1
|
Heydari S, Liu J. High-throughput cryo-electron tomography enables multiscale visualization of the inner life of microbes. Curr Opin Struct Biol 2025; 93:103065. [PMID: 40381356 DOI: 10.1016/j.sbi.2025.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
Cryo-electron tomography (cryo-ET) is an advanced and rapidly evolving imaging technique that enables three-dimensional visualization of biological structures in their native state. Although cryo-ET has historically faced significant challenges, including limited applications, tedious data acquisition, labor-intensive image processing, and lower resolution when compared with single particle cryo-electron microscopy (cryo-EM), recent breakthroughs in hardware and software development have significantly improved the entire cryo-ET workflow to enable higher throughput and resolution. These advances have accelerated discoveries in structural and cellular biology, particularly in microbiology, where cryo-ET has unveiled unprecedented insights into the inner life of microbes. This review presents pivotal advances propelling high-throughput cryo-ET and the visualization of microbial architecture. As innovations in imaging technologies, workflow automation, and computational methods continue progressing rapidly, cryo-ET is expected to be increasingly utilized across various fields of life sciences, shaping the future of biological research and biomedical discoveries.
Collapse
Affiliation(s)
- Samira Heydari
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
2
|
de Isidro-Gómez FP, Vilas JL, Carazo JM, Sorzano COS. Automatic detection of alignment errors in cryo-electron tomography. J Struct Biol 2025; 217:108153. [PMID: 39694451 DOI: 10.1016/j.jsb.2024.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Cryo-electron tomography is an imaging technique that allows the study of the three-dimensional structure of a wide range of biological samples, from entire cellular environments to purified specimens. This technique collects a series of images from different views of the specimen by tilting the sample stage in the microscope. Subsequently, this information is combined into a three-dimensional reconstruction. To obtain reliable representations of the specimen of study, it is mandatory to define the acquisition geometry accurately. This is achieved by aligning all tilt images to a standard reference scheme. Errors in this step introduce artifacts into the final reconstructed tomograms, leading to loss of resolution and making them unsuitable for detailed sample analysis. This publication presents algorithms for automatically assessing the alignment quality of the tilt series and their classification based on the residual errors provided by the alignment algorithms. If no alignment information is available, a set of algorithms for calculating the residual vectors focused on fiducial markers is also presented. This software is accessible as part of the Xmipp software package and the Scipion framework.
Collapse
Affiliation(s)
- F P de Isidro-Gómez
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain; University Autonoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - J L Vilas
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - J M Carazo
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - C O S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain.
| |
Collapse
|
3
|
Valenzuela-Ibaceta F, Álvarez SA, Pérez-Donoso JM. Production of minicell-like structures by Escherichia coli biosynthesizing cadmium fluorescent nanoparticles: a novel response to heavy metal exposure. J Nanobiotechnology 2025; 23:111. [PMID: 39955577 PMCID: PMC11829470 DOI: 10.1186/s12951-025-03188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/01/2025] [Indexed: 02/17/2025] Open
Abstract
The bacterial synthesis of fluorescent semiconductor nanoparticles or quantum dots (QDs), presents a sustainable method for producing nanomaterials with customized optical properties and significant technological potential. However, the underlying cellular mechanisms for this process remain elusive. Specifically, the role of cellular structures in QD generation has not been thoroughly investigated. In this study, we examined the morphological changes in Escherichia coli during the biosynthesis of cadmium sulfide (CdS) QDs, using a strain overexpressing the gshA gene to promote QD biosynthesis through increased glutathione (GSH) levels. Microscopy analyses revealed that fluorescence emission associated with QDs was concentrated at the cell poles, along with fluorescence emission from small spherical cells, a phenomenon exclusively detectable during QD biosynthesis. Transmission electron microscopy (TEM) revealed electron-dense nanomaterials localized at the cell poles. Furthermore, it was demonstrated the formation of minicell-like structures (∼ 0.5 μm in diameter) originating from these poles under biosynthesis conditions. These minicells encapsulated nanometric electron-dense material. Additional analyses indicated that minicells contained inclusion bodies, likely formed due to gshA overexpression and cadmium stress. Our findings confirms the role of minicells as a bacterial mechanism for sequestering cadmium at the cell poles and expelling the metal in the form of nanoparticles. This underscores the importance of minicells in bacterial physiology and stress responses, introducing a novel mechanism for heavy metal detoxification in bacteria.
Collapse
Affiliation(s)
- Felipe Valenzuela-Ibaceta
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Sergio A Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile.
| |
Collapse
|
4
|
van Hoorn C, Carter AP. A cryo-electron tomography study of ciliary rootlet organization. eLife 2024; 12:RP91642. [PMID: 39641991 PMCID: PMC11623930 DOI: 10.7554/elife.91642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Ciliary rootlets are striated bundles of filaments that connect the base of cilia to internal cellular structures. Rootlets are critical for the sensory and motile functions of cilia. However, the mechanisms underlying these functions remain unknown, in part due to a lack of structural information of rootlet organization. In this study, we obtain 3D reconstructions of membrane-associated and purified rootlets from mouse retina using cryo-electron tomography. We show that flexible protrusions on the rootlet surface, which emanate from the cross-striations, connect to intracellular membranes. In purified rootlets, the striations were classified into amorphous (A)-bands, associated with accumulations on the rootlet surface, and discrete (D)-bands corresponding to punctate lines of density that run through the rootlet. These striations connect a flexible network of longitudinal filaments. Subtomogram averaging suggests the filaments consist of two intertwined coiled coils. The rootlet's filamentous architecture, with frequent membrane-connecting cross-striations, lends itself well for anchoring large membranes in the cell.
Collapse
|
5
|
Just BB, Torres de Farias S. Living cognition and the nature of organisms. Biosystems 2024; 246:105356. [PMID: 39426661 DOI: 10.1016/j.biosystems.2024.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
There is no consensus about what cognition is. Different perspectives conceptualize it in different ways. In the same vein, there is no agreement about which systems are truly cognitive. This begs the question, what makes a process or a system cognitive? One of the most conspicuous features of cognition is that it is a set of processes. Cognition, in the end, is a collection of processes such as perception, memory, learning, decision-making, problem-solving, goal-directedness, attention, anticipation, communication, and maybe emotion. There is a debate about what they mean, and which systems possess these processes. One aspect of this problem concerns the level at which cognition and the single processes are conceptualized. To make this scenario clear, evolutionary and self-maintenance arguments are taken. Given the evolutive landscape, one sees processes shared by all organisms and their derivations in specific taxa. No matter which side of the complexity spectrum one favors, the similarities of the simple processes with the complex ones cannot be ignored, and the differences of some complex processes with their simple versions cannot be blurred. A final cognitive framework must make sense of both sides of the spectrum, their differences and similarities. Here, we discuss from an evolutionary perspective the basic elements shared by all living beings and whether these may be necessary and sufficient for understanding the cognitive process. Following these considerations, cognition can be expanded to every living being. Cognition is the set of informational and dynamic processes an organism must interact with and grasp aspects of its world. Understood at their most basic level, perception, memory, learning, problem-solving, decision-making, action, and other cognitive processes are basic features of biological functioning.
Collapse
Affiliation(s)
- Breno B Just
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Laboratório de Estudos Em Memória e Cognição (LEMCOG), Departamento de Psicologia, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK.
| |
Collapse
|
6
|
Muok AR, Olsthoorn FA, Briegel A. Unpacking Alternative Features of the Bacterial Chemotaxis System. Annu Rev Microbiol 2024; 78:169-189. [PMID: 38985972 DOI: 10.1146/annurev-micro-032421-110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The bacterial chemotaxis system is one of the best-understood cellular pathways and serves as the model for signal transduction systems. Most chemotaxis research has been conducted with transmembrane chemotaxis systems from Escherichia coli and has established paradigms of the system that were thought to be universal. However, emerging research has revealed that many bacteria possess alternative features of their chemotaxis system, demonstrating that these systems are likely more complex than previously assumed. Here, we compare the canonical chemotaxis system of E. coli with systems that diverge in supramolecular architecture, sensory mechanisms, and protein composition. The alternative features have likely evolved to accommodate chemical specificities of natural niches and cell morphologies. Collectively, these studies demonstrate that bacterial chemotaxis systems are a rapidly expanding field that offers many new opportunities to explore this exceedingly diverse system.
