1
|
Ma W, Yang JW, Zhang T, Weng XH, Shen L, Zhao SH, He Y, Wu ZZ, Li FF, Shang Y, Guo JH, Li LY. The differentiation of glial precursors into neuronal-like cells through the Wnt and Neurotrophin signaling pathways via Ctnnβ1. Biotech Histochem 2025:1-13. [PMID: 40302649 DOI: 10.1080/10520295.2025.2489499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Glial precursor cells are among the major types of glia in the dorsal root ganglias (DRGs) of the peripheral nervous system. Previous studies have shown that the transdifferentiation of DRGs-derived glial precursor cells contributes to peripheral neurogenesis. In the present study, we investigated the mRNA expression profiles and examined the effects of differential expression mRNAs (DEMs) during the differentiation of glial precursor cells derived from the rat DRGs. We characterized glial precursor cells derived from rat DRGs explants using immunofluorescence. Sequencing was subsequently conducted, followed by enrichment analysis utilizing gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The identified genes were subsequently subjected to protein-protein interaction (PPI) network analysis during the differentiation process of glial precursor cells derived from the rat DRGs. The establishment of a sciatic nerve injury (SNI) model was followed by the detection of the expression of key genes in the Wnt and Neurotrophin pathways in the DRGs of SNI rats via qRT-PCR. Additionally, the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was employed to assess apoptosis in the DRGs. We detected the mRNA expression profiles during the neuronal differentiation of rat DRGs-derived glial precursor cells. More DEMs and GO terms were detected on the third day of DRGs-derived glial precursor cells transdifferentiation, accompanied by morphological alterations in the cells; that is, some cells presented neuronal-like phenotypic characteristics (the early neuronal marker Tuj1 was positive). KEGG enrichment and PPI network analyses revealed that Wnt and Neurotrophin pathways play crucial roles in the process of glial precursor cell differentiation into neuronal-like cells. After knocking down cadherin-associated protein beta 1 (Ctnnβ1) in the SNI model, the number of apoptotic cells was significantly reduced, and the expression of Wnt4 and Ntrk3 was significantly increased. The Ctnnβ1 gene may be a crosstalk factor between the Wnt and Neurotrophin pathways that negatively regulates the differentiation of glial precursor cells.
Collapse
Affiliation(s)
- W Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - J W Yang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - T Zhang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - X H Weng
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - L Shen
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - S H Zhao
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Y He
- Gastroenterology Department, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Z Z Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - F F Li
- Gastroenterology Department, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Y Shang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - J H Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - L Y Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Xu J, Bang S, Chen O, Li Y, McGinnis A, Zhang Q, Ji RR. Neuroprotectin D1 and GPR37 protect against chemotherapy-induced peripheral neuropathy and the transition from acute to chronic pain. Pharmacol Res 2025; 216:107746. [PMID: 40287118 DOI: 10.1016/j.phrs.2025.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) significantly impacts patient's quality of life and complicates cancer treatment. Neuroprotectin D1 (NPD1)/protectin D1 (PD1), derived from docosahexaenoic acid (DHA), exhibits analgesic actions in animal models of inflammatory pain and neuropathic pain. GPR37, a receptor for NPD1/PD1, is known to regulate macrophage phagocytosis and inflammatory cytokine expression, but its role in primary sensory neurons and CIPN remains poorly understood. We found Gpr37 mRNA expression in both neurons and macrophages in mouse dorsal root ganglia (DRG), furthermore, GPR37 is downregulated by the chemotherapy agent paclitaxel. Gpr37 mRNA was notably high in neonatal mouse DRG neurons. In contrast, Gpr37l1 is primarily expressed by satellite glial cells in DRG. Chemotherapy-induced neuropathic pain symptom (mechanical allodynia) resolved within seven weeks in wild-type mice, but it persisted in Gpr37 knockout mice, highlighting GPR37's role in acute-to-chronic pain transition. Consistently, intra-DRG knockdown of Gpr37 in naive animals was sufficient to induce mechanical allodynia. In primary DRG cultures, NPD1 facilitated neurite outgrowth of sensory neurons in the presence of paclitaxel, in a GPR37-dependent manner. NPD1 treatment also mitigated mechanical allodynia and prevented the loss of intraepidermal nerve fibers in hind paw skins in wild-type mice undergoing chemotherapy, but these protective effects are absent in Gpr37 knockout mice. Finally, spatial transcriptomics analysis revealed macrophage and neuronal expression of GPR37 in human DRG. Our findings indicate that GPR37 deficiency drives pain chronicity in CIPN. This study also underscores the potential of NPD1 in safeguarding against sensory neuron degeneration and neuropathic pain in CIPN through GPR37.
Collapse
Affiliation(s)
- Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Yize Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Qin Zhang
- Department of Anesthesiology, Duke University, Durham, NC 27708, United States
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
3
|
Chen L, Zou X, Liu CC, Yan P, Deng J, Wang C, Chen MY, Tang XQ, Shi JM, Xin WJ, Zhang XZ, Feng X, Xu T, Xie JD. Earlier onset of chemotherapy-induced neuropathic pain in females by ICAM-1-mediated accumulation of perivascular macrophages. SCIENCE ADVANCES 2025; 11:eadu2159. [PMID: 40238872 PMCID: PMC12002127 DOI: 10.1126/sciadv.adu2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Sex differences in the pathogenesis of a variety of diseases have drawn increasing attention. However, it remains unclear whether such differences exist in chemotherapy-induced neuropathic pain. Here, we conducted a retrospective analysis of clinical case data and found that peripheral sensory disorders occurred earlier in females than in males following bortezomib (BTZ) treatment in patients with multiple myeloma. BTZ treatment led to an early elevation of intercellular adhesion molecule-1, which triggered the infiltration of peripheral monocytes into the perivascular region of the spinal cord in female mice. The CC-chemokine ligand 1 released by infiltrating macrophages directly activated neurons or indirectly activated neurons by enhancing the astrocyte activity, ultimately leading to the earlier onset of BTZ-induced neuropathic pain in females. Together, clarifying the mechanism underlying the earlier onset of BTZ-induced neuropathic pain will contribute to the precise treatment of multiple myeloma in females.
Collapse
Affiliation(s)
- Li Chen
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Xin Zou
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Pu Yan
- Department of Hematology, Shenzhen Longgang District People’s Hospital, Shenzhen, Guangdong 518172, China
| | - Jie Deng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mu-Yang Chen
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Xiao-Qing Tang
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing-Ming Shi
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province 712082, China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province 712082, China
| | - Xiang-Zhong Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510010, China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jing-Dun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
4
|
Qiao J, Xu X, Zhou X, Wu Y, Wang J, Xi H, Liu C, Wang Y, Zhou L, Zhou X, Jiang H, Wu J, Deng H, Yu L. Targeted Ganglion Delivery of CaV2.2-Mediated Peptide by DNA Nanoflowers for Relieving Myocardial Infarction and Neuropathic Pain. ACS NANO 2025; 19:13037-13052. [PMID: 40128122 DOI: 10.1021/acsnano.4c17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
N-type calcium channel (CaV2.2) protein contributes to neuronal excitability and overactivation in sympathetic ganglion (SG) following myocardial infarction (MI), thereby easily triggering cardiac remodeling and ventricular arrhythmias (VAs). Despite much advances in the understanding of CaV2.2, a neuron-targeted modifying treatment is, yet, infrequently realized. Moreover, establishing a specific delivery strategy and stable probe architecture with an extensive molecular structure in pursuit of the complex CaV2.2 regulation still remains a challenge. Herein, we develop a smart DNA nanoflower (sDNF) composite by utilizing the customizable design and scalable production from a multifunctionality-encoded template that self-assembles into a biomimetic nanoarchitecture. The nanoarchitecture contains a neuron-targeting aptamer and a decorated CaV2.2 mediator peptide-DNA bioconjugate. The combined targeted delivery and the release of the CaV2.2 mediator peptide synergistically led to an ∼31% reduction of the peak calcium current in neuron cells. Moreover, sDNF alleviated MI-induced SG hyperactivity and improved in vivo outcomes, such as decreasing susceptibility to VAs and relieving neuropathic pain for 10 h. The infarct size treated with sDNF is reduced to approximately 11.1%. It is envisioned that the DNF-based nanostructure for cardiac remodeling suppression and VAs inhibition along with pain relief provides a potential approach for the clinical treatment of sympathetic-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Jiaming Qiao
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Xiao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Yang Wu
- Hubei Key Laboratory of Biomass Resource Chemistry. and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Jiale Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Haosong Xi
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Chengzhe Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Xue Zhou
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Jun Wu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry. and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| |
Collapse
|
5
|
Midavaine É, Moraes BC, Benitez J, Rodriguez SR, Braz JM, Kochhar NP, Eckalbar WL, Tian L, Domingos AI, Pintar JE, Basbaum AI, Kashem SW. Meningeal regulatory T cells inhibit nociception in female mice. Science 2025; 388:96-104. [PMID: 40179196 DOI: 10.1126/science.adq6531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/11/2024] [Accepted: 02/06/2025] [Indexed: 04/05/2025]
Abstract
T cells have emerged as orchestrators of pain amplification, but the mechanism by which T cells control pain processing is unresolved. We found that regulatory T cells (Treg cells) could inhibit nociception through a mechanism that was not dependent on their ability to regulate immune activation and tissue repair. Site-specific depletion or expansion of meningeal Treg cells (mTreg cells) in mice led to female-specific and sex hormone-dependent modulation of mechanical sensitivity. Specifically, mTreg cells produced the endogenous opioid enkephalin that exerted an antinociceptive action through the delta opioid receptor expressed by MrgprD+ sensory neurons. Although enkephalin restrains nociceptive processing, it was dispensable for Treg cell-mediated immunosuppression. Thus, our findings uncovered a sexually dimorphic immunological circuit that restrains nociception, establishing Treg cells as sentinels of pain homeostasis.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Beatriz C Moraes
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jorge Benitez
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Sian R Rodriguez
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Joao M Braz
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Nathan P Kochhar
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Walter L Eckalbar
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Lin Tian
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - John E Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Sakeen W Kashem
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
6
|
Li C, Song Y, Meng X. The Role of Macrophages in Nerve Regeneration: Polarization and Combination with Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:162-173. [PMID: 38832865 DOI: 10.1089/ten.teb.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Peripheral nerve regeneration after trauma poses a substantial clinical challenge that has already been investigated for many years. Infiltration of immune cells is a critical step in the response to nerve damage that creates a supportive microenvironment for regeneration. In this work, we focus on a special type of immune cell, macrophage, in addressing the problem of neuronal regeneration. We discuss the complex endogenous mechanisms of peripheral nerve injury and regrowth vis-à-vis macrophages, including their recruitment, polarization, and interplay with Schwann cells post-trauma. Furthermore, we elucidate the underlying mechanisms by which exogenous stimuli govern the above events. Finally, we summarize the necessary roles of macrophages in peripheral nerve lesions and reconstruction. There are many challenges in controlling macrophage functions to achieve complete neuronal regeneration, even though considerable progress has been made in understanding the connection between these cells and peripheral nerve damage.
Collapse
Affiliation(s)
- Changqing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanyu Song
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xianyu Meng
- Department of Orthopedics, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Chen L, Chen Z, Chen J, Du H, Chen X, Chen J, Wang H, Liang C. CXCL10 Promotes Spinal Macrophage Recruitment via the JAK/STAT3 Pathway to Induce Pain in Experimental Autoimmune Prostatitis. Cell Prolif 2025; 58:e13784. [PMID: 39718951 PMCID: PMC11969258 DOI: 10.1111/cpr.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
The aim is to explore the mechanisms underlying pain development in chronic prostatitis and identify therapeutic targets for pain management in patients with chronic prostatitis. RNA sequence of the spinal cord dorsal horns and proteomic analysis of spinal macrophages of experimental autoimmune prostatitis (EAP) mice were conducted to identify pain-related genes, proteins and signalling pathways. The clodronate liposome, CXCR3 and P-STAT3 inhibitors, NGF antibody and cromolyn sodium were used to investigate the roles of the CXCL10/CXCR3, JAK/STAT3 and NGF/TrKA pathways in spinal macrophage recruitment and pain response. Finally, prostate tissues from benign prostate hyperplasia (BPH) patients were collected to validate the aforementioned results. Neuron and astrocyte-derived CXCL10 was associated with spinal macrophage recruitment, and CXCL10/CXCR3 axis could regulate the chemotaxis of macrophage to the spinal cord in EAP mice. Results of proteomic analysis found that CXCL10 could regulate the JAK/STAT3 pathway to mediate neuroinflammation in EAP, which was validated in vivo and in vitro experiments. The number of mast cells and expressions of NGF, TrKA and PGP9.5 increased in the prostates of EAP mice and BPH patients, and targeting NGF could reduce spinal macrophage recruitment and pain response. NGF was the triggering factor to induce chemotaxis of spinal macrophages and neuroinflammation, and the CXCL10/CXCR3 axis and JAK/STAT3 pathway was involved in spinal macrophage recruitment and infiltration, which provided therapeutic targets for pain management.
