1
|
Strzepek RF, Latour P, Ellwood MJ, Shaked Y, Boyd PW. Microbial competition for iron determines its availability to the ferrous wheel. THE ISME JOURNAL 2025; 19:wraf015. [PMID: 39869783 PMCID: PMC11833320 DOI: 10.1093/ismejo/wraf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Iron plays a pivotal role in regulating ocean primary productivity. Iron is supplied from diverse sources such as the atmosphere and the geosphere, and hence iron biogeochemical research has focused on identifying and quantifying such sources of "new" iron. However, the recycling of this new iron fuels up to 90% of the productivity in vast oceanic regions. Evidence points to the key role of microbes in mediating this recycling, referred to as the "ferrous wheel", that remobilises iron initially supplied to ocean biota. In the iron-limited subantarctic waters of the Southern Ocean, iron uptake is dominated by microbes smaller than 2 μm and exhibits seasonal and depth-related variations. The microbial community within the <2 μm size fraction comprises heterotrophic bacteria and picophytoplankton, both competing for iron. Here, we dissect the demand component of the ferrous wheel by separately assessing iron uptake by heterotrophic bacteria and photoautotrophic picophytoplankton. To explore the seasonal and depth-related variability in iron uptake, the influence of light on iron uptake in both bacterial and phytoplankton communities was examined. We observed that picoeukaryote phytoplankton demonstrated iron uptake rates 10 times greater than those observed in bacteria when normalized to biomass. Light was shown to stimulate iron uptake by 8- to 16-fold in phytoplankton and by 4- to 8-fold in heterotrophic bacteria. These results highlight the unexpectedly significant role of picoeukaryotic phytoplankton in driving the speed of the ferrous wheel, with implications for iron recycling across diurnal cycles, different oceanic depths, and seasonally.
Collapse
Affiliation(s)
- Robert F Strzepek
- Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Hobart, TAS 7004, Australia
| | - Pauline Latour
- ARC Australian Centre for Excellence in Antarctic Sciences, University of Tasmania, Hobart, TAS 7004, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| | - Michael J Ellwood
- Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat 8810302, Israel
| | - Philip W Boyd
- Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Hobart, TAS 7004, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| |
Collapse
|
2
|
Amorim K, Grover R, Omanović D, Sauzéat L, Do Noscimiento MIM, Fine M, Ferrier-Pagès C. Desert dust improves the photophysiology of heat-stressed corals beyond iron. Sci Rep 2024; 14:26509. [PMID: 39489736 PMCID: PMC11532333 DOI: 10.1038/s41598-024-77381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Desert dust is an important source of essential metals for marine primary productivity, especially in oligotrophic systems surrounded by deserts, such as the Red Sea. However, there are very few studies on the effects of dust on reef-building corals and none on the response of corals to heat stress. We therefore supplied dust to two coral species (Stylophora pistillata and Turbinaria reniformis) kept under control conditions (26 °C) or heat stress (32 °C). Since dust releases large amounts of iron (Fe) in seawater, among other metals, the direct effect of different forms of Fe enrichment on coral photosynthesis was also tested. First, our results show that the desert dust altered the coral metallome by increasing the content of metals that are important for coral physiology (e.g. lithium (up to 5-fold), manganese (up to 4-fold in S. pistillata), iron (up to 3-fold in S. pistillata), magnesium (up to 1.3-fold), molybdenum (up to 1.5-fold in S. pistillata)). Overall, metal enrichment improved the photosynthetic performance of corals, especially under thermal stress (e.g. Pgross (up to 2-fold), Pnet (up to 10-fold), chlorophyll (up to 1.5-fold), symbionts (up to 1.6-fold)). However, Fe exposure (ferric chloride or ferric citrate) did not directly improve photosynthesis, suggesting that it is the combination of metals released by the dust, the so-called "metal cocktail effect", that has a positive impact on coral photophysiology. Dust also led to a decrease in Ni uptake (up to 1.4-fold in the symbionts), likely related to the nitrogen metabolism. Finally, we found that the isotopic signature of metals such as iron, zinc and copper is a good indicator of heat stress and dust exposure in corals. In conclusion, desert dust can increase coral resistance to bleaching by supplying corals with essential metals.
