukang She
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Megan Young
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - David Ying
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
3
|
O'Boyle B, Yeung W, Lu JD, Katiyar S, Yaron-Barir TM, Johnson JL, Cantley LC, Kannan N. An atlas of bacterial serine-threonine kinases reveals functional diversity and key distinctions from eukaryotic kinases. Sci Signal 2025; 18:eadt8686. [PMID: 40327749 DOI: 10.1126/scisignal.adt8686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/11/2025] [Indexed: 05/08/2025]
Abstract
Bacterial serine-threonine kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity and are evolutionarily related to the druggable eukaryotic STKs. A deeper understanding of how bacterial STKs differ from their eukaryotic counterparts and how they have evolved to regulate diverse bacterial signaling functions is crucial for advancing the discovery and development of new antibiotic therapies. Here, we classified more than 300,000 bacterial STK sequences from the NCBI RefSeq nonredundant and UniProt protein databases into 35 canonical and seven pseudokinase families on the basis of the patterns of evolutionary constraints in the conserved catalytic domain and flanking regulatory domains. Through statistical comparisons, we identified features distinguishing bacterial STKs from eukaryotic STKs, including an arginine residue in a regulatory helix (C helix) that dynamically couples the ATP- and substrate-binding lobes of the kinase domain. Biochemical and peptide library screens demonstrated that evolutionarily constrained residues contributed to substrate specificity and kinase activation in the Mycobacterium tuberculosis kinase PknB. Together, these findings open previously unidentified avenues for investigating bacterial STK functions in cellular signaling and for developing selective bacterial STK inhibitors.
Collapse
Affiliation(s)
- Brady O'Boyle
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Jason D Lu
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Samiksha Katiyar
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Guha M, Singh A, Butzin NC. Priestia megaterium cells are primed for surviving lethal doses of antibiotics and chemical stress. Commun Biol 2025; 8:206. [PMID: 39922941 PMCID: PMC11807137 DOI: 10.1038/s42003-025-07639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Antibiotic resistant infections kill millions worldwide yearly. However, a key factor in recurrent infections is antibiotic persisters. Persisters are not inherently antibiotic-resistant but can withstand antibiotic exposure by entering a non-dividing state. This tolerance often results in prolonged antibiotic usage, increasing the likelihood of developing resistant strains. Here, we show the existence of "primed cells" in the Gram-positive bacterium Priestia megaterium, formerly known as Bacillus megaterium. These cells are pre-adapted to become persisters prior to lethal antibiotic stress. Remarkably, this prepared state is passed down through multiple generations via epigenetic memory, enhancing survival against antibiotics and other chemical stress. Previously, two distinct types of persisters were proposed: Type I and Type II, formed during stationary and log phases, respectively. However, our findings reveal that primed cells contribute to an increase in persisters during transition and stationary phases, with no evidence supporting distinct phenotypes between Type I and Type II persisters.
Collapse
Affiliation(s)
- Manisha Guha
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, DE, USA
| | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
5
|
O'Boyle B, Yeung W, Lu JD, Katiyar S, Yaron-Barir TM, Johnson JL, Cantley LC, Kannan N. Atlas of the Bacterial Serine-Threonine Kinases expands the functional diversity of the kinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632604. [PMID: 39868133 PMCID: PMC11760699 DOI: 10.1101/2025.01.12.632604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Bacterial serine-threonine protein kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity. They are evolutionarily related to the druggable eukaryotic STKs. However, an incomplete knowledge of how bacterial STKs differ from their eukaryotic counterparts and how they have diverged to regulate diverse bacterial signaling functions presents a bottleneck in targeting them for drug discovery efforts. Here, we classified over 300,000 bacterial STK sequences from the NCBI RefSeq non-redundant and UniProt protein databases into 35 canonical and seven non-canonical (pseudokinase) families based on the patterns of evolutionary constraints in the conserved catalytic domain and flanking regulatory domains. Through statistical comparisons, we identified distinguishing features of bacterial STKs, including a distinctive arginine residue in a regulatory helix (C-Helix) that dynamically couples ATP and substrate binding lobes of the kinase domain. Biochemical and peptide-library screens demonstrated that constrained residues contribute to substrate specificity and kinase activation in the Mycobacterium tuberculosis kinase PknB. Collectively, these findings open new avenues for investigating bacterial STK functions in cellular signaling and for the development of selective bacterial STK inhibitors.
