1
|
Tiburcio PDB, Chen K, Xu L, Chen KS. Suppressing proteasome activity enhances sensitivity to actinomycin D in diffuse anaplastic Wilms tumor. Cell Rep Med 2025:102133. [PMID: 40347939 DOI: 10.1016/j.xcrm.2025.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/28/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Wilms tumor is the most common pediatric kidney cancer, and diffuse anaplastic Wilms tumor is the most chemoresistant subtype. Here, we explore how Wilms tumor cells evade the chemotherapy actinomycin D, which inhibits ribosomal RNA biogenesis. Using ribosome profiling, protein arrays, and a genome-wide knockout screen, we describe how actinomycin D disrupts protein homeostasis and blocks cell-cycle progression. When ribosomal capacity is limited by actinomycin D treatment, anaplastic Wilms tumor cells preferentially translate proteasome components. Next, we find that the proteasome inhibitor bortezomib sensitizes cells to actinomycin D treatment in vitro and prolongs survival in xenograft models. Lastly, increased levels of proteasome components are associated with anaplastic histology and worse prognosis in Wilms tumor patients. In sum, maintaining protein homeostasis is critical for Wilms tumor proliferation, and it can be therapeutically disrupted by blocking protein synthesis or turnover.
Collapse
Affiliation(s)
- Patricia D B Tiburcio
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Götz L, Wegert J, Paikari A, Appenzeller S, Bausenwein S, Vokuhl C, Treger TD, Drost J, Linderkamp C, Schneider DT, Ernestus K, Warman SW, Fuchs J, Welter N, Graf N, Behjati S, Furtwängler R, Gessler M. Wilms tumor primary cultures capture phenotypic heterogeneity and facilitate preclinical screening. Transl Oncol 2025; 52:102263. [PMID: 39740515 PMCID: PMC11750297 DOI: 10.1016/j.tranon.2024.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
Wilms tumors (WT) are characterized by variable contributions of blastemal, epithelial and stromal elements, reflecting their diverse cellular origins and genetic drivers. In vitro models remain rare, despite a growing need to better characterize tumor biology and evaluate new treatments. Using three approaches, we have now established a large collection of long-term cultures that represent this diversity. Adherent WT cultures are predominated by stromal cells, 3D spheroids model blastema, and patient-derived organoid cultures of both tumor and healthy kidney tissue result in the preferential growth of epithelial cells. Adherent, spheroid and organoid cultures are also clearly distinguishable by their transcriptome. Preclinical drug screening experiments revealed sensitivity to a range of inhibitors, that are highly effective in other childhood solid tumors. Sensitivity was related to MYCN status, a marker associated with adverse outcome across human cancers including WT. The combination of the three culture techniques represents a promising tool to both explore tumor heterogeneity in vitro and to facilitate characterization of candidate driver genes, in order to improve treatment regimens in the future.
Collapse
Affiliation(s)
- Lisa Götz
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Alireza Paikari
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Sabrina Bausenwein
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Taryn D Treger
- Wellcome Sanger Institute, Hinxton, UK; Department of Pediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Christin Linderkamp
- Department of Pediatric Hematology and Oncology, Hannover Medical School (MHH), Hannover, Germany
| | - Dominik T Schneider
- Clinic of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Germany
| | - Karen Ernestus
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Steven W Warman
- Clinic of Pediatric Surgery, Charité - University Hospital Berlin, Berlin, Germany; Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Tuebingen, Germany
| | - Nils Welter
- Department of Pediatric Hematology and Oncology, Saarland University Hospital, Homburg, Germany
| | - Norbert Graf
- Department of Pediatric Hematology and Oncology, Saarland University Hospital, Homburg, Germany
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK; Department of Pediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Rhoikos Furtwängler
- Department of Pediatric Hematology and Oncology, Saarland University Hospital, Homburg, Germany; Pediatric Hematology and Oncology, Dep. of Pediatrics, Bern University Hospital, University of Bern, Inselspital, Switzerland
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Gehle DB, Jablonowski CM, Pichavaram P, Singh S, Woolard MA, Morton CL, Billups CA, Davidoff AM, Yang J, Murphy AJ. Characterizing Sensitivity to Vincristine, Irinotecan, and Telomerase-targeted Therapy in Diffuse Anaplastic Wilms Tumor Patient-derived Xenografts ☆. J Pediatr Surg 2024:162122. [PMID: 39753413 DOI: 10.1016/j.jpedsurg.2024.162122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Patients with diffuse anaplastic Wilms tumor (DAWT) experience relatively poor oncologic outcomes. Previous work has described mechanisms of telomerase upregulation in DAWT, posing a potential therapeutic target. METHODS We assessed in vitro sensitivity to vincristine, irinotecan, and telomerase-targeting drug 6-thio-2'-deoxyguanosine (6 dG) in DAWT cell lines WiT49 and PDM115 and in spheroids derived from cell lines and four DAWT patient-derived xenografts (PDX). We also tested in vivo response to vincristine/irinotecan (VI), 6 dG, or combination in WTPDX. RESULTS Sensitivity to vincristine varied with EC50 between 0.13 and 44.92 nM in spheroids, with EC50 for SN-38 (irinotecan active metabolite) from 3.06 to 70.96 nM. All were resistant to 6 dG monotherapy with EC50 from 3.06 to 50+ μM. In KT-51, 10 μM 6 dG significantly slowed spheroid growth. 6 dG treatment increased DNA damage response markers pChk1 S345, p53 and γH2AX levels in KT-51, KT-53 and KT-60 spheroids. In WiT49 2D culture, treatment of sub-toxic doses of 6 dG did not induce apoptosis or cell cycle arrest and exhibited minimal synergistic capacity with VI; TERT overexpression did not increase 6 dG sensitivity. In vivo treatment of KT-51, KT-53, and KT-60 with VI exhibited variable responses from progressive disease to complete clinical responses, but 6 dG monotherapy resulted in no tumor responses and 6 dG addition to VI conferred no increased tumor suppression. CONCLUSIONS DAWT models are variably sensitive to VI but are resistant to 6 dG monotherapy or combination with VI. Future research will address limitations of preclinical WT model systems and assess additional targeted therapies for high-risk WT subtypes.
Collapse
Affiliation(s)
- Daniel B Gehle
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Carolyn M Jablonowski
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mary A Woolard
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher L Morton
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Catherine A Billups
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
4
|
Tiburcio PD, Chen K, Xu L, Chen KS. Actinomycin D and bortezomib disrupt protein homeostasis in Wilms tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598518. [PMID: 38948702 PMCID: PMC11212905 DOI: 10.1101/2024.06.11.598518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Wilms tumor is the most common kidney cancer in children, and diffuse anaplastic Wilms tumor is the most chemoresistant histological subtype. Here, we explore how Wilms tumor cells evade the common chemotherapeutic drug actinomycin D, which inhibits ribosomal RNA biogenesis. Using ribosome profiling, protein arrays, and a genome-wide knockout screen, we describe how actinomycin D disrupts protein homeostasis and blocks cell cycle progression. We found that, when ribosomal capacity is limited by actinomycin D treatment, anaplastic Wilms tumor cells preferentially translate proteasome components and upregulate proteasome activity. Based on these findings, we tested whether the proteasome inhibitor bortezomib sensitizes cells to actinomycin D treatment. Indeed, we found that the combination induces apoptosis both in vitro and in vivo and prolongs survival in xenograft models. Lastly, we show that increased levels of proteasome components are associated with anaplastic histology and worse prognosis in Wilms tumor patients. In sum, maintaining protein homeostasis is critical for Wilms tumor proliferation, and it can be therapeutically disrupted by blocking protein synthesis or turnover.