Collapse
Affiliation(s)
- Lei Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Ziqi Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Jia Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Hexi Du
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Xianguo Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Jing Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Hui Wang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Chaozhao Liang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| |
Collapse
|
8
|
Chouhan D, Akhilesh, Tiwari V. Focal Adhesion Kinase Inhibition Ameliorates Burn Injury-Induced Chronic Pain in Rats. Mol Neurobiol 2025; 62:4466-4483. [PMID: 39460902 DOI: 10.1007/s12035-024-04548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Burn injury-induced pain (BIP) is a significant global health concern, affecting diverse populations including children, military veterans, and accident victims. Current pharmacotherapeutics for the management of BIP are associated with severe side effects including drug addiction, respiratory depression, sedation, and constipation posing significant barrier to their clinical utility. In the present study, we have investigated the potential role of focal adhesion kinase (p-FAK) for the very first time in BIP and elucidated the associated underlying mechanisms. Defactinib (DFT), a potent p-FAK inhibitor, administered at doses of 5, 10, and 20 mg/kg via intraperitoneal injection, demonstrates significant efficacy in reducing both evoked and spontaneous pain without causing addiction or other central nervous system toxicities. Burn injury triggers p-FAK-mediated phosphorylation of Erk1/2 and NR2B signaling in the DRG, resulting in heightened hypersensitivity through microglial activation, neuropeptide release, and elevated proinflammatory cytokines. Defactinib (DFT) counteracts these effects by reducing NR2B upregulation, lowering substance P levels, inhibiting microglial activation, and restoring IL-10 levels while leaving CGRP levels unchanged. These findings provide valuable insights into the pivotal role of p-FAK in regulating BIP and highlight the potential for developing novel therapeutics for burn injury-induced pain with minimal side effects.
Collapse
Affiliation(s)
- Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
9
|
Du J, Yang Y, Rao J, Ma X, Tang S, Liu J, Liu Y, Liu S, Li G, Liang S, Gao Y. Resident Macrophages in the Cervical Sympathetic Ganglia Participate in P2Y12 Receptor Mediated Diabetic Cardiac Autonomic Neuropathy. Mol Neurobiol 2025:10.1007/s12035-025-04883-9. [PMID: 40146499 DOI: 10.1007/s12035-025-04883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Diabetic cardiac autonomic neuropathy (DCAN) represents a significant and prevalent complication of diabetes. Further research is required to ascertain the role of the P2Y12 receptor, which is expressed on macrophages and satellite glial cells (SGCs), in the pathophysiology of DCAN. The objective of this study was to ascertain whether resident macrophages in the superior cervical ganglion (SCG) are involved in the pathological changes associated with DCAN, which are mediated by the P2Y12 receptor in satellite glial cells (SGCs). The findings showed that DCAN rats had higher sympathetic nerve discharge activity than the control group. Furthermore, the expression of P2Y12 receptor, glial fibrillary acidic protein (GFAP), macrophage-like targets (colony-stimulating factor 1 receptor (CSF1R), colony-stimulating factor 1 (CSF1)), and interleukin-34 (IL-34) in SCG among DCAN rats was clearly elevated. Moreover, co-expression levels of NeuN and CSF1 in neurons, P2Y12 and GFAP as well as P2Y12 and IBA-1 in SCGs were increased. However, treatment with P2Y12 shRNA led to significant reductions in all above parameters. The action mechanism may involve reducing the expression of P2Y12 receptors in macrophages and SGCs, decreasing the expression of CSF1 in SCG neurons to weaken the CSF1-CSF1R signal, inhibiting the activation of macrophages and SGCs, and reducing the release of inflammatory factors. This ultimately alleviated abnormal neuronal excitation in SCG and maintaining balance in cardiac autonomic nervous activity. Therefore, targeting the P2Y12 receptor to disrupt the resident macrophages participate in pathological changes, may be an effective approach for improving DCAN.
Collapse
Affiliation(s)
- Junpei Du
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxin Yang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jingan Rao
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaoqian Ma
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shanshan Tang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jian Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yeqing Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shipan Liu
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Guodong Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shangdong Liang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Yun Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
10
|
Giosan IM, Serafini RA, Ramakrishnan A, Tuffy MJ, Zimering J, Babes A, Shen L, Zachariou V. HDAC6 inhibition ameliorates sensory hypersensitivity and reduces immune cell signatures in the dorsal root ganglia in murine chronic pain models. Mol Pharmacol 2025; 107:100034. [PMID: 40311408 DOI: 10.1016/j.molpha.2025.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/21/2025] [Indexed: 05/03/2025] Open
Abstract
Histone deacetylase (HDAC)6 is a broadly expressed class IIb HDAC that regulates cytoskeletal dynamics and some nuclear processes. Previously research has shown that HDAC6 enzymatic inhibition has analgesic properties in models of chemotherapy-induced peripheral neuropathy. Here, we evaluated the effects of genetic and pharmacologic inhibition of HDAC6 on the development of sensory hypersensitivity in mouse models of peripheral nerve injury and peripheral inflammation. Daily administration of the peripherally restricted HDAC6 inhibitor, ACY1215 (Regenacy Pharmaceuticals, Inc), attenuated mechanical allodynia in the von Frey assay within 2 days of treatment initiation, with no signs of analgesic tolerance after 21 days of administration. We observed a similar antiallodynic effect across the implemented injury models after conditionally knocking down Hdac6 in the adult dorsal root ganglia (DRGs). Bioinformatic analysis of whole-transcriptome RNA-sequencing data predicted that ACY1215 treatment predominantly attenuated proinflammatory mechanisms, such as the suppression of immune cell infiltration into the DRG after injury. Accordingly, we demonstrated a reduction in the expression of various immune cell markers in the DRG after pharmacologic and genetic HDAC6 inhibition in both neuropathic and inflammatory pain models. We identified a direct relationship between Ccl5/Ccr5 and Hdac6 downregulation, as well as reduced hypersensitivity after hind paw CCL5 administration upon Hdac6 knockdown in the DRG. Our findings highlight that peripheral inhibition of HDAC6 ameliorates sensory hypersensitivity in models of postoperative inflammatory and neuropathic pain through mechanisms beyond reduction of tubulin deacetylation. SIGNIFICANCE STATEMENT: Recent studies highlight the role of histone deacetylase (HDAC)6 in chemotherapy-induced peripheral neuropathy, through mechanisms of action including tubulin acetylation and mitochondrial trafficking. In this study, various murine models of acute and chronic pain are applied to show that inhibition of HDAC6 activity in the periphery, using the clinically tested ACY1215 compound, and genetic inactivation of the Hdac6 gene in the dorsal root ganglia, alleviated mechanical hypersensitivity in male and in female mice through mechanisms that include targeting injury-induced inflammation.
Collapse
Affiliation(s)
- Ilinca M Giosan
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, Massachusetts; Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology and Interdisciplinary School of Doctoral Studies, University of Bucharest, Bucharest, Romania
| | - Randal A Serafini
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, Massachusetts; Nash Family Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Madden J Tuffy
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, Massachusetts
| | - Jeffrey Zimering
- Nash Family Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexandru Babes
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology and Interdisciplinary School of Doctoral Studies, University of Bucharest, Bucharest, Romania
| | - Li Shen
- Nash Family Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, Massachusetts.
| |
Collapse
|
11
|
Fiore NT, Willcox KF, Grieco AR, Dayani D, Zuberi YA, Heijnen CJ, Grace PM. Autoreactive IgG levels and Fc receptor γ subunit upregulation drive mechanical allodynia after nerve constriction or crush injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644748. [PMID: 40196481 PMCID: PMC11974762 DOI: 10.1101/2025.03.22.644748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
B cells contribute to the development of pain after sciatic nerve chronic constriction injury (CCI) via binding of immunoglobulin G (IgG) to Fc gamma receptors (FcγRs) in the lumbar dorsal root ganglia (DRG) and spinal cord. Yet the contribution of B cells to pain after different types of peripheral nerve injury is uncertain. Using male and female mice, we demonstrate a divergent role for B cell-IgG-FcγR signaling underlying mechanical allodynia between CCI, nerve crush (NC), spared nerve injury (SNI), and spinal nerve ligation (SNL). Depletion (monoclonal anti-CD20) or genetic deletion (muMT mice) of B cells prevented development of allodynia following NC and CCI, but not SNI or SNL. In apparent contradiction, circulating levels of autoreactive IgG and circulating immune complexes were increased in all models, though more prominent following NC and CCI. Passive transfer of IgG from SNI donor mice induced allodynia in CCI muMT recipient mice, demonstrating that IgG secreted after SNI is pronociceptive. To investigate why pronociceptive IgG did not contribute to mechanical allodynia after SNI, we evaluated levels of the Fc receptor γ subunit. SNI or SNL did not increase γ subunit levels in the DRG and spinal cord, whereas CCI and NC did, in agreement with B cell-dependent allodynia in these models. Together, the results suggest that traumatic peripheral nerve injury drives secretion of autoreactive IgG from B cells. However, levels of cognate FcγRs are increased following sciatic nerve constriction and crush, but not transection, to differentially regulate pain through the B cell-IgG-FcγR axis.
Collapse
Affiliation(s)
- Nathan T. Fiore
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Kendal F. Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Anamaria R. Grieco
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Dorsa Dayani
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Younus A. Zuberi
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Cobi J. Heijnen
- Department of Psychological Sciences, Rice University; Houston, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| |
Collapse
|
12
|
Zhang JD, Zhong ZA, Xing WY. Environmental enrichment for neuropathic pain via modulation of neuroinflammation. Front Mol Neurosci 2025; 18:1547647. [PMID: 40190342 PMCID: PMC11968435 DOI: 10.3389/fnmol.2025.1547647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Neuropathic pain causes tremendous biological and psychological suffering to patients worldwide. Environmental enrichment (EE) is a promising non-pharmacological strategy with high cost-effectiveness to reduce neuropathic pain and support rehabilitation therapy. Three researchers reviewed previous studies to determine the efficacy of EE for neuropathic pain to research how EE improves neuropathic pain through neuroinflammation. For this review, Embase, PubMed, and Cochran were searched. Three authors did study selection and data extraction. Out of 74 papers, 7 studies met the inclusion criteria. In the chronic constriction injury rats with acute or chronic detrimental stimulation, the change of pain behavior was influenced by environmental settings like start time, and cage size. Besides, physical EE has a larger effect than socially EE in inflammatory pain. These articles suggest employing various EE to regulate the release of pain-causing substances and changes in ion channels in the peripheral and central nerves to improve neuropathic pain behavior and depression and anxiety conditions. The existing proof provides important knowledge for upcoming preclinical investigations and the practical use of EE in clinical pain treatment. This analysis aids in the advancement of improved approaches for managing chronic pain, with a focus on internal mechanisms for controlling pain.
Collapse
Affiliation(s)
- Jian-Dong Zhang
- Physical Education College, Qilu Normal University, Jinan, China
| | - Zi-An Zhong
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Wen-Yuan Xing
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
13
|
Mckiver BD, Herz SM, Patel S, Bryan T, Mann J, Poklis JL, Bigbee JW, Windle JJ, Salem AK, Sarkar D, Damaj MI. Astrocyte elevated gene-1 (AEG-1) in myeloid cells is a key driver for the development of chemotherapy-induced peripheral neuropathy. Brain Behav Immun 2025; 127:329-340. [PMID: 40101807 DOI: 10.1016/j.bbi.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of chemotherapy treatment, often resulting in the discontinuation of treatment. Paclitaxel activates peripheral macrophages, generating a neuroinflammatory response that contributes to CIPN development and maintenance. Astrocyte Elevated Gene-1 (AEG-1), also known as Metadherin or LYRIC, is a multifunctional protein that modulates macrophage activity and regulates inflammation through direct interaction with NF-κB, a transcriptional regulator of proinflammatory cytokine/chemokine (PIC) expression. We aimed to determine whether AEG-1 contributes to the development and maintenance of CIPN pathologies by using both global (AEG-1 KO) and myelocyte-specific knockout (AEG-1ΔMAC) transgenic mouse strains in an animal model of CIPN that replicates specific human clinical phenotypes. We hypothesized that inhibition of AEG1 expression in myeloid cells, such as monocytes and macrophages, would prevent the development and maintenance of CIPN. Our results showed that global AEG-1 deletion prevented the development of CIPN pathologies induced by PAC, as well as oxaliplatin (OHP). PAC treatment was found to increase AEG-1 and PIC expression in the DRGs of WT mice and in peritoneal macrophages isolated from C57BL/6J mice. However, in the absence of AEG-1 expression, PAC-induced neuroinflammation was completely halted in the DRGs of AEG-1 KO mice. This preventative phenotype and PIC expression profile was mirrored in AEG-1ΔMAC mice, which also displayed reduced NF-κB protein levels and F4/80+ macrophages trafficked to the lumbar DRGs following PAC treatment. In summary, our results are the first to demonstrate the biological role AEG-1, particularly in myeloid cells, in development of CIPN.
