1
|
Healing G, Nadinov I, Hadmojo WT, Yin J, Thomas S, Bakr OM, Alshareef HN, Anthopoulos TD, Mohammed OF. Ultrafast Coherent Hole Injection at the Interface between CuSCN and Polymer PM6 Using Femtosecond Mid-Infrared Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17757-17766. [PMID: 38573046 PMCID: PMC11956001 DOI: 10.1021/acsami.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Tracking the dynamics of ultrafast hole injection into copper thiocyanate (CuSCN) at the interface can be experimentally challenging. These challenges include restrictions in accessing the ultraviolet spectral range through transient electronic spectroscopy, where the absorption spectrum of CuSCN is located. Time-resolved vibrational spectroscopy solves this problem by tracking marker modes at specific frequencies and allowing direct access to dynamical information at the molecular level at donor-acceptor interfaces in real time. This study uses photoabsorber PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)-benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))]) as a model system to explore and decipher the hole transfer dynamics of CuSCN using femtosecond (fs) mid-infrared (IR) spectroscopy. The time-resolved results indicate that excited PM6 exhibits a sharp vibrational mode at 1599 cm-1 attributed to the carbonyl group, matching the predicted frequency position obtained from time-dependent density functional theory (DFT) calculations. The fs mid-IR spectroscopy demonstrates a fast formation (<168 fs) and blue spectral shift of the CN stretching vibration from 2118 cm-1 for CuSCN alone to 2180 cm-1 for PM6/CuSCN, confirming the hole transfer from PM6 to CuSCN. The short interfacial distance and high frontier orbital delocalization obtained from the interfacial DFT models support a coherent and ultrafast regime for hole transfer. These results provide direct evidence for hole injection at the interface of CuSCN for the first time using femtosecond mid-IR spectroscopy and serve as a new investigative approach for interfacial chemistry and solar cell communities.
Collapse
Affiliation(s)
- George Healing
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Issatay Nadinov
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wisnu Tantyo Hadmojo
- KAUST
Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Jun Yin
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong
| | - Simil Thomas
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N. Alshareef
- Materials
Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Thomas D. Anthopoulos
- KAUST
Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Wang Y, Benny A, Le Dé B, Chin AW, Scholes GD. A numerically exact description of ultrafast vibrational decoherence in vibration-coupled electron transfer. Proc Natl Acad Sci U S A 2025; 122:e2416542122. [PMID: 40020191 DOI: 10.1073/pnas.2416542122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/15/2025] [Indexed: 03/12/2025] Open
Abstract
Broadband pump-probe spectroscopy has been widely used to measure vibrational decoherence associated with the reaction coordinate in photoinduced ultrafast vibration-coupled electron transfer (VCET) reactions. These experiments provide insight into the interplay of intramolecular coordinates along the reaction coordinate. However, a general theoretical foundation for analyzing, and even for explaining rigorously, these data is lacking. In this work, we study vibrational decoherence in a model VCET reaction using the nearly exact time-dependent density matrix renormalization group simulation method. We explore how analyzing the density matrix with quantum information measures can help elucidate the evolution of vibrational coherence in simulations of dynamics. We examine how vibrational coherence is affected by electron transfer on the timescale of approximately 100 femtoseconds. Our results suggest that electron transfer, in the nonadiabatic model, changes the vibrational equilibrium position abruptly-an example of a "quantum quench" event. This explains the concomitant vibrational decoherence. We find that abrupt vibrational decoherence can be mitigated by wavepacket motion occurring on the timescale of the electron transfer.
Collapse
Affiliation(s)
- Yuanheng Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Alfy Benny
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Brieuc Le Dé
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, Paris 75005, France
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, Paris 75005, France
| | | |
Collapse
|
3
|
Zhang X, Wang N, Li Y. The Accurate Synthesis of a Multiscale Metallic Interface on Graphdiyne. SMALL METHODS 2025; 9:e2301571. [PMID: 38795321 DOI: 10.1002/smtd.202301571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Indexed: 05/27/2024]
Abstract
The accurate construction of composite material systems containing graphdiyne (GDY) and other metallic materials has promoted the formation of innovative structures and practical applications in the fields of energy, catalysis, optoelectronics, and biomedicine. To fulfill the practical requirements, the precise formation of multiscale interfaces over a wide range, from single atoms to nanostructures, plays an important role in the optimization of the structural design and properties. The intrinsic correlations between the structure, synthesis process, characteristic properties, and device performance are systematically investigated. This review outlines the current research achievements regarding the controlled formation of multiscale metallic interfaces on GDY. Synthetic strategies for interface regulation, as well as the correlation between the structure and performance, are presented. Furthermore, innovative research ideas for the design and synthesis of functional metal-based materials loaded onto GDY-based substances are also provided, demonstrating the promising application potential of GDY-based materials.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| |
Collapse
|
4
|
Javed A, Lüttig J, Charvátová K, Sanders SE, Willow R, Zhang M, Gardiner AT, Malý P, Ogilvie JP. Photosynthetic Energy Transfer: Missing in Action (Detected Spectroscopy)? J Phys Chem Lett 2024; 15:12376-12386. [PMID: 39653033 DOI: 10.1021/acs.jpclett.4c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
In recent years, action-detected ultrafast spectroscopies have gained popularity offering distinct advantages over their coherently detected counterparts, such as spatially resolved and operando measurements with high sensitivity. However, there are also fundamental limitations connected to the process of signal generation in action-detected experiments. Here we perform fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) of the light-harvesting II (LH2) complex from purple bacteria. We demonstrate that the B800-B850 energy transfer process in LH2 is weak but observable in F-2DES, unlike in coherently detected 2DES where the energy transfer is visible with 100% contrast. We explain the weak signatures using a disordered excitonic model that accounts for experimental conditions. We further derive a general formula for the presence of excited-state signals in multichromophoric aggregates, dependent on the aggregate geometry, size, excitonic coupling and disorder. We find that the prominence of excited-state dynamics in action-detected spectroscopy offers a unique probe of excitonic delocalization in multichromophoric systems.