Collapse
|
6
|
Wang J, Fung D, Barra J, Schroeder J, Yang J, She F, Young M, Amador-Noguez D, Ying D. A shared alarmone-GTP switch underlies triggered and spontaneous persistence. RESEARCH SQUARE 2025:rs.3.rs-5679108. [PMID: 39801512 PMCID: PMC11722536 DOI: 10.21203/rs.3.rs-5679108/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Persisters describe phenotypically switched cells refractory to antibiotic killing in a genetically susceptible population, while preserving the ability to resume growth when antibiotics are discontinued1,2. Since its proposal 70 years ago, great strides were made to build the framework regarding persistence, including defining triggered, spontaneous and antibiotic-induced persisters. However, challenges remain in characterizing the molecular determinants underlying the phenotypic switch into persistence3. Here we document triggered, spontaneous and antibiotic-induced persistence in a Gram-positive bacterium, all through a common switch involving the alarmone (p)ppGpp and each stemming from a different alarmone synthesis pathway. Starvation-triggered persistence is mediated by Rel synthetase, and spontaneous persistence is through self-amplification via allosteric enzyme activation of alarmone synthetases Rel and SasB, whereas lethal and sublethal concentrations of cell wall antibiotics induce alarmones through an antibiotic-induced alarmone synthetase SasA, consequently enabling adaptive persistence that promotes survival. (p)ppGpp accumulation promotes persistence by depleting intracellular GTP and antagonizing its action. We developed a fluorescent GTP reporter to visualize rare events of persister formation in wild type bacteria, revealing a rapid switch from growth to dormancy in single cells as their GTP levels drop beneath a threshold. While a modest drop of GTP in bulk population slows down growth and promotes antibiotic tolerance, (p)ppGpp drives persistence by allowing the switch-like dynamics to drop GTP beneath the persister threshold in single cells. Persistence through alarmone-GTP antagonism is likely a widespread mechanism to survive antibiotics in Gram positive bacteria and possibly beyond.
Collapse
|
7
|
Guha M, Singh A, Butzin NC. Gram-positive bacteria are primed for surviving lethal doses of antibiotics and chemical stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596288. [PMID: 38895422 PMCID: PMC11185512 DOI: 10.1101/2024.05.28.596288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Antibiotic resistance kills millions worldwide yearly. However, a major contributor to recurrent infections lies in a small fraction of bacterial cells, known as persisters. These cells are not inherently antibiotic-resistant, yet they lead to increased antibiotic usage, raising the risk of developing resistant progenies. In a bacterial population, individual cells exhibit considerable fluctuations in their gene expression levels despite being cultivated under identical, stable conditions. This variability in cell-to-cell characteristics (phenotypic diversity) within an isogenic population enables persister cells to withstand antibiotic exposure by entering a non-dividing state. We recently showed the existence of "primed cells" in E. coli. Primed cells are dividing cells prepared for antibiotic stress before encountering it and are more prone to form persisters. They also pass their "prepared state" down for several generations through epigenetic memory. Here, we show that primed cells are common among distant bacterial lineages, allowing for survival against antibiotics and other chemical stress, and form in different growth phases. They are also responsible for increased persister levels in transition and stationary phases compared to the log phase. We tested and showed that the Gram-positive bacterium Bacillus megaterium, evolutionarily very distant from E. coli, forms primed cells and has a transient epigenetic memory that is maintained for 7 generations or more. We showed this using ciprofloxacin and the non-antibiotic chemical stress fluoride. It is well established that persister levels are higher in the stationary phase than in the log phase, and B. megaterium persisters levels are nearly identical from the early to late-log phase but are ~2-fold and ~4-fold higher in the transition and stationary phase, respectively. It was previously proposed that there are two distinct types of persisters: Type II forms in the log phase, while Type I forms in the stationary phase. However, we show that primed cells lead to increased persisters in the transition and stationary phase and found no evidence of Type I or II persisters with distant phenotypes. Overall, we have provided substantial evidence of the importance of primed cells and their transitory epigenetic memories to surviving stress.