Collapse
Affiliation(s)
- Bryan D Mckiver
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara M Herz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shivani Patel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tayla Bryan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jared Mann
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
Meerschaert KA, Chiu IM. The gut-brain axis and pain signalling mechanisms in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2025; 22:206-221. [PMID: 39578592 DOI: 10.1038/s41575-024-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Visceral pain is a major clinical problem and one of the most common reasons patients with gastrointestinal disorders seek medical help. Peripheral sensory neurons that innervate the gut can detect noxious stimuli and send signals to the central nervous system that are perceived as pain. There is a bidirectional communication network between the gastrointestinal tract and the nervous system that mediates pain through the gut-brain axis. Sensory neurons detect mechanical and chemical stimuli within the intestinal tissues, and receive signals from immune cells, epithelial cells and the gut microbiota, which results in peripheral sensitization and visceral pain. This Review focuses on molecular communication between these non-neuronal cell types and neurons in visceral pain. These bidirectional interactions can be dysregulated during gastrointestinal diseases to exacerbate visceral pain. We outline the anatomical pathways involved in pain processing in the gut and how cell-cell communication is integrated into this gut-brain axis. Understanding how bidirectional communication between the gut and nervous system is altered during disease could provide new therapeutic targets for treating visceral pain.
Collapse
Affiliation(s)
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Tong SH, Liu DL, Liao P, Zhang SY, Zhou J, Zong Y, Zhang CQ, Huang YG, Gao JJ. Emerging role of macrophages in neuropathic pain. J Orthop Translat 2025; 51:227-241. [PMID: 40177638 PMCID: PMC11964759 DOI: 10.1016/j.jot.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 04/05/2025] Open
Abstract
Neuropathic pain is a complex syndrome caused by injury to the neurons, which causes persistent hypersensitivity and considerable inconvenience to the patient's whole life. Over the past two decades, the interaction between immune cells and neurons has been proven to play a crucial role in the development of neuropathic pain. Increasing studies have indicated the important role of macrophages for neuroinflammation and have shed light on the underlying molecular and cellular mechanisms. In addition, novel therapeutic methods targeting macrophages are springing up, which provide more options in our clinical treatment. Herein, we reviewed the characteristics of peripheral macrophages and their function in neuropathic pain, with the aim of better understanding how these cells contribute to pathological processes and paving the way for therapeutic approaches. Translational potential statement This review provides a comprehensive overview of the mechanisms underlying the interplay between the macrophages and nervous system during the progression of nerve injury. Additionally, it compiles existing intervention strategies targeting macrophages for the treatment of neuropathic pain. This information offers valuable insights for researchers seeking to address the challenge of this intractable pain.
Collapse
Affiliation(s)
- Si-Han Tong
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - De-Lin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Sen-Yao Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, 6009, Australia
| | - Chang-Qing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yi-Gang Huang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jun-Jie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
16
|
Tassou A, Richebe P, Rivat C. Mechanisms of chronic postsurgical pain. Reg Anesth Pain Med 2025; 50:77-85. [PMID: 39909543 DOI: 10.1136/rapm-2024-105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 02/07/2025]
Abstract
Chronic pain after surgery, also known as chronic postsurgical pain (CPSP), is recognized as a significant public health issue with serious medical and economic consequences. Current research on CPSP underscores the significant roles of both peripheral and central sensitization in pain development and maintenance. Peripheral sensitization occurs at the site of injury, through the hyperexcitability of nerve fibers due to surgical damage and the release of inflammatory mediators. This leads to increased expression of pronociceptive ion channels and receptors, such as transient receptor potential and acid-sensing ion channels (ASIC), enhancing pain signal transmission. Central sensitization involves long-term changes in the central nervous system, particularly in the spinal cord. In this context, sensitized spinal neurons become more responsive to pain signals, driven by continuous nociceptive input from the periphery, which results in an enhanced pain response characterized by hyperalgesia and/or allodynia. Key players in this process include N-methyl-D-aspartate receptor and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, along with proinflammatory cytokines and chemokines released by activated glia. These glial cells release substances that further increase neuronal excitability, maintaining the sensitized state and contributing to persistent pain. The activation of antinociceptive systems is required for the resolution of pain after surgery, and default in these systems may also be considered as an important component of CPSP. In this review, we will examine the clinical factors underlying CPSP in patients and the mechanisms previously established in preclinical models of CPSP that may explain how acute postoperative pain may transform into chronic pain in patients.
Collapse
Affiliation(s)
- Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philippe Richebe
- Department of Anesthesiology and Pain Medicine, Polyclinique Bordeaux Nord Aquitaine (PBNA), Bordeaux, France
- Anesthesiology and Pain Medicine, Maisonneuve Rosemont Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Cyril Rivat
- University of Montpellier, Montpellier, France
- Institut des Neurosciences de Montpellier INSERM U1298, Montpellier, France
| |
Collapse
|
17
|
Wang W, Wang Y, Huang X, Wu P, Li L, Zhang Y, Chen Y, Chen Z, Li C, Zhou Y, Zhang J. Pathophysiology-Directed Engineering of a Combination Nanoanalgesic for Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405483. [PMID: 39716944 PMCID: PMC11848598 DOI: 10.1002/advs.202405483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/08/2024] [Indexed: 12/25/2024]
Abstract
Neuropathic pain, one of the most refractory pain diseases, remains a formidable medical challenge. There is still an unmet demand for effective and safe therapies to address this condition. Herein, a rat model of nerve injury-induced neuropathic pain is first established to explore its pathophysiological characteristics. Recognizing the role of neuroinflammation, an inflammation-resolving amphiphilic conjugate PPT is designed and synthesized by simultaneously conjugating polyethylene glycol, phenylboronic acid pinacol ester, and Tempol onto a cyclic scaffold. PPT can self-assemble into nanomicelles (termed PPTN). Following intravenous injection, PPTN preferentially accumulates in the injured nerve, ameliorates the neuroinflammatory milieu, and promotes nerve regeneration, thereby shortening neuropathic pain duration in rats. Moreover, the Ca2+ channel α2δ1 subunit is identified as a therapeutic target by RNA-sequencing analysis of the injured nerve. Based on this target, a mimicking peptide (AD peptide) is screened as an analgesic. By packaging AD peptide into PPTN, a combination nano-analgesic APTN is developed. Besides potentiated anti-hyperalgesic effects due to site-specific delivery and on-demand release of AD peptide at target sites, APTN simultaneously inhibits neuroinflammation and promotes nerve regeneration by reprogramming macrophages via regulating MAPK/NF-kB signaling pathways and NLRP3 inflammasome activation, thus affording synergistic efficacies in treating nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Wenkai Wang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
- Department of OrthopedicsGeneral Hospital of PLA Xizang Military Area CommandLhasa850007P. R. China
| | - Yan Wang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- War Trauma Medical CenterState key Laboratory of TraumaBurns and Combined injuryArmy Medical CenterDaping HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Xinle Huang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
- Department of OrthopedicsThe Second Naval Hospital of Southern Theater CommandSanya572000P. R. China
| | - Peng Wu
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- School of PharmacyHanzhong Vocational and Technical CollegeHanzhong723002P. R. China
| | - Lanlan Li
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Yang Zhang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Yihui Chen
- Department of General SurgeryXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Zhiyu Chen
- Department of OrthopedicsThe First Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Changqing Li
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Yue Zhou
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Jianxiang Zhang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- State Key Laboratory of Trauma and Chemical PoisoningThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Yu‐Yue Pathology Scientific Research Center313 Gaoteng Avenue, Jiulongpo DistrictChongqing400039P. R. China
| |
Collapse
|
18
|
Neuman K, Zhang X, Lejeune BT, Pizzarella D, Vázquez M, Lewis LH, Koppes AN, Koppes RA. Static Magnetic Stimulation and Magnetic Microwires Synergistically Enhance and Guide Neurite Outgrowth. Adv Healthc Mater 2025; 14:e2403956. [PMID: 39568232 PMCID: PMC11773108 DOI: 10.1002/adhm.202403956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 11/22/2024]
Abstract
Axonal growth is heavily influenced by topography and biophysical stimuli including magnetic and electrical fields. Despite extensive investigation, the degree of influence and the underlying genetic mechanisms remain poorly understood. Here, a novel approach to guide neurite growth is undertaken using an innovative ferromagnetic composite material - glass-coated magnetic microwire - to furnish a synergistic combination of magnetic and topographical cues. Whole rat dorsal root ganglia (DRG) are cultured under five different conditions: control, static magnetic field, magnetic microwire, static magnetic field + glass fiber, and static magnetic field + magnetic microwire. DRG outgrowth responses under each condition, including total neurite outgrowth and directionality, are compared. The combination of both magnetic stimulation and topography significantly increases total neurite outgrowth compared to the controls. The combination of magnetic stimulation and magnetic microwire lead to a strong directional bias of growth along the microwire, double what is observed with the glass fiber. Next generation RNA sequencing of DRG exposed to static magnetic field + magnetic microwire reveals the downregulation of genes relating to the immune response, interleukin signaling, and signal transduction. These results set the stage for contemplating future biophysical stimulation for axonal guidance and improved understanding of material-tissue interactions.
Collapse
Affiliation(s)
- Katelyn Neuman
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Xiaoyu Zhang
- Dept. of Mechanical and Industrial EngineeringNortheastern UniversityBostonMA02115USA
| | - Brian. T. Lejeune
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | | | - Manuel Vázquez
- Instituto de Ciencia de Materiales de MadridCSICMadrid28049Spain
| | - Laura H. Lewis
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Dept. of Mechanical and Industrial EngineeringNortheastern UniversityBostonMA02115USA
| | - Abigail N. Koppes
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Dept. of BioengineeringNortheastern UniversityBostonMA02115USA
- Dept. of BiologyNortheastern UniversityBostonMA02115USA
| | - Ryan A. Koppes
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| |
Collapse
|
19
|
Ikehata Y, Oshima E, Hayashi Y, Tanaka Y, Sato H, Hitomi S, Shiratori-Hayashi M, Urata K, Kimura Y, Shibuta I, Ohba S, Iwata K, Mizuta K, Shirota T, Shinoda M. Fibroblast-derived IL-33 exacerbates orofacial neuropathic pain via the activation of TRPA1 in trigeminal ganglion neurons. Brain Behav Immun 2025; 123:982-996. [PMID: 39500418 DOI: 10.1016/j.bbi.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/02/2024] [Accepted: 11/02/2024] [Indexed: 11/11/2024] Open
Abstract
Damage to the peripheral nerves of trigeminal ganglion (TG) neurons leads to intractable orofacial neuropathic pain through the induction of neuroinflammation. However, the details of this process are not yet fully understood. Here, we found that fibroblast-derived interleukin (IL)-33 was required for the development of mechanical allodynia in whisker pad skin following infraorbital nerve injury (IONI). The amount of IL-33 in the TG increased after IONI when the mice exhibited mechanical allodynia. Neutralization of IL-33 in the TG inhibited the development of IONI-induced mechanical allodynia. Conversely, intra-TG administration of recombinant human IL-33 (rhIL-33) elicited mechanical allodynia in naïve mice. IL-33 and its receptor were exclusively expressed in fibroblasts and neurons, respectively, in the TG. Fibroblast ablation caused the loss of IL-33 in the TG and delayed the development of mechanical allodynia after IONI. rhIL-33 elicited an increase in intracellular Ca2+ concentration and subsequent enhancement of Ca2+ influx via transient receptor potential ankyrin 1 (TRPA1) in primary cultured TG neurons. Additionally, rhIL-33 facilitated membrane translocation of TRPA1 in the TG. Mechanical allodynia caused by intra-TG administration of rhIL-33 was significantly inhibited by pharmacological blockade or gene silencing of TRPA1 in the TG. Inhibition of protein kinase A abrogated TRPA1 membrane translocation and delayed mechanical allodynia after IONI. Substance P stimulation caused upregulation of IL-33 expression in primary cultured fibroblasts. Preemptive administration of a neurokinin-1 receptor antagonist in the TG attenuated mechanical allodynia and IL-33 expression following IONI. Taken together, these results indicate that fibroblast-derived IL-33 exacerbates TG neuronal excitability via suppression of tumorigenicity 2 (ST2)-TRPA1 signaling, ultimately leading to orofacial neuropathic pain.