Collapse
Affiliation(s)
- Ariba Javed
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, Michigan 48109-2136, United States
| | - Julian Lüttig
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, United States
| | - Kateřina Charvátová
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
| | - Stephanie E Sanders
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, United States
| | - Rhiannon Willow
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, United States
| | - Muyi Zhang
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, United States
| | - Alastair T Gardiner
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Pavel Malý
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, United States
- Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON Canada, K1N 6N5
| |
Collapse
|
5
|
Pananusorn P, Sotome H, Uratani H, Ishiwari F, Phomphrai K, Saeki A. Molecular models of PM6 for non-fullerene acceptor organic solar cells: How DAD and ADA structures impact charge separation and charge recombination. J Chem Phys 2024; 161:184710. [PMID: 39530371 DOI: 10.1063/5.0227785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The quadrupole moment of a non-fullerene acceptor (NFA) generated by the constituent electron donor (D) and acceptor (A) units is a significant factor that affects the charge separation (CS) and charge recombination (CR) processes in organic photovoltaics (OPVs). However, its impact on p-type polymer domains remains unclear. In this study, we synthesized p-type molecules, namely acceptor-donor-acceptor (ADA) and donor-acceptor-donor (DAD), which are components of the benchmark PM6 polymer (D: benzodithiophene and A: dioxobenzodithiophene). Planar heterojunction films, a model of bulk heterojunction, were prepared using ADA, DAD, and PM6 as the bottom p-type layers and Y6 NFA as the top n-type layer. Flash-photolysis time-resolved microwave conductivity, femtosecond transient absorption spectroscopy, and quantum mechanical calculations were employed to probe the charge carrier dynamics. Our findings reveal that while the subtle difference in quadrupole moment and energy gradient of the p-type materials has a minimal influence on CS, the molecular type (ADA or DAD) significantly affects the bulk CR. This study expands the understanding of how the p-type component and its conformation at the p/n interface impact the CS and CR in OPVs, highlighting the critical role of molecular donors in optimizing device performance.
Collapse
Affiliation(s)
- Puttipong Pananusorn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hiroki Uratani
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
7
|
Kim P, Roy S, Valentine AJS, Liu X, Kromer S, Kim TW, Li X, Castellano FN, Chen LX. Real-time capture of nuclear motions influencing photoinduced electron transfer. Chem Sci 2024:d4sc01876a. [PMID: 39184296 PMCID: PMC11339639 DOI: 10.1039/d4sc01876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Although vibronic coupling phenomena have been recognized in the excite state dynamics of transition metal complexes, its impact on photoinduced electron transfer (PET) remains largely unexplored. This study investigates coherent wavepacket (CWP) dynamics during PET processes in a covalently linked electron donor-acceptor complex featuring a cyclometalated Pt(ii) dimer as the donor and naphthalene diimide (NDI) as the acceptors. Upon photoexciting the Pt(ii) dimer electron donor, ultrafast broadband transient absorption spectroscopy revealed direct modulation of NDI radical anion formation through certain CWP motions and correlated temporal evolutions of the amplitudes for these CWPs with the NDI radical anion formation. These results provide clear evidence that the CWP motions are the vibronic coherences coupled to the PET reaction coordinates. Normal mode analysis identified that the CWP motions originate from vibrational modes associated with the dihedral angles and bond lengths between the planes of the cyclometalating ligand and the NDI, the key modes altering their π-interaction, consequently influencing PET dynamics. The findings highlight the pivotal role of vibrations in shaping the favorable trajectories for the efficient PET processes.
Collapse
Affiliation(s)
- Pyosang Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
- Chemistry Department, Northwestern University Evanston IL 60208 USA
| | - Subhangi Roy
- Chemistry Department, North Carolina State University Raleigh NC 27695-8204 USA
| | | | - Xiaolin Liu
- Chemistry Department, University of Washington Seattle WA 98195 USA
| | - Sarah Kromer
- Chemistry Department, North Carolina State University Raleigh NC 27695-8204 USA
| | - Tae Wu Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Xiaosong Li
- Chemistry Department, University of Washington Seattle WA 98195 USA
| | - Felix N Castellano
- Chemistry Department, North Carolina State University Raleigh NC 27695-8204 USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
- Chemistry Department, Northwestern University Evanston IL 60208 USA
| |
Collapse
|
8
|
Li J, Ji Q, Wang R, Zhang ZG, Wang X, Xiao M, Lu YQ, Zhang C. Charge Generation Dynamics in Organic Photovoltaic Blends under One-Sun-Equivalent Illumination Detected by Highly Sensitive Terahertz Spectroscopy. J Am Chem Soc 2024; 146:20312-20322. [PMID: 38980945 DOI: 10.1021/jacs.4c05786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Organic photovoltaic (OPV) devices attain high performance with nonfullerene acceptors by utilizing the synergistic dual channels of charge generation that originate from excitations in both the donor and acceptor materials. However, the specific intermediate states that facilitate both channels are subject to debate. To address this issue, we employ time-resolved terahertz spectroscopy with improved sensitivity (ΔE/E < 10-6), enabling direct probing of charge generation dynamics in a prototypical PM6:Y6 bulk heterojunction system under one-sun-equivalent excitation density. Charge generation arising from donor excitations is characterized with a rise time of ∼9 ps, while that from acceptor excitations shows a rise time of ∼18 ps. Temperature-dependent measurements further reveal notably distinct activation energies for these two charge generation pathways. Additionally, the two channels of charge generation can be substantially manipulated by altering the ratio of bulk to interfaces. These findings strongly suggest the presence of two distinct intermediate states: interfacial and intramoiety excitations. These states are crucial in mediating the transfer of electrons and holes, driving charge generation within OPV devices.
