1
|
Patel N, Vuruputoor VS, Rahmatpour N, Liu Y, Szövényi P, Goffinet B, Wegrzyn JL. Immediate premeiotic transcriptomic effects following nonchemically induced whole genome duplication in the moss Funaria hygrometrica. THE NEW PHYTOLOGIST 2025. [PMID: 40356201 DOI: 10.1111/nph.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025]
Affiliation(s)
- Nikisha Patel
- Biology Department, Trinity College, 300 Summit Street, Hartford, CT, 06106, USA
| | - Vidya S Vuruputoor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Nasim Rahmatpour
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Peter Szövényi
- Department of Systematic and Evolutionary Botany (ISEB), University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
- Institute for Systems Genomics, Computational Biology Core, University of Connecticut, 67 NorthEagleville Road, Storrs, CT, 06269-3003, USA
| |
Collapse
|
2
|
Melkikh AV. Progressive evolution of plants: A critical review. Biosystems 2025; 251:105444. [PMID: 40054834 DOI: 10.1016/j.biosystems.2025.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
A comprehensive review of the evolutionary mechanisms in plants has been performed. This review examines fundamental questions regarding plant evolution, including the development of sexes, convergent characteristics, and neutral effects in plant ecosystems. The available evidence suggests that plant evolution is not a random process, as previously hypothesized. Instead, a substantial body of evidence points to the existence of directed and predictable patterns in plant evolution, applicable not only to plants but also to other organisms. The concept of directed evolution is explored in the context of plant biology.
Collapse
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| |
Collapse
|
3
|
Xie J, Ji D, Xu Y, Xu K, Xie C, Wang W. Genome-Wide Identification and Functional Analysis of C2H2 Zinc Finger Transcription Factor Genes in the Intertidal Macroalga Pyropia haitanensis. Int J Mol Sci 2025; 26:4042. [PMID: 40362281 PMCID: PMC12071319 DOI: 10.3390/ijms26094042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
The possible regulatory effects of C2H2 zinc finger proteins, which are important transcription factors, on intertidal seaweed responses to abiotic stress are unclear. This study was conducted to comprehensively analyze the C2H2 gene family of a representative intertidal seaweed species (Pyropia haitanensis) and clarify its genomic characteristics and biological functions. A total of 107 PhC2H2 zinc finger protein-encoding genes distributed on five P. haitanensis chromosomes were identified and divided into three subgroups. The expression levels of 85, 61, 58, 45, and 41 PhC2H2 genes responded in the maturation of filaments, high-temperature, salt, low-irradiance, and dehydration stress, respectively. The PhC2H2 gene family was conserved during Porphyra evolution, with no indications of large-scale genome-wide replication events. On average, PhC2H2 genes had more transposable element (TE) insertions than Pyropia yezoensis and Porphyra umbilicalisC2H2 genes, suggesting that TE insertions may have been the main driver of PhC2H2 gene family expansion. A key gene (PhC2H2.94) screened following a quantitative trait locus analysis was significantly responsive to high-temperature stress and was associated with photosynthesis, peroxisomes, the ubiquitin proteasome pathway, and the endoplasmic reticulum-related protein processing pathway, which contribute to the stress tolerance of P. haitanensis. Additionally, PhC2H2.94 transgenic Chlamydomonas reinhardtii exhibited increased tolerance to heat stress. This study provides new insights and genetic resources for characterizing the molecular mechanism underlying intertidal seaweed responses to abiotic stresses and breeding stress-resistant macroalgae.
Collapse
Affiliation(s)
- Jiajia Xie
- Fisheries College, Jimei University, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde 352100, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde 352100, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde 352100, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde 352100, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde 352100, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen 361021, China
- State Key Laboratory of Mariculture Breeding (Jimei University), Ningde 352100, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| |
Collapse
|
4
|
Buso P, Diblasi C, Manousi D, Kwak JS, Vera-Ponce de Leon A, Stenløkk K, Barson N, Saitou M. Parallel Selection in Domesticated Atlantic Salmon from Divergent Founders Including on Whole-Genome Duplication-derived Homeologous Regions. Genome Biol Evol 2025; 17:evaf063. [PMID: 40247730 PMCID: PMC12006720 DOI: 10.1093/gbe/evaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/19/2025] Open
Abstract
Domestication and artificial selection for desirable traits have driven significant phenotypic changes and left detectable genomic footprints in farmed animals. Since the 1960s, intensive breeding has led to the rapid domestication of Atlantic salmon (Salmo salar), with multiple independent events that make it a valuable model for studying early domestication stages and the parallel evolution of populations of different origins subjected to similar selection pressures. Some aquatic species, including Atlantic salmon, have undergone whole-genome duplication (WGD), raising the possibility that genetic redundancy resulting from WGD has contributed to adaptation in captive environments, as seen in plants. Here, we examined the genomic responses to domestication in Atlantic salmon, focusing on potential signatures of parallel selection, including those associated with WGD. Candidate genomic regions under selection were identified by comparing whole-genome sequences from aquaculture and wild populations across 2 independently domesticated lineages (Western Norway and North America) using a genome-wide scan that combined 3 statistical methods: allele frequencies (FST), site frequency (Tajima's D), and haplotype differentiation (XP-EHH). These analyses revealed shared selective sweeps on identical SNPs in major histocompatibility complex (MHC) genes across aquaculture populations. This suggests that a combination of long-term balancing selection and recent human-induced selection has shaped MHC gene evolution in domesticated salmon. Additionally, we observed selective sweeps on a small number of gene pairs in homeologous regions originating from WGD, offering insights into how historical genome duplication events may intersect with recent selection pressures in aquaculture species.
Collapse
Affiliation(s)
- Pauline Buso
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Célian Diblasi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Domniki Manousi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jun Soung Kwak
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Arturo Vera-Ponce de Leon
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Kristina Stenløkk
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Nicola Barson
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Marie Saitou
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Monsen Ø, Grønvold L, Datsomor A, Harvey T, Kijas J, Suh A, Hvidsten TR, Sandve SR. The role of transposon activity in shaping cis-regulatory element evolution after whole-genome duplication. Genome Res 2025; 35:475-488. [PMID: 39939177 PMCID: PMC11960703 DOI: 10.1101/gr.278931.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Whole-genome duplications (WGDs) and transposable element (TE) activity can act synergistically in genome evolution. WGDs can increase TE activity directly through cellular stress or indirectly by relaxing selection against TE insertions in functionally redundant, duplicated regions. Because TEs can function as, or evolve into, TE-derived cis-regulatory elements (TE-CREs), bursts of TE activity following WGD are therefore likely to impact evolution of gene regulation. Yet, the role of TEs in genome regulatory evolution after WGDs is not well understood. Here we used Atlantic salmon as a model system to explore how TE activity after the salmonid WGD ∼100 MYA shaped CRE evolution. We identified 55,080 putative TE-CREs using chromatin accessibility data from the liver and brain. Retroelements were both the dominant source of TE-CREs and had higher regulatory activity in MPRA experiments compared with DNA elements. A minority of TE subfamilies (16%) accounted for 46% of TE-CREs, but these "CRE superspreaders" were mostly active prior to the WGD. Analysis of individual TE insertions, however, revealed enrichment of TE-CREs originating from WGD-associated TE activity, particularly for the DTT (Tc1-Mariner) DNA elements. Furthermore, coexpression analyses supported the presence of TE-driven gene regulatory network evolution, including DTT elements active at the time of WGD. In conclusion, our study supports a scenario in which TE activity has been important in genome regulatory evolution, either through relaxed selective constraints or through strong selection to recalibrate optimal gene expression phenotypes, during a transient period following genome doubling.
Collapse
Affiliation(s)
- Øystein Monsen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Lars Grønvold
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Alex Datsomor
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Thomas Harvey
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - James Kijas
- Aquaculture Programme, Commonwealth Scientific and Industrial Research Organisation, St. Lucia, Queensland 4067, Australia
| | - Alexander Suh
- School of Biological Sciences-Organisms and the Environment, University of East Anglia, NR4 7TU Norwich, United Kingdom
- Department of Organismal Biology-Systematic Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Simen Rød Sandve
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway;
| |
Collapse
|
6
|
Hodgins KA, Battlay P, Bock DG. The genomic secrets of invasive plants. THE NEW PHYTOLOGIST 2025; 245:1846-1863. [PMID: 39748162 DOI: 10.1111/nph.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
Genomics has revolutionised the study of invasive species, allowing evolutionary biologists to dissect mechanisms of invasion in unprecedented detail. Botanical research has played an important role in these advances, driving much of what we currently know about key determinants of invasion success (e.g. hybridisation, whole-genome duplication). Despite this, a comprehensive review of plant invasion genomics has been lacking. Here, we aim to address this gap, highlighting recent discoveries that have helped progress the field. For example, by leveraging genomics in natural and experimental populations, botanical research has confirmed the importance of large-effect standing variation during adaptation in invasive species. Further, genomic investigations of plants are increasingly revealing that large structural variants, as well as genetic changes induced by whole-genome duplication such as genomic redundancy or the breakdown of dosage-sensitive reproductive barriers, can play an important role during adaptive evolution of invaders. However, numerous questions remain, including when chromosomal inversions might help or hinder invasions, whether adaptive gene reuse is common during invasions, and whether epigenetically induced mutations can underpin the adaptive evolution of plasticity in invasive populations. We conclude by highlighting these and other outstanding questions that genomic studies of invasive plants are poised to help answer.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Paul Battlay
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Dan G Bock
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Qld, 4111, Australia
| |
Collapse
|
7
|
Stitzer MC, Seetharam AS, Scheben A, Hsu SK, Schulz AJ, AuBuchon-Elder TM, El-Walid M, Ferebee TH, Hale CO, La T, Liu ZY, McMorrow SJ, Minx P, Phillips AR, Syring ML, Wrightsman T, Zhai J, Pasquet R, McAllister CA, Malcomber ST, Traiperm P, Layton DJ, Zhong J, Costich DE, Dawe RK, Fengler K, Harris C, Irelan Z, Llaca V, Parakkal P, Zastrow-Hayes G, Woodhouse MR, Cannon EK, Portwood JL, Andorf CM, Albert PS, Birchler JA, Siepel A, Ross-Ibarra J, Romay MC, Kellogg EA, Buckler ES, Hufford MB. Extensive genome evolution distinguishes maize within a stable tribe of grasses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633974. [PMID: 39896679 PMCID: PMC11785232 DOI: 10.1101/2025.01.22.633974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Over the last 20 million years, the Andropogoneae tribe of grasses has evolved to dominate 17% of global land area. Domestication of these grasses in the last 10,000 years has yielded our most productive crops, including maize, sugarcane, and sorghum. The majority of Andropogoneae species, including maize, show a history of polyploidy - a condition that, while offering the evolutionary advantage of multiple gene copies, poses challenges to basic cellular processes, gene expression, and epigenetic regulation. Genomic studies of polyploidy have been limited by sparse sampling of taxa in groups with multiple polyploidy events. Here, we present 33 genome assemblies from 27 species, including chromosome-scale assemblies of maize relatives Zea and Tripsacum. In maize, the after-effects of polyploidy have been widely studied, showing reduced chromosome number, biased fractionation of duplicate genes, and transposable element (TE) expansions. While we observe these patterns within the genus Zea, 12 other polyploidy events deviate significantly. Those tetraploids and hexaploids retain elevated chromosome number, maintain nearly complete complements of duplicate genes, and have only stochastic TE amplifications. These genomes reveal variable outcomes of polyploidy, challenging simple predictions and providing a foundation for understanding its evolutionary implications in an ecologically and economically important clade.
