1
|
Killarney ST, Mesa G, Washart R, Mayro B, Dillon K, Wardell SE, Newlin M, Lu M, Rmaileh AA, Liu N, McDonnell DP, Pendergast AM, Wood KC. PKN2 Is a Dependency of the Mesenchymal-like Cancer Cell State. Cancer Discov 2025; 15:595-615. [PMID: 39560431 PMCID: PMC11875962 DOI: 10.1158/2159-8290.cd-24-0928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Cancer cells exploit a mesenchymal-like transcriptional state (MLS) to survive drug treatments. Although the MLS is well characterized, few therapeutic vulnerabilities targeting this program have been identified. In this study, we systematically identify the dependency network of mesenchymal-like cancers through an analysis of gene essentiality scores in ∼800 cancer cell lines, nominating a poorly studied kinase, PKN2, as a top therapeutic target of the MLS. Coessentiality relationships, biochemical experiments, and genomic analyses of patient tumors revealed that PKN2 promotes mesenchymal-like cancer growth through a PKN2-SAV1-TAZ signaling mechanism. Notably, pairing genetic PKN2 inhibition with clinically relevant targeted therapies against EGFR, KRAS, and BRAF suppresses drug resistance by depleting mesenchymal-like drug-tolerant persister cells. These findings provide evidence that PKN2 is a core regulator of the Hippo tumor suppressor pathway and highlight the potential of PKN2 inhibition as a generalizable therapeutic strategy to overcome drug resistance driven by the MLS across cancer contexts. Significance: This work identifies PKN2 as a core member of the Hippo signaling pathway, and its inhibition blocks YAP/TAZ-driven tumorigenesis. Furthermore, this study discovers PKN2-TAZ as arguably the most selective dependency of mesenchymal-like cancers and supports specific inhibition of PKN2 as a provocative strategy to overcome drug resistance in diverse cancer contexts. See related commentary by Shen and Tan, p. 458.
Collapse
Affiliation(s)
- Shane T. Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Gabriel Mesa
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Rachel Washart
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Benjamin Mayro
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kerry Dillon
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Suzanne E. Wardell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Madeline Newlin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Min Lu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Areej Abu Rmaileh
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Nicky Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | | | | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
2
|
Uijttewaal ECH, Lee J, Sell AC, Botay N, Vainorius G, Novatchkova M, Baar J, Yang J, Potzler T, van der Leij S, Lowden C, Sinner J, Elewaut A, Gavrilovic M, Obenauf A, Schramek D, Elling U. CRISPR-StAR enables high-resolution genetic screening in complex in vivo models. Nat Biotechnol 2024:10.1038/s41587-024-02512-9. [PMID: 39681701 DOI: 10.1038/s41587-024-02512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Pooled genetic screening with CRISPR-Cas9 has enabled genome-wide, high-resolution mapping of genes to phenotypes, but assessing the effect of a given genetic perturbation requires evaluation of each single guide RNA (sgRNA) in hundreds of cells to counter stochastic genetic drift and obtain robust results. However, resolution is limited in complex, heterogeneous models, such as organoids or tumors transplanted into mice, because achieving sufficient representation requires impractical scaling. This is due to bottleneck effects and biological heterogeneity of cell populations. Here we introduce CRISPR-StAR, a screening method that uses internal controls generated by activating sgRNAs in only half the progeny of each cell subsequent to re-expansion of the cell clone. Our method overcomes both intrinsic and extrinsic heterogeneity as well as genetic drift in bottlenecks by generating clonal, single-cell-derived intrinsic controls. We use CRISPR-StAR to identify in-vivo-specific genetic dependencies in a genome-wide screen in mouse melanoma. Benchmarking against conventional screening demonstrates the improved data quality provided by this technology.
Collapse
Affiliation(s)
- Esther C H Uijttewaal
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joonsun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Annika Charlotte Sell
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Naomi Botay
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Gintautas Vainorius
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), Vienna, Austria
| | - Juliane Baar
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Jiaye Yang
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Tobias Potzler
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Sophie van der Leij
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Christopher Lowden
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Julia Sinner
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Anais Elewaut
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), Vienna, Austria
| | - Milanka Gavrilovic
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Anna Obenauf
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), Vienna, Austria
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria.