Collapse
Affiliation(s)
- A R Muok
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands;
| | - F A Olsthoorn
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands;
| | - A Briegel
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands;
| |
Collapse
|
7
|
Fukuoka H, Nishitani K, Deguchi T, Oshima T, Uchida Y, Hamamoto T, Che YS, Ishijima A. CheB localizes to polar receptor arrays during repellent adaptation. SCIENCE ADVANCES 2024; 10:eadp5636. [PMID: 39303042 PMCID: PMC11414734 DOI: 10.1126/sciadv.adp5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Adaptation of the response to stimuli is a fundamental process for all organisms. Here, we show that the adaptation enzyme CheB methylesterase of Escherichia coli assembles to the ON state receptor array after exposure to the repellent l-isoleucine and dissociates from the array after adaptation is complete. The duration of increased CheB localization and the time of highly clockwise-biased flagellar rotation were similar and depended on the strength of the stimulus. The increase in CheB at the receptor array and the decrease in cytoplasmic CheB were both ~100 molecules, which represents 15 to 20% of the total cellular content of CheB. We confirmed that the main binding site for CheB in the ON state array is the P2 domain of phosphorylated CheA, with a second minor site being the carboxyl-terminal pentapeptide of the serine chemoreceptor. Thus, we have been able to quantify the regulation of the signal output of the receptor array by the intracellular dynamics of an adaptation enzyme.
Collapse
Affiliation(s)
- Hajime Fukuoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keisuke Nishitani
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taiga Deguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taketo Oshima
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumiko Uchida
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | - Yong-Suk Che
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiko Ishijima
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Moore JP, Kamino K, Kottou R, Shimizu TS, Emonet T. Signal Integration and Adaptive Sensory Diversity Tuning in Escherichia coli Chemotaxis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.08.527720. [PMID: 36798398 PMCID: PMC9934624 DOI: 10.1101/2023.02.08.527720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In uncertain environments, phenotypic diversity can be advantageous for survival. However, as the environmental uncertainty decreases, the relative advantage of having diverse phenotypes decreases. Here, we show how populations of E. coli integrate multiple chemical signals to adjust sensory diversity in response to changes in the prevalence of each ligand in the environment. Measuring kinase activity in single cells, we quantified the sensitivity distribution to various chemoattractants in different mixtures of background stimuli. We found that when ligands bind uncompetitively, the population tunes sensory diversity to each signal independently, decreasing diversity when the signal ambient concentration increases. However, amongst competitive ligands the population can only decrease sensory diversity one ligand at a time. Mathematical modeling suggests that sensory diversity tuning benefits E. coli populations by modulating how many cells are committed to tracking each signal proportionally as their prevalence changes.
Collapse
|
9
|
Glenn SJ, Gentry-Lear Z, Shavlik M, Harms MJ, Asaki TJ, Baylink A. Bacterial vampirism mediated through taxis to serum. eLife 2024; 12:RP93178. [PMID: 38820052 PMCID: PMC11142651 DOI: 10.7554/elife.93178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024] Open
Abstract
Bacteria of the family Enterobacteriaceae are associated with gastrointestinal (GI) bleeding and bacteremia and are a leading cause of death, from sepsis, for individuals with inflammatory bowel diseases. The bacterial behaviors and mechanisms underlying why these bacteria are prone to bloodstream entry remain poorly understood. Herein, we report that clinical isolates of non-typhoidal Salmonella enterica serovars, Escherichia coli, and Citrobacter koseri are rapidly attracted toward sources of human serum. To simulate GI bleeding, we utilized an injection-based microfluidics device and found that femtoliter volumes of human serum are sufficient to induce bacterial attraction to the serum source. This response is orchestrated through chemotaxis and the chemoattractant L-serine, an amino acid abundant in serum that is recognized through direct binding by the chemoreceptor Tsr. We report the first crystal structures of Salmonella Typhimurium Tsr in complex with L-serine and identify a conserved amino acid recognition motif for L-serine shared among Tsr orthologues. We find Tsr to be widely conserved among Enterobacteriaceae and numerous World Health Organization priority pathogens associated with bloodstream infections. Lastly, we find that Enterobacteriaceae use human serum as a source of nutrients for growth and that chemotaxis and the chemoreceptor Tsr provide a competitive advantage for migration into enterohemorrhagic lesions. We define this bacterial behavior of taxis toward serum, colonization of hemorrhagic lesions, and the consumption of serum nutrients as 'bacterial vampirism', which may relate to the proclivity of Enterobacteriaceae for bloodstream infections.
Collapse
Affiliation(s)
- Siena J Glenn
- Washington State University, Department of Veterinary Microbiology and PathologyPullmanUnited States
| | | | - Michael Shavlik
- University of Oregon, Institute of Molecular BiologyEugeneUnited States
| | - Michael J Harms
- University of Oregon, Institute of Molecular BiologyEugeneUnited States
- University of Oregon, Department of Chemistry & BiochemistryEugeneUnited States
| | - Thomas J Asaki
- Washington State University, Department of Mathematics and StatisticsPullmanUnited States
| | - Arden Baylink
- Washington State University, Department of Veterinary Microbiology and PathologyPullmanUnited States
| |
Collapse
|
10
|
Cruz-León S, Majtner T, Hoffmann PC, Kreysing JP, Kehl S, Tuijtel MW, Schaefer SL, Geißler K, Beck M, Turoňová B, Hummer G. High-confidence 3D template matching for cryo-electron tomography. Nat Commun 2024; 15:3992. [PMID: 38734767 PMCID: PMC11088655 DOI: 10.1038/s41467-024-47839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Visual proteomics attempts to build atlases of the molecular content of cells but the automated annotation of cryo electron tomograms remains challenging. Template matching (TM) and methods based on machine learning detect structural signatures of macromolecules. However, their applicability remains limited in terms of both the abundance and size of the molecular targets. Here we show that the performance of TM is greatly improved by using template-specific search parameter optimization and by including higher-resolution information. We establish a TM pipeline with systematically tuned parameters for the automated, objective and comprehensive identification of structures with confidence 10 to 100-fold above the noise level. We demonstrate high-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, fatty acid synthases, lipid membranes and microtubules, and individual subunits inside crowded eukaryotic cells. We provide software tools for the generic implementation of our method that is broadly applicable towards realizing visual proteomics.
Collapse
Affiliation(s)
- Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Tomáš Majtner
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Patrick C Hoffmann
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Sebastian Kehl
- Max Planck Computing and Data Facility, Gießenbachstraße 2, 85748, Garching, Germany
| | - Maarten W Tuijtel
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Stefan L Schaefer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Katharina Geißler
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
- Institute of Biochemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
- Institute of Biophysics, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Koler M, Parkinson JS, Vaknin A. Signal integration in chemoreceptor complexes. Proc Natl Acad Sci U S A 2024; 121:e2312064121. [PMID: 38530894 PMCID: PMC10998596 DOI: 10.1073/pnas.2312064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Motile bacteria use large receptor arrays to detect chemical and physical stimuli in their environment, process this complex information, and accordingly bias their swimming in a direction they deem favorable. The chemoreceptor molecules form tripod-like trimers of receptor dimers through direct contacts between their cytoplasmic tips. A pair of trimers, together with a dedicated kinase enzyme, form a core signaling complex. Hundreds of core complexes network to form extended arrays. While considerable progress has been made in revealing the hierarchical structure of the array, the molecular properties underlying signal processing in these structures remain largely unclear. Here we analyzed the signaling properties of nonnetworked core complexes in live cells by following both conformational and kinase control responses to attractant stimuli and to output-biasing lesions at various locations in the receptor molecule. Contrary to the prevailing view that individual receptors are binary two-state devices, we demonstrate that conformational coupling between the ligand binding and the kinase-control receptor domains is, in fact, only moderate. In addition, we demonstrate communication between neighboring receptors through their trimer-contact domains that biases them to adopt similar signaling states. Taken together, these data suggest a view of signaling in receptor trimers that allows significant signal integration to occur within individual core complexes.
Collapse
Affiliation(s)
- Moriah Koler
- The Racah Institute of Physics, The Hebrew University, Jerusalem91904, Israel
| | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
| | - Ady Vaknin
- The Racah Institute of Physics, The Hebrew University, Jerusalem91904, Israel
| |
Collapse
|
12
|
Gaifas L, Kirchner MA, Timmins J, Gutsche I. Blik is an extensible 3D visualisation tool for the annotation and analysis of cryo-electron tomography data. PLoS Biol 2024; 22:e3002447. [PMID: 38687779 PMCID: PMC11268629 DOI: 10.1371/journal.pbio.3002447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/24/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Powerful, workflow-agnostic and interactive visualisation is essential for the ad hoc, human-in-the-loop workflows typical of cryo-electron tomography (cryo-ET). While several tools exist for visualisation and annotation of cryo-ET data, they are often integrated as part of monolithic processing pipelines, or focused on a specific task and offering limited reusability and extensibility. With each software suite presenting its own pros and cons and tools tailored to address specific challenges, seamless integration between available pipelines is often a difficult task. As part of the effort to enable such flexibility and move the software ecosystem towards a more collaborative and modular approach, we developed blik, an open-source napari plugin for visualisation and annotation of cryo-ET data (source code: https://github.com/brisvag/blik). blik offers fast, interactive, and user-friendly 3D visualisation thanks to napari, and is built with extensibility and modularity at the core. Data is handled and exposed through well-established scientific Python libraries such as numpy arrays and pandas dataframes. Reusable components (such as data structures, file read/write, and annotation tools) are developed as independent Python libraries to encourage reuse and community contribution. By easily integrating with established image analysis tools-even outside of the cryo-ET world-blik provides a versatile platform for interacting with cryo-ET data. On top of core visualisation features-interactive and simultaneous visualisation of tomograms, particle picks, and segmentations-blik provides an interface for interactive tools such as manual, surface-based and filament-based particle picking, and image segmentation, as well as simple filtering tools. Additional self-contained napari plugins developed as part of this work also implement interactive plotting and selection based on particle features, and label interpolation for easier segmentation. Finally, we highlight the differences with existing software and showcase blik's applicability in biological research.