Collapse
Affiliation(s)
- Michelle C Stitzer
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Arun S Seetharam
- Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
| | - Sheng-Kai Hsu
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Aimee J Schulz
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | | | - Mohamed El-Walid
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Taylor H Ferebee
- Department of Computational Biology, Cornell University, Ithaca, NY 14850 USA
| | - Charles O Hale
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Thuy La
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Zong-Yan Liu
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Sarah J McMorrow
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Patrick Minx
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Alyssa R Phillips
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, Davis CA 95616 USA
| | - Michael L Syring
- Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA
| | - Travis Wrightsman
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Jingjing Zhai
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Rémy Pasquet
- DIADE, IRD, CIRAD, University of Montpellier, Montpellier, France
| | | | | | - Paweena Traiperm
- Department of Plant Science, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Daniel J Layton
- Indiana University, Department of Biology, Bloomington, IN 47405 USA
| | - Jinshun Zhong
- South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Denise E Costich
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | | | | | | | | | | | | | | | - Ethalinda K Cannon
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - John L Portwood
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Carson M Andorf
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia MO 65211 USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia MO 65211 USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, Davis CA 95616 USA
- Genome Center, University of California, Davis, Davis, CA 95616 USA
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | | | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
- USDA-ARS, Ithaca, NY 14850 USA
| | - Matthew B Hufford
- Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA
| |
Collapse
|
8
|
Raingeval M, Leduque B, Baduel P, Edera A, Roux F, Colot V, Quadrana L. Retrotransposon-driven environmental regulation of FLC leads to adaptive response to herbicide. NATURE PLANTS 2024; 10:1672-1681. [PMID: 39333353 DOI: 10.1038/s41477-024-01807-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
The mobilization of transposable elements is a potent source of mutations. In plants, several stransposable elements respond to external cues, fuelling the hypothesis that natural transposition can create environmentally sensitive alleles for adaptation. Here we report on the detailed characterization of a retrotransposon insertion within the first intron of the Arabidopsis floral-repressor gene FLOWERING LOCUS C (FLC) and the discovery of its role for adaptation. The insertion mutation augments the environmental sensitivity of FLC by affecting the balance between coding and non-coding transcripts in response to stress, thus expediting flowering. This balance is modulated by DNA methylation and orchestrated by IBM2, a factor involved in the processing of intronic heterochromatic sequences. The stress-sensitive allele of FLC has spread across populations subjected to recurrent chemical weeding, and we show that retrotransposon-driven acceleration of the life cycle represents a rapid response to herbicide application. Our work provides a compelling example of a transposable element-driven environmentally sensitive allele that confers an adaptive response in nature.
Collapse
Affiliation(s)
- Mathieu Raingeval
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Basile Leduque
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Pierre Baduel
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Alejandro Edera
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Toulouse, Castanet-Tolosan, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Leandro Quadrana
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France.
| |
Collapse
|
9
|
Srikant T, Gonzalo A, Bomblies K. Chromatin Accessibility and Gene Expression Vary Between a New and Evolved Autopolyploid of Arabidopsis arenosa. Mol Biol Evol 2024; 41:msae213. [PMID: 39404085 PMCID: PMC11518924 DOI: 10.1093/molbev/msae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Polyploids arise from whole-genome duplication (WGD) events, which have played important roles in genome evolution across eukaryotes. WGD can increase genome complexity, yield phenotypic novelty, and influence adaptation. Neo-polyploids have been reported to often show seemingly stochastic epigenetic and transcriptional changes, but this leaves open the question whether these changes persist in evolved polyploids. A powerful approach to address this is to compare diploids, neo-polyploids, and evolved polyploids of the same species. Arabidopsis arenosa is a species that allows us to do this-natural diploid and autotetraploid populations exist, while neo-tetraploids can be artificially generated. Here, we use ATAC-seq to assay local chromatin accessibility, and RNA-seq to study gene expression on matched leaf and petal samples from diploid, neo-tetraploid and evolved tetraploid A. arenosa. We found over 8,000 differentially accessible chromatin regions across all samples. These are largely tissue specific and show distinct trends across cytotypes, with roughly 70% arising upon WGD. Interestingly, only a small proportion is associated with expression changes in nearby genes. However, accessibility variation across cytotypes associates strongly with the number of nearby transposable elements. Relatively few genes were differentially expressed upon genome duplication, and ∼60% of these reverted to near-diploid levels in the evolved tetraploid, suggesting that most initial perturbations do not last. Our results provide new insights into how epigenomic and transcriptional mechanisms jointly respond to genome duplication and subsequent evolution of autopolyploids, and importantly, show that one cannot be directly predicted from the other.
Collapse
Affiliation(s)
- Thanvi Srikant
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Adrián Gonzalo
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Kirsten Bomblies
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Groot Crego C, Hess J, Yardeni G, de La Harpe M, Priemer C, Beclin F, Saadain S, Cauz-Santos LA, Temsch EM, Weiss-Schneeweiss H, Barfuss MHJ, Till W, Weckwerth W, Heyduk K, Lexer C, Paun O, Leroy T. CAM evolution is associated with gene family expansion in an explosive bromeliad radiation. THE PLANT CELL 2024; 36:4109-4131. [PMID: 38686825 PMCID: PMC11449062 DOI: 10.1093/plcell/koae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
The subgenus Tillandsia (Bromeliaceae) belongs to one of the fastest radiating clades in the plant kingdom and is characterized by the repeated evolution of Crassulacean acid metabolism (CAM). Despite its complex genetic basis, this water-conserving trait has evolved independently across many plant families and is regarded as a key innovation trait and driver of ecological diversification in Bromeliaceae. By producing high-quality genome assemblies of a Tillandsia species pair displaying divergent photosynthetic phenotypes, and combining genome-wide investigations of synteny, transposable element (TE) dynamics, sequence evolution, gene family evolution, and temporal differential expression, we were able to pinpoint the genomic drivers of CAM evolution in Tillandsia. Several large-scale rearrangements associated with karyotype changes between the 2 genomes and a highly dynamic TE landscape shaped the genomes of Tillandsia. However, our analyses show that rewiring of photosynthetic metabolism is mainly obtained through regulatory evolution rather than coding sequence evolution, as CAM-related genes are differentially expressed across a 24-h cycle between the 2 species but are not candidates of positive selection. Gene orthology analyses reveal that CAM-related gene families manifesting differential expression underwent accelerated gene family expansion in the constitutive CAM species, further supporting the view of gene family evolution as a driver of CAM evolution.
Collapse
Affiliation(s)
- Clara Groot Crego
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Cambrium GmbH, Max-Urich-Str. 3, 13055 Berlin, Germany
| | - Gil Yardeni
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Department of Biotechnology, Institute of Computational Biology, University of Life Sciences and Natural Resources (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Marylaure de La Harpe
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Office for Nature and Environment, Department of Education, Culture and Environmental protection, Canton of Grisons, 7001 Chur, Switzerland
| | - Clara Priemer
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University of Vienna, 1030 Vienna, Austria
| | - Francesca Beclin
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Sarah Saadain
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Luiz A Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | | | - Michael H J Barfuss
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Walter Till
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University of Vienna, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1030 Vienna, Austria
| | - Karolina Heyduk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Thibault Leroy
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| |
Collapse
|
11
|
Harder CB, Miyauchi S, Virágh M, Kuo A, Thoen E, Andreopoulos B, Lu D, Skrede I, Drula E, Henrissat B, Morin E, Kohler A, Barry K, LaButti K, Salamov A, Lipzen A, Merényi Z, Hegedüs B, Baldrian P, Stursova M, Weitz H, Taylor A, Koriabine M, Savage E, Grigoriev IV, Nagy LG, Martin F, Kauserud H. Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations. CELL GENOMICS 2024; 4:100586. [PMID: 38942024 PMCID: PMC11293592 DOI: 10.1016/j.xgen.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/28/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.
Collapse
Affiliation(s)
- Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway; Department of Biology, Microbial Ecology Group, Biology Department, Lund University, Lund, Sweden; University of Copenhagen, Department of Biology, Section of Terrestrial Ecology, 2100 Copenhagen Ø, Denmark.
| | - Shingo Miyauchi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ella Thoen
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Bill Andreopoulos
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dabao Lu
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Inger Skrede
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, 163 avenue de Luminy, 13288 Marseille, France; INRAE, UMR 1163, Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, 163 avenue de Luminy, 13288 Marseille, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martina Stursova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Hedda Weitz
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Andy Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; The James Hutton Institute, Aberdeen, UK
| | - Maxim Koriabine
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France.
| | - Håvard Kauserud
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
12
|
Ortiz AJ, Sharbrough J. Genome-wide patterns of homoeologous gene flow in allotetraploid coffee. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11584. [PMID: 39184198 PMCID: PMC11342229 DOI: 10.1002/aps3.11584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 08/27/2024]
Abstract
Premise Allopolyploidy-a hybridization-induced whole-genome duplication event-has been a major driver of plant diversification. The extent to which chromosomes pair with their proper homolog vs. with their homoeolog in allopolyploids varies across taxa, and methods to detect homoeologous gene flow (HGF) are needed to understand how HGF has shaped polyploid lineages. Methods The ABBA-BABA test represents a classic method for detecting introgression between closely related species, but here we developed a modified use of the ABBA-BABA test to characterize the extent and direction of HGF in allotetraploid Coffea arabica. Results We found that HGF is abundant in the C. arabica genome, with both subgenomes serving as donors and recipients of variation. We also found that HGF is highly maternally biased in plastid-targeted-but not mitochondrial-targeted-genes, as would be expected if plastid-nuclear incompatibilities exist between the two parent species. Discussion Together, our analyses provide a simple framework for detecting HGF and new evidence consistent with selection favoring overwriting of paternally derived alleles by maternally derived alleles to ameliorate plastid-nuclear incompatibilities. Natural selection therefore appears to shape the direction and intensity of HGF in allopolyploid coffee, indicating that cytoplasmic inheritance has long-term consequences for polyploid lineages.