- Viverita Discovery, Vienna, Austria.
| |
Collapse
|
3
|
A CRISPR-based system for temporal, combinatorial gene knockout in mice. Nat Immunol 2024; 25:15-16. [PMID: 38168957 DOI: 10.1038/s41590-023-01694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
|
4
|
LaFleur MW, Lemmen AM, Streeter ISL, Nguyen TH, Milling LE, Derosia NM, Hoffman ZM, Gillis JE, Tjokrosurjo Q, Markson SC, Huang AY, Anekal PV, Montero Llopis P, Haining WN, Doench JG, Sharpe AH. X-CHIME enables combinatorial, inducible, lineage-specific and sequential knockout of genes in the immune system. Nat Immunol 2024; 25:178-188. [PMID: 38012416 PMCID: PMC10881062 DOI: 10.1038/s41590-023-01689-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Annotation of immunologic gene function in vivo typically requires the generation of knockout mice, which is time consuming and low throughput. We previously developed CHimeric IMmune Editing (CHIME), a CRISPR-Cas9 bone marrow delivery system for constitutive, ubiquitous deletion of single genes. Here we describe X-CHIME, four new CHIME-based systems for modular and rapid interrogation of gene function combinatorially (C-CHIME), inducibly (I-CHIME), lineage-specifically (L-CHIME) or sequentially (S-CHIME). We use C-CHIME and S-CHIME to assess the consequences of combined deletion of Ptpn1 and Ptpn2, an embryonic lethal gene pair, in adult mice. We find that constitutive deletion of both PTPN1 and PTPN2 leads to bone marrow hypoplasia and lethality, while inducible deletion after immune development leads to enteritis and lethality. These findings demonstrate that X-CHIME can be used for rapid mechanistic evaluation of genes in distinct in vivo contexts and that PTPN1 and PTPN2 have some functional redundancy important for viability in adult mice.
Collapse
Affiliation(s)
- Martin W LaFleur
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashlyn M Lemmen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ivy S L Streeter
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thao H Nguyen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren E Milling
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole M Derosia
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zachary M Hoffman
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacob E Gillis
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Qin Tjokrosurjo
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel C Markson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amy Y Huang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - John G Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Pasupuleti V, Vora L, Prasad R, Nandakumar DN, Khatri DK. Glioblastoma preclinical models: Strengths and weaknesses. Biochim Biophys Acta Rev Cancer 2024; 1879:189059. [PMID: 38109948 DOI: 10.1016/j.bbcan.2023.189059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Glioblastoma multiforme is a highly malignant brain tumor with significant intra- and intertumoral heterogeneity known for its aggressive nature and poor prognosis. The complex signaling cascade that regulates this heterogeneity makes targeted drug therapy ineffective. The development of an optimal preclinical model is crucial for the comprehension of molecular heterogeneity and enhancing therapeutic efficacy. The ideal model should establish a relationship between various oncogenes and their corresponding responses. This review presents an analysis of preclinical in vivo and in vitro models that have contributed to the advancement of knowledge in model development. The experimental designs utilized in vivo models consisting of both immunodeficient and immunocompetent mice induced with intracranial glioma. The transgenic model was generated using various techniques, like the viral vector delivery system, transposon system, Cre-LoxP model, and CRISPR-Cas9 approaches. The utilization of the patient-derived xenograft model in glioma research is valuable because it closely replicates the human glioma microenvironment, providing evidence of tumor heterogeneity. The utilization of in vitro techniques in the initial stages of research facilitated the comprehension of molecular interactions. However, these techniques are inadequate in reproducing the interactions between cells and extracellular matrix (ECM). As a result, bioengineered 3D-in vitro models, including spheroids, scaffolds, and brain organoids, were developed to cultivate glioma cells in a three-dimensional environment. These models have enabled researchers to understand the influence of ECM on the invasive nature of tumors. Collectively, these preclinical models effectively depict the molecular pathways and facilitate the evaluation of multiple molecules while tailoring drug therapy.
Collapse
Affiliation(s)
- Vasavi Pasupuleti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Renuka Prasad
- Department of Anatomy, Korea University College of Medicine, Moonsuk Medical Research Building, 516, 5th floor, 73 Inchon-ro, Seongbuk-gu, Seoul 12841, Republic of Korea
| | - D N Nandakumar
- Department of Neurochemistry National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Yuan T, Tang H, Xu X, Shao J, Wu G, Cho YC, Ping Y, Liang G. Inflammation conditional genome editing mediated by the CRISPR-Cas9 system. iScience 2023; 26:106872. [PMID: 37260750 PMCID: PMC10227425 DOI: 10.1016/j.isci.2023.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
The specificity of CRISPR-Cas9 in response to particular pathological stimuli remains largely unexplored. Hence, we designed an inflammation-inducible CRISPR-Cas9 system by grafting a sequence that binds with NF-κB to the CRISPR-Cas9 framework, termed NBS-CRISPR. The genetic scissor function of this developed genome-editing tool is activated on encountering an inflammatory attack and is inactivated or minimized in non-inflammation conditions. Furthermore, we employed this platform to reverse inflammatory conditions by targeting the MyD88 gene, a crucial player in the NF-κB signaling pathway, and achieved impressive therapeutic effects. Finally, during inflammation, P65 (RELA) can translocate to the nucleus from the cytoplasm. Herein, to avoid Cas9 leaky DNA cleavage activity i, we constructed an NBS-P65-CRISPR system expressing the Cas9-p65 fusion protein. Our inflammation inducible Cas9-mediated genome editing strategy provides new perspectives and avenues for pathological gene interrogation.