Collapse
Affiliation(s)
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kenneth S. Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
5
|
Zeng Q, Tao J, Qin L, Zeng Y, Liu Z, Xu M, Zeng L. Comprehensive prognostic gene identification and functional characterization of GRAMD1A in Wilms tumor: development of risk prediction models and therapeutic implications. Front Oncol 2024; 14:1501718. [PMID: 39659787 PMCID: PMC11628387 DOI: 10.3389/fonc.2024.1501718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Background Wilms tumor (WT) is the most common pediatric kidney cancer, with survival rates exceeding 90% in localized cases. However, advanced or recurrent WT remains difficult to treat due to poor prognosis and limited knowledge of its molecular mechanisms. Gene expression profiling has shown promise in identifying prognostic markers and therapeutic targets. This study aimed to identify key prognostic genes and pathways in WT, construct risk prediction models, and validate their role in tumor progression. Methods RNA sequencing and clinical data from 136 WT patients were obtained from the TARGET database. Differential gene expression analysis was conducted using GEO datasets GSE11024 and GSE66405 to compare WT and normal kidney tissues. Identified differentially expressed genes (DEGs) underwent Gene Ontology (GO) and KEGG pathway enrichment analysis to explore biological functions and pathways associated with WT progression. Univariate Cox regression was used to assess the association between DEGs and overall survival (OS) and progression-free survival (PFS). LASSO regression models were developed for risk stratification, and model accuracy was evaluated using time-dependent ROC curves. External validation confirmed key hub genes, while functional assays in WT cell lines (WiT-49) assessed the role of GRAMD1A in tumor behavior. Results A total of 3,395 DEGs were identified, with 1,564 upregulated and 1,831 downregulated genes. Enrichment analyses revealed significant pathways involved in cell cycle regulation and metabolic reprogramming. Six key genes (GRAMD1A, PLXNA3, SPR, EBAG9, RBM47, and RIDA) were associated with both OS and PFS. LASSO models demonstrated strong predictive performance, with GRAMD1A identified as a major risk factor. External validation confirmed differential expression, and functional assays showed that GRAMD1A silencing significantly inhibited WT cell viability, proliferation, migration, and invasion. Conclusions This study identifies novel prognostic genes and potential therapeutic targets in WT. GRAMD1A, SPR, EBAG9, RBM47, and RIDA play critical roles in WT progression, with GRAMD1A as a key oncogenic factor, offering potential for risk stratification and future therapeutic intervention.
Collapse
Affiliation(s)
- Qiang Zeng
- Department of Pediatric Surgery, Jiangxi Maternal and Child Health Hospital, Jiangxi Children’s Medical Center, Nanchang, Jiangxi, China
| | - Junfeng Tao
- Department of Pediatric Surgery, Jiangxi Maternal and Child Health Hospital, Jiangxi Children’s Medical Center, Nanchang, Jiangxi, China
| | - Lilu Qin
- Department of Pediatric Surgery, Jiangxi Maternal and Child Health Hospital, Jiangxi Children’s Medical Center, Nanchang, Jiangxi, China
| | - Yong Zeng
- Department of Pediatric Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhong Liu
- Department of Pediatric Surgery, Jiangxi Maternal and Child Health Hospital, Jiangxi Children’s Medical Center, Nanchang, Jiangxi, China
| | - Mingxian Xu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linshan Zeng
- Department of Pediatric Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
Ma G, Gao A, Chen J, Liu P, Sarda R, Gulliver J, Wang Y, Joiner C, Hu M, Kim EJ, Yeger H, Le HD, Chen X, Li WJ, Xu W. Modeling high-risk Wilms tumors enables the discovery of therapeutic vulnerability. Cell Rep Med 2024; 5:101770. [PMID: 39368485 PMCID: PMC11513831 DOI: 10.1016/j.xcrm.2024.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Wilms tumor (WT) is the most common pediatric kidney cancer treated with standard chemotherapy. However, less-differentiated blastemal type of WT often relapses. To model the high-risk WT for therapeutic intervention, we introduce pluripotency factors into WiT49, a mixed-type WT cell line, to generate partially reprogrammed cells, namely WiT49-PRCs. When implanted into the kidney capsule in mice, WiT49-PRCs form kidney tumors and develop both liver and lung metastases, whereas WiT49 tumors do not metastasize. Histological characterization and gene expression signatures demonstrate that WiT49-PRCs recapitulate blastemal-predominant WTs. Moreover, drug screening in isogeneic WiT49 and WiT49-PRCs leads to the identification of epithelial- or blastemal-predominant WT-sensitive drugs, whose selectivity is validated in patient-derived xenografts (PDXs). Histone deacetylase (HDAC) inhibitors (e.g., panobinostat and romidepsin) are found universally effective across different WT and more potent than doxorubicin in PDXs. Taken together, WiT49-PRCs serve as a blastemal-predominant WT model for therapeutic intervention to treat patients with high-risk WT.
Collapse
Affiliation(s)
- Gui Ma
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Ang Gao
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Jiani Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Rakesh Sarda
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica Gulliver
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Carstyn Joiner
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Mingshan Hu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, SickKids, Toronto, ON M5G 0A4, Canada
| | - Hau D Le
- Department of Surgery, Division of Pediatric Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
7
|
Mittal K, Cooper GW, Lee BP, Su Y, Skinner KT, Shim J, Jonus HC, Kim WJ, Doshi M, Almanza D, Kynnap BD, Christie AL, Yang X, Cowley GS, Leeper BA, Morton CL, Dwivedi B, Lawrence T, Rupji M, Keskula P, Meyer S, Clinton CM, Bhasin M, Crompton BD, Tseng YY, Boehm JS, Ligon KL, Root DE, Murphy AJ, Weinstock DM, Gokhale PC, Spangle JM, Rivera MN, Mullen EA, Stegmaier K, Goldsmith KC, Hahn WC, Hong AL. Targeting TRIP13 in favorable histology Wilms tumor with nuclear export inhibitors synergizes with doxorubicin. Commun Biol 2024; 7:426. [PMID: 38589567 PMCID: PMC11001930 DOI: 10.1038/s42003-024-06140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Garrett W Cooper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Benjamin P Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Yongdong Su
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Katie T Skinner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jenny Shim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Hunter C Jonus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Won Jun Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mihir Doshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diego Almanza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryan D Kynnap
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Brittaney A Leeper
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Taylor Lawrence
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Paula Keskula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie Meyer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catherine M Clinton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Manoj Bhasin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brian D Crompton
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yuen-Yi Tseng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Merck & Co., Rahway, NJ, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer M Spangle
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Miguel N Rivera
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth A Mullen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kelly C Goldsmith
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Pichavaram P, Jablonowski CM, Fang J, Fleming AM, Gil HJ, Boghossian AS, Rees MG, Ronan MM, Roth JA, Morton CL, Zambetti GP, Davidoff AM, Yang J, Murphy AJ. Oncogenic Cells of Renal Embryonic Lineage Sensitive to the Small-Molecule Inhibitor QC6352 Display Depletion of KDM4 Levels and Disruption of Ribosome Biogenesis. Mol Cancer Ther 2024; 23:478-491. [PMID: 37988559 PMCID: PMC10987284 DOI: 10.1158/1535-7163.mct-23-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
The histone lysine demethylases KDM4A-C are involved in physiologic processes including stem cell identity and self-renewal during development, DNA damage repair, and cell-cycle progression. KDM4A-C are overexpressed and associated with malignant cell behavior in multiple human cancers and are therefore potential therapeutic targets. Given the role of KDM4A-C in development and cancer, we aimed to test the potent, selective KDM4A-C inhibitor QC6352 on oncogenic cells of renal embryonic lineage. The anaplastic Wilms tumor cell line WiT49 and the tumor-forming human embryonic kidney cell line HEK293 demonstrated low nanomolar QC6352 sensitivity. The cytostatic response to QC6352 in WiT49 and HEK293 cells was marked by induction of DNA damage, a DNA repair-associated protein checkpoint response, S-phase cell-cycle arrest, profound reduction of ribosomal protein gene and rRNA transcription, and blockade of newly synthesized proteins. QC6352 caused reduction of KDM4A-C levels by a proteasome-associated mechanism. The cellular phenotype caused by QC6352 treatment of reduced migration, proliferation, tumor spheroid growth, DNA damage, and S-phase cell-cycle arrest was most closely mirrored by knockdown of KDM4A as determined by siRNA knockdown of KDM4A-C. QC6352 sensitivity correlated with high basal levels of ribosomal gene transcription in more than 900 human cancer cell lines. Targeting KDM4A may be of future therapeutic interest in oncogenic cells of embryonic renal lineage or cells with high basal expression of ribosomal protein genes.