Collapse
Affiliation(s)
- Andre J. Ortiz
- Department of BiologyNew Mexico Institute of Mining and TechnologySocorroNew MexicoUSA
| | - Joel Sharbrough
- Department of BiologyNew Mexico Institute of Mining and TechnologySocorroNew MexicoUSA
| |
Collapse
|
13
|
Phillips AR. Variant calling in polyploids for population and quantitative genetics. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11607. [PMID: 39184203 PMCID: PMC11342233 DOI: 10.1002/aps3.11607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 04/10/2024] [Indexed: 08/27/2024]
Abstract
Advancements in genome assembly and sequencing technology have made whole genome sequence (WGS) data and reference genomes accessible to study polyploid species. Compared to popular reduced-representation sequencing approaches, the genome-wide coverage and greater marker density provided by WGS data can greatly improve our understanding of polyploid species and polyploid biology. However, biological features that make polyploid species interesting also pose challenges in read mapping, variant identification, and genotype estimation. Accounting for characteristics in variant calling like allelic dosage uncertainty, homology between subgenomes, and variance in chromosome inheritance mode can reduce errors. Here, I discuss the challenges of variant calling in polyploid WGS data and discuss where potential solutions can be integrated into a standard variant calling pipeline.
Collapse
Affiliation(s)
- Alyssa R. Phillips
- Department of Evolution and EcologyUniversity of California, DavisDavis95616CaliforniaUSA
| |
Collapse
|
14
|
Lai Y, Ma J, Zhang X, Xuan X, Zhu F, Ding S, Shang F, Chen Y, Zhao B, Lan C, Unver T, Huo G, Li X, Wang Y, Liu Y, Lu M, Pan X, Yang D, Li M, Zhang B, Zhang D. High-quality chromosome-level genome assembly and multi-omics analysis of rosemary (Salvia rosmarinus) reveals new insights into the environmental and genome adaptation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1833-1847. [PMID: 38363812 PMCID: PMC11182591 DOI: 10.1111/pbi.14305] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.
Collapse
Affiliation(s)
- Yong Lai
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Jinghua Ma
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Xiaobo Xuan
- Key Laboratory of Water Management and Water Security for Yellow River BasinMinistry of Water ResourcesZhengzhouHenanChina
| | - Fengyun Zhu
- School of Biological and Food Processing EngineeringHuanghuai UniversityZhumadianHenanChina
| | - Shen Ding
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Fude Shang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yuanyuan Chen
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | | | - George Huo
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Ximei Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Yihan Wang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yufang Liu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mengfei Lu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xiaoping Pan
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Deshuang Yang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mingwan Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Baohong Zhang
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Dangquan Zhang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
15
|
Hämälä T, Moore C, Cowan L, Carlile M, Gopaulchan D, Brandrud MK, Birkeland S, Loose M, Kolář F, Koch MA, Yant L. Impact of whole-genome duplications on structural variant evolution in Cochlearia. Nat Commun 2024; 15:5377. [PMID: 38918389 PMCID: PMC11199601 DOI: 10.1038/s41467-024-49679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Polyploidy, the result of whole-genome duplication (WGD), is a major driver of eukaryote evolution. Yet WGDs are hugely disruptive mutations, and we still lack a clear understanding of their fitness consequences. Here, we study whether WGDs result in greater diversity of genomic structural variants (SVs) and how they influence evolutionary dynamics in a plant genus, Cochlearia (Brassicaceae). By using long-read sequencing and a graph-based pangenome, we find both negative and positive interactions between WGDs and SVs. Masking of recessive mutations due to WGDs leads to a progressive accumulation of deleterious SVs across four ploidal levels (from diploids to octoploids), likely reducing the adaptive potential of polyploid populations. However, we also discover putative benefits arising from SV accumulation, as more ploidy-specific SVs harbor signals of local adaptation in polyploids than in diploids. Together, our results suggest that SVs play diverse and contrasting roles in the evolutionary trajectories of young polyploids.
Collapse
Affiliation(s)
- Tuomas Hämälä
- School of Life Sciences, University of Nottingham, Nottingham, UK.
- Production Systems, Natural Resources Institute Finland, Jokioinen, Finland.
| | | | - Laura Cowan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Matthew Carlile
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | - Siri Birkeland
- Natural History Museum, University of Oslo, Oslo, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Marcus A Koch
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, UK.
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
16
|
Herrick J. DNA Damage, Genome Stability, and Adaptation: A Question of Chance or Necessity? Genes (Basel) 2024; 15:520. [PMID: 38674454 PMCID: PMC11049855 DOI: 10.3390/genes15040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
DNA damage causes the mutations that are the principal source of genetic variation. DNA damage detection and repair mechanisms therefore play a determining role in generating the genetic diversity on which natural selection acts. Speciation, it is commonly assumed, occurs at a rate set by the level of standing allelic diversity in a population. The process of speciation is driven by a combination of two evolutionary forces: genetic drift and ecological selection. Genetic drift takes place under the conditions of relaxed selection, and results in a balance between the rates of mutation and the rates of genetic substitution. These two processes, drift and selection, are necessarily mediated by a variety of mechanisms guaranteeing genome stability in any given species. One of the outstanding questions in evolutionary biology concerns the origin of the widely varying phylogenetic distribution of biodiversity across the Tree of Life and how the forces of drift and selection contribute to shaping that distribution. The following examines some of the molecular mechanisms underlying genome stability and the adaptive radiations that are associated with biodiversity and the widely varying species richness and evenness in the different eukaryotic lineages.
Collapse
Affiliation(s)
- John Herrick
- Independent Researcher at 3, Rue des Jeûneurs, 75002 Paris, France
| |
Collapse
|
17
|
Jiang J, Xu YC, Zhang ZQ, Chen JF, Niu XM, Hou XH, Li XT, Wang L, Zhang YE, Ge S, Guo YL. Forces driving transposable element load variation during Arabidopsis range expansion. THE PLANT CELL 2024; 36:840-862. [PMID: 38036296 PMCID: PMC10980350 DOI: 10.1093/plcell/koad296] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Genetic load refers to the accumulated and potentially life-threatening deleterious mutations in populations. Understanding the mechanisms underlying genetic load variation of transposable element (TE) insertion, a major large-effect mutation, during range expansion is an intriguing question in biology. Here, we used 1,115 global natural accessions of Arabidopsis (Arabidopsis thaliana) to study the driving forces of TE load variation during its range expansion. TE load increased with range expansion, especially in the recently established Yangtze River basin population. Effective population size, which explains 62.0% of the variance in TE load, high transposition rate, and selective sweeps contributed to TE accumulation in the expanded populations. We genetically mapped and identified multiple candidate causal genes and TEs, and revealed the genetic architecture of TE load variation. Overall, this study reveals the variation in TE genetic load during Arabidopsis expansion and highlights the causes of TE load variation from the perspectives of both population genetics and quantitative genetics.
Collapse
Affiliation(s)
- Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhi-Qin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Fu Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xin-Tong Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yong E Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Gozashti L, Hartl DL, Corbett-Detig R. Universal signatures of transposable element compartmentalization across eukaryotic genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562820. [PMID: 38585780 PMCID: PMC10996525 DOI: 10.1101/2023.10.17.562820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The evolutionary mechanisms that drive the emergence of genome architecture remain poorly understood but can now be assessed with unprecedented power due to the massive accumulation of genome assemblies spanning phylogenetic diversity1,2. Transposable elements (TEs) are a rich source of large-effect mutations since they directly and indirectly drive genomic structural variation and changes in gene expression3. Here, we demonstrate universal patterns of TE compartmentalization across eukaryotic genomes spanning ~1.7 billion years of evolution, in which TEs colocalize with gene families under strong predicted selective pressure for dynamic evolution and involved in specific functions. For non-pathogenic species these genes represent families involved in defense, sensory perception and environmental interaction, whereas for pathogenic species, TE-compartmentalized genes are highly enriched for pathogenic functions. Many TE-compartmentalized gene families display signatures of positive selection at the molecular level. Furthermore, TE-compartmentalized genes exhibit an excess of high-frequency alleles for polymorphic TE insertions in fruit fly populations. We postulate that these patterns reflect selection for adaptive TE insertions as well as TE-associated structural variants. This process may drive the emergence of a shared TE-compartmentalized genome architecture across diverse eukaryotic lineages.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
19
|
López-Jurado J, Picazo-Aragonés J, Alonso C, Balao F, Mateos-Naranjo E. Physiology, gene expression, and epiphenotype of two Dianthus broteri polyploid cytotypes under temperature stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1601-1614. [PMID: 37988617 PMCID: PMC10901207 DOI: 10.1093/jxb/erad462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Increasing evidence supports a major role for abiotic stress response in the success of plant polyploids, which usually thrive in harsh environments. However, understanding the ecophysiology of polyploids is challenging due to interactions between genome doubling and natural selection. Here, we investigated physiological responses, gene expression, and the epiphenotype of two related Dianthus broteri cytotypes-with different genome duplications (4× and 12×) and evolutionary trajectories-to short extreme temperature events (42/28 °C and 9/5 °C). The 12× cytotype showed higher expression of stress-responsive genes (SWEET1, PP2C16, AI5L3, and ATHB7) and enhanced gas exchange compared with 4×. Under heat stress, both ploidies had greatly impaired physiological performance and altered gene expression, with reduced cytosine methylation. However, the 12× cytotype exhibited remarkable physiological tolerance (maintaining gas exchange and water status via greater photochemical integrity and probably enhanced water storage) while down-regulating PP2C16 expression. Conversely, 4× D. broteri was susceptible to thermal stress despite prioritizing water conservation, showing signs of non-stomatal photosynthetic limitations and irreversible photochemical damage. This cytotype also presented gene-specific expression patterns under heat, up-regulating ATHB7. These findings provide insights into divergent stress response strategies and physiological resistance resulting from polyploidy, highlighting its widespread influence on plant function.