Collapse
Affiliation(s)
- Tingting Yuan
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglin Tang
- Department of Medical Oncology, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojie Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Shao
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Young-Chang Cho
- Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
7
|
Cervia LD, Shibue T, Borah AA, Gaeta B, He L, Leung L, Li N, Moyer SM, Shim BH, Dumont N, Gonzalez A, Bick NR, Kazachkova M, Dempster JM, Krill-Burger JM, Piccioni F, Udeshi ND, Olive ME, Carr SA, Root DE, McFarland JM, Vazquez F, Hahn WC. A Ubiquitination Cascade Regulating the Integrated Stress Response and Survival in Carcinomas. Cancer Discov 2023; 13:766-795. [PMID: 36576405 PMCID: PMC9975667 DOI: 10.1158/2159-8290.cd-22-1230] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Systematic identification of signaling pathways required for the fitness of cancer cells will facilitate the development of new cancer therapies. We used gene essentiality measurements in 1,086 cancer cell lines to identify selective coessentiality modules and found that a ubiquitin ligase complex composed of UBA6, BIRC6, KCMF1, and UBR4 is required for the survival of a subset of epithelial tumors that exhibit a high degree of aneuploidy. Suppressing BIRC6 in cell lines that are dependent on this complex led to a substantial reduction in cell fitness in vitro and potent tumor regression in vivo. Mechanistically, BIRC6 suppression resulted in selective activation of the integrated stress response (ISR) by stabilization of the heme-regulated inhibitor, a direct ubiquitination target of the UBA6/BIRC6/KCMF1/UBR4 complex. These observations uncover a novel ubiquitination cascade that regulates ISR and highlight the potential of ISR activation as a new therapeutic strategy. SIGNIFICANCE We describe the identification of a heretofore unrecognized ubiquitin ligase complex that prevents the aberrant activation of the ISR in a subset of cancer cells. This provides a novel insight on the regulation of ISR and exposes a therapeutic opportunity to selectively eliminate these cancer cells. See related commentary Leli and Koumenis, p. 535. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Lisa D. Cervia
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tsukasa Shibue
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Ashir A. Borah
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Benjamin Gaeta
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Linh He
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Lisa Leung
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Naomi Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sydney M. Moyer
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Brian H. Shim
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nancy Dumont
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Nolan R. Bick
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | | | | | | | - Meagan E. Olive
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David E. Root
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | - William C. Hahn
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
So J, Mabe NW, Englinger B, Chow KH, Moyer SM, Yerrum S, Trissal MC, Marques JG, Kwon JJ, Shim B, Pal S, Panditharatna E, Quinn T, Schaefer DA, Jeong D, Mayhew DL, Hwang J, Beroukhim R, Ligon KL, Stegmaier K, Filbin MG, Hahn WC. VRK1 as a synthetic lethal target in VRK2 promoter-methylated cancers of the nervous system. JCI Insight 2022; 7:e158755. [PMID: 36040810 PMCID: PMC9675470 DOI: 10.1172/jci.insight.158755] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Collateral lethality occurs when loss of a gene/protein renders cancer cells dependent on its remaining paralog. Combining genome-scale CRISPR/Cas9 loss-of-function screens with RNA sequencing in over 900 cancer cell lines, we found that cancers of nervous system lineage, including adult and pediatric gliomas and neuroblastomas, required the nuclear kinase vaccinia-related kinase 1 (VRK1) for their survival in vivo. VRK1 dependency was inversely correlated with expression of its paralog VRK2. VRK2 knockout sensitized cells to VRK1 loss, and conversely, VRK2 overexpression increased cell fitness in the setting of VRK1 loss. DNA methylation of the VRK2 promoter was associated with low VRK2 expression in human neuroblastomas and adult and pediatric gliomas. Mechanistically, depletion of VRK1 reduced barrier-to-autointegration factor phosphorylation during mitosis, resulting in DNA damage and apoptosis. Together, these studies identify VRK1 as a synthetic lethal target in VRK2 promoter-methylated adult and pediatric gliomas and neuroblastomas.
Collapse
Affiliation(s)
- Jonathan So
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nathaniel W Mabe
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Bernhard Englinger
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kin-Hoe Chow
- Department of Oncologic Pathology and
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sydney M Moyer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Smitha Yerrum
- Department of Oncologic Pathology and
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria C Trissal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Joana G Marques
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jason J Kwon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Brian Shim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sangita Pal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Eshini Panditharatna
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Quinn
- Department of Oncologic Pathology and
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel A Schaefer
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Daeun Jeong
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David L Mayhew
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Radiation Oncology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Justin Hwang
- Department of Medicine and
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Oncologic Pathology and
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mariella G Filbin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Shin S, Jang S, Lim D. Small Molecules for Enhancing the Precision and Safety of Genome Editing. Molecules 2022; 27:6266. [PMID: 36234804 PMCID: PMC9573751 DOI: 10.3390/molecules27196266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome-editing technologies have revolutionized biology, biotechnology, and medicine, and have spurred the development of new therapeutic modalities. However, there remain several barriers to the safe use of CRISPR technologies, such as unintended off-target DNA cleavages. Small molecules are important resources to solve these problems, given their facile delivery and fast action to enable temporal control of the CRISPR systems. Here, we provide a comprehensive overview of small molecules that can precisely modulate CRISPR-associated (Cas) nucleases and guide RNAs (gRNAs). We also discuss the small-molecule control of emerging genome editors (e.g., base editors) and anti-CRISPR proteins. These molecules could be used for the precise investigation of biological systems and the development of safer therapeutic modalities.