Collapse
Affiliation(s)
- Lorenzo Gaifas
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Moritz A. Kirchner
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Joanna Timmins
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
de Isidro-Gómez FP, Vilas JL, Losana P, Carazo JM, Sorzano COS. A deep learning approach to the automatic detection of alignment errors in cryo-electron tomographic reconstructions. J Struct Biol 2024; 216:108056. [PMID: 38101554 DOI: 10.1016/j.jsb.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Electron tomography is an imaging technique that allows for the elucidation of three-dimensional structural information of biological specimens in a very general context, including cellular in situ observations. The approach starts by collecting a set of images at different projection directions by tilting the specimen stage inside the microscope. Therefore, a crucial preliminary step is to precisely define the acquisition geometry by aligning all the tilt images to a common reference. Errors introduced in this step will lead to the appearance of artifacts in the tomographic reconstruction, rendering them unsuitable for the sample study. Focusing on fiducial-based acquisition strategies, this work proposes a deep-learning algorithm to detect misalignment artifacts in tomographic reconstructions by analyzing the characteristics of these fiducial markers in the tomogram. In addition, we propose an algorithm designed to detect fiducial markers in the tomogram with which to feed the classification algorithm in case the alignment algorithm does not provide the location of the markers. This open-source software is available as part of the Xmipp software package inside of the Scipion framework, and also through the command-line in the standalone version of Xmipp.
Collapse
Affiliation(s)
- F P de Isidro-Gómez
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain; Univ. Autonoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - J L Vilas
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - P Losana
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - J M Carazo
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - C O S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain.
| |
Collapse
|
14
|
Valenzuela-Ibaceta F, Torres-Olea N, Ramos-Zúñiga J, Dietz-Vargas C, Navarro CA, Pérez-Donoso JM. Minicells as an Escherichia coli mechanism for the accumulation and disposal of fluorescent cadmium sulphide nanoparticles. J Nanobiotechnology 2024; 22:78. [PMID: 38414055 PMCID: PMC10900627 DOI: 10.1186/s12951-024-02348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Bacterial biosynthesis of fluorescent nanoparticles or quantum dots (QDs) has emerged as a unique mechanism for heavy metal tolerance. However, the physiological pathways governing the removal of QDs from bacterial cells remains elusive. This study investigates the role of minicells, previously identified as a means of eliminating damaged proteins and enhancing bacterial resistance to stress. Building on our prior work, which unveiled the formation of minicells during cadmium QDs biosynthesis in Escherichia coli, we hypothesize that minicells serve as a mechanism for the accumulation and detoxification of QDs in bacterial cells. RESULTS Intracellular biosynthesis of CdS QDs was performed in E. coli mutants ΔminC and ΔminCDE, known for their minicell-producing capabilities. Fluorescence microscopy analysis demonstrated that the generated minicells exhibited fluorescence emission, indicative of QD loading. Transmission electron microscopy (TEM) confirmed the presence of nanoparticles in minicells, while energy dispersive spectroscopy (EDS) revealed the coexistence of cadmium and sulfur. Cadmium quantification through flame atomic absorption spectrometry (FAAS) demonstrated that minicells accumulated a higher cadmium content compared to rod cells. Moreover, fluorescence intensity analysis suggested that minicells accumulated a greater quantity of fluorescent nanoparticles, underscoring their efficacy in QD removal. Biosynthesis dynamics in minicell-producing strains indicated that biosynthesized QDs maintained high fluorescence intensity even during prolonged biosynthesis times, suggesting continuous QD clearance in minicells. CONCLUSIONS These findings support a model wherein E. coli utilizes minicells for the accumulation and removal of nanoparticles, highlighting their physiological role in eliminating harmful elements and maintaining cellular fitness. Additionally, this biosynthesis system presents an opportunity for generating minicell-coated nanoparticles with enhanced biocompatibility for diverse applications.
Collapse
Affiliation(s)
- Felipe Valenzuela-Ibaceta
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Nicolás Torres-Olea
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Claudio Dietz-Vargas
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Claudio A Navarro
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile.
| |
Collapse
|
15
|
Glenn SJ, Gentry-Lear Z, Shavlik M, Harms MJ, Asaki TJ, Baylink A. Bacterial vampirism mediated through taxis to serum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.07.548164. [PMID: 37461633 PMCID: PMC10350070 DOI: 10.1101/2023.07.07.548164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Bacteria of the family Enterobacteriaceae are associated with gastrointestinal (GI) bleeding and bacteremia and are a leading cause of death, from sepsis, for individuals with inflammatory bowel diseases. The bacterial behaviors and mechanisms underlying why these bacteria are prone to bloodstream entry remains poorly understood. Herein, we report that clinical isolates of non-typhoidal Salmonella enterica serovars, Escherichia coli, and Citrobacter koseri are rapidly attracted toward sources of human serum. To simulate GI bleeding, we utilized a custom injection-based microfluidics device and found that femtoliter volumes of human serum are sufficient to induce the bacterial population to swim toward and aggregate at the serum source. This response is orchestrated through chemotaxis, and a major chemical cue driving chemoattraction is L-serine, an amino acid abundant in serum that is recognized through direct binding by the chemoreceptor Tsr. We report the first crystal structures of Salmonella Typhimurium Tsr in complex with L-serine and identify a conserved amino acid recognition motif for L-serine shared among Tsr orthologues. By mapping the phylogenetic distribution of this chemoreceptor we found Tsr to be widely conserved among Enterobacteriaceae and numerous World Health Organization priority pathogens associated with bloodstream infections. Lastly, we find that Enterobacteriaceae use human serum as a source of nutrients for growth and that chemotaxis and the chemoreceptor Tsr provides a competitive advantage for migration into enterohaemorrhagic lesions. We term this bacterial behavior of taxis toward serum, colonization of hemorrhagic lesions, and the consumption of serum nutrients, as 'bacterial vampirism' which may relate to the proclivity of Enterobacteriaceae for bloodstream infections.
Collapse
|
16
|
Berry MA, Andrianova EP, Zhulin IB. Diverse domain architectures of CheA histidine kinase, a central component of bacterial and archaeal chemosensory systems. Microbiol Spectr 2024; 12:e0346423. [PMID: 38038435 PMCID: PMC10782961 DOI: 10.1128/spectrum.03464-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE We found that in contrast to the best-studied model organisms, such as Escherichia coli and Bacillus subtilis, most bacterial and archaeal species have a CheA protein with a different domain composition. We report variations in CheA architecture, such as domain duplication and acquisition as well as class-specific domain composition. Our results will be of interest to those working on signal transduction in bacteria and archaea and lay the foundation for experimental studies.
Collapse
Affiliation(s)
- Marissa A. Berry
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
17
|
Li YG, Kishida K, Ogawa-Kishida N, Christie PJ. Ligand-displaying Escherichia coli cells and minicells for programmable delivery of toxic payloads via type IV secretion systems. mBio 2023; 14:e0214323. [PMID: 37772866 PMCID: PMC10653926 DOI: 10.1128/mbio.02143-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE The rapid emergence of drug-resistant bacteria and current low rate of antibiotic discovery emphasize the urgent need for alternative antibacterial strategies. We engineered Escherichia coli to conjugatively transfer plasmids to specific E. coli and Pseudomonas aeruginosa recipient cells through the surface display of cognate nanobody/antigen (Nb/Ag) pairs. We further engineered mobilizable plasmids to carry CRISPR/Cas9 systems (pCrispr) for the selective killing of recipient cells harboring CRISPR/Cas9 target sequences. In the assembled programmed delivery system (PDS), Nb-displaying E. coli donors with different conjugation systems and mobilizable pCrispr plasmids suppressed the growth of Ag-displaying recipient cells to significantly greater extents than unpaired recipients. We also showed that anucleate minicells armed with conjugation machines and pCrispr plasmids were highly effective in killing E. coli recipients. Together, our findings suggest that bacteria or minicells armed with PDSs may prove highly effective as an adjunct or alternative to antibiotics for antimicrobial intervention.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
18
|
Cassidy CK, Qin Z, Frosio T, Gosink K, Yang Z, Sansom MSP, Stansfeld PJ, Parkinson JS, Zhang P. Structure of the native chemotaxis core signaling unit from phage E-protein lysed E. coli cells. mBio 2023; 14:e0079323. [PMID: 37772839 PMCID: PMC10653900 DOI: 10.1128/mbio.00793-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE Bacterial chemotaxis is a ubiquitous behavior that enables cell movement toward or away from specific chemicals. It serves as an important model for understanding cell sensory signal transduction and motility. Characterization of the molecular mechanisms underlying chemotaxis is of fundamental interest and requires a high-resolution structural picture of the sensing machinery, the chemosensory array. In this study, we combine cryo-electron tomography and molecular simulation to present the complete structure of the core signaling unit, the basic building block of chemosensory arrays, from Escherichia coli. Our results provide new insight into previously poorly-resolved regions of the complex and offer a structural basis for designing new experiments to test mechanistic hypotheses.