Collapse
Affiliation(s)
- Javier López-Jurado
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Jesús Picazo-Aragonés
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 26, E-41092 Sevilla, Spain
| | - Francisco Balao
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain
| |
Collapse
|
20
|
Meca E, Díez CM, Gaut BS. Modeling transposable elements dynamics during polyploidization in plants. J Theor Biol 2024; 579:111701. [PMID: 38128754 DOI: 10.1016/j.jtbi.2023.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
In this work we study the proliferation of transposable elements (TEs) and the epigenetic response of plants during the process of polyploidization. Through a deterministic model, expanding on our previous work on TE proliferation under epigenetic regulation, we study the long-term TE distribution and TE stability in the subgenomes of both autopolyploids and allopolyploids. We also explore different small-interfering RNA (siRNA) action modes on the subgenomes, including a model where siRNAs are not directed to specific genomes and one where siRNAs are directed - i.e. more active - in subgenomes with higher TE loads. In the autopolyploid case, we find long-term stable equilbria that tend to equilibrate the number of active TEs between subgenomes. In the allopolyploid case, directed siRNA action is fundamental to avoid a "winner takes all" outcome of the competition between the TEs in the different subgenomes. We also show that decaying oscillations in the number of TEs occur naturally in all cases, perhaps explaining some of the observed features of 'genomic shock' after hybridization events, and that the balance in the dynamics of the different types of siRNA is determinant for the synchronization of these oscillations.
Collapse
Affiliation(s)
- Esteban Meca
- Departamento de Física Aplicada, Radiología y Medicina Física, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Albert Einstein (C2), 14014 Córdoba, Spain.
| | - Concepción M Díez
- Departamento de Agronomía, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Celestino Mutis (C4), 14014 Córdoba, Spain.
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-3875, United States of America.
| |
Collapse
|
21
|
Xiao Y, Xi Z, Wang F, Wang J. Genomic asymmetric epigenetic modification of transposable elements is involved in gene expression regulation of allopolyploid Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:226-241. [PMID: 37797206 DOI: 10.1111/tpj.16491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Polyploids are common and have a wide geographical distribution and environmental adaptability. Allopolyploidy may lead to the activation of transposable elements (TE). However, the mechanism of epigenetic modification of TEs in the establishment and evolution of allopolyploids remains to be explored. We focused on the TEs of model allopolyploid Brassica napus (An An Cn Cn ), exploring the TE characteristics of the genome, epigenetic modifications of TEs during allopolyploidization, and regulation of gene expression by TE methylation. In B. napus, approximately 50% of the genome was composed of TEs. TEs increased with proximity to genes, especially DNA transposons. TE methylation levels were negatively correlated with gene expression, and changes in TE methylation levels were able to regulate the expression of neighboring genes related to responses to light intensity and stress, which promoted powerful adaptation of allopolyploids to new environments. TEs can be synergistically regulated by RNA-directed DNA methylation pathways and histone modifications. The epigenetic modification levels of TEs tended to be similar to those of the diploid parents during the genome evolution of B. napus. The TEs of the An subgenome were more likely to be modified, and the imbalance in TE number and epigenetic modification level in the An and Cn subgenomes may lead to the establishment of subgenome dominance. Our study analyzed the characteristics of TE location, DNA methylation, siRNA, and histone modification in B. napus and highlighted the importance of TE epigenetic modifications during the allopolyploidy process, providing support for revealing the mechanism of allopolyploid formation and evolution.
Collapse
Affiliation(s)
- Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zengde Xi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
22
|
Liu Q, Cai YD, Ma L, Liu H, Linghu T, Guo S, Wei S, Song F, Tian L, Cai W, Li H. Relaxed purifying selection pressure drives accelerated and dynamic gene rearrangements in thrips (Insecta: Thysanoptera) mitochondrial genomes. Int J Biol Macromol 2023; 253:126742. [PMID: 37689283 DOI: 10.1016/j.ijbiomac.2023.126742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/06/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Insect mitochondrial genomes (mitogenome) generally present a typical gene order, which is considered as the ancestral arrangement. All sequenced mitogenomes in the Thysanoptera display high levels of gene rearrangement. Due to limited number of thrips mitogenomes sequenced, how gene rearrangement may be shaped by evolution remain unclear. Here, we analyzed 33 thrips mitogenomes, including 14 newly sequenced. These mitogenomes were diverse in organization, nucleotides substitution and gene arrangements. We found 28 highly rearranged gene orders with the breakpoints of gene rearrangements from 25 to 33. Reconstruction of the ancestors mitochondrial gene arrangements states indicated that Tubulifera have more complex pathways than Terebrantia in the gene order evolution. Molecular calibration estimated that divergence of two suborders occurred in the middle Triassic while the radiation of thrips was associated with the arose and flourish of angiosperm. Our evolutionary hypothesis testing suggests that relaxation of selection pressure enabled the early phase of Thysanoptera evolution, followed by a stronger selective pressure fixed diversification. Our analyses found gene inversion increases the nonsynonymous substitution rates and provide an evolutionary hypothesis driving the diverse gene orders.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hangrui Liu
- Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Tianye Linghu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shaokun Guo
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Gao D, Fox-Fogle E. Identification of transcriptionally active transposons in Barley. BMC Genom Data 2023; 24:64. [PMID: 37925398 PMCID: PMC10625261 DOI: 10.1186/s12863-023-01170-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The genomes of many major crops including barley (Hordeum vulgare) consist of numerous transposons. Despite their important roles in crop genome evolution and morphological variations, most of these elements are silent or truncated and unable to be mobile in host genomes. Thus far, only a very limited number of active transposons were identified in plants. RESULTS We analyzed the barley full-length cDNA (FLcDNA) sequences and detected 71 unique FLcDNAs exhibiting significant sequence similarity to the extant transposase proteins. These FLcDNAs were then used to search against the genome of a malting barley cultivar 'Morex', seven new intact transposons were identified. Sequence alignments indicated that six intact transposons contained the entire FLcDNAs whereas another one served as 3' untranslated region (3' UTR) of a barley gene. Our reverse transcription-PCR (RT-PCR) experiment further confirmed the expression of these six transposons and revealed their differential expression. We conducted genome-wide transposon comparisons and detected polymorphisms of three transposon families between the genomes of 'Morex' and other three genotypes including the wild barley (Hordeum spontaneum, B1K-04-12) and two cultivated barley varieties, 'Golden Promise' and 'Lasa Goumang'. Lastly, we screened the transcripts of all annotated barley genes and found that some transposons may serve as the coding regions (CDSs) or UTRs of barley genes. CONCLUSION We identified six newly expressed transposons in the barley genome and revealed the recent mobility of three transposon families. Our efforts provide a valuable resource for understanding the effects of transposons on barley genome evolution and for developing novel molecular tools for barley genetic improvement and other research.
Collapse
Affiliation(s)
- Dongying Gao
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA.
| | - Emma Fox-Fogle
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
- National Agricultural Statistical Service, USDA, Olympia, WA, 98501, USA
| |
Collapse
|
24
|
Rougemont Q, Leroy T, Rondeau EB, Koop B, Bernatchez L. Allele surfing causes maladaptation in a Pacific salmon of conservation concern. PLoS Genet 2023; 19:e1010918. [PMID: 37683018 PMCID: PMC10545117 DOI: 10.1371/journal.pgen.1010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 10/02/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
How various factors, including demography, recombination or genome duplication, may impact the efficacy of natural selection and the burden of deleterious mutations, is a central question in evolutionary biology and genetics. In this study, we show that key evolutionary processes, including variations in i) effective population size (Ne) ii) recombination rates and iii) chromosome inheritance, have influenced the genetic load and efficacy of selection in Coho salmon (Oncorhynchus kisutch), a widely distributed salmonid species on the west coast of North America. Using whole genome resequencing data from 14 populations at different migratory distances from their southern glacial refugium, we found evidence supporting gene surfing, wherein reduced Ne at the postglacial recolonization front, leads to a decrease in the efficacy of selection and a surf of deleterious alleles in the northernmost populations. Furthermore, our results indicate that recombination rates play a prime role in shaping the load along the genome. Additionally, we identified variation in polyploidy as a contributing factor to within-genome variation of the load. Overall, our results align remarkably well with expectations under the nearly neutral theory of molecular evolution. We discuss the fundamental and applied implications of these findings for evolutionary and conservation genomics.
Collapse
Affiliation(s)
- Quentin Rougemont
- Centre d’Ecologie Fonctionnelle et Evolutive, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Thibault Leroy
- GenPhySE, INRAE, INP, ENVT, Université de Toulouse, Auzeville- Tolosane, France
| | - Eric B. Rondeau
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, Canada
| | - Ben Koop
- Department of Biology, University of Victoria, Victoria, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| |
Collapse
|
25
|
Liu HN, Pei MS, Ampomah-Dwamena C, He GQ, Wei TL, Shi QF, Yu YH, Guo DL. Genome-wide characterization of long terminal repeat retrotransposons provides insights into trait evolution of four cucurbit species. Funct Integr Genomics 2023; 23:218. [PMID: 37393305 DOI: 10.1007/s10142-023-01128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Cucurbits are a diverse plant family that includes economically important crops, such as cucumber, watermelon, melon, and pumpkin. Knowledge of the roles that long terminal repeat retrotransposons (LTR-RTs) have played in diversification of cucurbit species is limited; to add to understanding of the roles of LTR-RTs, we assessed their distributions in four cucurbit species. We identified 381, 578, 1086, and 623 intact LTR-RTs in cucumber (Cucumis sativus L. var. sativus cv. Chinese Long), watermelon (Citrullus lanatus subsp. vulgaris cv. 97103), melon (Cucumis melo cv. DHL92), and Cucurbita (Cucurbita moschata var. Rifu), respectively. Among these LTR-RTs, the Ale clade of the Copia superfamily was the most abundant in all the four cucurbit species. Insertion time and copy number analysis revealed that an LTR-RT burst occurred approximately 2 million years ago in cucumber, watermelon, melon, and Cucurbita, and may have contributed to their genome size variation. Phylogenetic and nucleotide polymorphism analyses suggested that most LTR-RTs were formed after species diversification. Analysis of gene insertions by LTR-RTs revealed that the most frequent insertions were of Ale and Tekay and that genes related to dietary fiber synthesis were the most commonly affected by LTR-RTs in Cucurbita. These results increase our understanding of LTR-RTs and their roles in genome evolution and trait characterization in cucurbits.