Collapse
Affiliation(s)
| | | | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Andrew M. Fleming
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Hyea Jin Gil
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Matthew G. Rees
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Melissa M. Ronan
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Jennifer A. Roth
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Christopher L. Morton
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Gerard P. Zambetti
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Andrew J. Murphy
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
9
|
Perotti D, Williams RD, Wegert J, Brzezinski J, Maschietto M, Ciceri S, Gisselsson D, Gadd S, Walz AL, Furtwaengler R, Drost J, Al-Saadi R, Evageliou N, Gooskens SL, Hong AL, Murphy AJ, Ortiz MV, O'Sullivan MJ, Mullen EA, van den Heuvel-Eibrink MM, Fernandez CV, Graf N, Grundy PE, Geller JI, Dome JS, Perlman EJ, Gessler M, Huff V, Pritchard-Jones K. Hallmark discoveries in the biology of Wilms tumour. Nat Rev Urol 2024; 21:158-180. [PMID: 37848532 DOI: 10.1038/s41585-023-00824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Richard D Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Campinas, São Paulo, Brazil
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Gisselsson
- Cancer Cell Evolution Unit, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Skåne, Sweden
| | - Samantha Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Amy L Walz
- Division of Hematology,Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rhoikos Furtwaengler
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, Inselspital Bern University, Bern, Switzerland
| | - Jarno Drost
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Nicholas Evageliou
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, CHOP Specialty Care Center, Vorhees, NJ, USA
| | - Saskia L Gooskens
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael V Ortiz
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Conrad V Fernandez
- Division of Paediatric Hematology Oncology, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Norbert Graf
- Department of Paediatric Oncology and Hematology, Saarland University Hospital, Homburg, Germany
| | - Paul E Grundy
- Department of Paediatrics Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital and the Department of Paediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elizabeth J Perlman
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
10
|
Nirgude S, Naveh NSS, Kavari SL, Traxler EM, Kalish JM. Cancer predisposition signaling in Beckwith-Wiedemann Syndrome drives Wilms tumor development. Br J Cancer 2024; 130:638-650. [PMID: 38142265 PMCID: PMC10876704 DOI: 10.1038/s41416-023-02538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Wilms tumor (WT) exhibits structural and epigenetic changes at chromosome 11p15, which also cause Beckwith-Wiedemann Syndrome (BWS). Children diagnosed with BWS have increased risk for WT. The aim of this study is to identify the molecular signaling signatures in BWS driving these tumors. METHODS We performed whole exome sequencing, methylation array analysis, and gene expression analysis on BWS-WT samples. Our data were compared to publicly available nonBWS data. We categorized WT from BWS and nonBWS patients by assessment of 11p15 methylation status and defined 5 groups- control kidney, BWS-nontumor kidney, BWS-WT, normal-11p15 nonBWS-WT, altered-11p15 nonBWS-WT. RESULTS BWS-WT samples showed single nucleotide variants in BCORL1, ASXL1, ATM and AXL but absence of recurrent gene mutations associated with sporadic WT. We defined a narrow methylation range stratifying nonBWS-WT samples. BWS-WT and altered-11p15 nonBWS-WT showed enrichment of common and unique molecular signatures based on global differential methylation and gene expression analysis. CTNNB1 overexpression and broad range of interactions were seen in the BWS-WT interactome study. CONCLUSION While WT predisposition in BWS is well-established, as are 11p15 alterations in nonBWS-WT, this study focused on stratifying tumor genomics by 11p15 status. Further investigation of our findings may identify novel therapeutic targets in WT oncogenesis.
Collapse
Affiliation(s)
- Snehal Nirgude
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Natali S Sobel Naveh
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sanam L Kavari
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily M Traxler
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Fleming AM, Mansfield SA, Jancelewicz T, Gosain A, Eubanks JW, Davidoff AM, Langham MR, Murphy AJ. Hepatic Metastasectomy in Pediatric Patients: An Observational Study. J Pediatr Surg 2024; 59:247-253. [PMID: 37980196 DOI: 10.1016/j.jpedsurg.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND The role of hepatectomy for metastatic disease in children is controversial. Rationales include potential cure, obtaining a diagnosis, and guiding chemotherapy decisions. This study examines the safety and utility of hepatic metastasectomy for children at a single institution. METHODS After IRB approval (#22-1258), medical records were reviewed from 1995 to 2022 for children undergoing hepatic metastasectomy. En-bloc hepatectomies during primary tumor resection were excluded. RESULTS Hepatic metastasectomy was performed in 16 patients for a variety of histologies. Median patient age was 12.2 years [IQR 6.9-22.6], and 13/16 patients were female (81 %). Number of hepatic metastases ranged from 1 to 23 and involved between 1 and 8 Couinaud segments. Anatomic resections included 4 hemihepatectomies and 1 sectionectomy. All other resections were nonanatomic. 3/6 resections for germ cell tumor (GCT) revealed only mature teratoma, driving adjuvant therapy decisions. When indicated, median time to adjuvant chemotherapy was 19 days [IQR 11-22]. No patients had Clavien-Dindo Class III or higher perioperative morbidity. Three patients (1 GCT, 1 adrenocortical carcinoma (ACC), and 1 gastric neuroendocrine tumor (GNET) experienced hepatic relapse. The patients with relapsed GCT and GNET are alive with disease at 17 and 135 months, respectively. The patient with ACC died of disease progression and liver failure. One patient with Wilms tumor experienced extrahepatic, retroperitoneal recurrence and died. With a median follow-up of 38 months, 10-year disease-specific and disease-free survival were 77 % and 61 %, respectively. CONCLUSIONS Hepatic metastasectomy can be accomplished safely in children, may guide adjuvant therapy decisions, and is associated with long-term survival in selected patients. LEVEL OF EVIDENCE Level IV. TYPE OF STUDY Treatment Study, Case series with no comparison group.