Collapse
Affiliation(s)
- C. Keith Cassidy
- Diamond Light Source, Didcot, United Kingdom
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Zhuan Qin
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Khoosheh Gosink
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Peijun Zhang
- Diamond Light Source, Didcot, United Kingdom
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Berry MA, Andrianova EP, Zhulin IB. Diverse domain architectures of CheA histidine kinase, a central component of bacterial and archaeal chemosensory systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558490. [PMID: 37790397 PMCID: PMC10542144 DOI: 10.1101/2023.09.19.558490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Chemosensory systems in bacteria and archaea are complex, multi-protein pathways that enable rapid cellular responses to environmental changes. The CheA histidine kinase is a central component of chemosensory systems. In contrast to other histidine kinases, it lacks a sensor (input) domain and utilizes dedicated chemoreceptors for sensing. CheA is a multi-domain protein; in model organisms as diverse as Escherichia coli and Bacillus subtilis, it contains five single-copy domains. Deviations from this canonical domain architecture have been reported, however, a broad genome-wide analysis of CheA diversity is lacking. Here, we present results of a genomic survey of CheA domain composition carried out using an unbiased set of thousands of CheA sequences from bacteria and archaea. We found that four out of five canonical CheA domains comprise a minimal functional unit (core domains), as they are present in all surveyed CheA homologs. The most common deviations from a classical five-domain CheA architecture are the lack of a P2/CheY-binding domain, which is missing from more than a half of CheA homologs and the acquisition of a response regulator receiver (CheY-like) domain, which is present in ~35% of CheA homologs. We also document other deviations from classical CheA architecture, including bipartite CheA proteins, domain duplications and fusions, and reveal that phylogenetically defined CheA classes have pre-dominant domain architectures. This study lays a foundation for a better classification of CheA homologs and identifies targets for experimental investigations.
Collapse
Affiliation(s)
- Marissa A. Berry
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | | | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
20
|
Chen EHL, Wang CH, Liao YT, Chan FY, Kanaoka Y, Uchihashi T, Kato K, Lai L, Chang YW, Ho MC, Chen RPY. Visualizing the membrane disruption action of antimicrobial peptides by cryo-electron tomography. Nat Commun 2023; 14:5464. [PMID: 37673860 PMCID: PMC10482868 DOI: 10.1038/s41467-023-41156-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
The abuse of antibiotics has led to the emergence of multidrug-resistant microbial pathogens, presenting a pressing challenge in global healthcare. Membrane-disrupting antimicrobial peptides (AMPs) combat so-called superbugs via mechanisms different than conventional antibiotics and have good application prospects in medicine, agriculture, and the food industry. However, the mechanism-of-action of AMPs has not been fully characterized at the cellular level due to a lack of high-resolution imaging technologies that can capture cellular-membrane disruption events in the hydrated state. Previously, we reported PepD2M, a de novo-designed AMP with potent and wide-spectrum bactericidal and fungicidal activity. In this study, we use cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM) to directly visualize the pepD2M-induced disruption of the outer and inner membranes of the Gram-negative bacterium Escherichia coli, and compared with a well-known pore-forming peptide, melittin. Our high-resolution cryo-ET images reveal how pepD2M disrupts the E. coli membrane using a carpet/detergent-like mechanism. Our studies reveal the direct membrane-disrupting consequence of AMPs on the bacterial membrane by cryo-ET, and this information provides critical insights into the mechanisms of this class of antimicrobial agents.
Collapse
Affiliation(s)
- Eric H-L Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Ting Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Yueh Chan
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Yui Kanaoka
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Longsheng Lai
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6059, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6059, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
21
|
Li YG, Kishida K, Ogawa-Kishida N, Christie PJ. Ligand-Displaying E. coli Cells and Minicells for Programmable Delivery of Toxic Payloads via Type IV Secretion Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553016. [PMID: 37609324 PMCID: PMC10441419 DOI: 10.1101/2023.08.11.553016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Bacterial type IV secretion systems (T4SSs) are highly versatile macromolecular translocators and offer great potential for deployment as delivery systems for therapeutic intervention. One major T4SS subfamily, the conjugation machines, are well-adapted for delivery of DNA cargoes of interest to other bacteria or eukaryotic cells, but generally exhibit modest transfer frequencies and lack specificity for target cells. Here, we tested the efficacy of a surface-displayed nanobody/antigen (Nb/Ag) pairing system to enhance the conjugative transfer of IncN (pKM101), IncF (F/pOX38), or IncP (RP4) plasmids, or of mobilizable plasmids including those encoding CRISPR/Cas9 systems (pCrispr), to targeted recipient cells. Escherichia coli donors displaying Nb's transferred plasmids to E. coli and Pseudomonas aeruginosa recipients displaying the cognate Ag's at significantly higher frequencies than to recipients lacking Ag's. Nb/Ag pairing functionally substituted for the surface adhesin activities of F-encoded TraN and pKM101-encoded Pep, although not conjugative pili or VirB5-like adhesins. Nb/Ag pairing further elevated the killing effects accompanying delivery of pCrispr plasmids to E. coli and P. aeruginosa transconjugants bearing CRISPR/Cas9 target sequences. Finally, we determined that anucleate E. coli minicells, which are clinically safer delivery vectors than intact cells, transferred self-transmissible and mobilizable plasmids to E. coli and P. aeruginosa cells. Minicell-mediated mobilization of pCrispr plasmids to E. coli recipients elicited significant killing of transconjugants, although Nb/Ag pairing did not enhance conjugation frequencies or killing. Together, our findings establish the potential for deployment of bacteria or minicells as Programmed Delivery Systems (PDSs) for suppression of targeted bacterial species in infection settings. IMPORTANCE The rapid emergence of drug-resistant bacteria and current low rate of antibiotic discovery emphasize an urgent need for alternative antibacterial strategies. We engineered Escherichia coli to conjugatively transfer plasmids to specific E. coli and Pseudomonas aeruginosa recipient cells through surface display of cognate nanobody/antigen (Nb/Ag) pairs. We further engineered mobilizable plasmids to carry CRISPR/Cas9 systems (pCrispr) for selective killing of recipient cells harboring CRISPR/Cas9 target sequences. In the assembled Programmed Delivery System (PDS), Nb-displaying E. coli donors with different conjugation systems and mobilizable pCrispr plasmids suppressed growth of Ag-displaying recipient cells to significantly greater extents than unpaired recipients. We also showed that anucleate minicells armed with conjugation machines and pCrispr plasmids were highly effective in killing of E. coli recipients. Together, our findings suggest that bacteria or minicells armed with PDSs may prove highly effective as an adjunct or alternative to antibiotics for antimicrobial intervention.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, Texas 77030
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, Texas 77030
- Current address: Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, Texas 77030
- Current address: Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, Texas 77030
| |
Collapse
|
22
|
Abstract
Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure-function relationships in their native environment and becoming a tool for discovering new biology.
Collapse
Affiliation(s)
- Lindsey N Young
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
23
|
Zhou B, Szymanski CM, Baylink A. Bacterial chemotaxis in human diseases. Trends Microbiol 2023; 31:453-467. [PMID: 36411201 PMCID: PMC11238666 DOI: 10.1016/j.tim.2022.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Abstract
To infect and cause disease, bacterial pathogens must localize to specific regions of the host where they possess the metabolic and defensive acumen for survival. Motile flagellated pathogens exercise control over their localization through chemotaxis to direct motility based on the landscape of exogenous nutrients, toxins, and molecular cues sensed within the host. Here, we review advances in understanding the roles chemotaxis plays in human diseases. Chemotaxis drives pathogen colonization to sites of inflammation and injury and mediates fitness advantages through accessing host-derived nutrients from damaged tissue. Injury tropism may worsen clinical outcomes through instigating chronic inflammation and subsequent cancer development. Inhibiting bacterial chemotactic systems could act synergistically with antibacterial medicines for more effective and specific eradication.