Collapse
Affiliation(s)
- Katherine Amorim
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco.
| | - R Grover
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco
| | - D Omanović
- Center for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, 10000, Croatia
| | - L Sauzéat
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Clermont-Ferrand, 63000, France
- Université Clermont Auvergne, CNRS, INSERM, Institut Génétique, Reproduction et Développement, Clermont-Ferrand, 63000, France
| | - M I Marcus Do Noscimiento
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco
| | - Maoz Fine
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, P.O.B. 469, Eilat, 88103, Israel
| | - Christine Ferrier-Pagès
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco.
| |
Collapse
|
3
|
Li J, Babcock-Adams L, Boiteau RM, McIlvin MR, Manck LE, Sieber M, Lanning NT, Bundy RM, Bian X, Ștreangă IM, Granzow BN, Church MJ, Fitzsimmons JN, John SG, Conway TM, Repeta DJ. Microbial iron limitation in the ocean's twilight zone. Nature 2024; 633:823-827. [PMID: 39322731 DOI: 10.1038/s41586-024-07905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/05/2024] [Indexed: 09/27/2024]
Abstract
Primary production in the sunlit surface ocean is regulated by the supply of key nutrients, primarily nitrate, phosphate and iron (Fe), required by phytoplankton to fix carbon dioxide into biomass1-3. Below the surface ocean, remineralization of sinking organic matter rapidly regenerates nutrients, and microbial metabolism in the upper mesopelagic 'twilight zone' (200-500 m) is thought to be limited by the delivery of labile organic carbon4,5. However, few studies have examined the role of nutrients in shaping microbial production in the mesopelagic6-8. Here we report the distribution and uptake of siderophores, biomarkers for microbial Fe deficiency9 across a meridional section of the eastern Pacific Ocean. Siderophore concentrations are high not only in chronically Fe-limited surface waters but also in the twilight zone underlying the North and South Pacific subtropical gyres, two key ecosystems for the marine carbon cycle. Our findings suggest that bacterial Fe deficiency owing to low Fe availability is probably characteristic of the twilight zone in several large ocean basins, greatly expanding the region of the marine water column in which nutrients limit microbial metabolism, with potential implications for ocean carbon storage.
Collapse
Affiliation(s)
- Jingxuan Li
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lydia Babcock-Adams
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Rene M Boiteau
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Matthew R McIlvin
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Lauren E Manck
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Matthias Sieber
- College of Marine Science, University of South Florida, St Petersburg, FL, USA
| | - Nathan T Lanning
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Oceanography, Texas A&M University, College Station, TX, USA
| | - Randelle M Bundy
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Xiaopeng Bian
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Iulia-Mădălina Ștreangă
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin N Granzow
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Geosciences Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA
| | - Matthew J Church
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | | | - Seth G John
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Tim M Conway
- College of Marine Science, University of South Florida, St Petersburg, FL, USA
| | - Daniel J Repeta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
4
|
Gray AR. The Four-Dimensional Carbon Cycle of the Southern Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:163-190. [PMID: 37738480 DOI: 10.1146/annurev-marine-041923-104057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The Southern Ocean plays a fundamental role in the global carbon cycle, dominating the oceanic uptake of heat and carbon added by anthropogenic activities and modulating atmospheric carbon concentrations in past, present, and future climates. However, the remote and extreme conditions found there make the Southern Ocean perpetually one of the most difficult places on the planet to observe and to model, resulting in significant and persistent uncertainties in our knowledge of the oceanic carbon cycle there. The flow of carbon in the Southern Ocean is traditionally understood using a zonal mean framework, in which the meridional overturning circulation drives the latitudinal variability observed in both air-sea flux and interior ocean carbon concentration. However, recent advances, based largely on expanded observation and modeling capabilities in the region, reveal the importance of processes acting at smaller scales, including basin-scale zonal asymmetries in mixed-layer depth, mesoscale eddies, and high-frequency atmospheric variability. Assessing the current state of knowledge and remaining gaps emphasizes the need to move beyond the zonal mean picture and embrace a four-dimensional understanding of the carbon cycle in the Southern Ocean.