Collapse
Affiliation(s)
- Siyoon Shin
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Korea
- Department of Next-Generation Applied Science, Sungshin University, Seoul 01133, Korea
| | - Seeun Jang
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Korea
- Department of Next-Generation Applied Science, Sungshin University, Seoul 01133, Korea
| | - Donghyun Lim
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Korea
- Department of Next-Generation Applied Science, Sungshin University, Seoul 01133, Korea
| |
Collapse
|
10
|
Droogers WJ, Willems J, MacGillavry HD, de Jong APH. Duplex Labeling and Manipulation of Neuronal Proteins Using Sequential CRISPR/Cas9 Gene Editing. eNeuro 2022; 9:ENEURO.0056-22.2022. [PMID: 35851300 PMCID: PMC9333357 DOI: 10.1523/eneuro.0056-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
CRISPR/Cas9-mediated knock-in methods enable the labeling of individual endogenous proteins to faithfully determine their spatiotemporal distribution in cells. However, reliable multiplexing of knock-in events in neurons remains challenging because of cross talk between editing events. To overcome this, we developed conditional activation of knock-in expression (CAKE), allowing efficient, flexible, and accurate multiplex genome editing in rat neurons. To diminish cross talk, CAKE is based on sequential, recombinase-driven guide RNA (gRNA) expression to control the timing of genomic integration of each donor sequence. We show that CAKE is broadly applicable to co-label various endogenous proteins, including cytoskeletal proteins, synaptic scaffolds, ion channels and neurotransmitter receptor subunits. To take full advantage of CAKE, we resolved the nanoscale co-distribution of endogenous synaptic proteins using super-resolution microscopy, demonstrating that their co-organization depends on synapse size. Finally, we introduced inducible dimerization modules, providing acute control over synaptic receptor dynamics in living neurons. These experiments highlight the potential of CAKE to reveal new biological insight. Altogether, CAKE is a versatile method for multiplex protein labeling that enables the detection, localization, and manipulation of endogenous proteins in neurons.Significance StatementAccurate localization and manipulation of endogenous proteins is essential to unravel neuronal function. While labeling of individual proteins is achievable with existing gene editing techniques, methods to label multiple proteins in neurons are limiting. We introduce a new CRISPR/Cas9 strategy, CAKE, achieving faithful duplex protein labeling using sequential editing of genes. We use CAKE to visualize the co-localization of essential neuronal proteins, including cytoskeleton components, ion channels and synaptic scaffolds. Using super-resolution microscopy, we demonstrate that the co-organization of synaptic scaffolds and neurotransmitter receptors scales with synapse size. Finally, we acutely modulate the dynamics of synaptic receptors using labeling with inducible dimerization domains. Thus, CAKE mediates accurate duplex endogenous protein labeling and manipulation to address biological questions in neurons.
Collapse
Affiliation(s)
- Wouter J Droogers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jelmer Willems
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Arthur P H de Jong
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Braun CJ, Adames AC, Saur D, Rad R. Tutorial: design and execution of CRISPR in vivo screens. Nat Protoc 2022; 17:1903-1925. [PMID: 35840661 DOI: 10.1038/s41596-022-00700-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022]
Abstract
Here we provide a detailed tutorial on CRISPR in vivo screening. Using the mouse as the model organism, we introduce a range of CRISPR tools and applications, delineate general considerations for 'transplantation-based' or 'direct in vivo' screening design, and provide details on technical execution, sequencing readouts, computational analyses and data interpretation. In vivo screens face unique pitfalls and limitations, such as delivery issues or library bottlenecking, which must be counteracted to avoid screening failure or flawed conclusions. A broad variety of in vivo phenotypes can be interrogated such as organ development, hematopoietic lineage decision and evolutionary licensing in oncogenesis. We describe experimental strategies to address various biological questions and provide an outlook on emerging CRISPR applications, such as genetic interaction screening. These technological advances create potent new opportunities to dissect the molecular underpinnings of complex organismal phenotypes.