Collapse
Affiliation(s)
- Bibi Zhou
- University of Georgia, Department of Microbiology and Complex Carbohydrate Research Center, Athens, GA 30602, USA
| | - Christine M Szymanski
- University of Georgia, Department of Microbiology and Complex Carbohydrate Research Center, Athens, GA 30602, USA
| | - Arden Baylink
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, WA 99164, USA.
| |
Collapse
|
24
|
Elcock AH. Easy Removal of Steric Clashes and Entanglements in Macromolecular Systems by Temporary Addition of a Fourth Spatial Dimension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.537866. [PMID: 37163103 PMCID: PMC10168393 DOI: 10.1101/2023.04.26.537866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
When models of complicated macromolecular systems are constructed, it is common to inadvertently include either gross steric clashes or entanglements of extended loop regions. Removing these problems with conventional energy minimization or dynamics algorithms can often be difficult. Here I show that one easy alternative is to temporarily add an extra spatial dimension and to displace atoms or molecules along this fourth dimension such that the distances between atoms, when measured in 4D, are no longer considered clashing. Adding in half-harmonic potential functions to mimic walls in this 4 th dimension, and then moving these walls toward each other, has the effect of decreasing the space available in the 4 th dimension and drives atoms to avoid each other in 3D. I illustrate the method with three examples: two showing how interlocked ring polymers can be easily disentangled from each other in both 2D and 3D, and one showing how ten identical coarse-grained protein models, all placed at the same point in 3D space, can be separated from each other, without distorting their structures, during the course of a single energy minimization. A sample program implementing the method is available that can be easily adapted to other situations.
Collapse
|
25
|
Riechmann C, Zhang P. Recent structural advances in bacterial chemotaxis signalling. Curr Opin Struct Biol 2023; 79:102565. [PMID: 36868078 PMCID: PMC10460253 DOI: 10.1016/j.sbi.2023.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 03/05/2023]
Abstract
Bacterial chemosensory arrays have served as a model system for in-situ structure determination, clearly cataloguing the improvement of cryo-electron tomography (cryoET) over the past decade. In recent years, this has culminated in an accurately fitted atomistic model for the full-length core signalling unit (CSU) and numerous insights into the function of the transmembrane receptors responsible for signal transduction. Here, we review the achievements of the latest structural advances in bacterial chemosensory arrays and the developments which have made such advances possible.
Collapse
Affiliation(s)
- Carlos Riechmann
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
26
|
Yee NBY, Ho EML, Tun W, Smith JLR, Dumoux M, Grange M, Darrow MC, Basham M. Ot2Rec: A semi-automatic, extensible, multi-software tomographic reconstruction workflow. BIOLOGICAL IMAGING 2023; 3:e10. [PMID: 38487693 PMCID: PMC10936412 DOI: 10.1017/s2633903x23000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2024]
Abstract
Electron cryo-tomography is an imaging technique for probing 3D structures with at the nanometer scale. This technique has been used extensively in the biomedical field to study the complex structures of proteins and other macromolecules. With the advancement in technology, microscopes are currently capable of producing images amounting to terabytes of data per day, posing great challenges for scientists as the speed of processing of the images cannot keep up with the ever-higher throughput of the microscopes. Therefore, automation is an essential and natural pathway on which image processing-from individual micrographs to full tomograms-is developing. In this paper, we present Ot2Rec, an open-source pipelining tool which aims to enable scientists to build their own processing workflows in a flexible and automatic manner. The basic building blocks of Ot2Rec are plugins which follow a unified application programming interface structure, making it simple for scientists to contribute to Ot2Rec by adding features which are not already available. In this paper, we also present three case studies of image processing using Ot2Rec, through which we demonstrate the speedup of using a semi-automatic workflow over a manual one, the possibility of writing and using custom (prototype) plugins, and the flexibility of Ot2Rec which enables the mix-and-match of plugins. We also demonstrate, in the Supplementary Material, a built-in reporting feature in Ot2Rec which aggregates the metadata from all process being run, and output them in the Jupyter Notebook and/or HTML formats for quick review of image processing quality. Ot2Rec can be found at https://github.com/rosalindfranklininstitute/ot2rec.
Collapse
Affiliation(s)
- Neville B.-Y. Yee
- Artificial Intelligence and Informatics, Rosalind Franklin Institute, Didcot, United Kingdom
| | - Elaine M. L. Ho
- Artificial Intelligence and Informatics, Rosalind Franklin Institute, Didcot, United Kingdom
| | - Win Tun
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Diamond Light Source Ltd., Didcot, United Kingdom
| | - Jake L. R. Smith
- Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Maud Dumoux
- Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
| | - Michael Grange
- Structural Biology, Rosalind Franklin Institute, Didcot, United Kingdom
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Michele C. Darrow
- Artificial Intelligence and Informatics, Rosalind Franklin Institute, Didcot, United Kingdom
- SPT Labtech, Melbourn, United Kingdom
| | - Mark Basham
- Artificial Intelligence and Informatics, Rosalind Franklin Institute, Didcot, United Kingdom
- Diamond Light Source Ltd., Didcot, United Kingdom
| |
Collapse
|
27
|
Defining Two Chemosensory Arrays in Shewanella oneidensis. Biomolecules 2022; 13:biom13010021. [PMID: 36671406 PMCID: PMC9855816 DOI: 10.3390/biom13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Shewanella oneidensis has 2 functional chemosensory systems named Che1 and Che3, and 27 chemoreceptors. Che3 is dedicated to chemotaxis while Che1 could be involved in RpoS post-translational regulation. In this study, we have shown that two chemoreceptors Aer2so and McpAso, genetically related to the Che1 system, form distinct core-signaling units and signal to Che1 and Che3, respectively. Moreover, we observed that Aer2so is a cytoplasmic dynamic chemoreceptor that, when in complex with CheA1 and CheW1, localizes at the two poles and the centre of the cells. Altogether, the results obtained indicate that Che1 and Che3 systems are interconnected by these two chemoreceptors allowing a global response for bacterial survival.
Collapse
|
28
|
Uchida Y, Hamamoto T, Che YS, Takahashi H, Parkinson JS, Ishijima A, Fukuoka H. The Chemoreceptor Sensory Adaptation System Produces Coordinated Reversals of the Flagellar Motors on an Escherichia coli Cell. J Bacteriol 2022; 204:e0027822. [PMID: 36448786 PMCID: PMC9765175 DOI: 10.1128/jb.00278-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
In isotropic environments, an Escherichia coli cell exhibits coordinated rotational switching of its flagellar motors, produced by fluctuations in the intracellular concentration of phosphorylated CheY (CheY-P) emanating from chemoreceptor signaling arrays. In this study, we show that these CheY-P fluctuations arise through modifications of chemoreceptors by two sensory adaptation enzymes: the methyltransferase CheR and the methylesterase CheB. A cell containing CheR, CheB, and the serine chemoreceptor Tsr exhibited motor synchrony, whereas a cell lacking CheR and CheB or containing enzymatically inactive forms did not. Tsr variants with different combinations of methylation-mimicking Q residues at the adaptation sites also failed to show coordinated motor switching in cells lacking CheR and CheB. Cells containing CheR, CheB, and Tsr [NDND], a variant in which the adaptation site residues are not substrates for CheR or CheB modifications, also lacked motor synchrony. TsrΔNWETF, which lacks a C-terminal pentapeptide-binding site for CheR and CheB, and the ribose-galactose receptor Trg, which natively lacks this motif, failed to produce coordinated motor switching, despite the presence of CheR and CheB. However, addition of the NWETF sequence to Trg enabled Trg-NWETF to produce motor synchrony, as the sole receptor type in cells containing CheR and CheB. Finally, CheBc, the catalytic domain of CheB, supported motor coordination in combination with CheR and Tsr. These results indicate that the coordination of motor switching requires CheR/CheB-mediated changes in receptor modification state. We conclude that the opposing receptor substrate-site preferences of CheR and CheB produce spontaneous blinking of the chemoreceptor array's output activity. IMPORTANCE Under steady-state conditions with no external stimuli, an Escherichia coli cell coordinately switches the rotational direction of its flagellar motors. Here, we demonstrate that the CheR and CheB enzymes of the chemoreceptor sensory adaptation system mediate this coordination. Stochastic fluctuations in receptor adaptation states trigger changes in signal output from the receptor array, and this array blinking generates fluctuations in CheY-P concentration that coordinate directional switching of the flagellar motors. Thus, in the absence of chemoeffector gradients, the sensory adaptation system controls run-tumble swimming of the cell, its optimal foraging strategy.
Collapse
Affiliation(s)
- Yumiko Uchida
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tatsuki Hamamoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yong-Suk Che
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, Japan
| | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Akihiko Ishijima
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hajime Fukuoka
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
29
|
Hadjidemetriou K, Kaur S, Cassidy CK, Zhang P. Mechanisms of E. coli chemotaxis signaling pathways visualized using cryoET and computational approaches. Biochem Soc Trans 2022; 50:1595-1605. [PMID: 36421737 PMCID: PMC9788364 DOI: 10.1042/bst20220191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022]
Abstract
Chemotaxis signaling pathways enable bacteria to sense and respond to their chemical environment and, in some species, are critical for lifestyle processes such as biofilm formation and pathogenesis. The signal transduction underlying chemotaxis behavior is mediated by large, highly ordered protein complexes known as chemosensory arrays. For nearly two decades, cryo-electron tomography (cryoET) has been used to image chemosensory arrays, providing an increasingly detailed understanding of their structure and function. In this mini-review, we provide an overview of the use of cryoET to study chemosensory arrays, including imaging strategies, key results, and outstanding questions. We further discuss the application of molecular modeling and simulation techniques to complement structure determination efforts and provide insight into signaling mechanisms. We close the review with a brief outlook, highlighting promising future directions for the field.