Collapse
Affiliation(s)
- Andrew M Fleming
- St. Jude Children's Research Hospital, Department of Surgery, Memphis, TN, USA; The University of Tennessee Health Science Center, Department of Surgery, Memphis, TN, USA
| | - Sara A Mansfield
- St. Jude Children's Research Hospital, Department of Surgery, Memphis, TN, USA; The University of Tennessee Health Science Center, Department of Surgery, Memphis, TN, USA
| | - Tim Jancelewicz
- St. Jude Children's Research Hospital, Department of Surgery, Memphis, TN, USA; The University of Tennessee Health Science Center, Department of Surgery, Memphis, TN, USA
| | - Ankush Gosain
- St. Jude Children's Research Hospital, Department of Surgery, Memphis, TN, USA; The University of Tennessee Health Science Center, Department of Surgery, Memphis, TN, USA
| | - James W Eubanks
- St. Jude Children's Research Hospital, Department of Surgery, Memphis, TN, USA; The University of Tennessee Health Science Center, Department of Surgery, Memphis, TN, USA
| | - Andrew M Davidoff
- St. Jude Children's Research Hospital, Department of Surgery, Memphis, TN, USA; The University of Tennessee Health Science Center, Department of Surgery, Memphis, TN, USA
| | - Max R Langham
- St. Jude Children's Research Hospital, Department of Surgery, Memphis, TN, USA; The University of Tennessee Health Science Center, Department of Surgery, Memphis, TN, USA
| | - Andrew J Murphy
- St. Jude Children's Research Hospital, Department of Surgery, Memphis, TN, USA; The University of Tennessee Health Science Center, Department of Surgery, Memphis, TN, USA.
| |
Collapse
|
12
|
Murphy AJ, Cheng C, Williams J, Shaw TI, Pinto EM, Dieseldorff-Jones K, Brzezinski J, Renfro LA, Tornwall B, Huff V, Hong AL, Mullen EA, Crompton B, Dome JS, Fernandez CV, Geller JI, Ehrlich PF, Mulder H, Oak N, Maciezsek J, Jablonowski CM, Fleming AM, Pichavaram P, Morton CL, Easton J, Nichols KE, Clay MR, Santiago T, Zhang J, Yang J, Zambetti GP, Wang Z, Davidoff AM, Chen X. Genetic and epigenetic features of bilateral Wilms tumor predisposition in patients from the Children's Oncology Group AREN18B5-Q. Nat Commun 2023; 14:8006. [PMID: 38110397 PMCID: PMC10728430 DOI: 10.1038/s41467-023-43730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Developing synchronous bilateral Wilms tumor suggests an underlying (epi)genetic predisposition. Here, we evaluate this predisposition in 68 patients using whole exome or genome sequencing (n = 85 tumors from 61 patients with matched germline blood DNA), RNA-seq (n = 99 tumors), and DNA methylation analysis (n = 61 peripheral blood, n = 29 non-diseased kidney, n = 99 tumors). We determine the predominant events for bilateral Wilms tumor predisposition: 1)pre-zygotic germline genetic variants readily detectable in blood DNA [WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%), and BRCA-related genes (5%)] or 2)post-zygotic epigenetic hypermethylation at 11p15.5 H19/ICR1 that may require analysis of multiple tissue types for diagnosis. Of 99 total tumor specimens, 16 (16.1%) have 11p15.5 normal retention of imprinting, 25 (25.2%) have 11p15.5 copy neutral loss of heterozygosity, and 58 (58.6%) have 11p15.5 H19/ICR1 epigenetic hypermethylation (loss of imprinting). Here, we ascertain the epigenetic and genetic modes of bilateral Wilms tumor predisposition.
Collapse
Affiliation(s)
- Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38105, USA.
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Justin Williams
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | | - Jack Brzezinski
- Department of Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lindsay A Renfro
- Children's Oncology Group and Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Brett Tornwall
- Children's Oncology Group Statistics and Data Center, Monrovia, CA, USA
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth A Mullen
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Brian Crompton
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jeffrey S Dome
- Center for Cancer and Blood Disorders, Children's National Hospital, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Peter F Ehrlich
- Section of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ninad Oak
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jamie Maciezsek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Carolyn M Jablonowski
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Andrew M Fleming
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | | | - Christopher L Morton
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael R Clay
- Department of Pathology, University of Colorado Anschutz, Aurora, CO, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
13
|
Zugbi S, Aschero R, Ganiewich D, Cancela MB, Winter U, Ottaviani D, Sampor C, Dinardi M, Torbidoni AV, Mena M, Balaguer-Lluna L, Lamas G, Sgroi M, Lagomarsino E, Lubieniecki F, Fandiño A, Radvanyi F, Abramson DH, Podhajcer O, Llera AS, Cafferata EG, Chantada G, Carcaboso AM, Schaiquevich P. Establishment and Comprehensive Characterization of a Novel Preclinical Platform of Metastatic Retinoblastoma for Therapeutic Developments. Invest Ophthalmol Vis Sci 2023; 64:27. [PMID: 38117242 PMCID: PMC10741097 DOI: 10.1167/iovs.64.15.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Purpose Although there have been improvements in the management of metastatic retinoblastoma, most patients do not survive, and all patients suffer from multiple short- and long-term treatment toxicities. Reliable and informative models to assist clinicians are needed. Thus we developed and comprehensively characterized a novel preclinical platform of primary cell cultures and xenograft models of metastatic retinoblastoma to provide insights into the molecular biology underlying metastases and to perform drug screening for the identification of hit candidates with the highest potential for clinical translation. Methods Orbital tumor, bone marrow, cerebrospinal fluid, and lymph node tumor infiltration specimens were obtained from seven patients with metastatic retinoblastoma at diagnosis, disease progression, or relapse. Tumor specimens were engrafted in immunodeficient animals, and primary cell lines were established. Genomic, immunohistochemical/immunocytochemical, and pharmacological analysis were performed. Results We successfully established five primary cell lines: two derived from leptomeningeal, two from orbital, and one from lymph node tumor dissemination. After the intravitreal or intraventricular inoculation of these cells, we established cell-derived xenograft models. Both primary cell lines and xenografts accurately retained the histological and genomic features of the tumors from which they were derived and faithfully recapitulated the dissemination patterns and pharmacological sensitivity observed in the matched patients. Conclusions Ours is an innovative and thoroughly characterized preclinical platform of metastatic retinoblastoma developed for the understanding of tumor biology of this highly aggressive tumor and has the potential to identify drug candidates to treat patients who currently lack effective treatment options.
Collapse
Affiliation(s)
- Santiago Zugbi
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Rosario Aschero
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Daiana Ganiewich
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - María B. Cancela
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Ursula Winter
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Daniela Ottaviani
- Institut Curie; PSL Research University, Centre National de la Recherche Scientifique (CNRS); Equipe Ligue contre le cancer, Paris, France
| | - Claudia Sampor
- Hematology-Oncology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Milagros Dinardi
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Ana V. Torbidoni
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Marcela Mena
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Leire Balaguer-Lluna
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Gabriela Lamas
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Mariana Sgroi
- Ophthalmology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Eduardo Lagomarsino
- Pharmacy Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Fabiana Lubieniecki
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Adriana Fandiño
- Ophthalmology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - François Radvanyi
- Institut Curie; PSL Research University, Centre National de la Recherche Scientifique (CNRS); Equipe Ligue contre le cancer, Paris, France
| | - David H. Abramson
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Osvaldo Podhajcer
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Andrea S. Llera
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Eduardo G. Cafferata
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Guillermo Chantada
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Angel M. Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Paula Schaiquevich
- Innovative Treatments Unit, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| |
Collapse
|
14
|
He F, Bandyopadhyay AM, Klesse LJ, Rogojina A, Chun SH, Butler E, Hartshorne T, Holland T, Garcia D, Weldon K, Prado LNP, Langevin AM, Grimes AC, Sugalski A, Shah S, Assanasen C, Lai Z, Zou Y, Kurmashev D, Xu L, Xie Y, Chen Y, Wang X, Tomlinson GE, Skapek SX, Houghton PJ, Kurmasheva RT, Zheng S. Genomic profiling of subcutaneous patient-derived xenografts reveals immune constraints on tumor evolution in childhood solid cancer. Nat Commun 2023; 14:7600. [PMID: 37990009 PMCID: PMC10663468 DOI: 10.1038/s41467-023-43373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Subcutaneous patient-derived xenografts (PDXs) are an important tool for childhood cancer research. Here, we describe a resource of 68 early passage PDXs established from 65 pediatric solid tumor patients. Through genomic profiling of paired PDXs and patient tumors (PTs), we observe low mutational similarity in about 30% of the PT/PDX pairs. Clonal analysis in these pairs show an aggressive PT minor subclone seeds the major clone in the PDX. We show evidence that this subclone is more immunogenic and is likely suppressed by immune responses in the PT. These results suggest interplay between intratumoral heterogeneity and antitumor immunity may underlie the genetic disparity between PTs and PDXs. We further show that PDXs generally recapitulate PTs in copy number and transcriptomic profiles. Finally, we report a gene fusion LRPAP1-PDGFRA. In summary, we report a childhood cancer PDX resource and our study highlights the role of immune constraints on tumor evolution.
