1
|
Cook AD, Carrington M, Higgins MK. Molecular mechanism of complement inhibition by the trypanosome receptor ISG65. eLife 2024; 12:RP88960. [PMID: 38655765 PMCID: PMC11042801 DOI: 10.7554/elife.88960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.
Collapse
Affiliation(s)
- Alexander D Cook
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Matthew K Higgins
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
2
|
Cayla M, Spanos C, McWilliam K, Waskett E, Rappsilber J, Matthews KR. Differentiation granules, a dynamic regulator of T. brucei development. Nat Commun 2024; 15:2972. [PMID: 38582942 PMCID: PMC10998879 DOI: 10.1038/s41467-024-47309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Adaptation to a change of environment is an essential process for survival, in particular for parasitic organisms exposed to a wide range of hosts. Such adaptations include rapid control of gene expression through the formation of membraneless organelles composed of poly-A RNA and proteins. The African trypanosome Trypanosoma brucei is exquisitely sensitive to well-defined environmental stimuli that trigger cellular adaptations through differentiation events that characterise its complex life cycle. The parasite has been shown to form stress granules in vitro, and it has been proposed that such a stress response could have been repurposed to enable differentiation and facilitate parasite transmission. Therefore, we explored the composition and positional dynamics of membraneless granules formed in response to starvation stress and during differentiation in the mammalian host between the replicative slender and transmission-adapted stumpy forms. We find that T. brucei differentiation does not reflect the default response to environmental stress. Instead, the developmental response of the parasites involves a specific and programmed hierarchy of membraneless granule assembly, with distinct components and regulation by protein kinases such as TbDYRK, that are required for the parasite to successfully progress through its life cycle development and prepare for transmission.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Kirsty McWilliam
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Eliza Waskett
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Cook AD, Carrington M, Higgins MK. Trypanosomes and complement: more than one way to die? Trends Parasitol 2023; 39:1014-1022. [PMID: 37758633 PMCID: PMC10789607 DOI: 10.1016/j.pt.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
African trypanosomes show a remarkable ability to survive as extracellular parasites in the blood and tissue spaces of an infected mammal. Throughout the infection they are exposed to the molecules and cells of the immune system, including complement. In this opinion piece, we review decades-worth of evidence about how complement affects African trypanosomes. We highlight the discovery of a trypanosome receptor for complement C3 and we critically assess three recent studies which attempt to provide a structural and mechanistic view of how this receptor helps trypanosomes to survive in the presence of complement.
Collapse
Affiliation(s)
- Alexander D Cook
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QW, UK.
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU.
| |
Collapse
|
4
|
Lorentzen J, Olesen HG, Hansen AG, Thiel S, Birkelund S, Andersen CBF, Andersen GR. Trypanosoma brucei Invariant Surface gp65 Inhibits the Alternative Pathway of Complement by Accelerating C3b Degradation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:862-873. [PMID: 37466368 DOI: 10.4049/jimmunol.2300128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
Trypanosomes are known to activate the complement system on their surface, but they control the cascade in a manner such that the cascade does not progress into the terminal pathway. It was recently reported that the invariant surface glycoprotein ISG65 from Trypanosoma brucei interacts reversibly with complement C3 and its degradation products, but the molecular mechanism by which ISG65 interferes with complement activation remains unknown. In this study, we show that ISG65 does not interfere directly with the assembly or activity of the two C3 convertases. However, ISG65 acts as a potent inhibitor of C3 deposition through the alternative pathway in human and murine serum. Degradation assays demonstrate that ISG65 stimulates the C3b to iC3b converting activity of complement factor I in the presence of the cofactors factor H or complement receptor 1. A structure-based model suggests that ISG65 promotes a C3b conformation susceptible to degradation or directly bridges factor I and C3b without contact with the cofactor. In addition, ISG65 is observed to form a stable ternary complex with the ligand binding domain of complement receptor 3 and iC3b. Our data suggest that ISG65 supports trypanosome complement evasion by accelerating the conversion of C3b to iC3b through a unique mechanism.
Collapse
Affiliation(s)
- Josefine Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Heidi G Olesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
5
|
Moloney NM, Barylyuk K, Tromer E, Crook OM, Breckels LM, Lilley KS, Waller RF, MacGregor P. Mapping diversity in African trypanosomes using high resolution spatial proteomics. Nat Commun 2023; 14:4401. [PMID: 37479728 PMCID: PMC10361982 DOI: 10.1038/s41467-023-40125-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
African trypanosomes are dixenous eukaryotic parasites that impose a significant human and veterinary disease burden on sub-Saharan Africa. Diversity between species and life-cycle stages is concomitant with distinct host and tissue tropisms within this group. Here, the spatial proteomes of two African trypanosome species, Trypanosoma brucei and Trypanosoma congolense, are mapped across two life-stages. The four resulting datasets provide evidence of expression of approximately 5500 proteins per cell-type. Over 2500 proteins per cell-type are classified to specific subcellular compartments, providing four comprehensive spatial proteomes. Comparative analysis reveals key routes of parasitic adaptation to different biological niches and provides insight into the molecular basis for diversity within and between these pathogen species.