Collapse
Affiliation(s)
| | - Satinder Kaur
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - C. Keith Cassidy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, U.K
| |
Collapse
|
30
|
Tail proteins of phage SU10 reorganize into the nozzle for genome delivery. Nat Commun 2022; 13:5622. [PMID: 36153309 PMCID: PMC9509320 DOI: 10.1038/s41467-022-33305-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli phage SU10 belongs to the genus Kuravirus from the class Caudoviricetes of phages with short non-contractile tails. In contrast to other short-tailed phages, the tails of Kuraviruses elongate upon cell attachment. Here we show that the virion of SU10 has a prolate head, containing genome and ejection proteins, and a tail, which is formed of portal, adaptor, nozzle, and tail needle proteins and decorated with long and short fibers. The binding of the long tail fibers to the receptors in the outer bacterial membrane induces the straightening of nozzle proteins and rotation of short tail fibers. After the re-arrangement, the nozzle proteins and short tail fibers alternate to form a nozzle that extends the tail by 28 nm. Subsequently, the tail needle detaches from the nozzle proteins and five types of ejection proteins are released from the SU10 head. The nozzle with the putative extension formed by the ejection proteins enables the delivery of the SU10 genome into the bacterial cytoplasm. It is likely that this mechanism of genome delivery, involving the formation of the tail nozzle, is employed by all Kuraviruses. E. coli phage SU10 has a short non-contractile tail. Here, the authors show that after cell binding, nozzle proteins and tail fibers of SU10 change conformation to form a nozzle that enables the delivery of the phage DNA into the bacterial cytoplasm.
Collapse
|
31
|
Revealing bacterial cell biology using cryo-electron tomography. Curr Opin Struct Biol 2022; 75:102419. [PMID: 35820259 DOI: 10.1016/j.sbi.2022.102419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Visualizing macromolecules inside bacteria at a high spatial resolution has remained a challenge owing to their small size and limited resolution of optical microscopy techniques. Recent advances in cryo-electron tomography (cryo-ET) imaging methods have revealed the spatial and temporal assemblies of many macromolecules involved in different cellular processes in bacteria at a resolution of a few nanometers in their native milieu. Specifically, the application of cryo-focused ion beam (cryo-FIB) milling to thin bacterial specimens makes them amenable for high-resolution cryo-ET data collection. In this review, we highlight recent research in three emerging areas of bacterial cell biology that have benefited from the cryo-FIB-ET technology - cytoskeletal filament assembly, intracellular organelles, and multicellularity.
Collapse
|
32
|
Khalid S, Schroeder C, Bond PJ, Duncan AL. What have molecular simulations contributed to understanding of Gram-negative bacterial cell envelopes? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35294337 PMCID: PMC9558347 DOI: 10.1099/mic.0.001165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial cell envelopes are compositionally complex and crowded and while highly dynamic in some areas, their molecular motion is very limited, to the point of being almost static in others. Therefore, it is no real surprise that studying them at high resolution across a range of temporal and spatial scales requires a number of different techniques. Details at atomistic to molecular scales for up to tens of microseconds are now within range for molecular dynamics simulations. Here we review how such simulations have contributed to our current understanding of the cell envelopes of Gram-negative bacteria.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Cyril Schroeder
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
33
|
Liedtke J, Depelteau JS, Briegel A. How advances in cryo-electron tomography have contributed to our current view of bacterial cell biology. J Struct Biol X 2022; 6:100065. [PMID: 35252838 PMCID: PMC8894267 DOI: 10.1016/j.yjsbx.2022.100065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Advancements in the field of cryo-electron tomography have greatly contributed to our current understanding of prokaryotic cell organization and revealed intracellular structures with remarkable architecture. In this review, we present some of the prominent advancements in cryo-electron tomography, illustrated by a subset of structural examples to demonstrate the power of the technique. More specifically, we focus on technical advances in automation of data collection and processing, sample thinning approaches, correlative cryo-light and electron microscopy, and sub-tomogram averaging methods. In turn, each of these advances enabled new insights into bacterial cell architecture, cell cycle progression, and the structure and function of molecular machines. Taken together, these significant advances within the cryo-electron tomography workflow have led to a greater understanding of prokaryotic biology. The advances made the technique available to a wider audience and more biological questions and provide the basis for continued advances in the near future.
Collapse
Affiliation(s)
- Janine Liedtke
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Jamie S Depelteau
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ariane Briegel
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
34
|
Deterministic Lateral Displacement Microfluidic Chip for Minicell Purification. MICROMACHINES 2022; 13:mi13030365. [PMID: 35334657 PMCID: PMC8951003 DOI: 10.3390/mi13030365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/18/2022]
Abstract
Deterministic lateral displacement (DLD) is a well-known microfluidic technique for particle separation with high potential for integration into bioreactors for therapeutic applications. Separation is based on the interaction of suspended particles in a liquid flowing through an array of microposts under low Reynolds conditions. This technique has been used previously to separate living cells of different sizes but similar shapes. Here, we present a DLD microchip to separate rod-shaped bacterial cells up to 10 µm from submicron spherical minicells. We designed two microchips with 50 and 25 µm cylindrical posts and spacing of 15 and 2.5 µm, respectively. Soft lithography was used to fabricate polydimethylsiloxane (PDMS) chips, which were assessed at different flow rates for their separation potential. The results showed negligible shear effect on the separation efficiency for both designs. However, the higher flow rates resulted in faster separation. We optimized the geometrical parameters including the shape, size, angle and critical radii of the posts and the width and depth of the channel as well as the number of arrays to achieve separation efficiency as high as 75.5% on a single-stage separation. These results pave the way for high-throughput separation and purification modules with the potential of direct integration into bioreactors.
Collapse
|
35
|
Piñas GE, DeSantis MD, Cassidy CK, Parkinson JS. Hexameric rings of the scaffolding protein CheW enhance response sensitivity and cooperativity in Escherichia coli chemoreceptor arrays. Sci Signal 2022; 15:eabj1737. [PMID: 35077199 DOI: 10.1126/scisignal.abj1737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Escherichia coli chemoreceptor array is a supramolecular assembly that enables cells to respond to extracellular cues dynamically and with great precision and sensitivity. In the array, transmembrane receptors organized as trimers of dimers are connected at their cytoplasmic tips by hexameric rings of alternating subunits of the kinase CheA and the scaffolding protein CheW (CheA-CheW rings). Interactions of CheW molecules with the members of receptor trimers not directly bound to CheA-CheW rings may lead to the formation of hexameric CheW rings in the chemoreceptor array. Here, we detected such CheW rings with a cellular cysteine-directed cross-linking assay and explored the requirements for their formation and their participation in array assembly. We found that CheW ring formation varied with cellular CheW abundance, depended on the presence of receptors capable of a trimer-of-dimers arrangement, and did not require CheA. Cross-linking studies of a CheA~CheW fusion protein incapable of forming homomeric CheW oligomers demonstrated that CheW rings were not essential for the assembly of CheA-containing arrays. Förster resonance energy transfer (FRET)-based kinase assays of arrays containing variable amounts of CheW rings revealed that CheW rings enhanced the cooperativity and the sensitivity of the responses to attractants. We propose that six-membered CheW rings provide the additional interconnectivity required for optimal signaling and gradient tracking performance by chemosensory arrays.
Collapse
Affiliation(s)
- Germán E Piñas
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael D DeSantis
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
36
|
Studying bacterial chemosensory array with CryoEM. Biochem Soc Trans 2021; 49:2081-2089. [PMID: 34495335 PMCID: PMC8589424 DOI: 10.1042/bst20210080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022]
Abstract
Bacteria direct their movement in respond to gradients of nutrients and other stimuli in the environment through the chemosensory system. The behavior is mediated by chemosensory arrays that are made up of thousands of proteins to form an organized array near the cell pole. In this review, we briefly introduce the architecture and function of the chemosensory array and its core signaling unit. We describe the in vivo and in vitro systems that have been used for structural studies of chemosensory array by cryoEM, including reconstituted lipid nanodiscs, 2D lipid monolayer arrays, lysed bacterial ghosts, bacterial minicells and native bacteria cells. Lastly, we review recent advances in structural analysis of chemosensory arrays using state-of-the-art cryoEM and cryoET methodologies, focusing on the latest developments and insights with a perspective on current challenges and future directions.