Collapse
Affiliation(s)
- Yousuke Ikehata
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 142-8515, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Eri Oshima
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 142-8515, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Yukinori Tanaka
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Seiryomachi 4-1, Aoba-ku, Sendai 980-8575, Japan
| | - Hitoshi Sato
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 142-8515, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Miho Shiratori-Hayashi
- Department of Molecular and Systems Pharmacology, Faculty of Pharmacy, Juntendo University, 6-8-1, Hinode, Urayasu, Chiba 279-0013, Japan; Juntendo Itch Research Center, Institute for Environmental and Gender-Specific Medicine, Graduate School of Medicine, Juntendo University, 2-1-1, Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yuki Kimura
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Seigo Ohba
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 142-8515, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kentaro Mizuta
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Seiryomachi 4-1, Aoba-ku, Sendai 980-8575, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 142-8515, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| |
Collapse
|
20
|
Liao P, Tong S, Du L, Mei J, Wang B, Lu Y, Yao M, Zhang C, Liu D, Zhong Z, Ye F, Gao J. Single-cell transcriptomics identifies the common perturbations of monocyte/macrophage lineage cells in inflammaging of bone marrow. J Orthop Translat 2025; 50:85-96. [PMID: 39868348 PMCID: PMC11762928 DOI: 10.1016/j.jot.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025] Open
Abstract
Background Bone marrow inflammaging is a low-grade chronic inflammation that induces bone marrow aging. Multiple age-related and inflammatory diseases involve bone marrow inflammaging. Whether common pathological pathways exist in bone marrow inflammaging remains unclear. Methods We collected bone marrow from telomerase-deficient mice (telomerase RNA component, TERCko/ko), 5 × FAD mice and Dmp1 Cre -DTA ki/wt mice and High-fat diet-fed mice (HFD), and lumbar 5 nerve compression mice. We performed scRNA-Seq analysis on bone marrow obtained from these mouse models to investigate the potential shared pathway of bone marrow inflammation. Results We identified the monocyte/macrophage lineage was activated via the App-Cd74 axis in multiple aging and inflammatory mouse models. Increased expression of CD38 and Ly6a, and decreased expression of Col1a and Lif in macrophages serve as shared changes in different mouse models. The activated macrophages, interacting with other cells, control the expansion of B cells via the CD52-Siglec-G axis. The Ccl6-Ccr2 and Ccl9-Ccr1 ligand-receptor pairs, along with Fn1 and C3-related pathways in macrophages, were associated with immune cell activation and the recruitment of lymphocytes. Interactions with mesenchymal cells were enriched for integrins (Itga4), Fn1, and adhesion molecules (Vcam1). Conclusion Our study demonstrates that monocyte/macrophage lineage stimulation is a key event in bone marrow inflammaging. We identified common differentially expressed genes and activated pathways in this lineage, suggesting potential targets for future interventions. The translational potential of this article Our study revealed shared genes and ligand-receptor pairs in the activated monocyte/macrophage lineage within inflammaging bone marrow. These findings offer potential therapeutic targets for cell-specific anti-inflammatory treatments.
Collapse
Affiliation(s)
- Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Jiong Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
21
|
Kung CC, Dai SP, Yen CH, Lee YJ, Chang SL, Fang YT, Lin HL, Chen CL. Animal neuropathic pain aroused by conglutinating oxidative regenerative cellulose on dorsal root ganglion. J Neuropathol Exp Neurol 2025; 84:34-44. [PMID: 39441706 DOI: 10.1093/jnen/nlae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Neuropathic pain arises as a consequence of injury or disease in the peripheral or central nervous system. Clinical cases have shown that spine postoperative chronic neuropathic pain remains a troublesome issue in medical treatment due to the presence of various degrees of peridural fibrosis and different inflammatory factors after spinal surgery. To address this issue, we developed a new neuropathic mice model that successfully simulates the real clinical situation by applying oxidative regenerative cellulose to L5 DRG (dorsal root ganglion). Behavior tests were done by von Fray and thermal stimuli. ELISA and real-time PCR were employed to detect the expression of genes involved in neuropathic pain. This model not only successfully induces chronic pain but also causes membrane thickening, non-neuronal cell recruitment, and a local increase of TNFα and interleukin-6. Additionally, this model did not cause neuron loss in the affected DRG, which mimics the characteristics of sticky tissue-induced neuropathic pain after clinic surgery. Based on this model, we administrated a TNF inhibitor to mice and successfully reduced mechanical allodynia after DRG surgery. In this study, the developed animal model may be a novel platform for delivering neuropathic pain treatments, such as target-based drug discovery or personalized diagnostic approaches.
Collapse
Affiliation(s)
- Chia-Chi Kung
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Shih-Ping Dai
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Cheng-Han Yen
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Yi-Jui Lee
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Shih-Lun Chang
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Yi-Ting Fang
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Heng-Liang Lin
- Center for Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Chih-Li Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| |
Collapse
|
22
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. Cell Rep 2024; 43:115045. [PMID: 39661516 DOI: 10.1016/j.celrep.2024.115045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential environmental dangers. However, this function can be detrimental during allergic reactions, as vagal nociceptors contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we investigate the changes in the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identify a specific class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of allergic airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the neuropeptide Y (NPY) receptor Npy1r. A screening of cytokines and neurotrophins reveals that interleukin 1β (IL-1β), IL-13, and brain-derived neurotrophic factor (BDNF) drive part of this reprogramming. IL-13 triggers Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, NPY is released into the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells reveals that a cell-specific knockout of NPY1R in nociceptor neurons in asthmatic mice altered T cell infiltration. Opposite findings are observed in asthmatic mice in which nociceptor neurons are chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits the activity of nociceptor neurons.
Collapse
Affiliation(s)
- Theo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC, Canada; Département de Physique, Université de Montréal, Montreal, QC, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Herbert Herzog
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC, Canada; Département de Physique, Université de Montréal, Montreal, QC, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
23
|
Geraghty T, Ishihara S, Obeidat AM, Adamczyk NS, Hunter RS, Li J, Wang L, Lee H, Ko FC, Malfait AM, Miller RE. Acute systemic macrophage depletion in osteoarthritic mice alleviates pain-related behaviors and does not affect joint damage. Arthritis Res Ther 2024; 26:224. [PMID: 39707543 PMCID: PMC11660666 DOI: 10.1186/s13075-024-03457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a painful degenerative joint disease and a leading source of years lived with disability globally due to inadequate treatment options. Neuroimmune interactions reportedly contribute to OA pain pathogenesis. Notably, in rodents, macrophages in the DRG are associated with onset of persistent OA pain. Our objective was to determine the effects of acute systemic macrophage depletion on pain-related behaviors and joint damage using surgical mouse models in both sexes. METHODS We depleted CSF1R + macrophages by treating male macrophage Fas-induced apoptosis (MaFIA) transgenic mice 8- or 16-weeks post destabilization of the medial meniscus (DMM) with AP20187 or vehicle control (10 mg/kg i.p., 1x/day for 5 days), or treating female MaFIA mice 12 weeks post partial meniscectomy (PMX) with AP20187 or vehicle control. We measured pain-related behaviors 1-3 days before and after depletion, and, 3-4 days after the last injection we examined joint histopathology and performed flow cytometry of the dorsal root ganglia (DRGs). In a separate cohort of male 8-week DMM mice or age-matched naïve vehicle controls, we conducted DRG bulk RNA-sequencing analyses after the 5-day vehicle or AP20187 treatment. RESULTS Eight- and 16-weeks post DMM in male mice, AP20187-induced macrophage depletion resulted in attenuated mechanical allodynia and knee hyperalgesia. Female mice showed alleviation of mechanical allodynia, knee hyperalgesia, and weight bearing deficits after macrophage depletion at 12 weeks post PMX. Macrophage depletion did not affect the degree of cartilage degeneration, osteophyte width, or synovitis in either sex. Flow cytometry of the DRG revealed that macrophages and neutrophils were reduced after AP20187 treatment. In addition, in the DRG, only MHCII + M1-like macrophages were significantly decreased, while CD163 + MHCII- M2-like macrophages were not affected in both sexes. DRG bulk RNA-seq revealed that Cxcl10 and Il1b were upregulated with DMM surgery compared to naïve mice, and downregulated in DMM after acute macrophage depletion. CONCLUSIONS Acute systemic macrophage depletion reduced the levels of pro-inflammatory macrophages in the DRG and alleviated pain-related behaviors in established surgically induced OA in mice of both sexes, without affecting joint damage. Overall, these studies provide insight into immune cell regulation in the DRG during OA.
Collapse
Affiliation(s)
- Terese Geraghty
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Shingo Ishihara
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Alia M Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Natalie S Adamczyk
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Rahel S Hunter
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Jun Li
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Lai Wang
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Hoomin Lee
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Frank C Ko
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA.
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA.
| |
Collapse
|
24
|
Dos Santos GG, Jiménez-Andrade JM, Muñoz-Islas E, Candanedo-Quiroz ME, Cardenas AG, Drummond B, Pham P, Stilson G, Hsu CC, Delay L, Navia-Pelaez JM, Lemes JP, Miller YI, Yaksh TL, Corr M. Role of TLR4 activation and signaling in bone remodeling, and afferent sprouting in serum transfer arthritis. Arthritis Res Ther 2024; 26:212. [PMID: 39696684 DOI: 10.1186/s13075-024-03424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND In the murine K/BxN serum transfer rheumatoid arthritis (RA) model, tactile allodynia persists after resolution of inflammation in male and partially in female wild type (WT) mice, which is absent in Toll-like receptor (TLR)4 deficient animals. We assessed the role of TLR4 on allodynia, bone remodeling and afferent sprouting in this model of arthritis. METHODS K/BxN sera were injected into male and female mice with conditional or stable TLR4 deletion and controls. Paw swelling was scored and allodynia assessed by von Frey filaments. At day 28, synovial neural fibers were visualized with confocal microscopy and bone density assayed with microCT. Microglial activity and TLR4 dimerization in spinal cords were examined by immunofluorescence and flow cytometry. RESULTS In the synovium, K/BxN injected WT male and female mice showed robust increases in calcitonin gene related-peptide (CGRP+), tyrosine hydroxylase (TH)+ and GAP43+ nerve fibers. Trabecular bone density by microCT was significantly decreased in K/BxN WT female but not in WT male mice. The number of osteoclasts increased in both sexes of WT mice, but not in Tlr4-/- K/BxN mice. We used conditional strains with Cre drivers for monocytes/osteoclasts (lysozyme M), microglia (Tmem119 and Cx3CR1), astrocytes (GFAP) and sensory neurons (advillin) for Tlr4f/f disruption. All strains developed similar arthritis scores after K/BxN serum injection with the exception being the Tlr4Tmem119 mice which showed a reduction. Both sexes of Tlr4Lyz2, Tlr4Tmem119 and Tlr4Cx3cr1 mice displayed a partial reversal of the chronic pain phenotype but not in Tlr4Avil, and Tlr4Gfap mice. WT K/BxN male mice showed increases in spinal Iba1, but not GFAP, compared to Tlr4-/- male mice. To determine whether spinal TLR4 was indeed activated in the K/BxN mice, flow cytometry of lumbar spinal cords of WT K/BxN male mice was performed and revealed that TLR4 in microglia cells (CD11b+ /TMEM119+) demonstrated dimerization (e.g. activation) and a characteristic increase in lipid rafts. CONCLUSION These results demonstrated a complex chronic allodynia phenotype associated with TLR4 in microglia and monocytic cell lineages, and a parallel spinal TLR4 activation. However, TLR4 is dispensable for the development of peripheral nerve sprouting in this model.