Collapse
Affiliation(s)
- Jiacong Li
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qing Ji
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- College of Physics, Nanjing University of Aeronautics and Astronautics, and Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
- Institute of Materials Engineering, Nanjing University, Nantong, Jiangsu 226019, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Institute of Materials Engineering, Nanjing University, Nantong, Jiangsu 226019, China
| |
Collapse
|
9
|
Casotto A, Rukin PS, Fresch E, Prezzi D, Freddi S, Sangaletti L, Rozzi CA, Collini E, Pagliara S. Coherent Vibrations Promote Charge-Transfer across a Graphene-Based Interface. J Am Chem Soc 2024; 146:14989-14999. [PMID: 38767025 DOI: 10.1021/jacs.3c12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Discerning the impact of the coherent motion of the nuclei on the timing and efficiency of charge transfer at the donor-acceptor interface is essential for designing performance-enhanced optoelectronic devices. Here, we employ an experimental approach using photocurrent detection in coherent multidimensional spectroscopy to excite a donor aromatic macrocycle and collect the charge transferred to a 2D acceptor layer. For this purpose, we prepared a cobalt phthalocyanine-graphene (CoPc-Gr) interface. Unlike blends, the well-ordered architecture achieved through the physical separation of the two layers allows us to unambiguously collect the electrical signal from graphene alone and associate it with a microscopic understanding of the whole process. The CoPc-Gr interface exhibits an ultrafast electron-transfer signal, stemming from an interlayer mechanism. Remarkably, the signal presents an oscillating time evolution modulated by coherent vibrations originating from the laser-excited CoPc states. By performing Fourier analysis on the beatings and correlating it with the Raman features, along with a comprehensive first-principles characterization of the vibrational coupling in the CoPc excited states, we successfully identify both the orbitals and molecular vibrations that promote the charge transfer at the interface.
Collapse
Affiliation(s)
- Andrea Casotto
- I-LAMP and Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, via della Garzetta 48, 25133 Brescia, Italy
- Radiation Laboratory and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Pavel S Rukin
- Istituto Nanoscienze─Consiglio Nazionale delle Ricerche (CNR-NANO), via Campi 213/A, 41125 Modena, Italy
| | - Elisa Fresch
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Deborah Prezzi
- Istituto Nanoscienze─Consiglio Nazionale delle Ricerche (CNR-NANO), via Campi 213/A, 41125 Modena, Italy
| | - Sonia Freddi
- I-LAMP and Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, via della Garzetta 48, 25133 Brescia, Italy
| | - Luigi Sangaletti
- I-LAMP and Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, via della Garzetta 48, 25133 Brescia, Italy
| | - Carlo A Rozzi
- Istituto Nanoscienze─Consiglio Nazionale delle Ricerche (CNR-NANO), via Campi 213/A, 41125 Modena, Italy
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Stefania Pagliara
- I-LAMP and Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, via della Garzetta 48, 25133 Brescia, Italy
| |
Collapse
|
10
|
Gómez-Ruiz FJ, Acevedo OL, Rodríguez FJ, Quiroga L, Johnson NF. Energy transfer in N-component nanosystems enhanced by pulse-driven vibronic many-body entanglement. Sci Rep 2023; 13:19790. [PMID: 37968301 PMCID: PMC10651905 DOI: 10.1038/s41598-023-46256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
The processing of energy by transfer and redistribution, plays a key role in the evolution of dynamical systems. At the ultrasmall and ultrafast scale of nanosystems, quantum coherence could in principle also play a role and has been reported in many pulse-driven nanosystems (e.g. quantum dots and even the microscopic Light-Harvesting Complex II (LHC-II) aggregate). Typical theoretical analyses cannot easily be scaled to describe these general N-component nanosystems; they do not treat the pulse dynamically; and they approximate memory effects. Here our aim is to shed light on what new physics might arise beyond these approximations. We adopt a purposely minimal model such that the time-dependence of the pulse is included explicitly in the Hamiltonian. This simple model generates complex dynamics: specifically, pulses of intermediate duration generate highly entangled vibronic (i.e. electronic-vibrational) states that spread multiple excitons - and hence energy - maximally within the system. Subsequent pulses can then act on such entangled states to efficiently channel subsequent energy capture. The underlying pulse-generated vibronic entanglement increases in strength and robustness as N increases.