Collapse
Affiliation(s)
- Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | | | - Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Qiao-Fang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
26
|
Schvarzstein M, Alam F, Toure M, Yanowitz JL. An Emerging Animal Model for Querying the Role of Whole Genome Duplication in Development, Evolution, and Disease. J Dev Biol 2023; 11:26. [PMID: 37367480 PMCID: PMC10299280 DOI: 10.3390/jdb11020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Whole genome duplication (WGD) or polyploidization can occur at the cellular, tissue, and organismal levels. At the cellular level, tetraploidization has been proposed as a driver of aneuploidy and genome instability and correlates strongly with cancer progression, metastasis, and the development of drug resistance. WGD is also a key developmental strategy for regulating cell size, metabolism, and cellular function. In specific tissues, WGD is involved in normal development (e.g., organogenesis), tissue homeostasis, wound healing, and regeneration. At the organismal level, WGD propels evolutionary processes such as adaptation, speciation, and crop domestication. An essential strategy to further our understanding of the mechanisms promoting WGD and its effects is to compare isogenic strains that differ only in their ploidy. Caenorhabditis elegans (C. elegans) is emerging as an animal model for these comparisons, in part because relatively stable and fertile tetraploid strains can be produced rapidly from nearly any diploid strain. Here, we review the use of Caenorhabditis polyploids as tools to understand important developmental processes (e.g., sex determination, dosage compensation, and allometric relationships) and cellular processes (e.g., cell cycle regulation and chromosome dynamics during meiosis). We also discuss how the unique characteristics of the C. elegans WGD model will enable significant advances in our understanding of the mechanisms of polyploidization and its role in development and disease.
Collapse
Affiliation(s)
- Mara Schvarzstein
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
- Biology Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
- Biochemistry Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
| | - Fatema Alam
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Muhammad Toure
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Judith L. Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA;
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
27
|
Duan T, Sicard A, Glémin S, Lascoux M. Expression pattern of resynthesized allotetraploid Capsella is determined by hybridization, not whole-genome duplication. THE NEW PHYTOLOGIST 2023; 237:339-353. [PMID: 36254103 PMCID: PMC10099941 DOI: 10.1111/nph.18542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Polyploidization, the process leading to the increase in chromosome sets, is a major evolutionary transition in plants. Whole-genome duplication (WGD) within the same species gives rise to autopolyploids, whereas allopolyploids result from a compound process with two distinct components: WGD and interspecific hybridization. To dissect the instant effects of WGD and hybridization on gene expression and phenotype, we created a series of synthetic hybrid and polyploid Capsella plants, including diploid hybrids, autotetraploids of both parental species, and two kinds of resynthesized allotetraploids with different orders of WGD and hybridization. Hybridization played a major role in shaping the relative expression pattern of the neo-allopolyploids, whereas WGD had almost no immediate effect on relative gene expression pattern but, nonetheless, still affected phenotypes. No transposable element-mediated genomic shock scenario was observed in either neo-hybrids or neo-polyploids. Finally, WGD and hybridization interacted and the distorting effects of WGD were less strong in hybrids. Whole-genome duplication may even improve hybrid fertility. In summary, while the initial relative gene expression pattern in neo-allotetraploids was almost entirely determined by hybridization, WGD only had trivial effects on relative expression patterns, both processes interacted and had a strong impact on physical attributes and meiotic behaviors.
Collapse
Affiliation(s)
- Tianlin Duan
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| | - Adrien Sicard
- Department of Plant BiologySwedish University of Agricultural Sciences750 07UppsalaSweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
- UMR CNRS 6553 ECOBIOCampus Beaulieu, bât 14a, p.118, CS 7420535042RennesFrance
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| |
Collapse
|
28
|
De Kort H, Legrand S, Honnay O, Buckley J. Transposable elements maintain genome-wide heterozygosity in inbred populations. Nat Commun 2022; 13:7022. [PMID: 36396660 PMCID: PMC9672359 DOI: 10.1038/s41467-022-34795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Elevated levels of inbreeding increase the risk of inbreeding depression and extinction, yet many inbred species are widespread, suggesting that inbreeding has little impact on evolutionary potential. Here, we explore the potential for transposable elements (TEs) to maintain genetic variation in functional genomic regions under extreme inbreeding. Capitalizing on the mixed mating system of Arabidopsis lyrata, we assess genome-wide heterozygosity and signatures of selection at single nucleotide polymorphisms near transposable elements across an inbreeding gradient. Under intense inbreeding, we find systematically elevated heterozygosity downstream of several TE superfamilies, associated with signatures of balancing selection. In addition, we demonstrate increased heterozygosity in stress-responsive genes that consistently occur downstream of TEs. We finally reveal that TE superfamilies are associated with specific signatures of selection that are reproducible across independent evolutionary lineages of A. lyrata. Together, our study provides an important hypothesis for the success of self-fertilizing species.
Collapse
Affiliation(s)
- Hanne De Kort
- grid.5596.f0000 0001 0668 7884Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001 Leuven, Belgium
| | - Sylvain Legrand
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Olivier Honnay
- grid.5596.f0000 0001 0668 7884Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001 Leuven, Belgium
| | - James Buckley
- grid.11201.330000 0001 2219 0747School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL1 2BT UK
| |
Collapse
|
29
|
Zhang Y, Li Z, Liu J, Zhang Y, Ye L, Peng Y, Wang H, Diao H, Ma Y, Wang M, Xie Y, Tang T, Zhuang Y, Teng W, Tong Y, Zhang W, Lang Z, Xue Y, Zhang Y. Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat. Nat Commun 2022; 13:6940. [PMID: 36376315 PMCID: PMC9663577 DOI: 10.1038/s41467-022-34290-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The success of common wheat as a global staple crop was largely attributed to its genomic diversity and redundancy due to the merge of different genomes, giving rise to the major question how subgenome-divergent and -convergent transcription is mediated and harmonized in a single cell. Here, we create a catalog of genome-wide transcription factor-binding sites (TFBSs) to assemble a common wheat regulatory network on an unprecedented scale. A significant proportion of subgenome-divergent TFBSs are derived from differential expansions of particular transposable elements (TEs) in diploid progenitors, which contribute to subgenome-divergent transcription. Whereas subgenome-convergent transcription is associated with balanced TF binding at loci derived from TE expansions before diploid divergence. These TFBSs have retained in parallel during evolution of each diploid, despite extensive unbalanced turnover of the flanking TEs. Thus, the differential evolutionary selection of paleo- and neo-TEs contribute to subgenome-convergent and -divergent regulation in common wheat, highlighting the influence of TE repertory plasticity on transcriptional plasticity in polyploid.
Collapse
Affiliation(s)
- Yuyun Zhang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Zijuan Li
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jinyi Liu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yu’e Zhang
- grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Luhuan Ye
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuan Peng
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Haoyu Wang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.256922.80000 0000 9139 560XHenan University, School of Life Science, Kaifeng, Henan 457000 China
| | - Huishan Diao
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yu Ma
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Meiyue Wang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yilin Xie
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Tengfei Tang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.256922.80000 0000 9139 560XHenan University, School of Life Science, Kaifeng, Henan 457000 China
| | - Yili Zhuang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wan Teng
- grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yiping Tong
- grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wenli Zhang
- grid.27871.3b0000 0000 9750 7019State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 China
| | - Zhaobo Lang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China ,grid.263817.90000 0004 1773 1790Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yongbiao Xue
- grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences, and National Centre for Bioinformation, Beijing, 100101 China ,grid.268415.cJiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Yijing Zhang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
30
|
Yim WC, Swain ML, Ma D, An H, Bird KA, Curdie DD, Wang S, Ham HD, Luzuriaga-Neira A, Kirkwood JS, Hur M, Solomon JKQ, Harper JF, Kosma DK, Alvarez-Ponce D, Cushman JC, Edger PP, Mason AS, Pires JC, Tang H, Zhang X. The final piece of the Triangle of U: Evolution of the tetraploid Brassica carinata genome. THE PLANT CELL 2022; 34:4143-4172. [PMID: 35961044 PMCID: PMC9614464 DOI: 10.1093/plcell/koac249] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/24/2022] [Indexed: 05/05/2023]
Abstract
Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.
Collapse
Affiliation(s)
| | | | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - David D Curdie
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Samuel Wang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hyun Don Ham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Juan K Q Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Annaliese S Mason
- Plant Breeding Department, INRES, The University of Bonn, Bonn 53115, Germany
| | - J Chris Pires
- Division of Biological Sciences, Bond Life Sciences Center, , University of Missouri, Columbia, Missouri 65211, USA
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
31
|
Scarlett VT, Lovell JT, Shao M, Phillips J, Shu S, Lusinska J, Goodstein DM, Jenkins J, Grimwood J, Barry K, Chalhoub B, Schmutz J, Hasterok R, Catalán P, Vogel JP. Multiple origins, one evolutionary trajectory: gradual evolution characterizes distinct lineages of allotetraploid Brachypodium. Genetics 2022; 223:6758249. [PMID: 36218464 PMCID: PMC9910409 DOI: 10.1093/genetics/iyac146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The "genomic shock" hypothesis posits that unusual challenges to genome integrity such as whole genome duplication may induce chaotic genome restructuring. Decades of research on polyploid genomes have revealed that this is often, but not always the case. While some polyploids show major chromosomal rearrangements and derepression of transposable elements in the immediate aftermath of whole genome duplication, others do not. Nonetheless, all polyploids show gradual diploidization over evolutionary time. To evaluate these hypotheses, we produced a chromosome-scale reference genome for the natural allotetraploid grass Brachypodium hybridum, accession "Bhyb26." We compared 2 independently derived accessions of B. hybridum and their deeply diverged diploid progenitor species Brachypodium stacei and Brachypodium distachyon. The 2 B. hybridum lineages provide a natural timecourse in genome evolution because one formed 1.4 million years ago, and the other formed 140 thousand years ago. The genome of the older lineage reveals signs of gradual post-whole genome duplication genome evolution including minor gene loss and genome rearrangement that are missing from the younger lineage. In neither B. hybridum lineage do we find signs of homeologous recombination or pronounced transposable element activation, though we find evidence supporting steady post-whole genome duplication transposable element activity in the older lineage. Gene loss in the older lineage was slightly biased toward 1 subgenome, but genome dominance was not observed at the transcriptomic level. We propose that relaxed selection, rather than an abrupt genomic shock, drives evolutionary novelty in B. hybridum, and that the progenitor species' similarity in transposable element load may account for the subtlety of the observed genome dominance.