Collapse
Affiliation(s)
- Manisha Guha
- Department of Biology and Microbiology; South Dakota State University; Brookings, SD, 57006; USA
| | - Abhyudai Singh
- Electrical & Computer Engineering; University of Delaware; Newark, DE 19716; USA
| | - Nicholas C. Butzin
- Department of Biology and Microbiology; South Dakota State University; Brookings, SD, 57006; USA
- Department of Chemistry and Biochemistry; South Dakota State University; Brookings, SD, 57006; USA
| |
Collapse
|
8
|
Hossain T, Singh A, Butzin NC. Escherichia coli cells are primed for survival before lethal antibiotic stress. Microbiol Spectr 2023; 11:e0121923. [PMID: 37698413 PMCID: PMC10581089 DOI: 10.1128/spectrum.01219-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/16/2023] [Indexed: 09/13/2023] Open
Abstract
Non-genetic factors can cause significant fluctuations in gene expression levels. Regardless of growing in a stable environment, this fluctuation leads to cell-to-cell variability in an isogenic population. This phenotypic heterogeneity allows a tiny subset of bacterial cells in a population called persister cells to tolerate long-term lethal antibiotic effects by entering into a non-dividing, metabolically repressed state. We occasionally noticed a high variation in persister levels, and to explore this, we tested clonal populations starting from a single cell using a modified Luria-Delbrück fluctuation test. Although we kept the conditions same, the diversity in persistence level among clones was relatively consistent: varying from ~60- to 100- and ~40- to 70-fold for ampicillin and apramycin, respectively. Then, we divided and diluted each clone to observe whether the same clone had comparable persister levels for more than one generation. Replicates had similar persister levels even when clones were divided, diluted by 1:20, and allowed to grow for approximately five generations. This result explicitly shows a cellular memory passed on for generations and eventually lost when cells are diluted to 1:100 and regrown (>seven generations). Our result demonstrates (1) the existence of a small population prepared for stress ("primed cells") resulting in higher persister numbers; (2) the primed memory state is reproducible and transient, passed down for generations but eventually lost; and (3) a heterogeneous persister population is a result of a transiently primed reversible cell state and not due to a pre-existing genetic mutation. IMPORTANCE Antibiotics have been highly effective in treating lethal infectious diseases for almost a century. However, the increasing threat of antibiotic resistance is again causing these diseases to become life-threatening. The longer a bacteria can survive antibiotics, the more likely it is to develop resistance. Complicating matters is that non-genetic factors can allow bacterial cells with identical DNA to gain transient resistance (also known as persistence). Here, we show that a small fraction of the bacterial population called primed cells can pass down non-genetic information ("memory") to their offspring, enabling them to survive lethal antibiotics for a long time. However, this memory is eventually lost. These results demonstrate how bacteria can leverage differences among genetically identical cells formed through non-genetic factors to form primed cells with a selective advantage to survive antibiotics.
Collapse
Affiliation(s)
- Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware, USA
| | - Nicholas C. Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
9
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
10
|
Virmani R, Pradhan P, Joshi J, Wang AL, Joshi HC, Sajid A, Singh A, Sharma V, Kundu B, Blankenberg D, Molle V, Singh Y, Arora G. Phosphorylation-mediated regulation of the Bacillus anthracis phosphoglycerate mutase by the Ser/Thr protein kinase PrkC. Biochem Biophys Res Commun 2023; 665:88-97. [PMID: 37149987 DOI: 10.1016/j.bbrc.2023.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/15/2023] [Indexed: 05/09/2023]
Abstract
Bacillus anthracis Ser/Thr protein kinase PrkC is necessary for phenotypic memory and spore germination, and the loss of PrkC-dependent phosphorylation events affect the spore development. During sporulation, Bacillus sp. can store 3-Phosphoglycerate (3-PGA) that will be required at the onset of germination when ATP will be necessary. The Phosphoglycerate mutase (Pgm) catalyzes the isomerization of 2-PGA and 3-PGA and is important for spore germination as a key metabolic enzyme that maintains 3-PGA pool at later events. Therefore, regulation of Pgm is important for an efficient spore germination process and metabolic switching. While the increased expression of Pgm in B. anthracis decreases spore germination efficiency, it remains unexplored if PrkC could directly influence Pgm activity. Here, we report the phosphorylation and regulation of Pgm by PrkC and its impact on Pgm stability and catalytic activity. Mass spectrometry revealed Pgm phosphorylation on seven threonine residues. In silico mutational analysis highlighted the role of Thr459 residue towards metal and substrate binding. Altogether, we demonstrated that PrkC-mediated Pgm phosphorylation negatively regulates its activity that is essential to maintain Pgm in its apo-like isoform before germination. This study advances the role of Pgm regulation that represents an important switch for B. anthracis resumption of metabolism and spore germination.