Collapse
Affiliation(s)
| | | | - Enriqueta Muñoz-Islas
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, UAT, Reynosa, Tamaulipas, México
| | | | - Andrea Gonzalez Cardenas
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Bronwen Drummond
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Peter Pham
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Gwendalynn Stilson
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Chao-Chin Hsu
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Lauriane Delay
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Juliana M Navia-Pelaez
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Julia Paes Lemes
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Yury I Miller
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Maripat Corr
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA.
| |
Collapse
|
25
|
Sodmann A, Degenbeck J, Aue A, Schindehütte M, Schlott F, Arampatzi P, Bischler T, Schneider M, Brack A, Monoranu CM, Gräfenhan T, Bohnert M, Pham M, Antoniadis G, Blum R, Rittner HL. Human dorsal root ganglia are either preserved or completely lost after deafferentation by brachial plexus injury. Br J Anaesth 2024; 133:1250-1262. [PMID: 39393999 PMCID: PMC11589459 DOI: 10.1016/j.bja.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/05/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Plexus injury results in lifelong suffering from flaccid paralysis, sensory loss, and intractable pain. For this clinical problem, regenerative medicine concepts set high expectations. However, it is largely unknown how dorsal root ganglia (DRG) are affected by accidental deafferentation. METHODS Here, we phenotyped DRG of a clinically and MRI-characterised cohort of 13 patients with plexus injury. Avulsed DRG were collected during reconstructive nerve surgery. For control, we used DRG from forensic autopsy. The cellular composition of the DRG was analysed in histopathological slices with multicolour high-resolution immunohistochemistry, tile microscopy, and deep-learning-based bioimage analysis. We then sequenced the bulk RNA of corresponding DRG slices. RESULTS In about half of the patients we found loss of the typical DRG units consisting of neurones and satellite glial cells. The DRG cells were replaced by mesodermal/connective tissue. In the remaining patients, the cellular units were well preserved. Preoperative plexus MRI neurography was not able to distinguish the two types. Patients with 'neuronal preservation' had less maximum pain than patients with 'neuronal loss'. Arm function improved after nerve reconstruction, but severe pain persisted. Transcriptome analysis of preserved DRGs revealed expression of subtype-specific sensory neurone marker genes, but downregulation of neuronal attributes. Furthermore, they showed signs of ongoing inflammation and connective tissue remodelling. CONCLUSIONS Patients with plexus injury separate into two groups with either neuronal preservation or neuronal loss. The former could benefit from anti-inflammatory therapy. For the latter, studies should explore mechanisms of neuronal loss especially for regenerative approaches. CLINICAL TRIAL REGISTRATION DRKS00017266.
Collapse
Affiliation(s)
- Annemarie Sodmann
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Centre for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Johannes Degenbeck
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Centre for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Annemarie Aue
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Centre for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Magnus Schindehütte
- Institute of Neuroradiology, University Hospital of Würzburg, Würzburg, Germany
| | - Felicitas Schlott
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Centre for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Panagiota Arampatzi
- Core Unit Systems Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Max Schneider
- Department of Neurosurgery, Peripheral Nerve Surgery Unit, University of Ulm, Günzburg, Germany
| | - Alexander Brack
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Centre for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Camelia M Monoranu
- Institute of Pathology, Section Neuropathology, University of Würzburg, Würzburg, Germany
| | - Tom Gräfenhan
- Core Unit Systems Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Bohnert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Mirko Pham
- Institute of Neuroradiology, University Hospital of Würzburg, Würzburg, Germany
| | - Gregor Antoniadis
- Department of Neurosurgery, Peripheral Nerve Surgery Unit, University of Ulm, Günzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.
| | - Heike L Rittner
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Centre for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
26
|
Grosu AV, Gheorghe R, Filippi A, Deftu AF, Isler M, Suter M, Ristoiu V. Dorsal root ganglia CSF1 + neuronal subtypes have different impact on macrophages and microglia after spared nerve injury. J Peripher Nerv Syst 2024; 29:514-527. [PMID: 39581686 PMCID: PMC11625985 DOI: 10.1111/jns.12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND AND AIMS Colony-stimulating factor 1 (CSF1) is a growth factor secreted by dorsal root ganglia (DRG) neurons important for DRG macrophages and spinal cord (SC) microglia injury-induced proliferation and activation, specifically released after spared nerve injury (SNI). In this study, we investigated if SNI-induced CSF1 expression and perineuronal rings of macrophages around mouse DRG neurons vary between L3-L5 DRG and with the neuronal type, and if the CSF1+ neuronal projections at the SC dorsal horns were associated with an increased microglial number in the corresponding laminae. METHODS Seven days after surgery, L3-L5 DRG as well as their corresponding segments at the SC level were collected, frozen, and cut. DRG sections were double-immunostained using antibodies against CSF1 and NF200, CGRP or IB4, while SC sections were immunostained using a fluorescent Nissl Stain and analyzed for CX3CR1-GFP microglia number and distribution by an in-house ImageJ Plug-in. RESULTS Our results showed that SNI-induced CSF1 expression was common for all subtypes of mouse DRG neurons, being responsible for attracting more resident macrophages around them in a DRG-dependent manner, with L4 showing the stronger response and CSF1+/NF200+ neurons showing the highest incidence. Even though the total number of microglia in the SC ipsilateral dorsal horns increased after SNI, the increase at their specific laminar projection sites did not mirror the incidence of DRG neuronal subtypes among CSF1+ neurons. INTERPRETATION Taken together, these results contribute to a more comprehensive understanding of the connection between CSF1 and macrophage/microglia response after SNI and emphasize the importance of considering L3-L5 DRG individually when investigating SNI-neuropathic pain pathogenesis in mice.
Collapse
Affiliation(s)
- Andreea Violeta Grosu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of BiologyUniversity of BucharestBucharestRomania
| | - Roxana‐Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of BiologyUniversity of BucharestBucharestRomania
| | - Alexandru Filippi
- Department of Biophysics and BiochemistryUniversity of Medicine and Pharmacy “Carol Davila”BucharestRomania
| | - Alexandru Florian Deftu
- Pain Center, Department of AnesthesiologyLausanne University Hospital and University of Lausanne (CHUV)LausanneSwitzerland
| | - Manon Isler
- Pain Center, Department of AnesthesiologyLausanne University Hospital and University of Lausanne (CHUV)LausanneSwitzerland
| | - Marc Suter
- Pain Center, Department of AnesthesiologyLausanne University Hospital and University of Lausanne (CHUV)LausanneSwitzerland
- Department of Fundamental Neurosciences, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of BiologyUniversity of BucharestBucharestRomania
| |
Collapse
|
27
|
Norton SA, Blaydon LM, Niehaus M, Miller AP, Hill PL, Oltmanns TF, Bogdan R. Inflammation is associated with pain and fatigue in older adults. Brain Behav Immun Health 2024; 42:100874. [PMID: 39525304 PMCID: PMC11549984 DOI: 10.1016/j.bbih.2024.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Increasing evidence suggests that inflammation may play a pivotal role in the development of chronic pain and fatigue in aging individuals. This study investigated the relationship between three inflammatory markers (IL-6, CRP, and TNFα) and pain and fatigue, both cross-sectionally and longitudinally, in a sample of older adults from the Saint Louis Personality and Aging (SPAN) study. Methods SPAN study participants provided blood samples at two in-person sessions approximately 2 years apart for the analysis of the inflammatory biomarkers IL-6, CRP, and TNFα. Pain and fatigue were assessed using the RAND-36 Health Status Inventory. Correlations (with false discovery rate correction for multiple testing) and follow-up linear regressions including potentially confounding demographic (e.g., annual household income) and health (e.g., BMI, medication use) covariates were used to estimate cross sectional and longitudinal associations. Analytic ns ranged from 533 to 815. Results Cross-sectional analyses revealed that higher IL-6 and CRP were associated with greater reported pain and fatigue, even after accounting for covariates (βs > .098, ps < .05). TNFα was associated with greater fatigue only (β = .100, p = .012). Longitudinally, CRP and IL-6 predicted future pain and fatigue, although only the relationship between CRP and future fatigue survived the inclusion of covariates (β = .104, p = .022). Both pain and fatigue predicted higher levels of IL-6 and CRP approximately 2 years later, although only the associations with IL-6 survived the inclusion of covariates (βs > .12, ps < .01). Discussion Our study adds to a growing body of literature showing that inflammation is associated with greater pain and fatigue in older adults. Our longitudinal data showing temporal bidirectional associations is consistent with evidence from non-human animal models that heightened inflammation causally contributes to fatigue and also suggests that the experience of pain and fatigue may contribute to inflammation. It will be important for future work to identify how lifestyle factors associated with pain and fatigue (e.g., physical activity) may contribute to these associations.
Collapse
Affiliation(s)
- Sara A. Norton
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, USA
| | - Lauren M. Blaydon
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, USA
| | - Megan Niehaus
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, USA
- University of Missouri Saint Louis, USA
| | - Alex P. Miller
- Department of Psychiatry, Washington University in Saint Louis, USA
| | - Patrick L. Hill
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, USA
| | - Thomas F. Oltmanns
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, USA
| |
Collapse
|
28
|
Ahlström FH, Viisanen H, Karhinen L, Velagapudi V, Blomqvist KJ, Lilius TO, Rauhala PV, Kalso EA. Gene expression in the dorsal root ganglion and the cerebrospinal fluid metabolome in polyneuropathy and opioid tolerance in rats. IBRO Neurosci Rep 2024; 17:38-51. [PMID: 38933596 PMCID: PMC11201153 DOI: 10.1016/j.ibneur.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
First-line pharmacotherapy for peripheral neuropathic pain (NP) of diverse pathophysiology consists of antidepressants and gabapentinoids, but only a minority achieve sufficient analgesia with these drugs. Opioids are considered third-line analgesics in NP due to potential severe and unpredictable adverse effects in long-term use. Also, opioid tolerance and NP may have shared mechanisms, raising further concerns about opioid use in NP. We set out to further elucidate possible shared and separate mechanisms after chronic morphine treatment and oxaliplatin-induced and diabetic polyneuropathies, and to identify potential diagnostic markers and therapeutic targets. We analysed thermal nociceptive behaviour, the transcriptome of dorsal root ganglia (DRG) and the metabolome of cerebrospinal fluid (CSF) in these three conditions, in rats. Several genes were differentially expressed, most following oxaliplatin and least after chronic morphine treatment, compared with saline-treated rats. A few genes were differentially expressed in the DRGs in all three models (e.g. Csf3r and Fkbp5). Some, e.g. Alox15 and Slc12a5, were differentially expressed in both diabetic and oxaliplatin models. Other differentially expressed genes were associated with nociception, inflammation, and glial cells. The CSF metabolome was most significantly affected in the diabetic rats. Interestingly, we saw changes in nicotinamide metabolism, which has been associated with opioid addiction and withdrawal, in the CSF of morphine-tolerant rats. Our results offer new hypotheses for the pathophysiology and treatment of NP and opioid tolerance. In particular, the role of nicotinamide metabolism in opioid addiction deserves further study.
Collapse
Affiliation(s)
- Fredrik H.G. Ahlström
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Leena Karhinen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, University of Helsinki, P.O. Box 20, FI-00014, Finland
| | - Kim J. Blomqvist
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Tuomas O. Lilius
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8C, 00014, Finland
- Department of Emergency Medicine and Services, University of Helsinki and HUS Helsinki University Hospital, Haartmaninkatu 4, Helsinki 00290, Finland
| | - Pekka V. Rauhala
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Eija A. Kalso
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- SleepWell Research Programme, Faculty of Medicine, , University of Helsinki, Haartmaninkatu 3, 00014, Finland
- Department of Anaesthesiology and Intensive Care Medicine, Helsinki University Hospital and University of Helsinki, HUS, Stenbäckinkatu 9, P.O. Box 440, 00029, Finland
| |
Collapse
|
29
|
Cooper AH, Barry AM, Chrysostomidou P, Lolignier R, Wang J, Redondo Canales M, Titterton HF, Bennett DL, Weir GA. Peripheral nerve injury results in a biased loss of sensory neuron subpopulations. Pain 2024; 165:2863-2876. [PMID: 39158319 PMCID: PMC11562755 DOI: 10.1097/j.pain.0000000000003321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/11/2024] [Accepted: 05/25/2024] [Indexed: 08/20/2024]
Abstract
ABSTRACT There is a rich literature describing the loss of dorsal root ganglion (DRG) neurons following peripheral axotomy, but the vulnerability of discrete subpopulations has not yet been characterised. Furthermore, the extent or even presence of neuron loss following injury has recently been challenged. In this study, we have used a range of transgenic recombinase driver mouse lines to genetically label molecularly defined subpopulations of DRG neurons and track their survival following traumatic nerve injury. We find that spared nerve injury leads to a marked loss of cells containing DRG volume and a concomitant loss of small-diameter DRG neurons. Neuron loss occurs unequally across subpopulations and is particularly prevalent in nonpeptidergic nociceptors, marked by expression of Mrgprd. We show that this subpopulation is almost entirely lost following spared nerve injury and severely depleted (by roughly 50%) following sciatic nerve crush. Finally, we used an in vitro model of DRG neuron survival to demonstrate that nonpeptidergic nociceptor loss is likely dependent on the absence of neurotrophic support. Together, these results profile the extent to which DRG neuron subpopulations can survive axotomy, with implications for our understanding of nerve injury-induced plasticity and pain.