Collapse
Affiliation(s)
- Christian J Braun
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany. .,Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany. .,Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Andrés Carbonell Adames
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Dieter Saur
- Institute of Experimental Cancer Therapy, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany. .,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany. .,Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
12
|
Scott H, Sun D, Beal J, Kiani S. Simulation-Based Engineering of Time-Delayed Safety Switches for Safer Gene Therapies. ACS Synth Biol 2022; 11:1782-1789. [PMID: 35412812 DOI: 10.1021/acssynbio.1c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CRISPR-based gene editing is a powerful tool with great potential for applications in the treatment of many inherited and acquired diseases. The longer that CRISPR gene therapy is maintained within a patient, however, the higher the likelihood that it will result in problematic side effects such as off-target editing or immune response. One approach to mitigating these issues is to link the operation of the therapeutic system to a safety switch that autonomously disables its operation and removes the delivered therapeutics after some amount of time. We present here a simulation-based analysis of the potential for regulating the time delay of such a safety switch using one or two transcriptional regulators and/or recombinases. Combinatorial circuit generation identifies 30 potential architectures for such circuits, which we evaluate in simulation with respect to tunability, sensitivity to parameter values, and sensitivity to cell-to-cell variation. This modeling predicts one of these circuit architectures to have the desired dynamics and robustness, which can be further tested and applied in the context of CRISPR therapeutics.
Collapse
Affiliation(s)
- Helen Scott
- Raytheon BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - Dashan Sun
- University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jacob Beal
- Raytheon BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - Samira Kiani
- Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
13
|
LaFleur MW, Sharpe AH. CRISPR Screens to Identify Regulators of Tumor Immunity. ANNUAL REVIEW OF CANCER BIOLOGY 2022; 6:103-122. [PMID: 35989706 PMCID: PMC9389862 DOI: 10.1146/annurev-cancerbio-070120-094725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer immunotherapies, such as immune checkpoint blockade (ICB), have been used in a wide range of tumor types with immense clinical benefit. However, ICB does not work in all patients, and attempts to combine ICB with other immune-based therapies have not lived up to their initial promise. Thus, there is a significant unmet need to discover new targets and combination therapies to extend the benefits of immunotherapy to more patients. Systems biology approaches are well suited for addressing this problem because these approaches enable evaluation of many gene targets simultaneously and ranking their relative importance for a phenotype of interest. As such, loss-of-function CRISPR screens are an emerging set of tools being used to prioritize gene targets for modulating pathways of interest in tumor and immune cells. This review describes the first screens performed to discover cancer immunotherapy targets and the technological advances that will enable next-generation screens.
Collapse
Affiliation(s)
- Martin W LaFleur
- Department of Immunology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Arlene H Sharpe
- Department of Immunology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Khajanchi N, Saha K. Controlling CRISPR with small molecule regulation for somatic cell genome editing. Mol Ther 2022; 30:17-31. [PMID: 34174442 PMCID: PMC8753294 DOI: 10.1016/j.ymthe.2021.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
Biomedical research has been revolutionized by the introduction of many CRISPR-Cas systems that induce programmable edits to nearly any gene in the human genome. Nuclease-based CRISPR-Cas editors can produce on-target genomic changes but can also generate unwanted genotoxicity and adverse events, in part by cleaving non-targeted sites in the genome. Additional translational challenges for in vivo somatic cell editing include limited packaging capacity of viral vectors and host immune responses. Altogether, these challenges motivate recent efforts to control the expression and activity of different Cas systems in vivo. Current strategies utilize small molecules, light, magnetism, and temperature to conditionally control Cas systems through various activation, inhibition, or degradation mechanisms. This review focuses on small molecules that can be incorporated as regulatory switches to control Cas genome editors. Additional development of CRISPR-Cas-based therapeutic approaches with small molecule regulation have high potential to increase editing efficiency with less adverse effects for somatic cell genome editing strategies in vivo.
Collapse
Affiliation(s)
- Namita Khajanchi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
15
|
Design of time-delayed safety switches for CRISPR gene therapy. Sci Rep 2021; 11:16908. [PMID: 34413448 PMCID: PMC8377138 DOI: 10.1038/s41598-021-96510-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
CRISPR system is a powerful gene editing tool which has already been reported to address a variety of gene relevant diseases in different cell lines. However, off-target effect and immune response caused by Cas9 remain two fundamental problems. Inspired by previously reported Cas9 self-elimination systems, time-delayed safety switches are designed in this work. Firstly, ultrasensitive relationship is constructed between Cas9-sgRNA (enzyme) and Cas9 plasmids (substrate), which generates the artificial time delay. Then intrinsic time delay in biomolecular activities is revealed by data fitting and utilized in constructing safety switches. The time-delayed safety switches function by separating the gene editing process and self-elimination process, and the tunable delay time may ensure a good balance between gene editing efficiency and side effect minimization. By addressing gene therapy efficiency, off-target effect, immune response and drug accumulation, we hope our safety switches may offer inspiration in realizing safe and efficient gene therapy in humans.