Collapse
Affiliation(s)
- Nicola M Moloney
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Eelco Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, Netherlands
| | - Oliver M Crook
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
- Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Lisa M Breckels
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Paula MacGregor
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| |
Collapse
|
6
|
Sülzen H, Began J, Dhillon A, Kereïche S, Pompach P, Votrubova J, Zahedifard F, Šubrtova A, Šafner M, Hubalek M, Thompson M, Zoltner M, Zoll S. Cryo-EM structures of Trypanosoma brucei gambiense ISG65 with human complement C3 and C3b and their roles in alternative pathway restriction. Nat Commun 2023; 14:2403. [PMID: 37105991 PMCID: PMC10140031 DOI: 10.1038/s41467-023-37988-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
African Trypanosomes have developed elaborate mechanisms to escape the adaptive immune response, but little is known about complement evasion particularly at the early stage of infection. Here we show that ISG65 of the human-infective parasite Trypanosoma brucei gambiense is a receptor for human complement factor C3 and its activation fragments and that it takes over a role in selective inhibition of the alternative pathway C5 convertase and thus abrogation of the terminal pathway. No deposition of C4b, as part of the classical and lectin pathway convertases, was detected on trypanosomes. We present the cryo-electron microscopy (EM) structures of native C3 and C3b in complex with ISG65 which reveal a set of modes of complement interaction. Based on these findings, we propose a model for receptor-ligand interactions as they occur at the plasma membrane of blood-stage trypanosomes and may facilitate innate immune escape of the parasite.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 12800, Prague 2, Czech Republic
| | - Jakub Began
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
- Department of Immunobiology, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Arun Dhillon
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Sami Kereïche
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Albertov 4, 12800, Prague, Czech Republic
| | - Petr Pompach
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic
| | - Jitka Votrubova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University Prague, Biocev, 25250, Vestec, Czech Republic
| | - Adriana Šubrtova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Marie Šafner
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Maaike Thompson
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
- University of Antwerp, Antwerp, Belgium
- Agidens, Industrial Machinery Manufacturing, Zwijndrecht, Antwerp, Belgium
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University Prague, Biocev, 25250, Vestec, Czech Republic
| | - Sebastian Zoll
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic.
| |
Collapse
|
7
|
Mahamat MH, Ségard A, Rayaisse JB, Argiles-Herrero R, Parker AG, Solano P, Abd-Alla AMM, Bouyer J, Ravel S. Vector competence of sterile male Glossina fuscipes fuscipes for Trypanosoma brucei brucei: implications for the implementation of the sterile insect technique in a sleeping sickness focus in Chad. Parasit Vectors 2023; 16:111. [PMID: 36949538 PMCID: PMC10035118 DOI: 10.1186/s13071-023-05721-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Human African trypanosomiasis (HAT) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by tsetse flies in sub-Saharan West Africa. In southern Chad the most active and persistent focus is the Mandoul focus, with 98% of the reported human cases, and where African animal trypanosomosis (AAT) is also present. Recently, a control project to eliminate tsetse flies (Glossina fuscipes fuscipes) in this focus using the sterile insect technique (SIT) was initiated. However, the release of large numbers of sterile males of G. f. fuscipes might result in a potential temporary increase in transmission of trypanosomes since male tsetse flies are also able to transmit the parasite. The objective of this work was therefore to experimentally assess the vector competence of sterile males treated with isometamidium for Trypanosoma brucei brucei. METHODS An experimental infection was set up in the laboratory, mimicking field conditions: the same tsetse species that is present in Mandoul was used. A T. b. brucei strain close to T. b. gambiense was used, and the ability of the sterile male tsetse flies fed on blood with and without a trypanocide to acquire and transmit trypanosomes was measured. RESULTS Only 2% of the experimentally infected flies developed an immature infection (midgut) while none of the flies developed a metacyclic infection of T. b. brucei in the salivary glands. We did not observe any effect of the trypanocide used (isometamidium chloride at 100 mg/l) on the development of infection in the flies. CONCLUSIONS Our results indicate that sterile males of the tested strain of G. f. fuscipes were unable to cyclically transmit T. b. brucei and might even be refractory to the infection. The data of the research indicate that the risk of cyclical transmission of T. brucei by sterile male G. f. fuscipes of the strain colonized at IAEA for almost 40 years appears to be small.