Collapse
Affiliation(s)
- Richa Virmani
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Prashant Pradhan
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi, 110016, India
| | - Jayadev Joshi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Avril Luyang Wang
- Department of Molecular Genetics and Microbiology, University of Toronto, Toronto, M5S1A8, Canada
| | | | - Andaleeb Sajid
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Anoop Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Vishal Sharma
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi, 110016, India
| | - Daniel Blankenberg
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR, 5235, Montpellier, France
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Gunjan Arora
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Sun Y, Hürlimann S, Garner E. Growth rate is modulated by monitoring cell wall precursors in Bacillus subtilis. Nat Microbiol 2023; 8:469-480. [PMID: 36797487 DOI: 10.1038/s41564-023-01329-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Abstract
How bacteria link their growth rate to external nutrient conditions is unknown. To investigate how Bacillus subtilis cells alter the rate at which they expand their cell walls as they grow, we compared single-cell growth rates of cells grown under agar pads with the density of moving MreB filaments under a variety of growth conditions. MreB filament density increases proportionally with growth rate. We show that both MreB filament density and growth rate depend on the abundance of Lipid II and murAA, the first gene in the biosynthetic pathway creating the cell wall precursor Lipid II. Lipid II is sensed by the serine/threonine kinase PrkC, which phosphorylates RodZ and other proteins. We show that phosphorylated RodZ increases MreB filament density, which in turn increases cell growth rate. We also show that increasing the activity of this pathway in nutrient-poor media results in cells that elongate faster than wild-type cells, which means that B. subtilis contains spare 'growth capacity'. We conclude that PrkC functions as a cellular rheostat, enabling fine-tuning of cell growth rates in response to Lipid II in different nutrient conditions.
Collapse
Affiliation(s)
- Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sylvia Hürlimann
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
12
|
Abstract
Since Jacques Monod's foundational work in the 1940s, investigators studying bacterial physiology have largely (but not exclusively) focused on the exponential phase of bacterial cultures, which is characterized by rapid growth and high biosynthesis activity in the presence of excess nutrients. However, this is not the predominant state of bacterial life. In nature, most bacteria experience nutrient limitation most of the time. In fact, investigators even prior to Monod had identified other aspects of bacterial growth, including what is now known as the stationary phase, when nutrients become limiting. This review will discuss how bacteria transition to growth arrest in response to nutrient limitation through changes in transcription, translation, and metabolism. We will then examine how these changes facilitate survival during potentially extended periods of nutrient limitation, with particular attention to the metabolic strategies that underpin bacterial longevity in this state.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
13
|
Diez S, Hydorn M, Whalen A, Dworkin J. Crosstalk between guanosine nucleotides regulates cellular heterogeneity in protein synthesis during nutrient limitation. PLoS Genet 2022; 18:e1009957. [PMID: 35594298 PMCID: PMC9173625 DOI: 10.1371/journal.pgen.1009957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/07/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
Abstract
Phenotypic heterogeneity of microbial populations can facilitate survival in dynamic environments by generating sub-populations of cells that may have differential fitness in a future environment. Bacillus subtilis cultures experiencing nutrient limitation contain distinct sub-populations of cells exhibiting either comparatively high or low protein synthesis activity. This heterogeneity requires the production of phosphorylated guanosine nucleotides (pp)pGpp by three synthases: SasA, SasB, and RelA. Here we show that these enzymes differentially affect this bimodality: RelA and SasB are necessary to generate the sub-population of cells exhibiting low protein synthesis whereas SasA is necessary to generate cells exhibiting comparatively higher protein synthesis. Previously, it was reported that a RelA product allosterically activates SasB and we find that a SasA product competitively inhibits this activation. Finally, we provide in vivo evidence that this antagonistic interaction mediates the observed heterogeneity in protein synthesis. This work therefore identifies the mechanism underlying phenotypic heterogeneity in protein synthesis. Upon encountering conditions unfavorable to growth such as nutrient limitation, bacteria enter a quiescent phenotype that is mediated by group of guanosine nucleotides collectively known as (pp)pGpp. These nucleotides direct the down-regulation of energy intensive processes and are essential for a striking heterogeneity in protein synthesis observed during exit from rapid growth. Here, we show that a network of (pp)pGpp synthases is responsible for this heterogeneity and describe a mechanism that allows for the integration of multiple signals into the decision to down regulate the most energy intensive process in a cell.