Collapse
Affiliation(s)
- Virginia T Scarlett
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Mingqin Shao
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Jeremy Phillips
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Shengqiang Shu
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - David M Goodstein
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kerrie Barry
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Jeremy Schmutz
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA,Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | | | - John P Vogel
- Corresponding author: U.S. Dept. of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
32
|
Cai X, Lin R, Liang J, King GJ, Wu J, Wang X. Transposable element insertion: a hidden major source of domesticated phenotypic variation in Brassica rapa. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1298-1310. [PMID: 35278263 PMCID: PMC9241368 DOI: 10.1111/pbi.13807] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 05/20/2023]
Abstract
Transposable element (TE) is prevalent in plant genomes. However, studies on their impact on phenotypic evolution in crop plants are relatively rare, because systematically identifying TE insertions within a species has been a challenge. Here, we present a novel approach for uncovering TE insertion polymorphisms (TIPs) using pan-genome analysis combined with population-scale resequencing, and we adopt this pipeline to retrieve TIPs in a Brassica rapa germplasm collection. We found that 23% of genes within the reference Chiifu-401-42 genome harbored TIPs. TIPs tended to have large transcriptional effects, including modifying gene expression levels and altering gene structure by introducing new introns. Among 524 diverse accessions, TIPs broadly influenced genes related to traits and acted a crucial role in the domestication of B. rapa morphotypes. As examples, four specific TIP-containing genes were found to be candidates that potentially involved in various climatic conditions, promoting the formation of diverse vegetable crops in B. rapa. Our work reveals the hitherto hidden TIPs implicated in agronomic traits and highlights their widespread utility in studies of crop domestication.
Collapse
Affiliation(s)
- Xu Cai
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Runmao Lin
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Jianli Liang
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Graham J. King
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreNSWAustralia
| | - Jian Wu
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaowu Wang
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
33
|
Chen TH, Winefield C. Comprehensive analysis of both long and short read transcriptomes of a clonal and a seed-propagated model species reveal the prerequisites for transcriptional activation of autonomous and non-autonomous transposons in plants. Mob DNA 2022; 13:16. [PMID: 35549762 PMCID: PMC9097378 DOI: 10.1186/s13100-022-00271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Transposable element (TE) transcription is a precursor to its mobilisation in host genomes. However, the characteristics of expressed TE loci, the identification of self-competent transposon loci contributing to new insertions, and the genomic conditions permitting their mobilisation remain largely unknown. Results Using Vitis vinifera embryogenic callus, we explored the impact of biotic stressors on transposon transcription through the exposure of the callus to live cultures of an endemic grapevine yeast, Hanseniaspora uvarum. We found that only 1.7–2.5% of total annotated TE loci were transcribed, of which 5–10% of these were full-length, and the expressed TE loci exhibited a strong location bias towards expressed genes. These trends in transposon transcription were also observed in RNA-seq data from Arabidopsis thaliana wild-type plants but not in epigenetically compromised Arabidopsis ddm1 mutants. Moreover, differentially expressed TE loci in the grapevine tended to share expression patterns with co-localised differentially expressed genes. Utilising nanopore cDNA sequencing, we found a strong correlation between the inclusion of intronic TEs in gene transcripts and the presence of premature termination codons in these transcripts. Finally, we identified low levels of full-length transcripts deriving from structurally intact TE loci in the grapevine model. Conclusion Our observations in two disparate plant models representing clonally and seed propagated plant species reveal a closely connected transcriptional relationship between TEs and co-localised genes, particularly when epigenetic silencing is not compromised. We found that the stress treatment alone was insufficient to induce large-scale full-length transcription from structurally intact TE loci, a necessity for non-autonomous and autonomous mobilisation. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00271-5.
Collapse
Affiliation(s)
- Ting-Hsuan Chen
- Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand.,Present address: The New Zealand Institute for Plant and Food Research Ltd, Lincoln, 7608, New Zealand
| | - Christopher Winefield
- Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand.
| |
Collapse
|
34
|
Fernández P, Hidalgo O, Juan A, Leitch IJ, Leitch AR, Palazzesi L, Pegoraro L, Viruel J, Pellicer J. Genome Insights into Autopolyploid Evolution: A Case Study in Senecio doronicum (Asteraceae) from the Southern Alps. PLANTS 2022; 11:plants11091235. [PMID: 35567236 PMCID: PMC9099586 DOI: 10.3390/plants11091235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Polyploidy is a widespread phenomenon across angiosperms, and one of the main drivers of diversification. Whilst it frequently involves hybridisation, autopolyploidy is also an important feature of plant evolution. Minority cytotypes are frequently overlooked due to their lower frequency in populations, but the development of techniques such as flow cytometry, which enable the rapid screening of cytotype diversity across large numbers of individuals, is now providing a more comprehensive understanding of cytotype diversity within species. Senecio doronicum is a relatively common daisy found throughout European mountain grasslands from subalpine to almost nival elevations. We have carried out a population-level cytotype screening of 500 individuals from Tête Grosse (Alpes-de-Haute-Provence, France), confirming the coexistence of tetraploid (28.2%) and octoploid cytotypes (71.2%), but also uncovering a small number of hexaploid individuals (0.6%). The analysis of repetitive elements from short-read genome-skimming data combined with nuclear (ITS) and whole plastid DNA sequences support an autopolyploid origin of the polyploid S. doronicum individuals and provide molecular evidence regarding the sole contribution of tetraploids in the formation of hexaploid individuals. The evolutionary impact and resilience of the new cytotype have yet to be determined, although the coexistence of different cytotypes may indicate nascent speciation.
Collapse
Affiliation(s)
- Pol Fernández
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain;
- Correspondence: (P.F.); (J.P.); Tel.: +34-932890611 (P.F. & J.P.)
| | - Oriane Hidalgo
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain;
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK; (I.J.L.); (J.V.)
| | - Ana Juan
- Departamento de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, 03080 Alicante, Spain;
| | - Ilia J. Leitch
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK; (I.J.L.); (J.V.)
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK;
| | - Luis Palazzesi
- Museo Argentino de Ciencias Naturales, CONICET, División Paleobotánica, Buenos Aires C1405DJR, Argentina;
| | - Luca Pegoraro
- Biodiversity and Conservation Biology Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Bimensdorf, Switzerland;
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK; (I.J.L.); (J.V.)
| | - Jaume Pellicer
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain;
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK; (I.J.L.); (J.V.)
- Correspondence: (P.F.); (J.P.); Tel.: +34-932890611 (P.F. & J.P.)
| |
Collapse
|
35
|
Sork VL, Cokus SJ, Fitz-Gibbon ST, Zimin AV, Puiu D, Garcia JA, Gugger PF, Henriquez CL, Zhen Y, Lohmueller KE, Pellegrini M, Salzberg SL. High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. Nat Commun 2022; 13:2047. [PMID: 35440538 PMCID: PMC9018854 DOI: 10.1038/s41467-022-29584-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Quercus, which emerged ∼55 million years ago during globally warm temperatures, diversified into ∼450 extant species. We present a high-quality de novo genome assembly of a California endemic oak, Quercus lobata, revealing features consistent with oak evolutionary success. Effective population size remained large throughout history despite declining since early Miocene. Analysis of 39,373 mapped protein-coding genes outlined copious duplications consistent with genetic and phenotypic diversity, both by retention of genes created during the ancient γ whole genome hexaploid duplication event and by tandem duplication within families, including numerous resistance genes and a very large block of duplicated DUF247 genes, which have been found to be associated with self-incompatibility in grasses. An additional surprising finding is that subcontext-specific patterns of DNA methylation associated with transposable elements reveal broadly-distributed heterochromatin in intergenic regions, similar to grasses. Collectively, these features promote genetic and phenotypic variation that would facilitate adaptability to changing environments.
Collapse
Affiliation(s)
- Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA.
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA.
| | - Shawn J Cokus
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Sorel T Fitz-Gibbon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Aleksey V Zimin
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jesse A Garcia
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, 21532, USA
| | - Claudia L Henriquez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Ying Zhen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Steven L Salzberg
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
36
|
Li L, Chen X, Fang D, Dong S, Guo X, Li N, Campos‐Dominguez L, Wang W, Liu Y, Lang X, Peng Y, Tian D, Thomas DC, Mu W, Liu M, Wu C, Yang T, Zhang S, Yang L, Yang J, Liu Z, Zhang L, Zhang X, Chen F, Jiao Y, Guo Y, Hughes M, Wang W, Liu X, Zhong C, Li A, Sahu SK, Yang H, Wu E, Sharbrough J, Lisby M, Liu X, Xu X, Soltis DE, Van de Peer Y, Kidner C, Zhang S, Liu H. Genomes shed light on the evolution of Begonia, a mega-diverse genus. THE NEW PHYTOLOGIST 2022; 234:295-310. [PMID: 34997964 PMCID: PMC7612470 DOI: 10.1111/nph.17949] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/20/2021] [Indexed: 05/02/2023]
Abstract
Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with c. 2000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana and B. peltatifolia), and whole genome shotgun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22 059-23 444 protein-coding genes. Synteny analysis revealed a lineage-specific whole-genome duplication (WGD) that occurred just before the diversification of Begonia. Functional enrichment of gene families retained after WGD highlights the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade.
Collapse
|
37
|
Catlin NS, Josephs EB. The important contribution of transposable elements to phenotypic variation and evolution. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102140. [PMID: 34883307 DOI: 10.1016/j.pbi.2021.102140] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Transposable elements (TEs) are responsible for significant genomic variation in plants. Our understanding of the evolutionary forces shaping TE polymorphism has lagged behind other mutations because of the difficulty of accurately identifying TE polymorphism in short-read population genomic data. However, new approaches allow us to quantify TE polymorphisms in population datasets and address fundamental questions about the evolution of these polymorphisms. Here, we discuss how insertional biases shape where, when, and how often TEs insert throughout the genome. Next, we examine mechanisms by which TEs can affect phenotype. Finally, we evaluate current evidence for selection on TE polymorphisms. All together, it is clear that TEs are important, but underappreciated, contributors to intraspecific phenotypic variation, and that understanding the dynamics governing TE polymorphism is crucial for evolutionary biologists interested in the maintenance of variation.
Collapse
Affiliation(s)
- Nathan S Catlin
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA.
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
38
|
Conover JL, Wendel JF. Deleterious Mutations Accumulate Faster in Allopolyploid than Diploid Cotton (Gossypium) and Unequally between Subgenomes. Mol Biol Evol 2022; 39:6517786. [PMID: 35099532 PMCID: PMC8841602 DOI: 10.1093/molbev/msac024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Whole genome duplication (polyploidization) is among the most dramatic mutational processes in nature, so understanding how natural selection differs in polyploids relative to diploids is an important goal. Population genetics theory predicts that recessive deleterious mutations accumulate faster in allopolyploids than diploids due to the masking effect of redundant gene copies, but this prediction is hitherto unconfirmed. Here, we use the cotton genus (Gossypium), which contains seven allopolyploids derived from a single polyploidization event 1-2 million years ago, to investigate deleterious mutation accumulation. We use two methods of identifying deleterious mutations at the nucleotide and amino acid level, along with whole-genome resequencing of 43 individuals spanning six allopolyploid species and their two diploid progenitors, to demonstrate that deleterious mutations accumulate faster in allopolyploids than in their diploid progenitors. We find that, unlike what would be expected under models of demographic changes alone, strongly deleterious mutations show the biggest difference between ploidy levels, and this effect diminishes for moderately and mildly deleterious mutations. We further show that the proportion of nonsynonymous mutations that are deleterious differs between the two co-resident subgenomes in the allopolyploids, suggesting that homoeologous masking acts unequally between subgenomes. Our results provide a genome-wide perspective on classic notions of the significance of gene duplication that likely are broadly applicable to allopolyploids, with implications for our understanding of the evolutionary fate of deleterious mutations. Finally, we note that some measures of selection (e.g. dN/dS, πN/πS) may be biased when species of different ploidy levels are compared.