Collapse
Affiliation(s)
- Alison R Gray
- School of Oceanography, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
5
|
He Q, Zhan W, Cai S, Du Y, Chen Z, Tang S, Zhan H. Enhancing impacts of mesoscale eddies on Southern Ocean temperature variability and extremes. Proc Natl Acad Sci U S A 2023; 120:e2302292120. [PMID: 37722044 PMCID: PMC10523448 DOI: 10.1073/pnas.2302292120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023] Open
Abstract
As a major sink of anthropogenic heat and carbon, the Southern Ocean experienced pronounced warming with increasing extreme temperature events over the past decades. Mesoscale eddies that strongly influence the uptake, redistribution, and storage of heat in the ocean are expected to play important roles in these changes, yet observational evidence remains limited. Here, we employ a comprehensive analysis of over 500,000 historical hydrographic profile measurements combined with satellite-based eddy observations to show enhanced thermal eddy imprints in the Southern Ocean. Our observations reveal that anticyclonic (cyclonic) eddies are responsible for nearly half of the subsurface high (low)-temperature extremes detected, although only 10% of the profiles are located in eddy interiors. Over the past decade (2006 to 2019), both mean and extreme temperature anomalies within eddies in the Antarctic Circumpolar Current increased significantly, promoting the rise in subsurface ocean temperature variability. This enhanced role of eddies is likely a result of enhanced eddy pumping due to the increase in eddy intensity and ocean stratification caused by ocean warming. Our analysis underscores the crucial role of eddies in amplifying ocean temperature variability and extremes, with their effects expected to be even more pronounced as global warming persists.
Collapse
Affiliation(s)
- Qingyou He
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Weikang Zhan
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Shuqun Cai
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing101408, China
| | - Yan Du
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing101408, China
| | - Zhiwu Chen
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Shilin Tang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya572025, China
| | - Haigang Zhan
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing101408, China
| |
Collapse
|
6
|
Fourquez M, Janssen DJ, Conway TM, Cabanes D, Ellwood MJ, Sieber M, Trimborn S, Hassler C. Chasing iron bioavailability in the Southern Ocean: Insights from Phaeocystis antarctica and iron speciation. SCIENCE ADVANCES 2023; 9:eadf9696. [PMID: 37379397 PMCID: PMC10306294 DOI: 10.1126/sciadv.adf9696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Dissolved iron (dFe) availability limits the uptake of atmospheric CO2 by the Southern Ocean (SO) biological pump. Hence, any change in bioavailable dFe in this region can directly influence climate. On the basis of Fe uptake experiments with Phaeocystis antarctica, we show that the range of dFe bioavailability in natural samples is wider (<1 to ~200% compared to free inorganic Fe') than previously thought, with higher bioavailability found near glacial sources. The degree of bioavailability varied regardless of in situ dFe concentration and depth, challenging the consensus that sole dFe concentrations can be used to predict Fe uptake in modeling studies. Further, our data suggest a disproportionately major role of biologically mediated ligands and encourage revisiting the role of humic substances in influencing marine Fe biogeochemical cycling in the SO. Last, we describe a linkage between in situ dFe bioavailability and isotopic signatures that, we anticipate, will stimulate future research.
Collapse
Affiliation(s)
- Marion Fourquez
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UMR 110, Marseille 13288, France
- University of Geneva, Department F.-A. Forel for Environmental and Aquatic Sciences, Geneva 1211, Switzerland
| | - David J. Janssen
- Department Surface Waters, Eawag–Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Tim M. Conway
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Damien Cabanes
- University of Geneva, Department F.-A. Forel for Environmental and Aquatic Sciences, Geneva 1211, Switzerland
| | - Michael J. Ellwood
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
- Australian Centre for Excellence in Antarctic Science, Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Matthias Sieber
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
- Institute of Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland
| | - Scarlett Trimborn
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Christel Hassler
- University of Geneva, Department F.-A. Forel for Environmental and Aquatic Sciences, Geneva 1211, Switzerland
- Institute of Earth Sciences, University of Lausanne, Lausanne 1015, Switzerland
- School of Architecture, Civil, and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Sion 1951, Switzerland
| |
Collapse
|
7
|
Mayers KMJ, Kuhlisch C, Basso JTR, Saltvedt MR, Buchan A, Sandaa RA. Grazing on Marine Viruses and Its Biogeochemical Implications. mBio 2023; 14:e0192121. [PMID: 36715508 PMCID: PMC9973340 DOI: 10.1128/mbio.01921-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Viruses are the most abundant biological entities in the ocean and show great diversity in terms of size, host specificity, and infection cycle. Lytic viruses induce host cell lysis to release their progeny and thereby redirect nutrients from higher to lower trophic levels. Studies continue to show that marine viruses can be ingested by nonhost organisms. However, not much is known about the role of viral particles as a nutrient source and whether they possess a nutritional value to the grazing organisms. This review seeks to assess the elemental composition and biogeochemical relevance of marine viruses, including roseophages, which are a highly abundant group of bacteriophages in the marine environment. We place a particular emphasis on the phylum Nucleocytoviricota (NCV) (formerly known as nucleocytoplasmic large DNA viruses [NCLDVs]), which comprises some of the largest viral particles in the marine plankton that are well in the size range of prey for marine grazers. Many NCVs contain lipid membranes in their capsid that are rich carbon and energy sources, which further increases their nutritional value. Marine viruses may thus be an important nutritional component of the marine plankton, which can be reintegrated into the classical food web by nonhost organism grazing, a process that we coin the "viral sweep." Possibilities for future research to resolve this process are highlighted and discussed in light of current technological advancements.