Collapse
Affiliation(s)
- Fernando J Gómez-Ruiz
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011, Valladolid, Spain
- Instituto de Física Fundamental IFF-CSIC, Calle Serrano 113b, 28006, Madrid, Spain
| | - Oscar L Acevedo
- Escuela de Ciencias Básicas, Institución Universitaria Politécnico Grancolombiano, Bogotá, D.C, 110231, Colombia
| | - Ferney J Rodríguez
- Departamento de Física, Universidad de los Andes, A.A. 4976, Bogotá, D.C, Colombia
| | - Luis Quiroga
- Departamento de Física, Universidad de los Andes, A.A. 4976, Bogotá, D.C, Colombia
| | - Neil F Johnson
- Physics Department, George Washington University, Washington, D.C, 20052, USA.
| |
Collapse
|
11
|
Hamilton JR, Amarotti E, Dibenedetto CN, Striccoli M, Levine RD, Collini E, Remacle F. Time-Frequency Signatures of Electronic Coherence of Colloidal CdSe Quantum Dot Dimer Assemblies Probed at Room Temperature by Two-Dimensional Electronic Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2096. [PMID: 37513107 PMCID: PMC10384478 DOI: 10.3390/nano13142096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Electronic coherence signatures can be directly identified in the time-frequency maps measured in two-dimensional electronic spectroscopy (2DES). Here, we demonstrate the theory and discuss the advantages of this approach via the detailed application to the fast-femtosecond beatings of a wide variety of electronic coherences in ensemble dimers of quantum dots (QDs), assembled from QDs of 3 nm in diameter, with 8% size dispersion in diameter. The observed and computed results can be consistently characterized directly in the time-frequency domain by probing the polarization in the 2DES setup. The experimental and computed time-frequency maps are found in very good agreement, and several electronic coherences are characterized at room temperature in solution, before the extensive dephasing due to the size dispersion begins. As compared to the frequency-frequency maps that are commonly used in 2DES, the time-frequency maps allow exploiting electronic coherences without additional post-processing and with fewer 2DES measurements. Towards quantum technology applications, we also report on the modeling of the time-frequency photocurrent response of these electronic coherences, which paves the way to integrating QD devices with classical architectures, thereby enhancing the quantum advantage of such technologies for parallel information processing at room temperature.
Collapse
Affiliation(s)
- James R Hamilton
- Department of Theoretical Physical Chemistry, University of Liège, B4000 Liège, Belgium
| | - Edoardo Amarotti
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Carlo N Dibenedetto
- CNR-IPCF SS Bari, c/o Chemistry Department, University of Bari Aldo Moro, 70126 Bari, Italy
- Chemistry Department, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Marinella Striccoli
- CNR-IPCF SS Bari, c/o Chemistry Department, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Raphael D Levine
- The Fritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Francoise Remacle
- Department of Theoretical Physical Chemistry, University of Liège, B4000 Liège, Belgium
| |
Collapse
|
12
|
Jiang Y, Ma X, Wang L, Zhang J, Wang Z, Zhao R, Liu G, Li Y, Zhang C, Ma C, Qi Y, Wu L, Gao J. Observation of Electric Hysteresis, Polarization Oscillation, and Pyroelectricity in Nonferroelectric p-n Heterojunctions. PHYSICAL REVIEW LETTERS 2023; 130:196801. [PMID: 37243636 DOI: 10.1103/physrevlett.130.196801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/31/2023] [Indexed: 05/29/2023]
Abstract
The switchable electric polarization is usually achieved in ferroelectric materials with noncentrosymmetric structures, which opens exciting opportunities for information storage and neuromorphic computing. In another polar system of p-n junction, there exists the electric polarization at the interface due to the Fermi level misalignment. However, the resultant built-in electric field is unavailable to manipulate, thus attracting less attention for memory devices. Here, we report the interfacial polarization hysteresis (IPH) in the vertical sidewall van der Waals heterojunctions of black phosphorus and quasi-two-dimensional electron gas on SrTiO_{3}. A nonvolatile switching of electric polarization can be achieved by reconstructing the space charge region (SCR) with long-lifetime nonequilibrium carriers. The resulting electric-field controllable IPH is experimentally verified by electric hysteresis, polarization oscillation, and pyroelectric effect. Further studies confirm the transition temperature of 340 K, beyond which the IPH vanishes. The second transition is revealed with the temperature dropping below 230 K, corresponding to the sharp improvement of IPH and the freezing of SCR reconstruction. This work offers new possibilities for exploring the memory phenomena in nonferroelectric p-n heterojunctions.
Collapse
Affiliation(s)
- Yucheng Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Xinglong Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Lin Wang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jinlei Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhichao Wang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Run Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guozhen Liu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaping Qi
- Macau Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Lin Wu
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Institute of High Performance Computing, Agency for Science, Technology, and Research 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Ju Gao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- School for Optoelectronic Engineering, Zaozhuang University, Shandong 277160, China
| |
Collapse
|
13
|
Synergistic enhancement of piezocatalysis and electrochemical oxidation for the degradation of ciprofloxacin by PbO2 intercalation material. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Maimaris M, Pettipher AJ, Azzouzi M, Walke DJ, Zheng X, Gorodetsky A, Dong Y, Tuladhar PS, Crespo H, Nelson J, Tisch JWG, Bakulin AA. Sub-10-fs observation of bound exciton formation in organic optoelectronic devices. Nat Commun 2022; 13:4949. [PMID: 35999214 PMCID: PMC9399228 DOI: 10.1038/s41467-022-32478-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
Fundamental mechanisms underlying exciton formation in organic semiconductors are complex and elusive as it occurs on ultrashort sub-100-fs timescales. Some fundamental aspects of this process, such as the evolution of exciton binding energy, have not been resolved in time experimentally. Here, we apply a combination of sub-10-fs Pump-Push-Photocurrent, Pump-Push-Photoluminescence, and Pump-Probe spectroscopies to polyfluorene devices to track the ultrafast formation of excitons. While Pump-Probe is sensitive to the total concentration of excited states, Pump-Push-Photocurrent and Pump-Push-Photoluminescence are sensitive to bound states only, providing access to exciton binding dynamics. We find that excitons created by near-absorption-edge photons are intrinsically bound states, or become such within 10 fs after excitation. Meanwhile, excitons with a modest >0.3 eV excess energy can dissociate spontaneously within 50 fs before acquiring bound character. These conclusions are supported by excited-state molecular dynamics simulations and a global kinetic model which quantitatively reproduce experimental data. Ultrafast action spectroscopies of organic optoelectronic devices reveal that the formation of bound exciton state occurs as fast as 10 fs. Excitons having excess energy can dissociate spontaneously within 50-fs before acquiring bound character.