Collapse
Affiliation(s)
- Funan He
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | - Abhik M Bandyopadhyay
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Laura J Klesse
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Anna Rogojina
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sang H Chun
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Erin Butler
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Taylor Hartshorne
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Trevor Holland
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dawn Garcia
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Luz-Nereida Perez Prado
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anne-Marie Langevin
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Allison C Grimes
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Aaron Sugalski
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Shafqat Shah
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Chatchawin Assanasen
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dias Kurmashev
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lin Xu
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Xiaojing Wang
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Gail E Tomlinson
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Stephen X Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA.
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA.
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
15
|
Rogojina A, Klesse LJ, Butler E, Kim J, Zhang H, Xiao X, Guo L, Zhou Q, Hartshorne T, Garcia D, Weldon K, Holland T, Bandyopadhyay A, Prado LP, Wang S, Yang DM, Langevan AM, Zou Y, Grimes AC, Assanasen C, Gidvani-Diaz V, Zheng S, Lai Z, Chen Y, Xie Y, Tomlinson GE, Skapek SX, Kurmasheva RT, Houghton PJ, Xu L. Comprehensive characterization of patient-derived xenograft models of pediatric leukemia. iScience 2023; 26:108171. [PMID: 37915590 PMCID: PMC10616347 DOI: 10.1016/j.isci.2023.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/25/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Patient-derived xenografts (PDX) remain valuable models for understanding the biology and for developing novel therapeutics. To expand current PDX models of childhood leukemia, we have developed new PDX models from Hispanic patients, a subgroup with a poorer overall outcome. Of 117 primary leukemia samples obtained, successful engraftment and serial passage in mice were achieved in 82 samples (70%). Hispanic patient samples engrafted at a rate (51/73, 70%) that was similar to non-Hispanic patient samples (31/45, 70%). With a new algorithm to remove mouse contamination in multi-omics datasets including methylation data, we found PDX models faithfully reflected somatic mutations, copy-number alterations, RNA expression, gene fusions, whole-genome methylation patterns, and immunophenotypes found in primary tumor (PT) samples in the first 50 reported here. This cohort of characterized PDX childhood leukemias represents a valuable resource in that germline DNA sequencing has allowed the unambiguous determination of somatic mutations in both PT and PDX.
Collapse
Affiliation(s)
- Anna Rogojina
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Laura J. Klesse
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children’s Health Children’s Medical Center, Dallas, TX, USA
| | - Erin Butler
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children’s Health Children’s Medical Center, Dallas, TX, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taylor Hartshorne
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dawn Garcia
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Trevor Holland
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Abhik Bandyopadhyay
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Luz Perez Prado
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donghan M. Yang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anne-Marie Langevan
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Allison C. Grimes
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chatchawin Assanasen
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yang Xie
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gail E. Tomlinson
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Stephen X. Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children’s Health Children’s Medical Center, Dallas, TX, USA
| | - Raushan T. Kurmasheva
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Lin Xu
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
16
|
Petrosyan A, Villani V, Aguiari P, Thornton ME, Wang Y, Rajewski A, Zhou S, Cravedi P, Grubbs BH, De Filippo RE, Sedrakyan S, Lemley KV, Csete M, Da Sacco S, Perin L. Identification and Characterization of the Wilms Tumor Cancer Stem Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206787. [PMID: 37114795 PMCID: PMC10369255 DOI: 10.1002/advs.202206787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
A nephrogenic progenitor cell (NP) with cancer stem cell characteristics driving Wilms tumor (WT) using spatial transcriptomics, bulk and single cell RNA sequencing, and complementary in vitro and transplantation experiments is identified and characterized. NP from WT samples with NP from the developing human kidney is compared. Cells expressing SIX2 and CITED1 fulfill cancer stem cell criteria by reliably recapitulating WT in transplantation studies. It is shown that self-renewal versus differentiation in SIX2+CITED1+ cells is regulated by the interplay between integrins ITGβ1 and ITGβ4. The spatial transcriptomic analysis defines gene expression maps of SIX2+CITED1+ cells in WT samples and identifies the interactive gene networks involved in WT development. These studies define SIX2+CITED1+ cells as the nephrogenic-like cancer stem cells of WT and points to the renal developmental transcriptome changes as a possible driver in regulating WT formation and progression.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Valentina Villani
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
| | - Paola Aguiari
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- David Geffen School of Medicine at UCLA – VA Healthcare SystemLos AngelesCA90095USA
| | - Matthew E. Thornton
- Department of Obstetrics and GynecologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Yizhou Wang
- Genomics CoreDepartment of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Alex Rajewski
- Genomics CoreDepartment of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Shengmei Zhou
- Department of Pathology and Laboratory MedicineChildren's Hospital Los AngelesLos AngelesCA90027USA
| | - Paolo Cravedi
- Department of MedicineDivision of Nephrology and Translational Transplant Research CenterRecanati Miller Transplant InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Brendan H. Grubbs
- Department of Obstetrics and GynecologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Roger E. De Filippo
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Sargis Sedrakyan
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Kevin V. Lemley
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Children's Hospital Los AngelesDivision of NephrologyDepartment of PediatricsUniversity of Southern CaliforniaLos AngelesCA90027USA
| | - Marie Csete
- Department of AnesthesiologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Stefano Da Sacco
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Laura Perin
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| |
Collapse
|
17
|
Wojcik HM, Lovvorn HN, Hollingshead M, Pierce J, Stotler H, Murphy AJ, Borgel S, Phelps HM, Correa H, Perantoni AO. Exploiting embryonic niche conditions to grow Wilms tumor blastema in culture. Front Oncol 2023; 13:1091274. [PMID: 37007076 PMCID: PMC10061139 DOI: 10.3389/fonc.2023.1091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionWilms Tumor (WT), or nephroblastoma, is the most common pediatric kidney cancer. Most WTs display a “favorable” triphasic histology, in which the tumor is comprised of blastemal, stromal, and epithelial cell types. Blastemal predominance after neoadjuvant chemotherapy or diffuse anaplasia (“unfavorable” histology; 5-8%) portend a worse prognosis. Blastema likely provide the putative cancer stem cells (CSCs), which retain molecular and histologic features characteristic of nephron progenitor cells (NPCs), within WTs. NPCs arise in the metanephric mesenchyme (MM) and populate the cap mesenchyme (CM) in the developing kidney. WT blastemal cells, like NPCs, similarly express markers, SIX2 and CITED1. Tumor xenotransplantation is currently the only dependable method to propagate tumor tissue for research or therapeutic screening, since efforts to culture tumors in vitro as monolayers have invariably failed. Therefore, a critical need exists to propagate WT stem cells rapidly and efficiently for high-throughput, real-time drug screening.MethodsPreviously, our lab developed niche conditions that support the propagation of murine NPCs in culture. Applying similar conditions to WTs, we assessed our ability to maintain key NPC "stemness" markers, SIX2, NCAM, and YAP1, and CSC marker ALDHI in cells from five distinct untreated patient tumors.ResultsAccordingly, our culture conditions maintained the expression of these markers in cultured WT cells through multiple passages of rapidly dividing cells.DiscussionThese findings suggest that our culture conditions sustain the WT blastemal population, as previously shown for normal NPCs. As a result, we have developed new WT cell lines and a multi-passage in vitro model for studying the blastemal lineage/CSCs in WTs. Furthermore, this system supports growth of heterogeneous WT cells, upon which potential drug therapies could be tested for efficacy and resistance.