Collapse
Affiliation(s)
- Simon Diez
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Molly Hydorn
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Abigail Whalen
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Hu Q, Yao L, Liao X, Zhang LS, Li HT, Li TT, Jiang QG, Tan MF, Li L, Draheim RR, Huang Q, Zhou R. Comparative Phenotypic, Proteomic, and Phosphoproteomic Analysis Reveals Different Roles of Serine/Threonine Phosphatase and Kinase in the Growth, Cell Division, and Pathogenicity of Streptococcus suis. Microorganisms 2021; 9:microorganisms9122442. [PMID: 34946045 PMCID: PMC8707513 DOI: 10.3390/microorganisms9122442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Eukaryote-like serine/threonine kinases (STKs) and cognate phosphatases (STPs) comprise an important regulatory system in many bacterial pathogens. The complexity of this regulatory system has not been fully understood due to the presence of multiple STKs/STPs in many bacteria and their multiple substrates involved in many different physiological and pathogenetic processes. Streptococci are the best materials for the study due to a single copy of the gene encoding STK and its cognate STP. Although several studies have been done to investigate the roles of STK and STP in zoonotic Streptococcus suis, respectively, few studies were performed on the coordinated regulatory roles of this system. In this study, we carried out a systemic study on STK/STP in S. suis by using a comparative phenotypic, proteomic, and phosphoproteomic analysis. Mouse infection assays revealed that STK played a much more important role in S. suis pathogenesis than STP. The ∆stk and ∆stp∆stk strains, but not ∆stp, showed severe growth retardation. Moreover, both ∆stp and ∆stk strains displayed defects in cell division, but they were abnormal in different ways. The comparative proteomics and phosphoproteomics revealed that deletion of stk or stp had a significant influence on protein expression. Interestingly, more virulence factors were found to be downregulated in ∆stk than ∆stp. In ∆stk strain, a substantial number of the proteins with a reduced phosphorylation level were involved in cell division, energy metabolism, and protein translation. However, only a few proteins showed increased phosphorylation in ∆stp, which also included some proteins related to cell division. Collectively, our results show that both STP and STK are critical regulatory proteins for S. suis and that STK seems to play more important roles in growth, cell division, and pathogenesis.
Collapse
Affiliation(s)
- Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Lun Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Xia Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Liang-Sheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Hao-Tian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Ting-Ting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Qing-Gen Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Mei-Fang Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
| | - Roger R. Draheim
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK;
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| |
Collapse
|
15
|
Nagarajan SN, Lenoir C, Grangeasse C. Recent advances in bacterial signaling by serine/threonine protein kinases. Trends Microbiol 2021; 30:553-566. [PMID: 34836791 DOI: 10.1016/j.tim.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
It has been nearly three decades since the discovery of the first bacterial serine/threonine protein kinase (STPK). Since then, a blend of technological advances has led to the characterization of a multitude of STPKs and phosphorylation substrates in several bacterial species that finely regulate intricate signaling cascades. Years of intense research from several laboratories have demonstrated unexpected roles for serine/threonine phosphorylation, regulating not only bacterial growth and cell division but also antibiotic persistence, virulence and infection, metabolism, chromosomal biology, and cellular differentiation. This review aims to provide an account of the most recent and significant developments in this up and growing field in microbiology.
Collapse
Affiliation(s)
- Sathya Narayanan Nagarajan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Cassandra Lenoir
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
16
|
Pulschen AA, Fernandes AZN, Cunha AF, Sastre DE, Matsuguma BE, Gueiros-Filho FJ. Many birds with one stone: targeting the (p)ppGpp signaling pathway of bacteria to improve antimicrobial therapy. Biophys Rev 2021; 13:1039-1051. [DOI: 10.1007/s12551-021-00895-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
|
17
|
Zheng CR, Singh A, Libby A, Silver PA, Libby EA. Modular and Single-Cell Sensors of Bacterial Ser/Thr Kinase Activity. ACS Synth Biol 2021; 10:2340-2350. [PMID: 34463482 DOI: 10.1021/acssynbio.1c00250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At the single-cell level, protein kinase activity is typically inferred from downstream transcriptional reporters. However, promoters are often coregulated by several pathways, making the activity of a specific kinase difficult to deconvolve. Here, we present modular, direct, and specific sensors of bacterial kinase activity, including FRET-based sensors, as well as a synthetic transcription factor based on the lactose repressor (LacI) that has been engineered to respond to phosphorylation. We demonstrate the utility of these sensors in measuring the activity of PrkC, a conserved bacterial Ser/Thr kinase, in different growth conditions from single cells to colonies. We also show that PrkC activity increases in response to a cell-wall active antibiotic that blocks the late steps in peptidoglycan synthesis (cefotaxime), but not the early steps (fosfomycin). These sensors have a modular design that should generalize to other bacterial signaling systems in the future.