Collapse
Affiliation(s)
- Marios Maimaris
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | | | - Mohammed Azzouzi
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Daniel J Walke
- Department of Physics, Imperial College London, London, SW7 2AZ, UK.,Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin, 14109, Germany
| | - Xijia Zheng
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Andrei Gorodetsky
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.,School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yifan Dong
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.,National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Pabitra Shakya Tuladhar
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Helder Crespo
- Department of Physics, Imperial College London, London, SW7 2AZ, UK.,IFIMUP and Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, R. do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Jenny Nelson
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - John W G Tisch
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| |
Collapse
|
15
|
Barati F, Arp TB, Su S, Lake RK, Aji V, van Grondelle R, Rudner MS, Song JCW, Gabor NM. Vibronic Exciton-Phonon States in Stack-Engineered van der Waals Heterojunction Photodiodes. NANO LETTERS 2022; 22:5751-5758. [PMID: 35787025 PMCID: PMC9335870 DOI: 10.1021/acs.nanolett.2c00944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Stack engineering, an atomic-scale metamaterial strategy, enables the design of optical and electronic properties in van der Waals heterostructure devices. Here we reveal the optoelectronic effects of stacking-induced strong coupling between atomic motion and interlayer excitons in WSe2/MoSe2 heterojunction photodiodes. To do so, we introduce the photocurrent spectroscopy of a stack-engineered photodiode as a sensitive technique for probing interlayer excitons, enabling access to vibronic states typically found only in molecule-like systems. The vibronic states in our stack are manifest as a palisade of pronounced periodic sidebands in the photocurrent spectrum in frequency windows close to the interlayer exciton resonances and can be shifted "on demand" through the application of a perpendicular electric field via a source-drain bias voltage. The observation of multiple well-resolved sidebands as well as their ability to be shifted by applied voltages vividly demonstrates the emergence of interlayer exciton vibronic structure in a stack-engineered optoelectronic device.
Collapse
Affiliation(s)
- Fatemeh Barati
- Laboratory
of Quantum Materials Optoelectronics, Department of Physics and Astronomy, and Laboratory for Terahertz
and Terascale Electronics (LATTE), Department of Electrical and Computer
Engineering, University of California—Riverside, Riverside, California 92521, United States
| | - Trevor B. Arp
- Laboratory
of Quantum Materials Optoelectronics, Department of Physics and Astronomy, and Laboratory for Terahertz
and Terascale Electronics (LATTE), Department of Electrical and Computer
Engineering, University of California—Riverside, Riverside, California 92521, United States
| | - Shanshan Su
- Laboratory
of Quantum Materials Optoelectronics, Department of Physics and Astronomy, and Laboratory for Terahertz
and Terascale Electronics (LATTE), Department of Electrical and Computer
Engineering, University of California—Riverside, Riverside, California 92521, United States
| | - Roger K. Lake
- Laboratory
of Quantum Materials Optoelectronics, Department of Physics and Astronomy, and Laboratory for Terahertz
and Terascale Electronics (LATTE), Department of Electrical and Computer
Engineering, University of California—Riverside, Riverside, California 92521, United States
| | - Vivek Aji
- Laboratory
of Quantum Materials Optoelectronics, Department of Physics and Astronomy, and Laboratory for Terahertz
and Terascale Electronics (LATTE), Department of Electrical and Computer
Engineering, University of California—Riverside, Riverside, California 92521, United States
| | - Rienk van Grondelle
- Department
of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Canadian
Institute for Advanced Research, MaRS Centre
West Tower, 661 University
Avenue, Toronto, Ontario ON M5G 1M1, Canada
| | - Mark S. Rudner
- Department
of Physics, University of Washington, Seattle, Washington 98195, United States
- Niels
Bohr Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Justin C. W. Song
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Nathaniel M. Gabor
- Laboratory
of Quantum Materials Optoelectronics, Department of Physics and Astronomy, and Laboratory for Terahertz
and Terascale Electronics (LATTE), Department of Electrical and Computer
Engineering, University of California—Riverside, Riverside, California 92521, United States
- Canadian
Institute for Advanced Research, MaRS Centre
West Tower, 661 University
Avenue, Toronto, Ontario ON M5G 1M1, Canada
| |
Collapse
|
16
|
Andermann AM, Rego LGC. Energetics of the charge generation in organic donor-acceptor interfaces. J Chem Phys 2022; 156:024104. [PMID: 35032994 DOI: 10.1063/5.0076611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-fullerene acceptor materials have posed new paradigms for the design of organic solar cells , whereby efficient carrier generation is obtained with small driving forces, in order to maximize the open-circuit voltage (VOC). In this paper, we use a coarse-grained mixed quantum-classical method, which combines Ehrenfest and Redfield theories, to shed light on the charge generation process in small energy offset interfaces. We have investigated the influence of the energetic driving force as well as the vibronic effects on the charge generation and photovoltaic energy conversion. By analyzing the effects of the Holstein and Peierls vibrational couplings, we find that vibrational couplings produce an overall effect of improving the charge generation. However, the two vibronic mechanisms play different roles: the Holstein relaxation mechanism decreases the charge generation, whereas the Peierls mechanism always assists the charge generation. Moreover, by examining the electron-hole binding energy as a function of time, we evince two distinct regimes for the charge separation: the temperature independent excitonic spread on a sub-100 fs timescale and the complete dissociation of the charge-transfer state that occurs on the timescale of tens to hundreds of picoseconds, depending on the temperature. The quantum dynamics of the system exhibits the three regimes of the Marcus electron transfer kinetics as the energy offset of the interface is varied.