Collapse
|
16
|
Qian C, Dong B, Wang XY, Zhou FQ. In vivo glial trans-differentiation for neuronal replacement and functional recovery in central nervous system. FEBS J 2021; 288:4773-4785. [PMID: 33351267 PMCID: PMC8217397 DOI: 10.1111/febs.15681] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
The adult mammalian central nervous system (CNS) is deficient in intrinsic machineries to replace neurons lost in injuries or progressive degeneration. Various types of these neurons constitute neural circuitries wired to support vital sensory, motor, and cognitive functions. Based on the pioneer studies in cell lineage conversion, one promising strategy is to convert in vivo glial cells into neural progenitors or directly into neurons that can be eventually rewired for functional recovery. We first briefly summarize the well-studied regeneration-capable CNS in the zebrafish, focusing on their postinjury spontaneous reprogramming of the retinal Müller glia (MG). We then compare the signaling transductions, and transcriptional and epigenetic regulations in the zebrafish MGs with their mammalian counterparts, which perpetuate certain barriers against proliferation and neurogenesis and thus fail in MG-to-progenitor conversion. Next, we discuss emerging evidence from mouse studies, in which the in vivo glia-to-neuron conversion could be achieved with sequential or one-step genetic manipulations, such as the conversions from retinal MGs to interneurons, photoreceptors, or retinal ganglion cells (RGCs), as well as the conversions from midbrain astrocytes to dopaminergic or GABAergic neurons. Some of these in vivo studies showed considerable coverage of subtypes in the newly induced neurons and partial reestablishment in neural circuits and functions. Importantly, we would like to point out some crucial technical concerns that need to be addressed to convincingly show successful glia-to-neuron conversion. Finally, we present challenges and future directions in the field for better neural function recovery.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Bryan Dong
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Xu-Yang Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287,The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287,Corresponding author: Feng-Quan Zhou, Ph.D., , Phone: 443-287-5649, Address: The John G. Rangos Building, Room 291, 855 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Sledzinski P, Dabrowska M, Nowaczyk M, Olejniczak M. Paving the way towards precise and safe CRISPR genome editing. Biotechnol Adv 2021; 49:107737. [PMID: 33785374 DOI: 10.1016/j.biotechadv.2021.107737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
As the possibilities of CRISPR-Cas9 technology have been revealed, we have entered a new era of research aimed at increasing its specificity and safety. This stage of technology development is necessary not only for its wider application in the clinic but also in basic research to better control the process of genome editing. Research during the past eight years has identified some factors influencing editing outcomes and led to the development of highly specific endonucleases, modified guide RNAs and computational tools supporting experiments. More recently, large-scale experiments revealed a previously overlooked feature: Cas9 can generate reproducible mutation patterns. As a result, it has become apparent that Cas9-induced double-strand break (DSB) repair is nonrandom and can be predicted to some extent. Here, we review the present state of knowledge regarding the specificity and safety of CRISPR-Cas9 technology to define gRNA, protein and target-related problems and solutions. These issues include sequence-specific off-target effects, immune responses, genetic variation and chromatin accessibility. We present new insights into the role of DNA repair in genome editing and define factors influencing editing outcomes. In addition, we propose practical guidelines for increasing the specificity of editing and discuss novel perspectives in improvement of this technology.
Collapse
Affiliation(s)
- Pawel Sledzinski
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Magdalena Dabrowska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Mateusz Nowaczyk
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland.
| |
Collapse
|
18
|
Bourgeois JS, Smith CM, Ko DC. These Are the Genes You're Looking For: Finding Host Resistance Genes. Trends Microbiol 2021; 29:346-362. [PMID: 33004258 PMCID: PMC7969353 DOI: 10.1016/j.tim.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Humanity's ongoing struggle with new, re-emerging and endemic infectious diseases serves as a frequent reminder of the need to understand host-pathogen interactions. Recent advances in genomics have dramatically advanced our understanding of how genetics contributes to host resistance or susceptibility to bacterial infection. Here we discuss current trends in defining host-bacterial interactions at the genome-wide level, including screens that harness CRISPR/Cas9 genome editing, natural genetic variation, proteomics, and transcriptomics. We report on the merits, limitations, and findings of these innovative screens and discuss their complementary nature. Finally, we speculate on future innovation as we continue to progress through the postgenomic era and towards deeper mechanistic insight and clinical applications.
Collapse
Affiliation(s)
- Jeffrey S Bourgeois
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, School of Medicine, Duke University Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Hans S, Zöller D, Hammer J, Stucke J, Spieß S, Kesavan G, Kroehne V, Eguiguren JS, Ezhkova D, Petzold A, Dahl A, Brand M. Cre-Controlled CRISPR mutagenesis provides fast and easy conditional gene inactivation in zebrafish. Nat Commun 2021; 12:1125. [PMID: 33602923 PMCID: PMC7893016 DOI: 10.1038/s41467-021-21427-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Conditional gene inactivation is a powerful tool to determine gene function when constitutive mutations result in detrimental effects. The most commonly used technique to achieve conditional gene inactivation employs the Cre/loxP system and its ability to delete DNA sequences flanked by two loxP sites. However, targeting a gene with two loxP sites is time and labor consuming. Here, we show Cre-Controlled CRISPR (3C) mutagenesis to circumvent these issues. 3C relies on gRNA and Cre-dependent Cas9-GFP expression from the same transgene. Exogenous or transgenic supply of Cre results in Cas9-GFP expression and subsequent mutagenesis of the gene of interest. The recombined cells become fluorescently visible enabling their isolation and subjection to various omics techniques. Hence, 3C mutagenesis provides a valuable alternative to the production of loxP-flanked alleles. It might even enable the conditional inactivation of multiple genes simultaneously and should be applicable to other model organisms amenable to single integration transgenesis.