Collapse
Affiliation(s)
- Andrew H. Cooper
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Allison M. Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Romane Lolignier
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Jinyi Wang
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Heather F. Titterton
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Greg A. Weir
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
30
|
Chen Y, Wu M. Piperine attenuates cancer-associated pain induced by microglial activation via increasing miR-150-50p. Aging (Albany NY) 2024; 16:13288-13303. [PMID: 39641645 PMCID: PMC11719110 DOI: 10.18632/aging.205908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/22/2023] [Indexed: 12/07/2024]
Abstract
AIM Severe painful neuropathy often occurs in cancer patients receiving chemotherapy. Emerging evidence has demonstrated that microglia contribute to the occurrence and development of cancer-associated pain. This study aimed to investigate the mechanisms by which piperine influences cancer-associated pain induced by microglia activation. METHODS The tumor cell implantation (TCI) model was adopted as the cancer-associated pain model in mice. Behavioral tests were done to confirm that model mice were sensitive to acute mechanical and thermal pain. Western blot (WB) and immunofluorescence (IF) were conducted to quantify expression level of microglia marker protein Iba1 in mice spinal cord tissues. The expression of miR-150-5p and CXCL12 in the mice spinal cord was evaluated by Quantitative real-time Polymerase Chain Reaction (qRT-PCR) and fluorescence in situ hybridization (FISH). Primary microglia from mice were treated with lipopolysaccharide (LPS) to investigate neuroinflammation. RESULTS The modeled mice showed high susceptibility to acute mechanical hyperalgesia and thermal hyperalgesia. The expression of microglia marker protein Iba1 in the model group was increased in vitro and in vivo. Treatment with piperine effectively relieved the cancer-associated pain in mice. The results of FISH and qRT-PCR showed that piperine significantly increased the expression of miR-150-5p and reduced the expression of CXCL12 in the spinal cord of mice. Furthermore, it inhibited the microglia-induced cancer-associated pain. CONCLUSIONS Piperine upregulates miR-150-50p levels, inhibits CXCL12 expression, and reduces microglia levels at the lesion site. Therefore, piperine may be a potential drug candidate for the treatment of cancer-associated pain.
Collapse
Affiliation(s)
- Yunlong Chen
- Department of Oncology, Rudong County Hospital of Traditional Chinese Medicine, Rudong County 226400, Jiangsu, China
| | - Mianhua Wu
- Institute of Oncology, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
31
|
Pan H, Liu CX, Zhu HJ, Zhang GF. Immune cells mediate the effects of gut microbiota on neuropathic pain: a Mendelian randomization study. J Headache Pain 2024; 25:196. [PMID: 39528917 PMCID: PMC11555962 DOI: 10.1186/s10194-024-01906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The gut microbiota may be involved in neuropathic pain. However, the causal association between gut microbiota and neuropathic pain remains unclear. Whether immune cells and inflammatory factors mediate the pathway from gut microbiota to neuropathic pain has not been elucidated. METHODS We obtained the summary data of 412 gut microbiota, 731 immune cells, 91 inflammatory factors, and five types of neuropathic pain (drug-induced neuropathy, postherpetic neuralgia, sciatica, trigeminal neuralgia, and unspecified neuralgia) from large-scale genome-wide association study (GWAS) datasets and the FinnGen database. We used bidirectional Mendelian randomization (MR) analysis to explore the causal association between gut microbiota and neuropathic pain. Additionally, we conducted a mediation analysis to identify whether immune cells and inflammatory factors act as mediators within these causal relationships. RESULTS Our study revealed 30 causal relationships between 26 gut bacterial taxa and five types of neuropathic pain, including four associated with drug-induced neuropathy, six with postherpetic neuralgia, five with sciatica, eight with trigeminal neuralgia, and seven with unspecified neuralgia. Moreover, we identified 35 gut bacterial pathway abundances causally involved in neuropathic pain. The reverse MR analysis showed no evidence of reverse causality from gut microbiota to neuropathic pain. Mediation analysis demonstrated that the immune cell phenotype "HLA-DR++ monocyte % leukocyte" mediated the causal relationship between p_Proteobacteria and sciatica with a mediation proportion of 36.15% (P = 0.038), whereas "CD11c on CD62L+ myeloid dendritic cell" mediated the causal pathway from assimilatory sulfate reduction to trigeminal neuralgia with a mediation proportion of 27.90% (P = 0.041). CONCLUSION This study identified the causal relationships between several specific gut microbiota and various neuropathic pain subtypes. Additionally, two immune cells may act as potential mediators in the pathways from gut microbiota to neuropathic pain.
Collapse
Affiliation(s)
- Hao Pan
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, PR China
| | - Cheng-Xiao Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, PR China
| | - Hui-Juan Zhu
- Department of Anesthesiology, Jinan Seventh People's Hospital, Jinan, 250021, Shandong, PR China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, PR China.
| |
Collapse
|
32
|
Leisengang S. Pain research in a petri dish? Advantages and limitations of neuro-glial primary cell cultures from structures of the nociceptive system. Brain Behav Immun Health 2024; 41:100854. [PMID: 39308957 PMCID: PMC11415590 DOI: 10.1016/j.bbih.2024.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/26/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
How can we learn more about pain without causing pain in humans or animals? This short review focuses on neuro-glial primary cell cultures as models to study neuro-immune interactions in the context of pain and discusses their advantages and limitations. The field of basic pain research places scientists in an ethical dilemma. We aim to understand underlying mechanisms of pain for an improved pain therapy for humans and animals. At the same time, this regularly includes the induction of pain in model animals. Within the field of psychoneuroimmunology, the examination of the complexity of neuro-immune interactions in health and disease as well as the bi-directional communication between the brain and the periphery make animal experiments an inevitable part of pain research. To address ethical and legal considerations as well as the growing societal awareness for animal welfare, scientists push for the identification and characterization of complementary methods to implement the 3R principle of Russel and Burch. As such, methods to replace animal studies, reduce the number of animals used, and refine experiments are tested. Neuro-glial primary cell cultures of structures of the nociceptive system, such as dorsal root ganglia (DRG) or the spinal dorsal horn (SDH) represent useful in vitro tools, when research comes to a cellular and molecular level. They allow for studying mechanisms of neuronal sensitization, glial cell activation, or the role of specific inflammatory mediators and intracellular signaling cascades involved in the development of inflammatory and neuropathic pain. Moreover, DRG/SDH-cultures provide the opportunity to test novel strategies for interventions, such as pharmaceuticals or cell-based therapies targeting neuroinflammatory processes. Thereby, in vitro models contribute to a better understanding of neuron-glia-immune communication in the context of pain and in the advancement of pain therapies. However, this can only be one piece in a large puzzle. Our knowledge about the complexity of pain will depend on studies in humans and animals applied in vitro and in vivo and will benefit from clear and open-minded interdisciplinary communication and transparency in public outreach.
Collapse
Affiliation(s)
- Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, 35392 Giessen, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University Marburg & Justus Liebig University Giessen, Germany
| |
Collapse
|
33
|
Tian Y, Liu Y, Liu C, Huang S. NPD1 Relieves Neuropathic Pain and Accelerates the Recovery of Motor Function After Peripheral Nerve Injury. Pain Res Manag 2024; 2024:1109287. [PMID: 39512892 PMCID: PMC11540876 DOI: 10.1155/2024/1109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
The incidence of peripheral nerve injury (PNI) in China is continuously increasing. With an inability to function due to sensory and motor abnormalities, patients with PNI suffer from neuropathic pain and subsequent lesions. Presently, effective treatments for PNI are limited. To determine the role of neuroprotectin D1 (NPD1) in PNI, a sciatic nerve crush injury model was developed to investigate the impact of NPD1 on sensory and motor function recovery following nerve injury. The results demonstrated that NPD1 administered at different time points might reduce mechanical allodynia and thermal hyperalgesia caused by PNI, and its analgesic effect was not tolerated. Immunohistochemistry analyses revealed that administering NPD1 to PNI mice decreased the spinal microglia and astrocyte activation and decreased the inflammatory factor expression in the spinal dorsal horn. Furthermore, NPD1 can inhibit the invasion of IBA-1+ macrophages in dorsal root ganglions generated by nerve injury. Meanwhile, it can help rehabilitate motor and neuromuscular functions following PNI. The results indicate that NPD1 may be involved in the sensory and motor function recovery following PNI.
Collapse
Affiliation(s)
- Yu Tian
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - YanFang Liu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Chang Liu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - SaiSai Huang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
34
|
Hall BE, Mazhar K, Macdonald E, Cassidy M, Doty M, Judkins C, Terse A, Shiers S, Tadros S, Yun S, Burton MD, Price TJ, Kulkarni AB. Transcriptome analysis of rheumatoid arthritis uncovers genes linked to inflammation-induced pain. Sci Rep 2024; 14:25893. [PMID: 39472517 PMCID: PMC11522505 DOI: 10.1038/s41598-024-77212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA) can promote states of chronic inflammation with accompanying tissue destruction and pain. RA can cause inflammatory synovitis in peripheral joints, particularly within the hands and feet, but can also sometimes trigger temporomandibular joint (TMJ) arthralgia. To better understand the effects of ongoing inflammation-induced pain signaling, dorsal root ganglia (DRGs) were acquired from individuals with RA for transcriptomic study. We conducted RNA sequencing from the L5 DRGs because it contains the soma of the sensory neurons that innervate the affected joints in the foot. DRGs from 5 RA patients were compared with 9 non-arthritic controls. RNA-seq of L5 DRGs identified 128 differentially expressed genes (DEGs) that were dysregulated in the RA subjects as compared to the non-arthritic controls. The DRG resides outside the blood brain barrier and, as such, our initial transcriptome analysis detected signs of an autoimmune disorder including the upregulated expression of immunoglobulins and other immunologically related genes within the DRGs of the RA donors. Additionally, we saw the upregulation in genes implicated in neurogenesis that could promote pain hypersensitivity. Overall, our DRG analysis suggests that there are upregulated inflammatory and pain signaling pathways that can contribute to chronic pain in RA.
Collapse
Affiliation(s)
- Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Emma Macdonald
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- NIH Graduate Partnerships Program, Brown University, Providence, RI, 02912, USA
| | - Margaret Cassidy
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- U. Penn, Philadelphia, PA, 19104, USA
| | - Megan Doty
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- , Dartmouth, Hanover, NH, 03755, USA
| | - Christian Judkins
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- Millipore Sigma, Rockville, MD, 20850, USA
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Saber Tadros
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sijung Yun
- Predictiv Care, Inc, Mountain View, CA, 94040, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA.
| |
Collapse
|
35
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
36
|
Zhao N, Bennett DL, Baskozos G, Barry AM. Predicting 'pain genes': multi-modal data integration using probabilistic classifiers and interaction networks. BIOINFORMATICS ADVANCES 2024; 4:vbae156. [PMID: 39526039 PMCID: PMC11549022 DOI: 10.1093/bioadv/vbae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Motivation Accurate identification of pain-related genes remains challenging due to the complex nature of pain pathophysiology and the subjective nature of pain reporting in humans. Here, we use machine learning to identify possible 'pain genes'. Labelling was based on a gold-standard list with validated involvement across pain conditions, and was trained on a selection of -omics, protein-protein interaction network features, and biological function readouts for each gene. Results The top-performing model was selected to predict a 'pain score' per gene. The top-ranked genes were then validated against pain-related human SNPs. Functional analysis revealed JAK2/STAT3 signal, ErbB, and Rap1 signalling pathways as promising targets for further exploration, while network topological features contribute significantly to the identification of 'pain' genes. As such, a network based on top-ranked genes was constructed to reveal previously uncharacterized pain-related genes. Together, these novel insights into pain pathogenesis can indicate promising directions for future experimental research. Availability and implementation These analyses can be further explored using the linked open-source database at https://livedataoxford.shinyapps.io/drg-directory/, which is accompanied by a freely accessible code template and user guide for wider adoption across disciplines.