Collapse
Affiliation(s)
- Christine R. Zheng
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Abhyudai Singh
- Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Alexandra Libby
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Elizabeth A. Libby
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
18
|
Schwall CP, Loman TE, Martins BMC, Cortijo S, Villava C, Kusmartsev V, Livesey T, Saez T, Locke JCW. Tunable phenotypic variability through an autoregulatory alternative sigma factor circuit. Mol Syst Biol 2021; 17:e9832. [PMID: 34286912 PMCID: PMC8287880 DOI: 10.15252/msb.20209832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single-cell time-lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma-anti-sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.
Collapse
Affiliation(s)
| | | | - Bruno M C Martins
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | | | | | - Toby Livesey
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Teresa Saez
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
19
|
Lagage V, Uphoff S. Pulses and delays, anticipation and memory: seeing bacterial stress responses from a single-cell perspective. FEMS Microbiol Rev 2021; 44:565-571. [PMID: 32556120 DOI: 10.1093/femsre/fuaa022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Stress responses are crucial for bacteria to survive harmful conditions that they encounter in the environment. Although gene regulatory mechanisms underlying stress responses in bacteria have been thoroughly characterised for decades, recent advances in imaging technologies helped to uncover previously hidden dynamics and heterogeneity that become visible at the single-cell level. Despite the diversity of stress response mechanisms, certain dynamic regulatory features are frequently seen in single cells, such as pulses, delays, stress anticipation and memory effects. Often, these dynamics are highly variable across cells. While any individual cell may not achieve an optimal stress response, phenotypic diversity can provide a benefit at the population level. In this review, we highlight microscopy studies that offer novel insights into how bacteria sense stress, regulate protective mechanisms, cope with response delays and prepare for future environmental challenges. These studies showcase developments in the single-cell imaging toolbox including gene expression reporters, FRET, super-resolution microscopy and single-molecule tracking, as well as microfluidic techniques to manipulate cells and create defined stress conditions.
Collapse
Affiliation(s)
- Valentine Lagage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
20
|
Moreno-del Álamo M, Marchisone C, Alonso JC. Antitoxin ε Reverses Toxin ζ-Facilitated Ampicillin Dormants. Toxins (Basel) 2020; 12:toxins12120801. [PMID: 33333975 PMCID: PMC7765365 DOI: 10.3390/toxins12120801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) modules are ubiquitous in bacteria, but their biological importance in stress adaptation remains a matter of debate. The inactive ζ-ε2-ζ TA complex is composed of one labile ε2 antitoxin dimer flanked by two stable ζ toxin monomers. Free toxin ζ reduces the ATP and GTP levels, increases the (p)ppGpp and c-di-AMP pool, inactivates a fraction of uridine diphosphate-N-acetylglucosamine, and induces reversible dormancy. A small subpopulation, however, survives toxin action. Here, employing a genetic orthogonal control of ζ and ε levels, the fate of bacteriophage SPP1 infection was analyzed. Toxin ζ induces an active slow-growth state that halts SPP1 amplification, but it re-starts after antitoxin expression rather than promoting abortive infection. Toxin ζ-induced and toxin-facilitated ampicillin (Amp) dormants have been revisited. Transient toxin ζ expression causes a metabolic heterogeneity that induces toxin and Amp dormancy over a long window of time rather than cell persistence. Antitoxin ε expression, by reversing ζ activities, facilitates the exit of Amp-induced dormancy both in rec+ and recA cells. Our findings argue that an unexploited target to fight against antibiotic persistence is to disrupt toxin-antitoxin interactions.
Collapse
|
21
|
Thitiananpakorn K, Aiba Y, Tan XE, Watanabe S, Kiga K, Sato'o Y, Boonsiri T, Li FY, Sasahara T, Taki Y, Azam AH, Zhang Y, Cui L. Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA). Sci Rep 2020; 10:16107. [PMID: 32999359 PMCID: PMC7527455 DOI: 10.1038/s41598-020-73108-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
We first reported a phenomenon of cross-resistance to vancomycin (VCM) and daptomycin (DAP) in methicillin-resistant Staphylococcus aureus (MRSA) in 2006, but mechanisms underlying the cross-resistance remain incompletely understood. Here, we present a follow-up study aimed to investigate genetic determinants associated with the cross-resistance. Using 12 sets of paired DAP susceptible (DAPS) and DAP non-susceptible (DAPR) MRSA isolates from 12 patients who had DAP therapy, we (i) assessed susceptibility to DAP and VCM, (ii) compared whole-genome sequences, (iii) identified mutations associated with cross-resistance to DAP and VCM, and (iv) investigated the impact of altered gene expression and metabolic pathway relevant to the cross-resistance. We found that all 12 DAPR strains exhibiting cross-resistance to DAP and VCM carried mutations in mprF, while one DAPR strain with reduced susceptibility to only DAP carried a lacF mutation. On the other hand, among the 32 vancomycin-intermediate S. aureus (VISA) strains isolated from patients treated with VCM, five out of the 18 strains showing cross-resistance to DAP and VCM carried a mprF mutation, while 14 strains resistant to only VCM had no mprF mutation. Moreover, substitution of mprF in a DAPS strain with mutated mprF resulted in cross-resistance and vice versa. The elevated lysyl-phosphatidylglycerol (L-PG) production, increased positive bacterial surface charges and activated cell wall (CW) synthetic pathways were commonly found in both clinical isolates and laboratory-developed mutants that carry mprF mutations. We conclude that mprF mutation is responsible for the cross-resistance of MRSA to DAP and VCM, and treatment with DAP is more likely to select for mprF-mediated cross-resistance than is with VCM.