Collapse
|
37
|
Orillard E, Anaya S, Johnson MS, Watts KJ. Oxygen-Induced Conformational Changes in the PAS-Heme Domain of the Pseudomonas aeruginosa Aer2 Receptor. Biochemistry 2021; 60:2610-2622. [PMID: 34383467 DOI: 10.1021/acs.biochem.1c00452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Aer2 receptor from Pseudomonas aeruginosa has an O2-binding PAS-heme domain that stabilizes O2 via a Trp residue in the distal heme pocket. Trp rotates ∼90° to bond with the ligand and initiate signaling. Although the isolated PAS domain is monomeric, both in solution and in a cyanide-bound crystal structure, an unliganded structure forms a dimer. An overlay of the two structures suggests possible signaling motions but also predicts implausible clashes at the dimer interface when the ligand is bound. Moreover, in a full-length Aer2 dimer, PAS is sandwiched between multiple N- and C-terminal HAMP domains, which would feasibly restrict PAS motions. To explore the PAS dimer interface and signal-induced motions in full-length Aer2, we introduced Cys substitutions and used thiol-reactive probes to examine in vivo accessibility and residue proximities under both aerobic and anaerobic conditions. In vivo, PAS dimers were retained in full-length Aer2 in the presence and absence of O2, and the dimer interface was consistent with the isolated PAS dimer structure. O2-mediated changes were also consistent with structural predictions in which the PAS N-terminal caps move apart and the C-terminal DxT region moves closer together. The DxT motif links PAS to the C-terminal HAMP domains and was critical for PAS-HAMP signaling. Removing the N-terminal HAMP domains altered the distal PAS dimer interface and prevented signaling, even after signal-on lesions were introduced into PAS. The N-terminal HAMP domains thus facilitate the O2-dependent shift of PAS to the signal-on conformation, clarifying their role upstream of the PAS-sensing domain.
Collapse
Affiliation(s)
- Emilie Orillard
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Selina Anaya
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Mark S Johnson
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| |
Collapse
|
38
|
Burt A, Gaifas L, Dendooven T, Gutsche I. A flexible framework for multi-particle refinement in cryo-electron tomography. PLoS Biol 2021; 19:e3001319. [PMID: 34437530 PMCID: PMC8389456 DOI: 10.1371/journal.pbio.3001319] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) are increasingly used for macromolecular structure determination in situ. Here, we introduce a set of computational tools and resources designed to enable flexible approaches to STA through increased automation and simplified metadata handling. We create a bidirectional interface between the Dynamo software package and the Warp-Relion-M pipeline, providing a framework for ab initio and geometrical approaches to multiparticle refinement in M. We illustrate the power of working within this framework by applying it to EMPIAR-10164, a publicly available dataset containing immature HIV-1 virus-like particles (VLPs), and a challenging in situ dataset containing chemosensory arrays in bacterial minicells. Additionally, we provide a comprehensive, step-by-step guide to obtaining a 3.4-Å reconstruction from EMPIAR-10164. The guide is hosted on https://teamtomo.org/, a collaborative online platform we establish for sharing knowledge about cryo-ET.
Collapse
Affiliation(s)
- Alister Burt
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Lorenzo Gaifas
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Tom Dendooven
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| |
Collapse
|
39
|
Ni B, Colin R, Sourjik V. Production and Characterization of Motile and Chemotactic Bacterial Minicells. ACS Synth Biol 2021; 10:1284-1291. [PMID: 34081866 PMCID: PMC8218304 DOI: 10.1021/acssynbio.1c00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Minicells are nanosized
membrane vesicles produced by bacteria.
Minicells are chromosome-free but contain cellular biosynthetic and
metabolic machinery, and they are robust due to the protection provided
by the bacterial cell envelope, which makes them potentially highly
attractive in biomedical applications. However, the applicability
of minicells and other nanoparticle-based delivery systems is limited
by their inefficient accumulation at the target. Here we engineered
the minicell-producing Escherichia coli strain to
overexpress flagellar genes, which enables the generation of motile
minicells. We subsequently performed an experimental and theoretical
analysis of the minicell motility and their responses to gradients
of chemoeffectors. Despite important differences between the motility
of minicells and normal bacterial cells, minicells were able to bias
their movement in chemical gradients and to accumulate toward the
sources of chemoattractants. Such motile and chemotactic minicells
may thus be applicable for an active effector delivery and specific
targeting of tissues and cells according to their metabolic profiles.
Collapse
Affiliation(s)
- Bin Ni
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg D-35043, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg D-35043, Germany
| | - Remy Colin
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg D-35043, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg D-35043, Germany
| | - Victor Sourjik
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg D-35043, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg D-35043, Germany
| |
Collapse
|
40
|
Wang Z, Zhang Q, Mim C. Coming of Age: Cryo-Electron Tomography as a Versatile Tool to Generate High-Resolution Structures at Cellular/Biological Interfaces. Int J Mol Sci 2021; 22:6177. [PMID: 34201105 PMCID: PMC8228724 DOI: 10.3390/ijms22126177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Over the last few years, cryo electron microscopy has become the most important method in structural biology. While 80% of deposited maps are from single particle analysis, electron tomography has grown to become the second most important method. In particular sub-tomogram averaging has matured as a method, delivering structures between 2 and 5 Å from complexes in cells as well as in vitro complexes. While this resolution range is not standard, novel developments point toward a promising future. Here, we provide a guide for the workflow from sample to structure to gain insight into this emerging field.
Collapse
Affiliation(s)
| | | | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute (KTH), Hälsovägen 11C, 141 27 Huddinge, Sweden; (Z.W.); (Q.Z.)
| |
Collapse
|
41
|
Gushchin I, Aleksenko VA, Orekhov P, Goncharov IM, Nazarenko VV, Semenov O, Remeeva A, Gordeliy V. Nitrate- and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity. Int J Mol Sci 2021; 22:5933. [PMID: 34072989 PMCID: PMC8199190 DOI: 10.3390/ijms22115933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Under anaerobic conditions, bacteria may utilize nitrates and nitrites as electron acceptors. Sensitivity to nitrous compounds is achieved via several mechanisms, some of which rely on sensor histidine kinases (HKs). The best studied nitrate- and nitrite-sensing HKs (NSHKs) are NarQ and NarX from Escherichia coli. Here, we review the function of NSHKs, analyze their natural diversity, and describe the available structural information. In particular, we show that around 6000 different NSHK sequences forming several distinct clusters may now be found in genomic databases, comprising mostly the genes from Beta- and Gammaproteobacteria as well as from Bacteroidetes and Chloroflexi, including those from anaerobic ammonia oxidation (annamox) communities. We show that the architecture of NSHKs is mostly conserved, although proteins from Bacteroidetes lack the HAMP and GAF-like domains yet sometimes have PAS. We reconcile the variation of NSHK sequences with atomistic models and pinpoint the structural elements important for signal transduction from the sensor domain to the catalytic module over the transmembrane and cytoplasmic regions spanning more than 200 Å.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vladimir A. Aleksenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan M. Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vera V. Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
42
|
Abstract
Two-component systems (TCS) are widespread signaling systems present in all domains of life. TCS typically consist of a signal receptor/transducer and a response regulator. The receptors (histidine kinases, chemoreceptors and photoreceptors) are often embedded in the membrane and have a similar modular structure. Chemoreceptors were shown to function in highly ordered arrays, with trimers of dimers being the smallest functional unit. However, much less is known about photoreceptors. Here, we use small-angle scattering (SAS) to show that detergent-solubilized sensory rhodopsin II in complex with its cognate transducer forms dimers at low salt concentration, which associate into trimers of dimers at higher buffer molarities. We then fit an atomistic model of the whole complex into the SAS data. The obtained results suggest that the trimer of dimers is "tripod"-shaped and that the contacts between the dimers occur only through their cytoplasmic regions, whereas the transmembrane regions remain unconnected.
Collapse
|
43
|
Understanding transcription across scales: From base pairs to chromosomes. Mol Cell 2021; 81:1601-1616. [PMID: 33770487 DOI: 10.1016/j.molcel.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The influence of genome organization on transcription is central to our understanding of cell type specification. Higher-order genome organization is established through short- and long-range DNA interactions. Coordination of these interactions, from single atoms to entire chromosomes, plays a fundamental role in transcriptional control of gene expression. Loss of this coupling can result in disease. Analysis of transcriptional regulation typically involves disparate experimental approaches, from structural studies that define angstrom-level interactions to cell-biological and genomic approaches that assess mesoscale relationships. Thus, to fully understand the mechanisms that regulate gene expression, it is critical to integrate the findings gained across these distinct size scales. In this review, I illustrate fundamental ways in which cells regulate transcription in the context of genome organization.
Collapse
|
44
|
Burt A, Cassidy CK, Stansfeld PJ, Gutsche I. Alternative Architecture of the E. coli Chemosensory Array. Biomolecules 2021; 11:biom11040495. [PMID: 33806045 PMCID: PMC8064477 DOI: 10.3390/biom11040495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Chemotactic responses in motile bacteria are the result of sophisticated signal transduction by large, highly organized arrays of sensory proteins. Despite tremendous progress in the understanding of chemosensory array structure and function, a structural basis for the heightened sensitivity of networked chemoreceptors is not yet complete. Here, we present cryo-electron tomography visualisations of native-state chemosensory arrays in E. coli minicells. Strikingly, these arrays appear to exhibit a p2-symmetric array architecture that differs markedly from the p6-symmetric architecture previously described in E. coli. Based on this data, we propose molecular models of this alternative architecture and the canonical p6-symmetric assembly. We evaluate our observations and each model in the context of previously published data, assessing the functional implications of an alternative architecture and effects for future studies.