Collapse
Affiliation(s)
- Artur M Andermann
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Luis G C Rego
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
17
|
Alamro FS, Ahmed HA, Gomha SM, Shaban M. Synthesis, Mesomorphic, and Solar Energy Characterizations of New Non-Symmetrical Schiff Base Systems. Front Chem 2021; 9:686788. [PMID: 34540796 PMCID: PMC8448195 DOI: 10.3389/fchem.2021.686788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
New asymmetrical Schiff base series based on lateral methoxy group in a central core, (E)-3-methoxy-4-(((4-methoxyphenyl)imino)methyl)phenyl 4-alkoxybenzoate (An), were synthesized and their optical and mesomorphic characteristics were investigated. The lateral OCH3group was inserted in the central ring in ortho position with respect to the azomethine linkage. FT-IR, and NMR spectroscopy as well as elemental analyses were used to elucidate their molecular structures. Their mesomorphic behaviors were characterized by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). These examinations indicated that all the designed series were monomorphic and possessed nematic (N) mesophase enantiotropically, except A12 derivative which exhibited monotropic N phase. A comparative study was made between the present investigated series (An) and their corresponding isomers (Bn). The results revealed that the kind and stability of the mesophase as well as its temperature range are affected by the location and special orientation of the lateral methoxy group electric-resistance, conductance, energy-gap, and Urbach-energy were also reported for the present investigated An series. These results revealed that all electrodes exhibit Ohmic properties and electric-resistances in the GΩ range, whereas the electric resistance was decreased from 221.04 to 44.83 GΩ by lengthening the terminal alkoxy-chain to n = 12. The band gap of the An series was reduced from 3.43 to 2.89 eV by increasing the terminal chain length from n = 6 to n = 12 carbons. Therefore, controlling the length of the terminal chain can be used to improve the An series' electric conductivity and optical absorption, making it suitable for solar energy applications.
Collapse
Affiliation(s)
- Fowzia S. Alamro
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
- Chemistry Department, College of Sciences Yanbu, Taibah University, Yanbu, Saudi Arabia
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Almadinah-Almonawara, Saudi Arabia
| | - Mohamed Shaban
- Nanophotonics and Applications Labs, Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Department of Physics, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
18
|
Alshabanah LA, Al-Mutabagani LA, Gomha SM, Ahmed HA, Popoola SA, Shaban M. Novel sulphonic acid liquid crystal derivatives: experimental, computational and optoelectrical characterizations. RSC Adv 2021; 11:27937-27949. [PMID: 35480753 PMCID: PMC9039420 DOI: 10.1039/d1ra02517a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023] Open
Abstract
A novel liquid crystal homologous series based on the benzene sulphonic acid moiety, namely (E)-4-((4-((4-(alkoxy)benzoyl)oxy)benzylidene)amino)benzenesulfonic acid (Sn), was synthesized and examined via different experimental and theoretical measurements. The four synthesized members have terminally connected alkoxy chain groups, which vary between 6 and 12 carbons. FT-IR and NMR spectroscopy, as well as elemental analyses, were used to confirm their molecular structures. Mesomorphic and optical investigations of the prepared homologues were also conducted using differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The DSC and POM characterization revealed that all of the synthesized sulphonic acid members are monomorphic, exhibiting a pure smectic A (SmA) mesophase with enantiotropic properties. Moreover, all compounds in the group have high thermal transition temperatures. The terminal electron-withdrawing group -SO3H plays a considerable role in the stabilization of the molecule, which in return resulted in high thermal SmA stability. Furthermore, the experimental data relating to the mesophase behavior were substantiated via computational studies using the DFT approach. In addition, the terminal -SO3H moiety has an essential impact on the thermal and physical parameters of possible geometries. All members of the synthesized Sn series exhibit ohmic behavior with electrical resistance in the GΩ range, as revealed by electrical measurements. The S10 electrode had the highest electrical conductivity: 35.16 pS. It also showed two direct optical band gaps of 3.58 and 3.23 eV with Urbach energies of 1261.1 and 502.4 meV. Upon decreasing the number of carbon atoms to n = 6, the main bandgap for S6 reduced to 3.3 eV. The highest conductivity, good absorption, and two large bandgaps recorded for the chain derivative S10 make it suitable for investigations relating to energy-based applications.
Collapse
Affiliation(s)
- Latifah A Alshabanah
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Laila A Al-Mutabagani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Cairo University Cairo 12613 Egypt
- Chemistry Department, Faculty of Science, Islamic University of Madinah Al-Madinah Al-Munawwarah 42351 Saudi Arabia
| | - Hoda A Ahmed
- Department of Chemistry, Faculty of Science, Cairo University Cairo 12613 Egypt
- Chemistry Department, College of Sciences, Yanbu, Taibah University Yanbu 30799 Saudi Arabia
| | - Saheed A Popoola
- Chemistry Department, Faculty of Science, Islamic University of Madinah Al-Madinah Al-Munawwarah 42351 Saudi Arabia
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University in Almadinah Almonawara Almadinah 42351 Saudi Arabia
- Nanophotonics and Applications Labs, Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| |
Collapse
|
19
|
Cao S, Rosławska A, Doppagne B, Romeo M, Féron M, Chérioux F, Bulou H, Scheurer F, Schull G. Energy funnelling within multichromophore architectures monitored with subnanometre resolution. Nat Chem 2021; 13:766-770. [PMID: 34031563 DOI: 10.1038/s41557-021-00697-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 02/04/2023]
Abstract
The funnelling of energy within multichromophoric assemblies is at the heart of the efficient conversion of solar energy by plants. The detailed mechanisms of this process are still actively debated as they rely on complex interactions between a large number of chromophores and their environment. Here we used luminescence induced by scanning tunnelling microscopy to probe model multichromophoric structures assembled on a surface. Mimicking strategies developed by photosynthetic systems, individual molecules were used as ancillary, passive or blocking elements to promote and direct resonant energy transfer between distant donor and acceptor units. As it relies on organic chromophores as the elementary components, this approach constitutes a powerful model to address fundamental physical processes at play in natural light-harvesting complexes.