Collapse
Affiliation(s)
- Kyle M. J. Mayers
- Environment and Climate Division, NORCE Norwegian Research Centre, Bergen, Norway
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonelle T. R. Basso
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | | | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Ruth-Anne Sandaa
- Department of Microbiology, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Vivado D, Ardini F, Salis A, Damonte G, Rivaro P. Combining voltammetric and mass spectrometric data to evaluate iron organic speciation in subsurface coastal seawater samples of the Ross sea (Antarctica). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26718-26734. [PMID: 36369443 PMCID: PMC9995544 DOI: 10.1007/s11356-022-23975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) is the most important trace element in the ocean, as it is required by phytoplankton for photosynthesis and nitrate assimilation. Iron speciation is important to better understand the biogeochemical cycle and availability of this micronutrient, in particular in the Southern Ocean. Dissolved Fe (dFe) concentration and speciation were determined in 24 coastal subsurface seawater samples collected in the western Ross sea (Antarctica) during the austral summer 2017 as part of the CELEBeR (CDW Effects on glacial mElting and on Bulk of Fe in the Western Ross sea) project. ICP-DRC-MS was used for dFe determination, whereas CLE-AdSV was used to obtain the concentration of complexed and free dFe, of the ligands, and the values of the stability constants of the complexes. Dissolved Fe values ranged from 0.4 to 2.5 nM and conditional stability constant (logK'Fe'L) from 13.0 to 15.0, highlighting the presence of Fe-binding organic complexes of different stabilities. Principal component analysis (PCA) allowed us to point out that Terra Nova Bay and the neighboring area of Aviator and Mariner Glaciers were different in terms of chemical, physical, and biological parameters. A qualitative investigation on the nature of the organic ligands was carried out by HPLC-ESI-MS/MS. Results showed that siderophores represented a heterogeneous class of organic ligands pool.
Collapse
Affiliation(s)
- Davide Vivado
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Francisco Ardini
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132, Genoa, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132, Genoa, Italy
| | - Paola Rivaro
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146, Genoa, Italy.
| |
Collapse
|
9
|
Fitzsimmons JN, Conway TM. Novel Insights into Marine Iron Biogeochemistry from Iron Isotopes. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:383-406. [PMID: 36100217 DOI: 10.1146/annurev-marine-032822-103431] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The micronutrient iron plays a major role in setting the magnitude and distribution of primary production across the global ocean. As such, an understanding of the sources, sinks, and internal cycling processes that drive the oceanic distribution of iron is key to unlocking iron's role in the global carbon cycle and climate, both today and in the geologic past. Iron isotopic analyses of seawater have emerged as a transformative tool for diagnosing iron sources to the ocean and tracing biogeochemical processes. In this review, we summarize the end-member isotope signatures of different iron source fluxes and highlight the novel insights into iron provenance gained using this tracer. We also review ways in which iron isotope fractionation might be used to understand internal oceanic cycling of iron, including speciation changes, biological uptake, and particle scavenging. We conclude with an overview of future research needed to expand the utilization of this cutting-edge tracer.