Collapse
Affiliation(s)
- Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yusuke Sato'o
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Tanit Boonsiri
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Feng-Yu Li
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yusuke Taki
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Aa Haeruman Azam
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yuancheng Zhang
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| |
Collapse
|
22
|
(p)ppGpp and Its Role in Bacterial Persistence: New Challenges. Antimicrob Agents Chemother 2020; 64:AAC.01283-20. [PMID: 32718971 DOI: 10.1128/aac.01283-20] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antibiotic failure not only is due to the development of resistance by pathogens but can also often be explained by persistence and tolerance. Persistence and tolerance can be included in the "persistent phenotype," with high relevance for clinics. Two of the most important molecular mechanisms involved in tolerance and persistence are toxin-antitoxin (TA) modules and signaling via guanosine pentaphosphate/tetraphosphate [(p)ppGpp], also known as "magic spot." (p)ppGpp is a very important stress alarmone which orchestrates the stringent response in bacteria; hence, (p)ppGpp is produced during amino acid or fatty acid starvation by proteins belonging to the RelA/SpoT homolog family (RSH). However, (p)ppGpp levels can also accumulate in response to a wide range of signals, including oxygen variation, pH downshift, osmotic shock, temperature shift, or even exposure to darkness. Furthermore, the stringent response is not only involved in responses to environmental stresses (starvation for carbon sources, fatty acids, and phosphates or heat shock), but it is also used in bacterial pathogenesis, host invasion, and antibiotic tolerance and persistence. Given the exhaustive and contradictory literature surrounding the role of (p)ppGpp in bacterial persistence, and with the aim of summarizing what is known so far about the magic spot in this bacterial stage, this review provides new insights into the link between the stringent response and persistence. Moreover, we review some of the innovative treatments that have (p)ppGpp as a target, which are in the spotlight of the scientific community as candidates for effective antipersistence agents.
Collapse
|
23
|
Sauvage S, Hardouin J. Exoproteomics for Better Understanding Pseudomonas aeruginosa Virulence. Toxins (Basel) 2020; 12:E571. [PMID: 32899849 PMCID: PMC7551764 DOI: 10.3390/toxins12090571] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is the most common human opportunistic pathogen associated with nosocomial diseases. In 2017, the World Health Organization has classified P. aeruginosa as a critical agent threatening human health, and for which the development of new treatments is urgently necessary. One interesting avenue is to target virulence factors to understand P. aeruginosa pathogenicity. Thus, characterising exoproteins of P. aeruginosa is a hot research topic and proteomics is a powerful approach that provides important information to gain insights on bacterial virulence. The aim of this review is to focus on the contribution of proteomics to the studies of P. aeruginosa exoproteins, highlighting its relevance in the discovery of virulence factors, post-translational modifications on exoproteins and host-pathogen relationships.