Collapse
Affiliation(s)
- Heather M. Wojcik
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Harold N. Lovvorn
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Melinda Hollingshead
- Biological Testing Branch/Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, United States
| | - Janene Pierce
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Howard Stotler
- Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Andrew J. Murphy
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Suzanne Borgel
- Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Hannah M. Phelps
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Hernan Correa
- Division of Pediatric Pathology, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Alan O. Perantoni
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Alan O. Perantoni,
| |
Collapse
|
18
|
Murphy AJ, Cheng C, Williams J, Shaw TI, Pinto EM, Dieseldorff-Jones K, Brzezinski J, Renfro LA, Tornwall B, Huff V, Hong AL, Mullen EA, Crompton B, Dome JS, Fernandez CV, Geller JI, Ehrlich PF, Mulder H, Oak N, Maciezsek J, Jablonowski C, Fleming AM, Pichavaram P, Morton CL, Easton J, Nichols KE, Clay MR, Santiago T, Zhang J, Yang J, Zambetti GP, Wang Z, Davidoff AM, Chen X. The Genetic and Epigenetic Features of Bilateral Wilms Tumor Predisposition: A Report from the Children's Oncology Group AREN18B5-Q Study. RESEARCH SQUARE 2023:rs.3.rs-2675436. [PMID: 36993649 PMCID: PMC10055651 DOI: 10.21203/rs.3.rs-2675436/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study comprehensively evaluated the landscape of genetic and epigenetic events that predispose to synchronous bilateral Wilms tumor (BWT). We performed whole exome or whole genome sequencing, total-strand RNA-seq, and DNA methylation analysis using germline and/or tumor samples from 68 patients with BWT from St. Jude Children's Research Hospital and the Children's Oncology Group. We found that 25/61 (41%) of patients evaluated harbored pathogenic or likely pathogenic germline variants, with WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%) and the BRCA-related genes (5%) BRCA1, BRCA2, and PALB2 being most common. Germline WT1 variants were strongly associated with somatic paternal uniparental disomy encompassing the 11p15.5 and 11p13/WT1 loci and subsequent acquired pathogenic CTNNB1 variants. Somatic coding variants or genome-wide copy number alterations were almost never shared between paired synchronous BWT, suggesting that the acquisition of independent somatic variants leads to tumor formation in the context of germline or early embryonic, post-zygotic initiating events. In contrast, 11p15.5 status (loss of heterozygosity, loss or retention of imprinting) was shared among paired synchronous BWT in all but one case. The predominant molecular events for BWT predisposition include pathogenic germline variants or post-zygotic epigenetic hypermethylation at the 11p15.5 H19/ICR1 locus (loss of imprinting). This study demonstrates that post-zygotic somatic mosaicism for 11p15.5 hypermethylation/loss of imprinting is the single most common initiating molecular event predisposing to BWT. Evidence of somatic mosaicism for 11p15.5 loss of imprinting was detected in leukocytes of a cohort of BWT patients and long-term survivors, but not in unilateral Wilms tumor patients and long-term survivors or controls, further supporting the hypothesis that post-zygotic 11p15.5 alterations occurred in the mesoderm of patients who go on to develop BWT. Due to the preponderance of BWT patients with demonstrable germline or early embryonic tumor predisposition, BWT exhibits a unique biology when compared to unilateral Wilms tumor and therefore warrants continued refinement of its own treatment-relevant biomarkers which in turn may inform directed treatment strategies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Brian Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center
| | | | | | | | | | | | - Ninad Oak
- St. Jude Children's Research Hospital
| | | | | | | | | | | | | | | | | | | | | | - Jun Yang
- St. Jude Children's Research Hospital
| | | | | | | | | |
Collapse
|
19
|
Trink Y, Urbach A, Dekel B, Hohenstein P, Goldberger J, Kalisky T. Characterization of Continuous Transcriptional Heterogeneity in High-Risk Blastemal-Type Wilms' Tumors Using Unsupervised Machine Learning. Int J Mol Sci 2023; 24:ijms24043532. [PMID: 36834944 PMCID: PMC9965420 DOI: 10.3390/ijms24043532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Wilms' tumors are pediatric malignancies that are thought to arise from faulty kidney development. They contain a wide range of poorly differentiated cell states resembling various distorted developmental stages of the fetal kidney, and as a result, differ between patients in a continuous manner that is not well understood. Here, we used three computational approaches to characterize this continuous heterogeneity in high-risk blastemal-type Wilms' tumors. Using Pareto task inference, we show that the tumors form a triangle-shaped continuum in latent space that is bounded by three tumor archetypes with "stromal", "blastemal", and "epithelial" characteristics, which resemble the un-induced mesenchyme, the cap mesenchyme, and early epithelial structures of the fetal kidney. By fitting a generative probabilistic "grade of membership" model, we show that each tumor can be represented as a unique mixture of three hidden "topics" with blastemal, stromal, and epithelial characteristics. Likewise, cellular deconvolution allows us to represent each tumor in the continuum as a unique combination of fetal kidney-like cell states. These results highlight the relationship between Wilms' tumors and kidney development, and we anticipate that they will pave the way for more quantitative strategies for tumor stratification and classification.
Collapse
Affiliation(s)
- Yaron Trink
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute and Division of Pediatric Nephrology, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer 5262000, Israel
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jacob Goldberger
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tomer Kalisky
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
- Correspondence: ; Tel.: +972-3-738-4656
| |
Collapse
|
20
|
Aukema SM, Glaser S, van den Hout MFCM, Dahlum S, Blok MJ, Hillmer M, Kolarova J, Sciot R, Schott DA, Siebert R, Stumpel CTRM. Molecular characterization of an embryonal rhabdomyosarcoma occurring in a patient with Kabuki syndrome: report and literature review in the light of tumor predisposition syndromes. Fam Cancer 2023; 22:103-118. [PMID: 35856126 PMCID: PMC9829644 DOI: 10.1007/s10689-022-00306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Kabuki syndrome is a well-recognized syndrome characterized by facial dysmorphism and developmental delay/intellectual disability and in the majority of patients a germline variant in KMT2D is found. As somatic KMT2D variants can be found in 5-10% of tumors a tumor predisposition in Kabuki syndrome is discussed. So far less than 20 patients with Kabuki syndrome and a concomitant malignancy have been published. Here we report on a female patient with Kabuki syndrome and a c.2558_2559delCT germline variant in KMT2D who developed an embryonal rhabdomyosarcoma (ERMS) at 10 years. On tumor tissue we performed DNA-methylation profiling and exome sequencing (ES). Copy number analyses revealed aneuploidies typical for ERMS including (partial) gains of chromosomes 2, 3, 7, 8, 12, 15, and 20 and 3 focal deletions of chromosome 11p. DNA methylation profiling mapped the case to ERMS by a DNA methylation-based sarcoma classifier. Sequencing suggested gain of the wild-type KMT2D allele in the trisomy 12. Including our patient literature review identified 18 patients with Kabuki syndrome and a malignancy. Overall, the landscape of malignancies in patients with Kabuki syndrome was reminiscent of that of the pediatric population in general. Histopathological and molecular data were only infrequently reported and no report included next generation sequencing and/or DNA-methylation profiling. Although we found no strong arguments pointing towards KS as a tumor predisposition syndrome, based on the small numbers any relation cannot be fully excluded. Further planned studies including profiling of additional tumors and long term follow-up of KS-patients into adulthood could provide further insights.