Collapse
Affiliation(s)
| | - Tim M Conway
- College of Marine Science, University of South Florida, St. Petersburg, Florida, USA;
| |
Collapse
|
10
|
Fourquez M, Strzepek RF, Ellwood MJ, Hassler C, Cabanes D, Eggins S, Pearce I, Deppeler S, Trull TW, Boyd PW, Bressac M. Phytoplankton Responses to Bacterially Regenerated Iron in a Southern Ocean Eddy. Microorganisms 2022; 10:microorganisms10081655. [PMID: 36014073 PMCID: PMC9413495 DOI: 10.3390/microorganisms10081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the Subantarctic sector of the Southern Ocean, vertical entrainment of iron (Fe) triggers the seasonal productivity cycle but diminishing physical supply during the spring to summer transition forces microbial assemblages to rapidly acclimate. Here, we tested how phytoplankton and bacteria within an isolated eddy respond to different dissolved Fe (DFe)/ligand inputs. We used three treatments: one that mimicked the entrainment of new DFe (Fe-NEW), another in which DFe was supplied from bacterial regeneration of particles (Fe-REG), and a control with no addition of DFe (Fe-NO). After 6 days, 3.5 (Fe-NO, Fe-NEW) to 5-fold (Fe-REG) increases in Chlorophyll a were observed. These responses of the phytoplankton community were best explained by the differences between the treatments in the amount of DFe recycled during the incubation (Fe-REG, 15% recycled c.f. 40% Fe-NEW, 60% Fe-NO). This additional recycling was more likely mediated by bacteria. By day 6, bacterial production was comparable between Fe-NO and Fe-NEW but was approximately two-fold higher in Fe-REG. A preferential response of phytoplankton (haptophyte-dominated) relative to high nucleic acid (HNA) bacteria was also found in the Fe-REG treatment while the relative proportion of diatoms increased faster in the Fe-NEW and Fe-NO treatments. Comparisons between light and dark incubations further confirmed the competition between picophytoplankton and HNA for DFe. Overall, our results demonstrate great versatility by microorganisms to use different Fe sources that results in highly efficient Fe recycling within surface waters. This study also encourages future research to further investigate the interactions between functional groups of microbes (e.g. HNA and cyanobacteria) to better constraint modeling in Fe and carbon biogeochemical cycles.
Collapse
Affiliation(s)
- Marion Fourquez
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart 7004, Australia
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UMR 110, 13288 Marseille, France
- Correspondence:
| | - Robert F. Strzepek
- Australian Antarctic Program Partnership (AAPP), Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia
| | - Michael J. Ellwood
- Research School of Earth Sciences, Australian National University, Canberra 2601, Australia
| | - Christel Hassler
- Marine and Lake Biogeochemistry, Department F.-A. Forel, University of Geneva, 1205 Geneva, Switzerland
- Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Damien Cabanes
- Marine and Lake Biogeochemistry, Department F.-A. Forel, University of Geneva, 1205 Geneva, Switzerland
| | - Sam Eggins
- Research School of Earth Sciences, Australian National University, Canberra 2601, Australia
| | - Imojen Pearce
- Australian Antarctic Division (AAD), Kingston 7050, Australia
| | - Stacy Deppeler
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia
- National Institute of Water and Atmospheric Research, Wellington 6021, New Zealand
| | - Thomas W. Trull
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart 7004, Australia
- Climate Science Centre, Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart 7004, Australia
| | - Philip W. Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart 7004, Australia
| | - Matthieu Bressac
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia
- Laboratoire d’Océanographie de Villefranche, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
11
|
König D, Conway TM, Hamilton DS, Tagliabue A. Surface Ocean Biogeochemistry Regulates the Impact of Anthropogenic Aerosol Fe Deposition on the Cycling of Iron and Iron Isotopes in the North Pacific. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL098016. [PMID: 36245954 PMCID: PMC9539696 DOI: 10.1029/2022gl098016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
Distinctively-light isotopic signatures associated with Fe released from anthropogenic activity have been used to trace basin-scale impacts. However, this approach is complicated by the way Fe cycle processes modulate oceanic dissolved Fe (dFe) signatures (δ56Fediss) post deposition. Here we include dust, wildfire, and anthropogenic aerosol Fe deposition in a global ocean biogeochemical model with active Fe isotope cycling, to quantify how anthropogenic Fe impacts surface ocean dFe and δ56Fediss. Using the North Pacific as a natural laboratory, the response of dFe, δ56Fediss, and primary productivity are spatially and seasonally variable and do not simply follow the footprint of atmospheric deposition. Instead, the effect of anthropogenic Fe is regulated by the biogeochemical regime, specifically the degree of Fe limitation and rates of primary production. Overall, we find that while δ56Fediss does trace anthropogenic input, the response is muted by fractionation during phytoplankton uptake, but amplified by other isotopically-light Fe sources.