Collapse
Affiliation(s)
- Alister Burt
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France;
| | - C. Keith Cassidy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Phillip J. Stansfeld
- Department of Chemistry, School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK;
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France;
- Correspondence:
| |
Collapse
|
45
|
Bechtel W, Bich L. Grounding cognition: heterarchical control mechanisms in biology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190751. [PMID: 33487110 PMCID: PMC7934967 DOI: 10.1098/rstb.2019.0751] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We advance an account that grounds cognition, specifically decision-making, in an activity all organisms as autonomous systems must perform to keep themselves viable—controlling their production mechanisms. Production mechanisms, as we characterize them, perform activities such as procuring resources from their environment, putting these resources to use to construct and repair the organism's body and moving through the environment. Given the variable nature of the environment and the continual degradation of the organism, these production mechanisms must be regulated by control mechanisms that select when a production is required and how it should be carried out. To operate on production mechanisms, control mechanisms need to procure information through measurement processes and evaluate possible actions. They are making decisions. In all organisms, these decisions are made by multiple different control mechanisms that are organized not hierarchically but heterarchically. In many cases, they employ internal models of features of the environment with which the organism must deal. Cognition, in the form of decision-making, is thus fundamental to living systems which must control their production mechanisms. This article is part of the theme issue ‘Basal cognition: conceptual tools and the view from the single cell’.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy, University of California San Diego, La Jolla, CA, USA
| | - Leonardo Bich
- IAS-Research Centre for Life, Mind and Society, Department of Philosophy, University of the Basque Country (UPV/EHU), Avenida de Tolosa 70, Donostia-San Sebastian 20018, Spain
| |
Collapse
|
46
|
Muok AR, Ortega DR, Kurniyati K, Yang W, Maschmann ZA, Sidi Mabrouk A, Li C, Crane BR, Briegel A. Atypical chemoreceptor arrays accommodate high membrane curvature. Nat Commun 2020; 11:5763. [PMID: 33188180 PMCID: PMC7666581 DOI: 10.1038/s41467-020-19628-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
The prokaryotic chemotaxis system is arguably the best-understood signaling pathway in biology. In all previously described species, chemoreceptors organize into a hexagonal (P6 symmetry) extended array. Here, we report an alternative symmetry (P2) of the chemotaxis apparatus that emerges from a strict linear organization of the histidine kinase CheA in Treponema denticola cells, which possesses arrays with the highest native curvature investigated thus far. Using cryo-ET, we reveal that Td chemoreceptor arrays assume an unusual arrangement of the supra-molecular protein assembly that has likely evolved to accommodate the high membrane curvature. The arrays have several atypical features, such as an extended dimerization domain of CheA and a variant CheW-CheR-like fusion protein that is critical for maintaining an ordered chemosensory apparatus. Furthermore, the previously characterized Td oxygen sensor ODP influences CheA ordering. These results suggest a greater diversity of the chemotaxis signaling system than previously thought.
Collapse
Affiliation(s)
- Alise R Muok
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Davi R Ortega
- Department of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Kurni Kurniyati
- Department of Oral and Craniofacial Molecular Biology, Philips Research Institute for Oral Health, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Wen Yang
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Zachary A Maschmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Adam Sidi Mabrouk
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Chunhao Li
- Department of Oral and Craniofacial Molecular Biology, Philips Research Institute for Oral Health, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Ariane Briegel
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands.
| |
Collapse
|
47
|
Söderholm N, Singh B, Uhlin BE, Sandblad L. Exploring the bacterial nano-universe. Curr Opin Struct Biol 2020; 64:166-173. [PMID: 32846309 DOI: 10.1016/j.sbi.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Since the days of the first acknowledged microscopist, Antonie van Leeuwenhoek, the 'animalcules', that is, bacteria and other microbes have been subject to increasingly detailed visualization. With the currently most sophisticated molecular imaging method; cryo electron tomography (Cryo-ET), we are reaching the milestone of being able to image an entire organism in a single dataset at nanometer resolution. Cryo-ET will enable the next revolution in our understanding of bacterial cells, their ultra-structure and intricate molecular nanomachines. Here, we highlight recent research discoveries based on constantly progressing technology developments. We discuss advantages and challenges of using Cryo-ET to visualize spatial structure of microorganisms and macromolecular complexes in their native environment.
Collapse
Affiliation(s)
- Niklas Söderholm
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Birendra Singh
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Linda Sandblad
- Department of Chemistry and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden.
| |
Collapse
|
48
|
Gushchin I, Orekhov P, Melnikov I, Polovinkin V, Yuzhakova A, Gordeliy V. Sensor Histidine Kinase NarQ Activates via Helical Rotation, Diagonal Scissoring, and Eventually Piston-Like Shifts. Int J Mol Sci 2020; 21:E3110. [PMID: 32354084 PMCID: PMC7247690 DOI: 10.3390/ijms21093110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Membrane-embedded sensor histidine kinases (HKs) and chemoreceptors are used ubiquitously by bacteria and archaea to percept the environment, and are often crucial for their survival and pathogenicity. The proteins can transmit the signal from the sensor domain to the catalytic kinase domain reliably over the span of several hundreds of angstroms, and regulate the activity of the cognate response regulator proteins, with which they form two-component signaling systems (TCSs). Several mechanisms of transmembrane signal transduction in TCS receptors have been proposed, dubbed (swinging) piston, helical rotation, and diagonal scissoring. Yet, despite decades of studies, there is no consensus on whether these mechanisms are common for all TCS receptors. Here, we extend our previous work on Escherichia coli nitrate/nitrite sensor kinase NarQ. We determined a crystallographic structure of the sensor-TM-HAMP fragment of the R50S mutant, which, unexpectedly, was found in a ligand-bound-like conformation, despite an inability to bind nitrate. Subsequently, we reanalyzed the structures of the ligand-free and ligand-bound NarQ and NarX sensor domains, and conducted extensive molecular dynamics simulations of ligand-free and ligand-bound wild type and mutated NarQ. Based on the data, we show that binding of nitrate to NarQ causes, first and foremost, helical rotation and diagonal scissoring of the α-helices at the core of the sensor domain. These conformational changes are accompanied by a subtle piston-like motion, which is amplified by a switch in the secondary structure of the linker between the sensor and TM domains. We conclude that helical rotation, diagonal scissoring, and piston are simply different degrees of freedom in coiled-coil proteins and are not mutually exclusive in NarQ, and likely in other nitrate sensors and TCS proteins as well.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Personalized Medicine, Sechenov University, 119146 Moscow, Russia
| | - Igor Melnikov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Vitaly Polovinkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Anastasia Yuzhakova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
49
|
Ortega DR, Yang W, Subramanian P, Mann P, Kjær A, Chen S, Watts KJ, Pirbadian S, Collins DA, Kooger R, Kalyuzhnaya MG, Ringgaard S, Briegel A, Jensen GJ. Repurposing a chemosensory macromolecular machine. Nat Commun 2020; 11:2041. [PMID: 32341341 PMCID: PMC7184735 DOI: 10.1038/s41467-020-15736-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
How complex, multi-component macromolecular machines evolved remains poorly understood. Here we reveal the evolutionary origins of the chemosensory machinery that controls flagellar motility in Escherichia coli. We first identify ancestral forms still present in Vibrio cholerae, Pseudomonas aeruginosa, Shewanella oneidensis and Methylomicrobium alcaliphilum, characterizing their structures by electron cryotomography and finding evidence that they function in a stress response pathway. Using bioinformatics, we trace the evolution of the system through γ-Proteobacteria, pinpointing key evolutionary events that led to the machine now seen in E. coli. Our results suggest that two ancient chemosensory systems with different inputs and outputs (F6 and F7) existed contemporaneously, with one (F7) ultimately taking over the inputs and outputs of the other (F6), which was subsequently lost. Bacterial chemosensory systems are grouped into 17 flagellar classes (F1-17). Here the authors employ electron cryotomography and comparative genomics to characterise the chemosensory arrays in γ-proteobacteria and identify a structural distinct form of F7 that was repurposed to a different biological role over the course of its evolution.
Collapse
Affiliation(s)
- Davi R Ortega
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, C1125, USA
| | - Wen Yang
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Poorna Subramanian
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, C1125, USA
| | - Petra Mann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Andreas Kjær
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, C1125, USA.,Rex Richards Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Songye Chen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, C1125, USA
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Sahand Pirbadian
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| | - David A Collins
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Romain Kooger
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093, Zürich, Switzerland
| | - Marina G Kalyuzhnaya
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Ariane Briegel
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands.
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, C1125, USA. .,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|