Collapse
Affiliation(s)
- Sietse M Aukema
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Mari F C M van den Hout
- Department of Pathology, Research Institute GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Morten Hillmer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Raf Sciot
- Department of Pathology, University Hospital, University of Leuven, 3000, Louvain, Belgium
| | - Dina A Schott
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Pediatrics, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
- Department of Clinical Genetics and GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
21
|
Lipid metabolism and ageing in Caenorhabditis elegans: a complex interplay. Biogerontology 2022; 23:541-557. [PMID: 36048312 DOI: 10.1007/s10522-022-09989-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
Abstract
Life expectancy in Western countries is increasing, with concomitant rise in ageing-related pathologies, including Parkinson's and Alzheimer's disease, as well as other neurodegenerative diseases. Consequently, the medical, psychological and economic burden to society is increasing. Thus, understanding the cellular and molecular mechanisms underlying the association of ageing with elevated vulnerability to disease is crucial towards promoting quality of life in old age. Caenorhabditis elegans has emerged as a versatile model to study ageing, due to its simplicity, fast life cycle, and the availability of a wide range of biological tools to target specific genes and cells. Indeed, recent studies in C. elegans have revealed that lipid metabolism plays a key role in controlling longevity by impinging on a plethora of molecular pathways and cell types. Here, we summarise findings relevant to the interplay between lipid metabolism and ageing in C. elegans, and discuss the implications for the pathogenesis of age-related disorders in humans.
Collapse
|
22
|
Jablonowski CM, Gil HJ, Pinto EM, Pichavaram P, Fleming AM, Clay MR, Hu D, Morton CL, Pruett-Miller SM, Hansen BS, Chen X, Jones KMD, Liu Y, Ma X, Yang J, Davidoff AM, Zambetti GP, Murphy AJ. TERT Expression in Wilms Tumor Is Regulated by Promoter Mutation or Hypermethylation, WT1, and N-MYC. Cancers (Basel) 2022; 14:cancers14071655. [PMID: 35406427 PMCID: PMC8996936 DOI: 10.3390/cancers14071655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The telomerase enzyme adds repetitive genetic sequences to the ends of chromosomes called telomeres to prevent cellular senescence. Gain of telomerase function is one of the hallmarks of human cancer. The telomerase protein is coded by the gene TERT and increased TERT RNA levels have been associated with disease relapse in Wilms tumor, the most common kidney cancer of childhood. This study aimed to determine the mechanisms of increased TERT expression in Wilms tumor. This study found mutations in the TERT promoter, increased methylation of the TERT promoter, and genomic copy number amplifications of TERT as potential mechanisms of TERT activation. Conversely, this study found that inactivating WT1 mutation was associated with low TERT RNA levels and telomerase activity. N-MYC overexpression in Wilms tumor cells resulted in increased TERT promoter activity and TERT transcription. TERT transcription is associated with molecular and histologic subgroups in Wilms tumor and telomere-targeted therapies warrant future investigation. Abstract Increased TERT mRNA is associated with disease relapse in favorable histology Wilms tumor (WT). This study sought to understand the mechanism of increased TERT expression by determining the association between TERT and WT1 and N-MYC, two proteins important in Wilms tumor pathogenesis that have been shown to regulate TERT expression. Three out of 45 (6.7%) WTs and the corresponding patient-derived xenografts harbored canonical gain-of-function mutations in the TERT promoter. This study identified near ubiquitous hypermethylation of the TERT promoter region in WT compared to normal kidney. WTs with biallelic inactivating mutations in WT1 (7/45, 15.6%) were found to have lower TERT expression by RNA-seq and qRT-PCR and lower telomerase activity determined by the telomerase repeat amplification protocol. Anaplastic histology and increased percentage of blastema were positively correlated with higher TERT expression and telomerase activity. In vitro shRNA knockdown of WT1 resulted in decreased expression of TERT, reduced colony formation, and decreased proliferation of WiT49, an anaplastic WT cell line with wild-type WT1. CRISPR-Cas9-mediated knockout of WT1 resulted in decreased expression of telomere-related gene pathways. However, an inducible Wt1-knockout mouse model showed no relationship between Wt1 knockout and Tert expression in normal murine nephrogenesis, suggesting that WT1 and TERT are coupled in transformed cells but not in normal kidney tissues. N-MYC overexpression resulted in increased TERT promoter activity and TERT transcription. Thus, multiple mechanisms of TERT activation are involved in WT and are associated with anaplastic histology and increased blastema. This study is novel because it identifies potential mechanisms of TERT activation in Wilms tumor that could be of therapeutic interests.
Collapse
Affiliation(s)
- Carolyn M. Jablonowski
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Hyea Jin Gil
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Emilia M. Pinto
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (E.M.P.); (G.P.Z.)
| | - Prahalathan Pichavaram
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Andrew M. Fleming
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz, Aurora, CO 80045, USA;
| | - Dongli Hu
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Christopher L. Morton
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.M.P.-M.); (B.S.H.)
| | - Baranda S. Hansen
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.M.P.-M.); (B.S.H.)
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Karissa M. Dieseldorff Jones
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Gerard P. Zambetti
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (E.M.P.); (G.P.Z.)
| | - Andrew J. Murphy
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA
- Correspondence:
| |
Collapse
|
23
|
Spreafico F, Fernandez CV, Brok J, Nakata K, Vujanic G, Geller JI, Gessler M, Maschietto M, Behjati S, Polanco A, Paintsil V, Luna-Fineman S, Pritchard-Jones K. Wilms tumour. Nat Rev Dis Primers 2021; 7:75. [PMID: 34650095 DOI: 10.1038/s41572-021-00308-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Wilms tumour (WT) is a childhood embryonal tumour that is paradigmatic of the intersection between disrupted organogenesis and tumorigenesis. Many WT genes play a critical (non-redundant) role in early nephrogenesis. Improving patient outcomes requires advances in understanding and targeting of the multiple genes and cellular control pathways now identified as active in WT development. Decades of clinical and basic research have helped to gradually optimize clinical care. Curative therapy is achievable in 90% of affected children, even those with disseminated disease, yet survival disparities within and between countries exist and deserve commitment to change. Updated epidemiological studies have also provided novel insights into global incidence variations. Introduction of biology-driven approaches to risk stratification and new drug development has been slower in WT than in other childhood tumours. Current prognostic classification for children with WT is grounded in clinical and pathological findings and in dedicated protocols on molecular alterations. Treatment includes conventional cytotoxic chemotherapy and surgery, and radiation therapy in some cases. Advanced imaging to capture tumour composition, optimizing irradiation techniques to reduce target volumes, and evaluation of newer surgical procedures are key areas for future research.