Collapse
Affiliation(s)
- D. König
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - T. M. Conway
- College of Marine ScienceUniversity of South FloridaSt PetersburgFLUSA
| | - D. S. Hamilton
- Department of Earth and Atmospheric ScienceCornell UniversityIthacaNYUSA
| | - A. Tagliabue
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
12
|
Lory C, Van Wambeke F, Fourquez M, Barani A, Guieu C, Tilliette C, Marie D, Nunige S, Berman-Frank I, Bonnet S. Assessing the contribution of diazotrophs to microbial Fe uptake using a group specific approach in the Western Tropical South Pacific Ocean. ISME COMMUNICATIONS 2022; 2:41. [PMID: 37938297 PMCID: PMC9723570 DOI: 10.1038/s43705-022-00122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 04/27/2023]
Abstract
Diazotrophs are often limited by iron (Fe) availability in the oligotrophic ocean. The Western Tropical South Pacific (WTSP) ocean has been suggested as an intense N2 fixation area due to Fe fertilizations through shallow hydrothermal activity. Yet, the Fe demand of diazotrophs in their natural habitat, where they cohabit with other microbial organisms also requiring Fe, remains unknown. Here we develop and apply a method consisting of coupling 55Fe uptake experiments with cell-sorting by flow cytometry, and provide group-specific rates of in situ Fe uptake by the microbial community in the WTSP, in addition to bulk and size fractionation rates. We reveal that the diazotrophs Crocosphaera watsonii and Trichodesmium contribute substantially to the bulk in situ Fe uptake (~33% on average over the studied area), despite being numerically less abundant compared to the rest of the planktonic community. Trichodesmium had the highest cell-specific Fe uptake rates, followed by C. watsonii, picoeukaryotes, Prochlorococcus, Synechococcus and finally heterotrophic bacteria. Calculated Fe:C quotas were higher (by 2 to 52-fold) for both studied diazotrophs compared to those of the non-diazotrophic plankton, reflecting their high intrinsic Fe demand. This translates into a diazotroph biogeographical distribution that appears to be influenced by ambient dissolved Fe concentrations in the WTSP. Despite having low cell-specific uptake rates, Prochlorococcus and heterotrophic bacteria were largely the main contributors to the bulk Fe uptake (~23% and ~12%, respectively). Overall, this group-specific approach increases our ability to examine the ecophysiological role of functional groups, including those of less abundant and/or less active microbes.
Collapse
Affiliation(s)
- C Lory
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| | - F Van Wambeke
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - M Fourquez
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - A Barani
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - C Guieu
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, France
| | - C Tilliette
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, France
| | - D Marie
- Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - S Nunige
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - I Berman-Frank
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - S Bonnet
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| |
Collapse
|
13
|
König D, Conway TM, Ellwood MJ, Homoky WB, Tagliabue A. Constraints on the Cycling of Iron Isotopes From a Global Ocean Model. GLOBAL BIOGEOCHEMICAL CYCLES 2021; 35:e2021GB006968. [PMID: 35860342 PMCID: PMC9285799 DOI: 10.1029/2021gb006968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 06/15/2023]
Abstract
Although iron (Fe) is a key regulator of primary production over much of the ocean, many components of the marine iron cycle are poorly constrained, which undermines our understanding of climate change impacts. In recent years, a growing number of studies (often part of GEOTRACES) have used Fe isotopic signatures (δ56Fe) to disentangle different aspects of the marine Fe cycle. Characteristic δ56Fe endmembers of external sources and assumed isotopic fractionation during biological Fe uptake or recycling have been used to estimate relative source contributions and investigate internal transformations, respectively. However, different external sources and fractionation processes often overlap and act simultaneously, complicating the interpretation of oceanic Fe isotope observations. Here we investigate the driving forces behind the marine dissolved Fe isotopic signature (δ56Fediss) distribution by incorporating Fe isotopes into the global ocean biogeochemical model PISCES. We find that distinct external source endmembers acting alongside fractionation during organic complexation and phytoplankton uptake are required to reproduce δ56Fediss observations along GEOTRACES transects. δ56Fediss distributions through the water column result from regional imbalances of remineralization and abiotic removal processes. They modify δ56Fediss directly and transfer surface ocean signals to the interior with opposing effects. Although attributing crustal compositions to sedimentary Fe sources in regions with low organic carbon fluxes improves our isotope model, δ56Fediss signals from hydrothermal or sediment sources cannot be reproduced accurately by simply adjusting δ56Fe endmember values. This highlights that additional processes must govern the exchange and/or speciation of Fe supplied by these sources to the ocean.