Collapse
Affiliation(s)
- Salomé Sauvage
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, University of Rouen, CEDEX, F-76821 Mont-Saint-Aignan, France;
- PISSARO Proteomics Facility, IRIB, F-76820 Mont-Saint-Aignan, France
| | - Julie Hardouin
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, University of Rouen, CEDEX, F-76821 Mont-Saint-Aignan, France;
- PISSARO Proteomics Facility, IRIB, F-76820 Mont-Saint-Aignan, France
| |
Collapse
|
24
|
Fung DK, Yang J, Stevenson DM, Amador-Noguez D, Wang JD. Small Alarmone Synthetase SasA Expression Leads to Concomitant Accumulation of pGpp, ppApp, and AppppA in Bacillus subtilis. Front Microbiol 2020; 11:2083. [PMID: 32983059 PMCID: PMC7492591 DOI: 10.3389/fmicb.2020.02083] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
(p)ppGpp is a highly conserved bacterial alarmone which regulates many aspects of cellular physiology and metabolism. In Gram-positive bacteria such as B. subtilis, cellular (p)ppGpp level is determined by the bifunctional (p)ppGpp synthetase/hydrolase RelA and two small alarmone synthetases (SASs) YjbM (SasB) and YwaC (SasA). However, it is less clear whether these enzymes are also involved in regulation of alarmones outside of (p)ppGpp. Here we developed an improved LC-MS-based method to detect a broad spectrum of metabolites and alarmones from bacterial cultures with high efficiency. By characterizing the metabolomic signatures of SasA expressing B. subtilis, we identified strong accumulation of the (p)ppGpp analog pGpp, as well as accumulation of ppApp and AppppA. The induced accumulation of these alarmones is abolished in the catalytically dead sasA mutant, suggesting that it is a consequence of SasA synthetase activity. In addition, we also identified depletion of specific purine nucleotides and their precursors including IMP precursors FGAR, SAICAR and AICAR (ZMP), as well as GTP and GDP. Furthermore, we also revealed depletion of multiple pyrimidine precursors such as orotate and orotidine 5′-phosphate. Taken together, our work shows that induction of a single (p)ppGpp synthetase can cause concomitant accumulation and potential regulatory interplay of multiple alarmones.
Collapse
Affiliation(s)
- Danny K Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
25
|
Liu X, Liu F, Ding S, Shen J, Zhu K. Sublethal Levels of Antibiotics Promote Bacterial Persistence in Epithelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1900840. [PMID: 32999821 PMCID: PMC7509632 DOI: 10.1002/advs.201900840] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/17/2020] [Indexed: 05/21/2023]
Abstract
Antibiotic therapy and host cells frequently fail to eliminate invasive bacterial pathogens due to the emergence of antibiotic resistance, resulting in the relapse and recurrence of infections. Bacteria evolve various strategies to persist and survive in epithelial cells, a front-line barrier of host tissues counteracting invasion; however, it remains unclear how bacteria hijack cellular responses to promote cytoplasmic survival under antibiotic therapy. Here, it is demonstrated that extracellular bacteria show invasive behavior and survive in epithelial cells in both in vivo and in vitro models, to increase antibiotic tolerance. In turn, sublethal levels of antibiotics increase bacterial invasion through promoting the production of bacterial virulence factors. Furthermore, antibiotic treatments interrupt lysosomal acidification in autophagy due to the internalized bacteria, using Bacillus cereus and ciprofloxacin as a model. In addition, it is found that sublethal levels of ciprofloxacin cause mitochondrial dysfunction and reactive oxygen species (ROS) accumulation to impair lysosomal vascular tape ATPase (V-ATPase) to further promote bacterial persistence. Collectively, these results highlight the potential of host cells mediated antibiotic tolerance, which markedly compromises antibiotic efficacy and worsens the outcomes of infection.
Collapse
Affiliation(s)
- Xiaoye Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RoadBeijing100193China
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Fei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RoadBeijing100193China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food Safety and Beijing Laboratory for Food Quality and SafetyChina Agricultural UniversityBeijing100193China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RoadBeijing100193China
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food Safety and Beijing Laboratory for Food Quality and SafetyChina Agricultural UniversityBeijing100193China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RoadBeijing100193China
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| |
Collapse
|
26
|
The alarmones (p)ppGpp directly regulate translation initiation during entry into quiescence. Proc Natl Acad Sci U S A 2020; 117:15565-15572. [PMID: 32576694 DOI: 10.1073/pnas.1920013117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many bacteria exist in a state of metabolic quiescence where energy consumption must be minimized so as to maximize available resources over a potentially extended period of time. As protein synthesis is the most energy intensive metabolic process in a bacterial cell, it would be an appropriate target for down-regulation during the transition from growth to quiescence. We observe that when Bacillus subtilis exits rapid growth, a subpopulation of cells emerges with very low protein synthetic activity. This phenotypic heterogeneity requires the production of the nucleotides (p)ppGpp, which we show are sufficient to inhibit protein synthesis in vivo. We then show that one of these molecules, ppGpp, inhibits protein synthesis by preventing the allosteric activation of the essential GTPase Initiation Factor 2 (IF2) during translation initiation. Finally, we demonstrate that the observed attenuation of protein synthesis during the entry into quiescence is a consequence of the direct interaction of (p)ppGpp and IF2.
Collapse
|