Collapse
Affiliation(s)
- Shuiyan Cao
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France.,Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Anna Rosławska
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France.
| | | | | | - Michel Féron
- Université Bourgogne Franche-Comté, FEMTO-ST, UFC, CNRS, Besançon, France
| | - Frédéric Chérioux
- Université Bourgogne Franche-Comté, FEMTO-ST, UFC, CNRS, Besançon, France
| | - Hervé Bulou
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France
| | - Fabrice Scheurer
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France
| | - Guillaume Schull
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France.
| |
Collapse
|
20
|
Alamro FS, Gomha SM, Shaban M, Altowyan AS, Abolibda TZ, Ahmed HA. Optical investigations and photoactive solar energy applications of new synthesized Schiff base liquid crystal derivatives. Sci Rep 2021; 11:15046. [PMID: 34294823 PMCID: PMC8298406 DOI: 10.1038/s41598-021-94533-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
New homologues series of liquid crystalline materials namely, (E)-3-methoxy-4-[(p-tolylimino)methyl]phenyl 4-alkloxybenzoates (I-n), were designed and evaluated for their mesomorphic and optical behavior. The prepared series constitutes three members that differ from each other by the terminally attached alkoxy chain group, these vary between 6 and 12 carbons. A laterally OCH3 group is incorporated into the central benzene ring in meta position with respect to the ester moiety. Mesomorphic characterizations of the prepared derivatives are conducted using differential scanning-calorimetry (DSC), polarized optical-microscopy (POM). Molecular structures were elucidated by elemental analyses and NMR spectroscopy. DSC and POM investigations revealed that all the synthesized derivatives are purely nematogenic exhibiting only nematic (N) mesophase, except for the longest chain derivative (I-12) that is dimorphic possesses smectic A and N phases. Moreover, all members of the group have a wide mesomorphic range with high thermal nematic stability. A comparative study was established between the present derivative (I-6) and their previously prepared isomer. The results indicated that the location exchange of the polar compact group (CH3) influences the N mesophase stability and range. The electrical measurements revealed that all synthesized series I-n show Ohmic behaviors with effective electric resistances in the GΩ range. Under white light illumination, the effective electric conductivity for the compound I-8 is five times that obtained in dark conditions. This derivative also showed two direct optical band gaps in the UV and visible light range. In addition, I-6 has band energy gaps of values 1.07 and 2.79 eV, which are suitable for solar energy applications.
Collapse
Affiliation(s)
- Fowzia S. Alamro
- grid.449346.80000 0004 0501 7602Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671 Saudi Arabia
| | - Sobhi M. Gomha
- grid.7776.10000 0004 0639 9286Department of Chemistry, Faculty of Science, Cairo University, Cairo, 12613 Egypt ,Chemistry Department, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, 42351 Saudi Arabia
| | - Mohamed Shaban
- grid.411662.60000 0004 0412 4932Nanophotonics and Applications Labs, Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef, 62514 Egypt ,Department of Physics, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, 42351 Saudi Arabia
| | - Abeer S. Altowyan
- grid.449346.80000 0004 0501 7602Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671 Saudi Arabia
| | - Tariq Z. Abolibda
- Chemistry Department, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, 42351 Saudi Arabia
| | - Hoda A. Ahmed
- grid.7776.10000 0004 0639 9286Department of Chemistry, Faculty of Science, Cairo University, Cairo, 12613 Egypt ,grid.412892.40000 0004 1754 9358Chemistry Department, College of Sciences, Taibah University, Yanbu, 30799 Saudi Arabia
| |
Collapse
|
21
|
Hong L, Yao H, Cui Y, Yu R, Lin YW, Chen TW, Xu Y, Qin J, Hsu CS, Ge Z, Hou J. Simultaneous Improvement of Efficiency and Stability of Organic Photovoltaic Cells by using a Cross-Linkable Fullerene Derivative. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101133. [PMID: 34013657 DOI: 10.1002/smll.202101133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Improving power conversion efficiencies (PCEs) and stability are two main tasks for organic photovoltaic (OPV) cells. In the past few years, although the PCE of the OPV cells has been considerably improved, the research on device stability is limited. Herein, a cross-linkable material, cross-linked [6,6]-phenyl-C61-butyric styryl dendron ester (c-PCBSD), is applied as an interfacial modification layer on the surface of zinc oxide and as the third component into the PBDB-TF:Y6-based OPV cells to enhance photovoltaic performance and long-term stability. The PCE of the OPV cells that underwent the two-step modification increased from 15.1 to 16.1%. In particular, such OPV cells exhibited much better stability under both thermal and air conditions because of the decreased number of interfacial defects and stable interfacial and active layer morphologies. The results demonstrated that the introduction of a cross-linkable fullerene derivative into the interfacial and active layers is a feasible method to improve the PCE and stability of OPV cells.