Collapse
Affiliation(s)
- D. König
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - T. M. Conway
- College of Marine ScienceUniversity of South FloridaSt PetersburgFLUSA
| | - M. J. Ellwood
- Research School of Earth SciencesAustralian National UniversityCanberraACTAustralia
| | - W. B. Homoky
- School of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - A. Tagliabue
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
14
|
Shaked Y, Twining BS, Tagliabue A, Maldonado MT. Probing the Bioavailability of Dissolved Iron to Marine Eukaryotic Phytoplankton Using In Situ Single Cell Iron Quotas. GLOBAL BIOGEOCHEMICAL CYCLES 2021; 35:e2021GB006979. [PMID: 35865367 PMCID: PMC9286392 DOI: 10.1029/2021gb006979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 05/08/2023]
Abstract
We present a new approach for quantifying the bioavailability of dissolved iron (dFe) to oceanic phytoplankton. Bioavailability is defined using an uptake rate constant (kin-app) computed by combining data on: (a) Fe content of individual in situ phytoplankton cells; (b) concurrently determined seawater dFe concentrations; and (c) growth rates estimated from the PISCES model. We examined 930 phytoplankton cells, collected between 2002 and 2016 from 45 surface stations during 11 research cruises. This approach is only valid for cells that have upregulated their high-affinity Fe uptake system, so data were screened, yielding 560 single cell k in-app values from 31 low-Fe stations. We normalized k in-app to cell surface area (S.A.) to account for cell-size differences. The resulting bioavailability proxy (k in-app/S.A.) varies among cells, but all values are within bioavailability limits predicted from defined Fe complexes. In situ dFe bioavailability is higher than model Fe-siderophore complexes and often approaches that of highly available inorganic Fe'. Station averaged k in-app/S.A. are also variable but show no systematic changes across location, temperature, dFe, and phytoplankton taxa. Given the relative consistency of k in-app/S.A. among stations (ca. five-fold variation), we computed a grand-averaged dFe availability, which upon normalization to cell carbon (C) yields k in-app/C of 42,200 ± 11,000 L mol C-1 d-1. We utilize k in-app/C to calculate dFe uptake rates and residence times in low Fe oceanic regions. Finally, we demonstrate the applicability of k in-app/C for constraining Fe uptake rates in earth system models, such as those predicting climate mediated changes in net primary production in the Fe-limited Equatorial Pacific.
Collapse
Affiliation(s)
- Yeala Shaked
- Freddy and Nadine Herrmann Institute of Earth SciencesHebrew UniversityJerusalemIsrael
- Interuniversity Institute for Marine SciencesEilatIsrael
| | | | | | - Maria T. Maldonado
- Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
15
|
Pezzi LP, de Souza RB, Santini MF, Miller AJ, Carvalho JT, Parise CK, Quadro MF, Rosa EB, Justino F, Sutil UA, Cabrera MJ, Babanin AV, Voermans J, Nascimento EL, Alves RCM, Munchow GB, Rubert J. Oceanic eddy-induced modifications to air-sea heat and CO 2 fluxes in the Brazil-Malvinas Confluence. Sci Rep 2021; 11:10648. [PMID: 34017014 PMCID: PMC8137957 DOI: 10.1038/s41598-021-89985-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/26/2021] [Indexed: 11/09/2022] Open
Abstract
Sea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL). During the first cruise to support the Antarctic Modeling and Observation System (ATMOS) project, a WCE that was shed from the Brazil Current was sampled. Apart from traditional meteorological measurements, we used the Eddy Covariance method to directly measure the ocean–atmosphere sensible heat, latent heat, momentum, and carbon dioxide (CO2) fluxes. The mechanisms of pressure adjustment and vertical mixing that can make the MABL unstable were both identified. The WCE also acted to increase the surface winds and heat fluxes from the ocean to the atmosphere. Oceanic regions at middle and high latitudes are expected to absorb atmospheric CO2, and are thereby considered as sinks, due to their cold waters. Instead, the presence of this WCE in midlatitudes, surrounded by predominantly cold waters, caused the ocean to locally act as a CO2 source. The contribution to the atmosphere was estimated as 0.3 ± 0.04 mmol m−2 day−1, averaged over the sampling period. The CO2 transfer velocity coefficient (K) was determined using a quadratic fit and showed an adequate representation of ocean–atmosphere fluxes. The ocean–atmosphere CO2, momentum, and heat fluxes were each closely correlated with the SST. The increase of SST inside the WCE clearly resulted in larger magnitudes of all of the ocean–atmosphere fluxes studied here. This study adds to our understanding of how oceanic mesoscale structures, such as this WCE, affect the overlying atmosphere.