Collapse
Affiliation(s)
- Stefan Hans
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.
| | - Daniela Zöller
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Juliane Hammer
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Johanna Stucke
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sandra Spieß
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gokul Kesavan
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Volker Kroehne
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Juan Sebastian Eguiguren
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Diana Ezhkova
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Andreas Petzold
- Center for Molecular and Cellular Bioengineering (CMCB), DRESDEN-Concept Genome Center, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- Center for Molecular and Cellular Bioengineering (CMCB), DRESDEN-Concept Genome Center, Technische Universität Dresden, Dresden, Germany
| | - Michael Brand
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
20
|
Driesschaert B, Mergan L, Temmerman L. Conditional gene expression in invertebrate animal models. J Genet Genomics 2021; 48:14-31. [PMID: 33814307 DOI: 10.1016/j.jgg.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
A mechanistic understanding of biology requires appreciating spatiotemporal aspects of gene expression and its functional implications. Conditional expression allows for (ir)reversible switching of genes on or off, with the potential of spatial and/or temporal control. This provides a valuable complement to the more often used constitutive gene (in)activation through mutagenesis, providing tools to answer a wider array of research questions across biological disciplines. Spatial and/or temporal control are granted primarily by (combinations of) specific promoters, temperature regimens, compound addition, or illumination. The use of such genetic tool kits is particularly widespread in invertebrate animal models because they can be applied to study biological processes in short time frames and on large scales, using organisms amenable to easy genetic manipulation. Recent years witnessed an exciting expansion and optimization of such tools, of which we provide a comprehensive overview and discussion regarding their use in invertebrates. The mechanism, applicability, benefits, and drawbacks of each of the systems, as well as further developments to be expected in the foreseeable future, are highlighted.
Collapse
Affiliation(s)
- Brecht Driesschaert
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Lucas Mergan
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
21
|
Modell AE, Siriwardena SU, Shoba VM, Li X, Choudhary A. Chemical and optical control of CRISPR-associated nucleases. Curr Opin Chem Biol 2020; 60:113-121. [PMID: 33253976 DOI: 10.1016/j.cbpa.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system of bacteria has furnished programmable nucleases (e.g., Cas9) that are transforming the field of genome editing with applications in basic and biomedical research, biotechnology, and agriculture. However, broader real-world applications of Cas9 require precision control of its activity over dose, time, and space as off-target effects, embryonic mosaicism, chromosomal translocations, and genotoxicity have been observed with elevated and/or prolonged nuclease activity. Here, we review chemical and optical methods for precision control of Cas9's activity.
Collapse
Affiliation(s)
- Ashley E Modell
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Sachini U Siriwardena
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Veronika M Shoba
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Xing Li
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Carlson-Stevermer J, Kelso R, Kadina A, Joshi S, Rossi N, Walker J, Stoner R, Maures T. CRISPRoff enables spatio-temporal control of CRISPR editing. Nat Commun 2020; 11:5041. [PMID: 33028827 PMCID: PMC7542431 DOI: 10.1038/s41467-020-18853-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Following introduction of CRISPR-Cas9 components into a cell, genome editing occurs unabated until degradation of its component nucleic acids and proteins by cellular processes. This uncontrolled reaction can lead to unintended consequences including off-target editing and chromosomal translocations. To address this, we develop a method for light-induced degradation of sgRNA termed CRISPRoff. Here we show that light-induced inactivation of ribonucleoprotein attenuates genome editing within cells and allows for titratable levels of editing efficiency and spatial patterning via selective illumination.