Collapse
Affiliation(s)
- Na Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Allison M Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
37
|
Sapio MR, Staedtler ES, King DM, Maric D, Jahanipour J, Ghetti A, Jacobson KA, Mannes AJ, Iadarola MJ. Analgesic candidate adenosine A 3 receptors are expressed by perineuronal peripheral macrophages in human dorsal root ganglion and spinal cord microglia. Pain 2024; 165:2323-2343. [PMID: 38691673 PMCID: PMC11408117 DOI: 10.1097/j.pain.0000000000003242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/22/2024] [Indexed: 05/03/2024]
Abstract
ABSTRACT Adenosine receptors are a family of purinergic G protein-coupled receptors that are widely distributed in bodily organs and in the peripheral and central nervous systems. Recently, antihyperalgesic actions have been suggested for the adenosine A 3 receptor, and its agonists have been proposed as new neuropathic pain treatments. We hypothesized that these receptors may be expressed in nociceptive primary afferent neurons. However, RNA sequencing across species, eg, rat, mouse, dog, and human, suggests that dorsal root ganglion (DRG) expression of ADORA3 is inconsistent. In rat and mouse, Adora3 shows very weak to no expression in DRG, whereas it is well expressed in human DRG. However, the cell types in human DRG that express ADORA3 have not been delineated. An examination of DRG cell types using in situ hybridization clearly detected ADORA3 transcripts in peripheral macrophages that are in close apposition to the neuronal perikarya but not in peripheral sensory neurons. By contrast, ADORA1 was found primarily in neurons, where it is broadly expressed at low levels. These results suggest that a more complex or indirect mechanism involving modulation of macrophage and/or microglial cells may underlie the potential analgesic action of adenosine A 3 receptor agonism.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Ellen S Staedtler
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Diana M King
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD, United States
| | - Jahandar Jahanipour
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD, United States
| | - Andre Ghetti
- AnaBios Corporation, San Diego, CA, United States
| | - Kenneth A Jacobson
- National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Laboratory of Bioorganic Chemistry, Bethesda, MD, United States
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
38
|
Hanna R, Graur A, Sinclair P, Mckiver BD, Bos PD, Damaj MI, Kabbani N. Proteomic analysis of dorsal root ganglia in a mouse model of paclitaxel-induced neuropathic pain. PLoS One 2024; 19:e0306498. [PMID: 39331687 PMCID: PMC11432834 DOI: 10.1371/journal.pone.0306498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 09/29/2024] Open
Abstract
Paclitaxel is a chemotherapy drug widely used for the treatment of various cancers based on its ability to potently stabilize cellular microtubules and block division in cancer cells. Paclitaxel-based treatment, however, accumulates in peripheral system sensory neurons and leads to a high incidence rate (over 50%) of chemotherapy induced peripheral neuropathy in patients. Using an established preclinical model of paclitaxel-induced peripheral neuropathy (PIPN), we examined proteomic changes in dorsal root ganglia (DRG) of adult male mice that were treated with paclitaxel (8 mg/kg, at 4 injections every other day) relative to vehicle-treated mice. High throughput proteomics based on liquid chromatography electrospray ionization mass spectrometry identified 165 significantly altered proteins in lumbar DRG. Gene ontology enrichment and bioinformatic analysis revealed an effect of paclitaxel on pathways for mitochondrial regulation, axonal function, and inflammatory purinergic signaling as well as microtubule activity. These findings provide insight into molecular mechanisms that can contribute to PIPN in patients.
Collapse
Affiliation(s)
- Rania Hanna
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
| | - Alexandru Graur
- School of Systems Biology, George Mason University, Fairfax, VA, United States of America
| | - Patricia Sinclair
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
| | - Bryan D. Mckiver
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Paula D. Bos
- Department of Pathology, Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - M. Imad Damaj
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
- School of Systems Biology, George Mason University, Fairfax, VA, United States of America
| |
Collapse
|
39
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
40
|
Goto T, Kuramoto E, Iwai H, Yamanaka A. Cytoarchitecture and intercellular interactions in the trigeminal ganglion: Associations with neuropathic pain in the orofacial region. J Oral Biosci 2024; 66:485-490. [PMID: 39032827 DOI: 10.1016/j.job.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Disorders of the trigeminal nerve, a sensory nerve of the orofacial region, often lead to complications in dental practice, including neuropathic pain, allodynia, and ectopic pain. Management of these complications requires an understanding of the cytoarchitecture of the trigeminal ganglion, where the cell bodies of the trigeminal nerve are located, and the mechanisms of cell-cell interactions. HIGHLIGHTS In the trigeminal ganglion, ganglion, satellite, Schwann, and immune cells coexist and interact. Cell-cell interactions are complex and occur through direct contact via gap junctions or through mediators such as adenosine triphosphate, nitric oxide, peptides, and cytokines. Interactions between the nervous and immune systems within the trigeminal ganglion may have neuroprotective effects during nerve injury or may exacerbate inflammation and produce chronic pain. Under pathological conditions of the trigeminal nerve, cell-cell interactions can cause allodynia and ectopic pain. Although cell-cell interactions that occur via mediators can act at some distance, they are more effective when the cells are close together. Therefore, information on the three-dimensional topography of trigeminal ganglion cells is essential for understanding the pathophysiology of ectopic pain. CONCLUSIONS A three-dimensional map of the somatotopic localization of trigeminal ganglion neurons revealed that ganglion cells innervating distant orofacial regions are often apposed to each other, interacting with and potentially contributing to ectopic pain. Elucidation of the complex network of mediators and their receptors responsible for intercellular communication within the trigeminal ganglion is essential for understanding ectopic pain.
Collapse
Affiliation(s)
- Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
41
|
Zou Y, Liu C, Wang Z, Li G, Xiao J. Neural and immune roles in osteoarthritis pain: Mechanisms and intervention strategies. J Orthop Translat 2024; 48:123-132. [PMID: 39220678 PMCID: PMC11363721 DOI: 10.1016/j.jot.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Pain is the leading symptom for most individuals with osteoarthritis (OA), a complex condition marked by joint discomfort. Recently, the dynamic interplay between the nervous and immune systems has become a focal point for understanding pain regulation. Despite this, there is still a substantial gap in our comprehensive understanding of the neuroimmune interactions and their effects on pain in OA. This review examines the bidirectional influences between immune cells and nerves in OA progression. It explores current approaches that target neuroimmune pathways, including promoting M2 macrophage polarization and specific neuronal receptor targeting, for effective pain reduction. Translational potential statement This review provides a comprehensive overview of the mechanisms underlying the interplay between the immune system and nervous system during the progression of OA, as well as their contributions to pain. Additionally, it compiles existing intervention strategies targeting neuroimmunity for the treatment of OA pain. This information offers valuable insights for researchers seeking to address the challenge of OA pain.
Collapse
Affiliation(s)
- Yi Zou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Changyu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Guanghui Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| |
Collapse
|
42
|
Pan C, Xu Y, Jiang Z, Fan C, Chi Z, Zhang Y, Miao M, Ren Y, Wu Z, Xu L, Mei C, Chen Q, Xi Y, Chen X. Naringenin relieves paclitaxel-induced pain by suppressing calcitonin gene-related peptide signalling and enhances the anti-tumour action of paclitaxel. Br J Pharmacol 2024; 181:3136-3159. [PMID: 38715438 DOI: 10.1111/bph.16397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Chemotherapy-induced peripheral neuropathy (CIPN) commonly causes neuropathic pain, but its pathogenesis remains unclear, and effective therapies are lacking. Naringenin, a natural dihydroflavonoid compound, has anti-inflammatory, anti-nociceptive and anti-tumour activities. However, the effects of naringenin on chemotherapy-induced pain and chemotherapy effectiveness remain unexplored. EXPERIMENTAL APPROACH Female and male mouse models of chemotherapy-induced pain were established using paclitaxel. Effects of naringenin were assessed on pain induced by paclitaxel or calcitonin gene-related peptide (CGRP) and on CGRP expression in dorsal root ganglia (DRG) and spinal cord tissue. Additionally, we examined peripheral macrophage infiltration, glial activation, c-fos expression, DRG neuron excitability, microglial M1/M2 polarization, and phosphorylation of spinal NF-κB. Furthermore, we investigated the synergic effect and related mechanisms of naringenin and paclitaxel on cell survival of cancer cells in vitro. KEY RESULTS Systemic administration of naringenin attenuated paclitaxel-induced pain in both sexes. Naringenin reduced paclitaxel-enhanced CGRP expression in DRGs and the spinal cord, and alleviated CGRP-induced pain in naïve mice of both sexes. Naringenin mitigated macrophage infiltration and reversed paclitaxel-elevated c-fos expression and DRG neuron excitability. Naringenin decreased spinal glial activation and NF-κB phosphorylation in both sexes but influenced microglial M1/M2 polarization only in females. Co-administration of naringenin with paclitaxel enhanced paclitaxel's anti-tumour effect, impeded by an apoptosis inhibitor. CONCLUSION AND IMPLICATIONS Naringenin's anti-nociceptive mechanism involves CGRP signalling and neuroimmunoregulation. Furthermore, naringenin facilitates paclitaxel's anti-tumour action, possibly involving apoptosis. This study demonstrates naringenin's potential as a supplementary treatment in cancer therapy by mitigating side effects and potentiating efficacy of chemotherapy.
Collapse
Affiliation(s)
- Chen Pan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Yuhao Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Zongsheng Jiang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Chengjiang Fan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Zhexi Chi
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Yu Zhang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Mengmeng Miao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Yuxuan Ren
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Ziyi Wu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Linbin Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Changqing Mei
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Qingge Chen
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
- Department of Anesthesiology, The People's Hospital of Bozhou, Bozhou, China
| | - Yang Xi
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Xiaowei Chen
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
43
|
Geraghty T, Ishihara S, Obeidat AM, Adamczyk NS, Hunter RS, Li J, Wang L, Lee H, Ko FC, Malfait AM, Miller RE. Acute systemic macrophage depletion in osteoarthritic mice alleviates pain-related behaviors and does not affect joint damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608301. [PMID: 39229102 PMCID: PMC11370380 DOI: 10.1101/2024.08.16.608301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Osteoarthritis (OA) is a painful degenerative joint disease and a leading source of years lived with disability globally due to inadequate treatment options. Neuroimmune interactions reportedly contribute to OA pain pathogenesis. Notably, in rodents, macrophages in the DRG are associated with onset of persistent OA pain. Our objective was to determine the effects of acute systemic macrophage depletion on pain-related behaviors and joint damage using surgical mouse models in both sexes. Methods We depleted CSF1R+ macrophages by treating male macrophage Fas-induced apoptosis (MaFIA) transgenic mice 8- or 16-weeks post destabilization of the medial meniscus (DMM) with AP20187 or vehicle control (10 mg/kg i.p., 1x/day for 5 days), or treating female MaFIA mice 12 weeks post partial meniscectomy (PMX) with AP20187 or vehicle control. We measured pain-related behaviors 1-3 days before and after depletion, and, 3-4 days after the last injection we examined joint histopathology and performed flow cytometry of the dorsal root ganglia (DRGs). In a separate cohort of male 8-week DMM mice or age-matched naïve vehicle controls, we conducted DRG bulk RNA-sequencing analyses after the 5-day vehicle or AP20187 treatment. Results Eight- and 16-weeks post DMM in male mice, AP20187-induced macrophage depletion resulted in attenuated mechanical allodynia and knee hyperalgesia. Female mice showed alleviation of mechanical allodynia, knee hyperalgesia, and weight bearing deficits after macrophage depletion at 12 weeks post PMX. Macrophage depletion did not affect the degree of cartilage degeneration, osteophyte width, or synovitis in either sex. Flow cytometry of the DRG revealed that macrophages and neutrophils were reduced after AP20187 treatment. In addition, in the DRG, only MHCII+ M1-like macrophages were significantly decreased, while CD163+MHCII- M2-like macrophages were not affected in both sexes. DRG bulk RNA-seq revealed that Cxcl10 and Il1b were upregulated with DMM surgery compared to naïve mice, and downregulated in DMM after acute macrophage depletion. Conclusions Acute systemic macrophage depletion reduced the levels of pro-inflammatory macrophages in the DRG and alleviated pain-related behaviors in established surgically induced OA in mice of both sexes, without affecting joint damage. Overall, these studies provide insight into immune cell regulation in the DRG during OA.