Collapse
Affiliation(s)
- Luciano P Pezzi
- Laboratory of Ocean and Atmosphere Studies (LOA), Earth Observation and Geoinformatics Division (OBT), National Institute for Space Research (INPE), São José dos Campos, SP, Brazil.
| | - Ronald B de Souza
- Earth System Numerical Modeling Division, Center for Weather Forecast and Climate Studies (CPTEC), National Institute for Space Research (INPE), Cachoeira Paulista, SP, Brazil
| | - Marcelo F Santini
- Laboratory of Ocean and Atmosphere Studies (LOA), Earth Observation and Geoinformatics Division (OBT), National Institute for Space Research (INPE), São José dos Campos, SP, Brazil
| | - Arthur J Miller
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Jonas T Carvalho
- Laboratory of Ocean and Atmosphere Studies (LOA), Earth Observation and Geoinformatics Division (OBT), National Institute for Space Research (INPE), São José dos Campos, SP, Brazil
| | | | - Mario F Quadro
- Federal Institute of Education, Science and Technology of Santa Catarina, Florianópolis, SC, Brazil
| | - Eliana B Rosa
- Laboratory of Ocean and Atmosphere Studies (LOA), Earth Observation and Geoinformatics Division (OBT), National Institute for Space Research (INPE), São José dos Campos, SP, Brazil
| | - Flavio Justino
- Agricultural Engineering Department, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Ueslei A Sutil
- Laboratory of Ocean and Atmosphere Studies (LOA), Earth Observation and Geoinformatics Division (OBT), National Institute for Space Research (INPE), São José dos Campos, SP, Brazil
| | - Mylene J Cabrera
- Laboratory of Ocean and Atmosphere Studies (LOA), Earth Observation and Geoinformatics Division (OBT), National Institute for Space Research (INPE), São José dos Campos, SP, Brazil
| | - Alexander V Babanin
- Department of Infrastructure Engineering, University of Melbourne, Victoria, Australia
| | - Joey Voermans
- Department of Infrastructure Engineering, University of Melbourne, Victoria, Australia
| | - Ernani L Nascimento
- Atmospheric Modeling Group (GruMA), Department of Physics, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rita C M Alves
- Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Joel Rubert
- Southern Space Coordination (COESU), National Institute for Space Research (CRS/INPE) , Santa Maria, RS, Brazil
| |
Collapse
|
16
|
Abstract
Fossil-fuel emissions may impact phytoplankton primary productivity and carbon cycling by supplying bioavailable Fe to remote areas of the ocean via atmospheric aerosols. However, this pathway has not been confirmed by field observations of anthropogenic Fe in seawater. Here we present high-resolution trace-metal concentrations across the North Pacific Ocean (158°W from 25°to 42°N). A dissolved Fe maximum was observed around 35°N, coincident with high dissolved Pb and Pb isotope ratios matching Asian industrial sources and confirming recent aerosol deposition. Iron-stable isotopes reveal in situ evidence of anthropogenic Fe in seawater, with low δ56Fe (-0.23‰ > δ56Fe > -0.65‰) observed in the region that is most influenced by aerosol deposition. An isotope mass balance suggests that anthropogenic Fe contributes 21-59% of dissolved Fe measured between 35° and 40°N. Thus, anthropogenic aerosol Fe is likely to be an important Fe source to the North Pacific Ocean.
Collapse
|