Collapse
Affiliation(s)
- Ling Hong
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Runnan Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - You-Wei Lin
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd, Hsinchu, 30010, Taiwan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Tsung-Wei Chen
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd, Hsinchu, 30010, Taiwan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Ye Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinzhao Qin
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chain-Shu Hsu
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd, Hsinchu, 30010, Taiwan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Ziyi Ge
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Yao N, Wang J, Chen Z, Bian Q, Xia Y, Zhang R, Zhang J, Qin L, Zhu H, Zhang Y, Zhang F. Efficient Charge Transport Enables High Efficiency in Dilute Donor Organic Solar Cells. J Phys Chem Lett 2021; 12:5039-5044. [PMID: 34018757 PMCID: PMC8280696 DOI: 10.1021/acs.jpclett.1c01219] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 05/03/2023]
Abstract
The donor/acceptor weight ratio is crucial for photovoltaic performance of organic solar cells (OSCs). Here, we systematically investigate the photovoltaic behaviors of PM6:Y6 solar cells with different stoichiometries. It is found that the photovoltaic performance is tolerant to PM6 contents ranging from 10 to 60 wt %. Especially an impressive efficiency over 10% has been achieved in dilute donor solar cells with 10 wt % PM6 enabled by efficient charge generation, electron/hole transport, slow charge recombination, and field-insensitive extraction. This raises the question about the origin of efficient hole transport in such dilute donor structure. By investigating hole mobilities of PM6 diluted in Y6 and insulators, we find that effective hole transport pathway is mainly through PM6 phase in PM6:Y6 blends despite with low PM6 content. The results indicate that a low fraction of polymer donors combines with near-infrared nonfullerene acceptors could achieve high photovoltaic performance, which might be a candidate for semitransparent windows.
Collapse
Affiliation(s)
- Nannan Yao
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Jianqiu Wang
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Zeng Chen
- State
Key Laboratory of Modern Optical Instrumentation, Center for Chemistry
of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qingzhen Bian
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Yuxin Xia
- Institute
for Materials Research (IMO-IMOMEC), Hasselt
University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Rui Zhang
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Jianqi Zhang
- National
Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Leiqiang Qin
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Haiming Zhu
- State
Key Laboratory of Modern Optical Instrumentation, Center for Chemistry
of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuan Zhang
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Fengling Zhang
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| |
Collapse
|
23
|
Popp W, Brey D, Binder R, Burghardt I. Quantum Dynamics of Exciton Transport and Dissociation in Multichromophoric Systems. Annu Rev Phys Chem 2021; 72:591-616. [PMID: 33636997 DOI: 10.1146/annurev-physchem-090419-040306] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Due to the subtle interplay of site-to-site electronic couplings, exciton delocalization, nonadiabatic effects, and vibronic couplings, quantum dynamical studies are needed to elucidate the details of ultrafast photoinduced energy and charge transfer events in organic multichromophoric systems. In this vein, we review an approach that combines first-principles parameterized lattice Hamiltonians with accurate quantum dynamical simulations using advanced multiconfigurational methods. Focusing on the elementary transfer steps in organic functional materials, we address coherent exciton migration and creation of charge transfer excitons in homopolymers, notably representative of the poly(3-hexylthiophene) material, as well as exciton dissociation at polymer:fullerene heterojunctions. We emphasize the role of coherent transfer, trapping effects due to high-frequency phonon modes, and thermal activation due to low-frequency soft modes that drive a diffusive dynamics.
Collapse
Affiliation(s)
- Wjatscheslaw Popp
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| | - Dominik Brey
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| | - Robert Binder
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| | - Irene Burghardt
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| |
Collapse
|
24
|
Bian Q, Abdulahi BA, Genene Z, Wang E, Mammo W, Inganäs O. Reduced Nonradiative Voltage Loss in Terpolymer Solar Cells. J Phys Chem Lett 2020; 11:3796-3802. [PMID: 32338006 DOI: 10.1021/acs.jpclett.0c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dissociation of hybrid local exciton and charge transfer excitons (LE-CT) in efficient bulk-heterojunction nonfullerene solar cells contributes to reduced nonradiative photovoltage loss, a mechanism that still remains unclear. Herein we studied the energetic and entropic contribution in the hybrid LE-CT exciton dissociation in devices based on a conjugated terpolymer. Compared with reference devices based on ternary blends, the terpolymer devices demonstrated a significant reduction in the nonradiative photovoltage loss, regardless of the acceptor molecule, be it fullerene or nonfullerene. Fourier transform photocurrent spectroscopy revealed a significant LE-CT character in the terpolymer-based solar cells. Temperature-dependent hole mobility and photovoltage confirm that entropic and energetic effects contribute to the efficient LE-CT dissociation. The energetic disorder value measured in the fullerene- or nonfullerene-based terpolymer devices suggested that this entropic contribution came from the terpolymer, a signature of higher disorder in copolymers with multiple aromatic groups. This gives new insight into the fundamental physics of efficient LE-CT exciton dissociation with smaller nonradiative recombination loss.
Collapse
Affiliation(s)
- Qingzhen Bian
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Birhan A Abdulahi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg SE-412 96, Sweden
- Department of Chemistry, Addis Ababa University, P.O. Box 33658, Addis Ababa, Ethiopia
- Department of Chemistry, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Zewdneh Genene
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg SE-412 96, Sweden
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg SE-412 96, Sweden
| | - Wendimagegn Mammo
- Department of Chemistry, Addis Ababa University, P.O. Box 33658, Addis Ababa, Ethiopia
| | - Olle Inganäs
- Biomolecular and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| |
Collapse
|