Collapse
Affiliation(s)
- Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
39
|
He J, Yu Z, Jiang J, Chen S, Fang W, Guan Z, Liao Y, Wang Z, Chen F, Wang H. An Eruption of LTR Retrotransposons in the Autopolyploid Genomes of Chrysanthemum nankingense (Asteraceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030315. [PMID: 35161296 PMCID: PMC8839533 DOI: 10.3390/plants11030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 05/09/2023]
Abstract
Whole genome duplication, associated with the induction of widespread genetic changes, has played an important role in the evolution of many plant taxa. All extant angiosperm species have undergone at least one polyploidization event, forming either an auto- or allopolyploid organism. Compared with allopolyploidization, however, few studies have examined autopolyploidization, and few studies have focused on the response of genetic changes to autopolyploidy. In the present study, newly synthesized C. nankingense autotetraploids (Asteraceae) were employed to characterize the genome shock following autopolyploidization. Available evidence suggested that the genetic changes primarily involved the loss of old fragments and the gain of novel fragments, and some novel sequences were potential long terminal repeat (LTR) retrotransposons. As Ty1-copia and Ty3-gypsy elements represent the two main superfamilies of LTR retrotransposons, the dynamics of Ty1-copia and Ty3-gypsy were evaluated using RT-PCR, transcriptome sequencing, and LTR retrotransposon-based molecular marker techniques. Additionally, fluorescence in situ hybridization(FISH)results suggest that autopolyploidization might also be accompanied by perturbations of LTR retrotransposons, and emergence retrotransposon insertions might show more rapid divergence, resulting in diploid-like behaviour, potentially accelerating the evolutionary process among progenies. Our results strongly suggest a need to expand the current evolutionary framework to include a genetic dimension when seeking to understand genomic shock following autopolyploidization in Asteraceae.
Collapse
|
40
|
All Ways Lead to Rome—Meiotic Stabilization Can Take Many Routes in Nascent Polyploid Plants. Genes (Basel) 2022; 13:genes13010147. [PMID: 35052487 PMCID: PMC8775444 DOI: 10.3390/genes13010147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Newly formed polyploids often show extensive meiotic defects, resulting in aneuploid gametes, and thus reduced fertility. However, while many neopolyploids are meiotically unstable, polyploid lineages that survive in nature are generally stable and fertile; thus, those lineages that survive are those that are able to overcome these challenges. Several genes that promote polyploid stabilization are now known in plants, allowing speculation on the evolutionary origin of these meiotic adjustments. Here, I discuss results that show that meiotic stability can be achieved through the differentiation of certain alleles of certain genes between ploidies. These alleles, at least sometimes, seem to arise by novel mutation, while standing variation in either ancestral diploids or related polyploids, from which alleles can introgress, may also contribute. Growing evidence also suggests that the coevolution of multiple interacting genes has contributed to polyploid stabilization, and in allopolyploids, the return of duplicated genes to single copies (genome fractionation) may also play a role in meiotic stabilization. There is also some evidence that epigenetic regulation may be important, which can help explain why some polyploid lineages can partly stabilize quite rapidly.
Collapse
|
41
|
Neale DB, Zimin AV, Zaman S, Scott AD, Shrestha B, Workman RE, Puiu D, Allen BJ, Moore ZJ, Sekhwal MK, De La Torre AR, McGuire PE, Burns E, Timp W, Wegrzyn JL, Salzberg SL. Assembled and annotated 26.5 Gbp coast redwood genome: a resource for estimating evolutionary adaptive potential and investigating hexaploid origin. G3 (BETHESDA, MD.) 2022; 12:6460957. [PMID: 35100403 PMCID: PMC8728005 DOI: 10.1093/g3journal/jkab380] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Sequencing, assembly, and annotation of the 26.5 Gbp hexaploid genome of coast redwood (Sequoia sempervirens) was completed leading toward discovery of genes related to climate adaptation and investigation of the origin of the hexaploid genome. Deep-coverage short-read Illumina sequencing data from haploid tissue from a single seed were combined with long-read Oxford Nanopore Technologies sequencing data from diploid needle tissue to create an initial assembly, which was then scaffolded using proximity ligation data to produce a highly contiguous final assembly, SESE 2.1, with a scaffold N50 size of 44.9 Mbp. The assembly included several scaffolds that span entire chromosome arms, confirmed by the presence of telomere and centromere sequences on the ends of the scaffolds. The structural annotation produced 118,906 genes with 113 containing introns that exceed 500 Kbp in length and one reaching 2 Mb. Nearly 19 Gbp of the genome represented repetitive content with the vast majority characterized as long terminal repeats, with a 2.9:1 ratio of Copia to Gypsy elements that may aid in gene expression control. Comparison of coast redwood to other conifers revealed species-specific expansions for a plethora of abiotic and biotic stress response genes, including those involved in fungal disease resistance, detoxification, and physical injury/structural remodeling and others supporting flavonoid biosynthesis. Analysis of multiple genes that exist in triplicate in coast redwood but only once in its diploid relative, giant sequoia, supports a previous hypothesis that the hexaploidy is the result of autopolyploidy rather than any hybridizations with separate but closely related conifer species.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Department of Computer Science & Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Alison D Scott
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Bikash Shrestha
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Zane J Moore
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Manoj K Sekhwal
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | | | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Emily Burns
- Save the Redwoods League, San Francisco, CA 94104, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA.,Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
42
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|
43
|
Kirov I, Merkulov P, Dudnikov M, Polkhovskaya E, Komakhin RA, Konstantinov Z, Gvaramiya S, Ermolaev A, Kudryavtseva N, Gilyok M, Divashuk MG, Karlov GI, Soloviev A. Transposons Hidden in Arabidopsis thaliana Genome Assembly Gaps and Mobilization of Non-Autonomous LTR Retrotransposons Unravelled by Nanotei Pipeline. PLANTS (BASEL, SWITZERLAND) 2021; 10:2681. [PMID: 34961152 PMCID: PMC8704663 DOI: 10.3390/plants10122681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/12/2023]
Abstract
Long-read data is a great tool to discover new active transposable elements (TEs). However, no ready-to-use tools were available to gather this information from low coverage ONT datasets. Here, we developed a novel pipeline, nanotei, that allows detection of TE-contained structural variants, including individual TE transpositions. We exploited this pipeline to identify TE insertion in the Arabidopsis thaliana genome. Using nanotei, we identified tens of TE copies, including ones for the well-characterized ONSEN retrotransposon family that were hidden in genome assembly gaps. The results demonstrate that some TEs are inaccessible for analysis with the current A. thaliana (TAIR10.1) genome assembly. We further explored the mobilome of the ddm1 mutant with elevated TE activity. Nanotei captured all TEs previously known to be active in ddm1 and also identified transposition of non-autonomous TEs. Of them, one non-autonomous TE derived from (AT5TE33540) belongs to TR-GAG retrotransposons with a single open reading frame (ORF) encoding the GAG protein. These results provide the first direct evidence that TR-GAGs and other non-autonomous LTR retrotransposons can transpose in the plant genome, albeit in the absence of most of the encoded proteins. In summary, nanotei is a useful tool to detect active TEs and their insertions in plant genomes using low-coverage data from Nanopore genome sequencing.
Collapse
Affiliation(s)
- Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Maxim Dudnikov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Ekaterina Polkhovskaya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Roman A. Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Zakhar Konstantinov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Sofya Gvaramiya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Aleksey Ermolaev
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia; (A.E.); (N.K.)
| | - Natalya Kudryavtseva
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia; (A.E.); (N.K.)
| | - Marina Gilyok
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| |
Collapse
|
44
|
Williams JH. Consequences of whole genome duplication for 2n pollen performance. PLANT REPRODUCTION 2021; 34:321-334. [PMID: 34302535 DOI: 10.1007/s00497-021-00426-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The vegetative cell of the angiosperm male gametophyte (pollen) functions as a free-living, single-celled organism that both produces and transports sperm to egg. Whole-genome duplication (WGD) should have strong effects on pollen because of the haploid to diploid transition and because of both genetic and epigenetic effects on cell-level phenotypes. To disentangle historical effects of WGD on pollen performance, studies can compare 1n pollen from diploids to neo-2n pollen from diploids and synthetic autotetraploids to older 2n pollen from established neo-autotetraploids. WGD doubles both gene number and bulk nuclear DNA mass, and a substantial proportion of diploid and autotetraploid heterozygosity can be transmitted to 2n pollen. Relative to 1n pollen, 2n pollen can exhibit heterosis due to higher gene dosage, higher heterozygosity and new allelic interactions. Doubled genome size also has consequences for gene regulation and expression as well as epigenetic effects on cell architecture. Pollen volume doubling is a universal effect of WGD, whereas an increase in aperture number is common among taxa with simultaneous microsporogenesis and pored apertures, mostly eudicots. WGD instantly affects numerous evolved compromises among mature pollen functional traits and these are rapidly shaped by highly diverse tissue interactions and pollen competitive environments in the early post-WGD generations. 2n pollen phenotypes generally incur higher performance costs, and the degree to which these are met or evolve by scaling up provisioning and metabolic vigor needs further study.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
45
|
Regulation of retrotransposition in Arabidopsis. Biochem Soc Trans 2021; 49:2241-2251. [PMID: 34495315 DOI: 10.1042/bst20210337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023]
Abstract
Plant genomes are largely comprised of retrotransposons which can replicate through 'copy and paste' mechanisms. Long terminal repeat (LTR) retrotransposons are the major class of retrotransposons in plant species, and importantly they broadly affect the expression of nearby genes. Although most LTR retrotransposons are non-functional, active retrotranspositions have been reported in plant species or mutants under normal growth condition and environmental stresses. With the well-defined reference genome and numerous mutant alleles, Arabidopsis studies have significantly expanded our understanding of retrotransposon regulation. Active LTR retrotransposon loci produce virus-like particles to perform reverse transcription, and their complementary DNA can be inserted into new genomic loci. Due to the detrimental consequences of retrotransposition, plants like animals, have developed transcriptional and post-transcriptional silencing mechanisms. Recently several different genome-wide techniques have been developed to understand LTR retrotransposition in Arabidopsis and different plant species. Transposome, methylome, transcriptome, translatome and small RNA sequencing data have revealed how host silencing mechanisms can affect multiple steps of retrotransposition. These recent advances shed light on future mechanistic studies of retrotransposition as well as retrotransposon diversity.