Collapse
Affiliation(s)
| | - Reed Kelso
- Synthego Corporation, 3565 Haven Avenue, Menlo Park, CA, 94025, USA
- Freenome, 259 East Grand Ave, South San Francisco, CA, 94080, USA
| | - Anastasia Kadina
- Synthego Corporation, 3565 Haven Avenue, Menlo Park, CA, 94025, USA
| | - Sahil Joshi
- Synthego Corporation, 3565 Haven Avenue, Menlo Park, CA, 94025, USA
| | - Nicholas Rossi
- Synthego Corporation, 3565 Haven Avenue, Menlo Park, CA, 94025, USA
| | - John Walker
- Synthego Corporation, 3565 Haven Avenue, Menlo Park, CA, 94025, USA
| | - Rich Stoner
- Synthego Corporation, 3565 Haven Avenue, Menlo Park, CA, 94025, USA
| | - Travis Maures
- Synthego Corporation, 3565 Haven Avenue, Menlo Park, CA, 94025, USA
| |
Collapse
|
23
|
Schrauben M, Dempster E, Lunnon K. Applying gene-editing technology to elucidate the functional consequence of genetic and epigenetic variation in Alzheimer's disease. Brain Pathol 2020; 30:992-1004. [PMID: 32654206 PMCID: PMC8018012 DOI: 10.1111/bpa.12881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022] Open
Abstract
Recent studies have highlighted a potential role of genetic and epigenetic variation in the development of Alzheimer's disease. Application of the CRISPR-Cas genome-editing platform has enabled investigation of the functional impact that Alzheimer's disease-associated gene mutations have on gene expression. Moreover, recent advances in the technology have led to the generation of CRISPR-Cas-based tools that allow for high-throughput interrogation of different risk variants to elucidate the interplay between genomic regulatory features, epigenetic modifications, and chromatin structure. In this review, we examine the various iterations of the CRISPR-Cas system and their potential application for exploring the complex interactions and disruptions in gene regulatory circuits that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
| | - Emma Dempster
- University of Exeter Medical SchoolExeter UniversityExeterUK
| | - Katie Lunnon
- University of Exeter Medical SchoolExeter UniversityExeterUK
| |
Collapse
|
24
|
Newman A, Starrs L, Burgio G. Cas9 Cuts and Consequences; Detecting, Predicting, and Mitigating CRISPR/Cas9 On- and Off-Target Damage: Techniques for Detecting, Predicting, and Mitigating the On- and off-target Effects of Cas9 Editing. Bioessays 2020; 42:e2000047. [PMID: 32643177 DOI: 10.1002/bies.202000047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Large deletions and genomic re-arrangements are increasingly recognized as common products of double-strand break repair at Clustered Regularly Interspaced, Short Palindromic Repeats - CRISPR associated protein 9 (CRISPR/Cas9) on-target sites. Together with well-known off-target editing products from Cas9 target misrecognition, these are important limitations, that need to be addressed. Rigorous assessment of Cas9-editing is necessary to ensure validity of observed phenotypes in Cas9-edited cell-lines and model organisms. Here the mechanisms of Cas9 specificity, and strategies to assess and mitigate unwanted effects of Cas9 editing are reviewed; covering guide-RNA design, RNA modifications, Cas9 modifications, control of Cas9 activity; computational prediction for off-targets, and experimental methods for detecting Cas9 cleavage. Although recognition of the prevalence of on- and off-target effects of Cas9 editing has increased in recent years, broader uptake across the gene editing community will be important in determining the specificity of Cas9 across diverse applications and organisms.
Collapse
Affiliation(s)
- Anthony Newman
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Lora Starrs
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| |
Collapse
|
25
|
Noorani I, Bradley A, de la Rosa J. CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biol 2020; 21:204. [PMID: 32811551 PMCID: PMC7437018 DOI: 10.1186/s13059-020-02118-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Human cancers harbor substantial genetic, epigenetic, and transcriptional changes, only some of which drive oncogenesis at certain times during cancer evolution. Identifying the cancer-driver alterations amongst the vast swathes of "passenger" changes still remains a major challenge. Transposon and CRISPR screens in vivo provide complementary methods for achieving this, and each platform has its own advantages. Here, we review recent major technological breakthroughs made with these two approaches and highlight future directions. We discuss how each genetic screening platform can provide unique insight into cancer evolution, including intra-tumoral heterogeneity, metastasis, and immune evasion, presenting transformative opportunities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Imran Noorani
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Department of Neurosurgery, University of Cambridge, Cambridge, CB2 0QQ, UK.
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Allan Bradley
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jorge de la Rosa
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
26
|
Epigenetic Control of a Local Chromatin Landscape. Int J Mol Sci 2020; 21:ijms21030943. [PMID: 32023873 PMCID: PMC7038174 DOI: 10.3390/ijms21030943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Proper regulation of the chromatin landscape is essential for maintaining eukaryotic cell identity and diverse cellular processes. The importance of the epigenome comes, in part, from the ability to influence gene expression through patterns in DNA methylation, histone tail modification, and chromatin architecture. Decades of research have associated this process of chromatin regulation and gene expression with human diseased states. With the goal of understanding how chromatin dysregulation contributes to disease, as well as preventing or reversing this type of dysregulation, a multidisciplinary effort has been launched to control the epigenome. Chemicals that alter the epigenome have been used in labs and in clinics since the 1970s, but more recently there has been a shift in this effort towards manipulating the chromatin landscape in a locus-specific manner. This review will provide an overview of chromatin biology to set the stage for the type of control being discussed, evaluate the recent technological advances made in controlling specific regions of chromatin, and consider the translational applications of these works.
Collapse
|