Collapse
Affiliation(s)
- Filippo Spreafico
- Department of Medical Oncology and Hematology, Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Conrad V Fernandez
- Department of Paediatrics, IWK Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jesper Brok
- Department of Paediatric Haematology and Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Kayo Nakata
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| | | | - James I Geller
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Cincinnati, OH, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute, Developmental Biochemistry, and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Genetics and Molecular Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Angela Polanco
- National Cancer Research Institute Children's Group Consumer Representative, London, UK
| | - Vivian Paintsil
- Department of Child Health, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sandra Luna-Fineman
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Paediatrics, University of Colorado, Aurora, CO, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
24
|
Zahnreich S, Schmidberger H. Childhood Cancer: Occurrence, Treatment and Risk of Second Primary Malignancies. Cancers (Basel) 2021; 13:cancers13112607. [PMID: 34073340 PMCID: PMC8198981 DOI: 10.3390/cancers13112607] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer represents the leading cause of disease-related death and treatment-associated morbidity in children with an increasing trend in recent decades worldwide. Nevertheless, the 5-year survival of childhood cancer patients has been raised impressively to more than 80% during the past decades, primarily attributed to improved diagnostic technologies and multiagent cytotoxic regimens. This strong benefit of more efficient tumor control and prolonged survival is compromised by an increased risk of adverse and fatal late sequelae. Long-term survivors of pediatric tumors are at the utmost risk for non-carcinogenic late effects such as cardiomyopathies, neurotoxicity, or pneumopathies, as well as the development of secondary primary malignancies as the most detrimental consequence of genotoxic chemo- and radiotherapy. Promising approaches to reducing the risk of adverse late effects in childhood cancer survivors include high precision irradiation techniques like proton radiotherapy or non-genotoxic targeted therapies and immune-based treatments. However, to date, these therapies are rarely used to treat pediatric cancer patients and survival rates, as well as incidences of late effects, have changed little over the past two decades in this population. Here we provide an overview of the epidemiology and etiology of childhood cancers, current developments for their treatment, and therapy-related adverse late health consequences with a special focus on second primary malignancies.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Pediatric renal tumors account for 7% of new cancer diagnoses in children. Here, we will review results from recently completed clinical trials informing the current standard of care and discuss targeted and immune therapies being explored for the treatment of high risk or relapsed/refractory pediatric renal malignancies. RECENT FINDINGS Cooperative group trials have continued to make improvements in the care of children with pediatric tumors. In particular, trials that standardize treatment of rare cancers (e.g., bilateral Wilms tumor) have improved outcomes significantly. We have seen improvements in event free and overall survival in recently completed clinical trials for many pediatric renal tumors. Still, there are subsets of rarer cancers where outcomes remain poor and new therapeutic strategies are needed. Future trials aim to balance treatment toxicity with treatment efficacy for those with excellent outcomes while identifying novel therapeutics for those with poor outcomes.
Collapse
Affiliation(s)
- Juhi Jain
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.,Emory Children's Center, 2015 Uppergate Drive NE , 400, Atlanta, GA, 30322, USA
| | - Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.,Emory Children's Center, 2015 Uppergate Drive NE, 434B, Atlanta, GA, 30322, USA
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA. .,Winship Cancer Institute, Atlanta, GA, USA. .,Health Sciences Research Building, 1760 Haygood Drive NE, E-370, Atlanta, GA, 30322, USA.
| |
Collapse
|
26
|
Abstract
The prognosis for childhood cancer has improved considerably over the past 50 years. This improvement is attributed to well-designed clinical trials which have incorporated chemotherapy, surgery, and radiation. With an increased understanding of cancer biology and genetics, we have entered an era of precision medicine and immunotherapy that provides potential for improved cure rates. However, preclinical evaluation of these therapies is more nuanced, requiring more robust animal models. Evaluation of targeted treatments requires molecularly defined xenograft models that can capture the diversity within pediatric cancer. The development of novel immunotherapies ideally involves the use of animal models that can accurately recapitulate the human immune response. In this review, we provide an overview of xenograft models for childhood cancers, review successful examples of novel therapies translated from xenograft models to the clinic, and describe the modern tools of xenograft biobanks and humanized xenograft models for the study of immunotherapies.
Collapse
Affiliation(s)
- Kevin O McNerney
- Children’s Hospital of Philadelphia, Divisions of Hematology and Oncology, Philadelphia, PA 19104, USA
| | - David T Teachey
- Children’s Hospital of Philadelphia, Divisions of Hematology and Oncology, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Williams J, Xu B, Putnam D, Thrasher A, Li C, Yang J, Chen X. MethylationToActivity: a deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors. Genome Biol 2021; 22:24. [PMID: 33461601 PMCID: PMC7814737 DOI: 10.1186/s13059-020-02220-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Although genome-wide DNA methylomes have demonstrated their clinical value as reliable biomarkers for tumor detection, subtyping, and classification, their direct biological impacts at the individual gene level remain elusive. Here we present MethylationToActivity (M2A), a machine learning framework that uses convolutional neural networks to infer promoter activities based on H3K4me3 and H3K27ac enrichment, from DNA methylation patterns for individual genes. Using publicly available datasets in real-world test scenarios, we demonstrate that M2A is highly accurate and robust in revealing promoter activity landscapes in various pediatric and adult cancers, including both solid and hematologic malignant neoplasms.
Collapse
Affiliation(s)
- Justin Williams
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Putnam
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA
| | - Andrew Thrasher
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA.
| |
Collapse
|
28
|
Brok J, Mavinkurve-Groothuis AMC, Drost J, Perotti D, Geller JI, Walz AL, Geoerger B, Pasqualini C, Verschuur A, Polanco A, Jones KP, van den Heuvel-Eibrink M, Graf N, Spreafico F. Unmet needs for relapsed or refractory Wilms tumour: Mapping the molecular features, exploring organoids and designing early phase trials - A collaborative SIOP-RTSG, COG and ITCC session at the first SIOPE meeting. Eur J Cancer 2020; 144:113-122. [PMID: 33341445 DOI: 10.1016/j.ejca.2020.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/22/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023]
Abstract
Wilms tumour (WT) accounts for about 6% of all childhood cancers and overall survival of WT is about 90% in international protocols. However, for WT subgroups with much poorer prognoses, i.e. typically high-risk (unfavorable) histology and/or relapse, there is an unmet need to better understand the biology of WT and to translate biological findings into clinics through early phase clinical trials that evaluate innovative therapies. The main challenges are the small numbers of children suitable for early phase trials, the genetic heterogeneity of WT and the low number of somatic mutations that are currently considered 'druggable'. Accordingly, a joint meeting between clinical and biology experts from the international cooperative groups of the Renal Tumour Study Group of the International Society of Paediatric Oncology, the Renal Tumour Committee of the Children's Oncology Group and the European Innovative Therapies for Children with Cancer consortium and parents representatives was organised during the first SIOPE meeting in Prague, 2019. We reviewed WT molecular features, ongoing/planned early phase trials and explored available knowledge on organoid technology. The key messages were: (1) relapsed WT should undergo whenever possible thorough molecular characterization and be enrolled in protocols or trials with systematic data collecting and reporting; (2) WT displays few known 'actionable' targets and currently no novel agent has appeared promising; (3) we need to improve the enrolment rate of WT candidates in early phase trials especially for the relatively small subgroup of relapses with an adverse prognostic signature; (4) despite some agnostic early phase trials existing, development of WT-focused trials are warranted; (5) growing organoids with parallel testing of drug panels seems feasible and may direct individual treatment and encourage clinical researchers to incorporate the most promising agents into early phase trials.
Collapse
Affiliation(s)
- Jesper Brok
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, UK; Department of Paediatric Haematology and Oncology, Rigshospitalet, Copenhagen University Hospital, Denmark Division of Pediatric Oncology, Denmark.
| | | | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Daniela Perotti
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - James I Geller
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Amy L Walz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Claudia Pasqualini
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Arnauld Verschuur
- Dept. of Pediatric Hematology and Oncology, Hôpital D'Enfants de La Timone, APHM, Marseille, France
| | - Angela Polanco
- National Cancer Research Institute Children's Group Consumer Representative, London, UK
| | - Kathy P Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | | | - Norbert Graf
- Dept. Haematology and Oncology, Saarland University Hospital, Homburg, Germany
| | - Filippo Spreafico
- Department of Medical Oncology and Hematology, Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| |
Collapse
|