Collapse
|
46
|
Zhao P, Du H, Jiang L, Zheng X, Feng W, Diao C, Zhou L, Liu GE, Zhang H, Chamba Y, Zhang Q, Li B, Liu JF. PRE-1 Revealed Previous Unknown Introgression Events in Eurasian Boars during the Middle Pleistocene. Genome Biol Evol 2021; 12:1751-1764. [PMID: 33151306 PMCID: PMC7643367 DOI: 10.1093/gbe/evaa142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 12/22/2022] Open
Abstract
Introgression events and population admixture occurred among Sus species across the Eurasian mainland in the Middle Pleistocene, which reflects the local adaption of different populations and contributes to evolutionary novelty. Previous findings on these population introgressions were largely based on extensive genome-wide single-nucleotide polymorphism information, ignoring structural variants (SVs) as an important alternative resource of genetic variations. Here, we profiled the genome-wide SVs and explored the formation of pattern-related SVs, indicating that PRE1-SS is a recently active subfamily that was strongly associated with introgression events in multiple Asian and European pig populations. As reflected by the three different combination haplotypes from two specific patterns and known phylogenetic relationships in Eurasian boars, we identified the Asian Northern wild pigs as having experienced introgression from European wild boars around 0.5–0.2 Ma and having received latitude-related selection. During further exploration of the influence of pattern-related SVs on gene functions, we found substantial sequence changes in 199 intron regions of 54 genes and 3 exon regions of 3 genes (HDX, TRO, and SMIM1), implying that the pattern-related SVs were highly related to positive selection and adaption of pigs. Our findings revealed novel introgression events in Eurasian wild boars, providing a timeline of population admixture and divergence across the Eurasian mainland in the Middle Pleistocene.
Collapse
Affiliation(s)
- Pengju Zhao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Heng Du
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wen Feng
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chenguang Diao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei Zhou
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Maryland
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yangzom Chamba
- College of Animal Science and Technology, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
| | - Qin Zhang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, PR China
| | - Bugao Li
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Jia KH, Liu H, Zhang RG, Xu J, Zhou SS, Jiao SQ, Yan XM, Tian XC, Shi TL, Luo H, Li ZC, Bao YT, Nie S, Guo JF, Porth I, El-Kassaby YA, Wang XR, Chen C, Van de Peer Y, Zhao W, Mao JF. Chromosome-scale assembly and evolution of the tetraploid Salvia splendens (Lamiaceae) genome. HORTICULTURE RESEARCH 2021; 8:177. [PMID: 34465761 PMCID: PMC8408255 DOI: 10.1038/s41438-021-00614-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 05/11/2023]
Abstract
Polyploidization plays a key role in plant evolution, but the forces driving the fate of homoeologs in polyploid genomes, i.e., paralogs resulting from a whole-genome duplication (WGD) event, remain to be elucidated. Here, we present a chromosome-scale genome assembly of tetraploid scarlet sage (Salvia splendens), one of the most diverse ornamental plants. We found evidence for three WGD events following an older WGD event shared by most eudicots (the γ event). A comprehensive, spatiotemporal, genome-wide analysis of homoeologs from the most recent WGD unveiled expression asymmetries, which could be associated with genomic rearrangements, transposable element proximity discrepancies, coding sequence variation, selection pressure, and transcription factor binding site differences. The observed differences between homoeologs may reflect the first step toward sub- and/or neofunctionalization. This assembly provides a powerful tool for understanding WGD and gene and genome evolution and is useful in developing functional genomics and genetic engineering strategies for scarlet sage and other Lamiaceae species.
Collapse
Affiliation(s)
- Kai-Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ren-Gang Zhang
- Ori (Shandong) Gene Science and Technology Co., Ltd, Weifang, 261000, Shandong, China
| | - Jie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shan-Shan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Si-Qian Jiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xue-Mei Yan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xue-Chan Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Tian-Le Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hang Luo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhi-Chao Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yu-Tao Bao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuai Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jing-Fang Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xiao-Ru Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Charles Chen
- Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, OK, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology Genetics, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden.
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
48
|
Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles. Nat Commun 2021; 12:4979. [PMID: 34404804 PMCID: PMC8370997 DOI: 10.1038/s41467-021-25256-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
Relative contributions of pre-existing vs de novo genomic variation to adaptation are poorly understood, especially in polyploid organisms. We assess this in high resolution using autotetraploid Arabidopsis arenosa, which repeatedly adapted to toxic serpentine soils that exhibit skewed elemental profiles. Leveraging a fivefold replicated serpentine invasion, we assess selection on SNPs and structural variants (TEs) in 78 resequenced individuals and discover significant parallelism in candidate genes involved in ion homeostasis. We further model parallel selection and infer repeated sweeps on a shared pool of variants in nearly all these loci, supporting theoretical expectations. A single striking exception is represented by TWO PORE CHANNEL 1, which exhibits convergent evolution from independent de novo mutations at an identical, otherwise conserved site at the calcium channel selectivity gate. Taken together, this suggests that polyploid populations can rapidly adapt to environmental extremes, calling on both pre-existing variation and novel polymorphisms. Relative contributions of pre-existing versus de novo genomic variation to adaptation remain unclear. Here, the authors address this problem by examining the adaptation of autotetraploid Arabidopsis arenosa to serpentine soils and find that both types of variations contribute to rapid adaptation.
Collapse
|
49
|
Sun C, Huang J, Wang Y, Zhao X, Su L, Thomas GWC, Zhao M, Zhang X, Jungreis I, Kellis M, Vicario S, Sharakhov IV, Bondarenko SM, Hasselmann M, Kim CN, Paten B, Penso-Dolfin L, Wang L, Chang Y, Gao Q, Ma L, Ma L, Zhang Z, Zhang H, Zhang H, Ruzzante L, Robertson HM, Zhu Y, Liu Y, Yang H, Ding L, Wang Q, Ma D, Xu W, Liang C, Itgen MW, Mee L, Cao G, Zhang Z, Sadd BM, Hahn MW, Schaack S, Barribeau SM, Williams PH, Waterhouse RM, Mueller RL. Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral Traits. Mol Biol Evol 2021; 38:486-501. [PMID: 32946576 PMCID: PMC7826183 DOI: 10.1093/molbev/msaa240] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bumblebees are a diverse group of globally important pollinators in natural ecosystems and for agricultural food production. With both eusocial and solitary life-cycle phases, and some social parasite species, they are especially interesting models to understand social evolution, behavior, and ecology. Reports of many species in decline point to pathogen transmission, habitat loss, pesticide usage, and global climate change, as interconnected causes. These threats to bumblebee diversity make our reliance on a handful of well-studied species for agricultural pollination particularly precarious. To broadly sample bumblebee genomic and phenotypic diversity, we de novo sequenced and assembled the genomes of 17 species, representing all 15 subgenera, producing the first genus-wide quantification of genetic and genomic variation potentially underlying key ecological and behavioral traits. The species phylogeny resolves subgenera relationships, whereas incomplete lineage sorting likely drives high levels of gene tree discordance. Five chromosome-level assemblies show a stable 18-chromosome karyotype, with major rearrangements creating 25 chromosomes in social parasites. Differential transposable element activity drives changes in genome sizes, with putative domestications of repetitive sequences influencing gene coding and regulatory potential. Dynamically evolving gene families and signatures of positive selection point to genus-wide variation in processes linked to foraging, diet and metabolism, immunity and detoxification, as well as adaptations for life at high altitudes. Our study reveals how bumblebee genes and genomes have evolved across the Bombus phylogeny and identifies variations potentially linked to key ecological and behavioral traits of these important pollinators.
Collapse
Affiliation(s)
- Cheng Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxing Huang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xiaomeng Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Su
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gregg W C Thomas
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Mengya Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA.,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA.,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Saverio Vicario
- Institute of Atmospheric Pollution Research-Italian National Research Council C/O Department of Physics, University of Bari, Bari, Italy
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA.,Department of Cytology and Genetics, Tomsk State University, Tomsk, Russian Federation
| | - Semen M Bondarenko
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Chang N Kim
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA
| | | | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ling Ma
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lina Ma
- China National Center for Bioinformation & Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhang Zhang
- China National Center for Bioinformation & Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hongbo Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Huahao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA
| | - Yanjie Liu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huipeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lele Ding
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Quangui Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weilin Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liang
- Institute of Sericultural and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, China
| | - Michael W Itgen
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Lauren Mee
- Department of Ecology, Evolution and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN.,Department of Computer Science, Indiana University, Bloomington, IN
| | | | - Seth M Barribeau
- Department of Ecology, Evolution and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Paul H Williams
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | |
Collapse
|
50
|
Bleykasten-Grosshans C, Fabrizio R, Friedrich A, Schacherer J. Species-wide transposable element repertoires retrace the evolutionary history of the Saccharomyces cerevisiae host. Mol Biol Evol 2021; 38:4334-4345. [PMID: 34115140 PMCID: PMC8476168 DOI: 10.1093/molbev/msab171] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transposable elements (TE) are an important source of genetic variation with a dynamic and content that greatly differ in a wide range of species. The origin of the intraspecific content variation is not always clear and little is known about the precise nature of it. Here, we surveyed the species-wide content of the Ty LTR-retrotransposons in a broad collection of 1,011 Saccharomyces cerevisiae natural isolates to understand what can stand behind the variation of the repertoire that is the type and number of Ty elements. We have compiled an exhaustive catalog of all the TE sequence variants present in the S. cerevisiae species by identifying a large set of new sequence variants. The characterization of the TE content in each isolate clearly highlighted that each subpopulation exhibits a unique and specific repertoire, retracing the evolutionary history of the species. Most interestingly, we have shown that ancient interspecific hybridization events had a major impact in the birth of new sequence variants and therefore in the shaping of the TE repertoires. We also investigated the transpositional activity of these elements in a large set of natural isolates, and we found a broad variability related to the level of ploidy as well as the genetic background. Overall, our results pointed out that the evolution of the Ty content is deeply impacted by clade-specific events such as introgressions and therefore follows the population structure. In addition, our study lays the foundation for future investigations to better understand the transpositional regulation and more broadly the TE–host interactions.
Collapse
Affiliation(s)
| | - Romeo Fabrizio
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF)
| |
Collapse
|