Collapse
Affiliation(s)
- Terese Geraghty
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Shingo Ishihara
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Alia M Obeidat
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Natalie S Adamczyk
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Rahel S Hunter
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Jun Li
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Lai Wang
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Hoomin Lee
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Frank C Ko
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Anne-Marie Malfait
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Rachel E Miller
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| |
Collapse
|
44
|
Li W, Fan Y, Lan H, Li X, Wu Q, Dong R. GDPD3 Deficiency Alleviates Neuropathic Pain and Reprograms Macrophagic Polarization Through PGE2 and PPARγ Pathway. Neurochem Res 2024; 49:1980-1992. [PMID: 38769197 PMCID: PMC11233315 DOI: 10.1007/s11064-024-04148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/22/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
The complex mechanism of neuropathic pain involves various aspects of both central and peripheral pain conduction pathways. An effective cure for neuropathic pain therefore remains elusive. We found that deficiency of the gene Gdpd3, encoding a lysophospholipase D enzyme, alleviates the inflammatory responses in dorsal root ganglia (DRG) of mice under neuropathic pain and reduces PE (20:4) and PGE2 in DRG. Gdpd3 deficiency had a stronger analgesic effect on neuropathic pain than Celecoxib, a nonsteroidal anti-inflammatory drug. Gdpd3 deficiency also interferes with the polarization of macrophages, switching from M1 towards M2 phenotype. The PPARγ/ FABP4 pathway was screened by RNA sequencing as functional related with Gdpd3 deficient BMDMs stimulated with LPS. Both protein and mRNA levels of PPARγ in GDPD3 deficient BMDMs were higher than those of the litter control mice. However, GW9962 (inhibitor of PPARγ) could reverse the reprogramming polarization of macrophages caused by GDPD3 deficiency. Therefore, our study suggests that GDPD3 deficiency exerts a relieving effect on neuropathic pain and alleviates neuroinflammation in DRG by switching the phenotype of macrophages from M1 to M2, which was mediated through PGE2 and PPARγ/ FABP4 pathway.
Collapse
Affiliation(s)
- Wenqian Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Youjia Fan
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Haizhen Lan
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xiaoxiao Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qichao Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Rong Dong
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China.
| |
Collapse
|
45
|
Saika F, Fukazawa Y, Hatano Y, Kishioka S, Hino Y, Hino S, Suzuki K, Kiguchi N. Sexually dimorphic effects of pexidartinib on nerve injury-induced neuropathic pain in mice. Glia 2024; 72:1402-1417. [PMID: 38591338 DOI: 10.1002/glia.24535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
It is well-established that spinal microglia and peripheral macrophages play critical roles in the etiology of neuropathic pain; however, growing evidence suggests sex differences in pain hypersensitivity owing to microglia and macrophages. Therefore, it is crucial to understand sex- and androgen-dependent characteristics of pain-related myeloid cells in mice with nerve injury-induced neuropathic pain. To deplete microglia and macrophages, pexidartinib (PLX3397), an inhibitor of the colony-stimulating factor 1 receptor, was orally administered, and mice were subjected to partial sciatic nerve ligation (PSL). Following PSL induction, healthy male and female mice and male gonadectomized (GDX) mice exhibited similar levels of spinal microglial activation, peripheral macrophage accumulation, and mechanical allodynia. Treatment with PLX3397 significantly suppressed mechanical allodynia in normal males; this was not observed in female and GDX male mice. Sex- and androgen-dependent differences in the PLX3397-mediated preventive effects were observed on spinal microglia and dorsal root ganglia (DRG) macrophages, as well as in expression patterns of pain-related inflammatory mediators in these cells. Conversely, no sex- or androgen-dependent differences were detected in sciatic nerve macrophages, and inhibition of peripheral CC-chemokine receptor 5 prevented neuropathic pain in both sexes. Collectively, these findings demonstrate the presence of considerable sex- and androgen-dependent differences in the etiology of neuropathic pain in spinal microglia and DRG macrophages but not in sciatic nerve macrophages. Given that the mechanisms of neuropathic pain may differ among experimental models and clinical conditions, accumulating several lines of evidence is crucial to comprehensively clarifying the sex-dependent regulatory mechanisms of pain.
Collapse
Affiliation(s)
- Fumihiro Saika
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, Japan
| | - Yohji Fukazawa
- Department of Anatomy, Kansai University of Health Sciences, Osaka, Japan
| | - Yu Hatano
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Shiroh Kishioka
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kentaro Suzuki
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
46
|
Park M, Koh CS, Chang H, Kim TJ, Mun W, Chang JW, Jung HH. Low-frequency (5-Hz) stimulation of ventrolateral periaqueductal gray modulates the descending serotonergic system in the peripheral neuropathic pain. Pain 2024; 165:1774-1783. [PMID: 38422490 DOI: 10.1097/j.pain.0000000000003185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024]
Abstract
ABSTRACT Neuropathic pain is a type of chronic pain that entails severe prolonged sensory dysfunctions caused by a lesion of the somatosensory system. Many of those suffering from the condition do not experience significant improvement with existing medications, resulting in various side effects. In this study, Sprague-Dawley male rats were used, and long-term deep brain stimulation of the ventrolateral periaqueductal gray was conducted in a rat model of spared nerve injury. We found that 5-Hz deep brain stimulation effectively modulated mechanical allodynia and induced neuronal activation in the rostral ventromedial medulla, restoring impaired descending serotonergic system. At the spinal level, glial cells were still activated but only the 5-HT1a receptor in the spinal cord was activated, implying its inhibitory role in mechanical allodynia. This study found that peripheral neuropathy caused dysfunction in the descending serotonergic system, and prolonged stimulation of ventrolateral periaqueductal gray can modulate the pathway in an efficient manner. This work would provide new opportunities for the development of targeted and effective treatments for this debilitating disease, possibly giving us lower chances of side effects from repeated high-frequency stimulation or long-term use of medication.
Collapse
Affiliation(s)
- Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heesue Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Jun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonki Mun
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
47
|
Naratadam GT, Mecklenburg J, Shein SA, Zou Y, Lai Z, Tumanov AV, Price TJ, Akopian AN. Degenerative and regenerative peripheral processes are associated with persistent painful chemotherapy-induced neuropathies in males and females. Sci Rep 2024; 14:17543. [PMID: 39080341 PMCID: PMC11289433 DOI: 10.1038/s41598-024-68485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
This study investigated the time course of gene expression changes during the progression of persistent painful neuropathy caused by paclitaxel (PTX) in male and female mouse hindpaws and dorsal root ganglia (DRG). Bulk RNA-seq was used to examine these gene expression changes at 1, 16, and 31 days post-last PTX. At these time points, differentially expressed genes (DEGs) were predominantly related to the reduction or increase in epithelial, skin, bone, and muscle development and to angiogenesis, myelination, axonogenesis, and neurogenesis. These processes are accompanied by the regulation of DEGs related to the cytoskeleton, extracellular matrix organization, and cellular energy production. This gene plasticity during the progression of persistent painful neuropathy could be interpreted as a biological process linked to tissue regeneration/degeneration. In contrast, gene plasticity related to immune processes was minimal at 1-31 days after PTX. It was also noted that despite similarities in biological processes and pain chronicity between males and females, specific DEGs differed dramatically according to sex. The main conclusions of this study are that gene expression plasticity in hindpaw and DRG during PTX neuropathy progression similar to tissue regeneration and degeneration, minimally affects immune system processes and is heavily sex-dependent at the individual gene level.
Collapse
Affiliation(s)
- George T Naratadam
- South Texas Medical Scientist Training Program (STX-MSTP), Integrated Biomedical Sciences (IBMS) Program, The Long School of Medicine, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Jennifer Mecklenburg
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Sergey A Shein
- Department of Microbiology, Immunology and Molecular Genetics, The Long School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Yi Zou
- Department of Molecular Medicine, The Long School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Department of Molecular Medicine, The Long School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- South Texas Medical Scientist Training Program (STX-MSTP), Integrated Biomedical Sciences (IBMS) Program, The Long School of Medicine, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
- Department of Microbiology, Immunology and Molecular Genetics, The Long School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Armen N Akopian
- South Texas Medical Scientist Training Program (STX-MSTP), Integrated Biomedical Sciences (IBMS) Program, The Long School of Medicine, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
48
|
Chivers SB, Andrade MA, Hammack RJ, Shannonhouse J, Gomez R, Zhang Y, Nguyen B, Shah P, Kim YS, Toney GM, Jeske NA. Peripheral macrophages contribute to nociceptor priming in mice with chronic intermittent hypoxia. Sci Signal 2024; 17:eadn8936. [PMID: 39078919 PMCID: PMC11412124 DOI: 10.1126/scisignal.adn8936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/13/2024] [Indexed: 09/21/2024]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with increased incidence of chronic musculoskeletal pain. We investigated the mechanism of this association in a mouse model of chronic intermittent hypoxia (CIH) that mimics the repetitive hypoxemias of OSA. After 14 days of CIH, both male and female mice exhibited behaviors indicative of persistent pain, with biochemical markers in the spinal cord dorsal horn and sensory neurons of the dorsal root ganglia consistent with hyperalgesic priming. CIH, but not sleep fragmentation alone, induced an increase in macrophage recruitment to peripheral sensory tissues (sciatic nerve and dorsal root ganglia), an increase in inflammatory cytokines in the circulation, and nociceptor sensitization. Peripheral macrophage ablation blocked CIH-induced hyperalgesic priming. The findings suggest that correcting the hypoxia or targeting macrophage signaling might suppress persistent pain in patients with OSA.
Collapse
Affiliation(s)
- Samuel B. Chivers
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mary Ann Andrade
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert J. Hammack
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Brian Nguyen
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Pankil Shah
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Glenn M. Toney
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
49
|
Zhu X, Chen S, Xie Y, Cheng Z, Zhu X, Guo Q. Role of M1/M2 macrophages in pain modulation. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1155-1163. [PMID: 39788503 PMCID: PMC11495980 DOI: 10.11817/j.issn.1672-7347.2024.240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 01/12/2025]
Abstract
Pain is a signal of inflammation that can have both protective and pathogenic effects. Macrophages, significant components of the immune system, play crucial roles in the occurrence and development of pain, particularly in neuroimmune communication. Macrophages exhibit plasticity and heterogeneity, adopting either pro-inflammatory M1 or anti-inflammatory M2 phenotypes depending on their functional orientation. Recent research highlights the contribution of macrophages to pain dynamics by undergoing changes in their functional polarity, leading to macrophage activation, tissue infiltration, and cytokine secretion. M1 macrophages release pro-inflammatory mediators that are not only essential in defending against infections, but also contributing to tissue damage and the elicitation of pain. However, this process can be counteracted by M2 macrophages, facilitating pain relief through producing anti-inflammatory cytokines and opioid peptides or enhancing efferocytosis. M1 and M2 macrophages play important roles in both the initiation and mitigation of pain.
Collapse
Affiliation(s)
- Xiaoye Zhu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Saige Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongqiu Xie
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhigang Cheng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoyan Zhu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
50
|
Testa L, Dotta S, Vercelli A, Marvaldi L. Communicating pain: emerging axonal signaling in peripheral neuropathic pain. Front Neuroanat 2024; 18:1398400. [PMID: 39045347 PMCID: PMC11265228 DOI: 10.3389/fnana.2024.1398400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). This condition afflicts millions of people, significantly burdening healthcare systems and putting strain on families' financial well-being. Here, we will focus on the role of peripheral sensory neurons, specifically the Dorsal Root Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, DRG neurons activate regenerative signals of axons-soma communication to promote a gene program that activates an axonal branching and elongation processes. The results of a neuronal morphological cytoskeleton change are not always associated with functional recovery. Moreover, any axonal miss-targeting may contribute to NeuP development. In this review, we will explore the epidemiology of NeuP and its molecular causes at the level of the peripheral nervous system and the target organs, with major focus on the neuronal cross-talk between intrinsic and extrinsic factors. Specifically, we will describe how failures in the neuronal regenerative program can exacerbate NeuP.
Collapse
Affiliation(s)
- Livia Testa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Sofia Dotta
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Letizia Marvaldi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| |
Collapse
|