Collapse
Affiliation(s)
| | - Adeline Ségard
- Université de Montpellier, Cirad, IRD, Intertryp, Montpellier, France
| | - Jean-Baptiste Rayaisse
- Centre International de Recherche-Développement sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Rafael Argiles-Herrero
- Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Centre of Nuclear Techniques in Food and Agriculture, Insect Pest Control Sub-programme, A-1400, Vienna, Austria
| | - Andrew Gordon Parker
- Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Centre of Nuclear Techniques in Food and Agriculture, Insect Pest Control Sub-programme, A-1400, Vienna, Austria
| | - Philippe Solano
- Université de Montpellier, Cirad, IRD, Intertryp, Montpellier, France
| | - Adly Mohamed Mohamed Abd-Alla
- Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Centre of Nuclear Techniques in Food and Agriculture, Insect Pest Control Sub-programme, A-1400, Vienna, Austria
| | - Jérémy Bouyer
- Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Centre of Nuclear Techniques in Food and Agriculture, Insect Pest Control Sub-programme, A-1400, Vienna, Austria
- Université de Montpellier, Cirad, INRAE, ASTRE, Montpellier, France
| | - Sophie Ravel
- Université de Montpellier, Cirad, IRD, Intertryp, Montpellier, France.
| |
Collapse
|
8
|
Bechtler C, Koutsogiannaki S, Umnyakova E, Hamid A, Gautam A, Sarigiannis Y, Pouw RB, Lamers C, Rabbani S, Schmidt CQ, Lambris JD, Ricklin D. Complement-regulatory biomaterial coatings: Activity and selectivity profile of the factor H-binding peptide 5C6. Acta Biomater 2023; 155:123-138. [PMID: 36328123 DOI: 10.1016/j.actbio.2022.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022]
Abstract
The use of biomaterials in modern medicine has enabled advanced drug delivery strategies and led to reduced morbidity and mortality in a variety of interventions such as transplantation or hemodialysis. However, immune-mediated reactions still present a serious complication of these applications. One of the drivers of such reactions is the complement system, a central part of humoral innate immunity that acts as a first-in-line defense system in its own right but also coordinates other host defense responses. A major regulator of the complement system is the abundant plasma protein factor H (FH), which impairs the amplification of complement responses. Previously, we could show that it is possible to recruit FH to biomedical surfaces using the phage display-derived cyclic peptide 5C6 and, consequently, reduce deposition of C3b, an activation product of the complement system. However, the optimal orientation of 5C6 on surfaces, structural determinants within the peptide for the binding, and the exact binding region on FH remained unknown. Here, we show that the cyclic core and C-terminal region of 5C6 are essential for its interaction with FH and that coating through its N-terminus strongly increases FH recruitment and reduces C3-mediated opsonization in a microparticle-based assay. Furthermore, we could demonstrate that 5C6 selectively binds to FH but not to related proteins. The observation that 5C6 also binds murine FH raises the potential for translational evaluation in animal models. This work provides important insight for the future development of 5C6 as a probe or therapeutic entity to reduce complement activation on biomaterials. STATEMENT OF SIGNIFICANCE: Biomaterials have evolved into core technologies critical to biomedical and drug delivery applications alike, yet their safe and efficient use may be adversely impacted by immune responses to the foreign materials. Taking inspiration from microbial immune evasion strategies, our group developed a peptide-based surface coating that recruits factor H (FH), a host regulator of the complement system, from plasma to the material surface and prevents unwanted activation of this innate immunity pathway. In this study, we identified the molecular determinants that define the interaction between FH and the coated peptide, developed tethering strategies with largely enhanced binding capacity and provided important insight into the target selectivity and species specificity of the FH-binding peptide, thereby paving the way for preclinical development steps.
Collapse
Affiliation(s)
- Clément Bechtler
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Sophia Koutsogiannaki
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Ekaterina Umnyakova
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Amal Hamid
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Avneesh Gautam
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Yiannis Sarigiannis
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Richard B Pouw
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Christina Lamers
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Said Rabbani
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Christoph Q Schmidt
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - John D Lambris
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.
| | - Daniel Ricklin
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
9
|
Heme-deficient metabolism and impaired cellular differentiation as an evolutionary trade-off for human infectivity in Trypanosoma brucei gambiense. Nat Commun 2022; 13:7075. [PMID: 36400774 PMCID: PMC9674590 DOI: 10.1038/s41467-022-34501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Resistance to African trypanosomes in humans relies in part on the high affinity targeting of a trypanosome lytic factor 1 (TLF1) to a trypanosome haptoglobin-hemoglobin receptor (HpHbR). While TLF1 avoidance by the inactivation of HpHbR contributes to Trypanosoma brucei gambiense human infectivity, the evolutionary trade-off of this adaptation is unknown, as the physiological function of the receptor remains to be elucidated. Here we show that uptake of hemoglobin via HpHbR constitutes the sole heme import pathway in the trypanosome bloodstream stage. T. b. gambiense strains carrying the inactivating mutation in HpHbR, as well as genetically engineered T. b. brucei HpHbR knock-out lines show only trace levels of intracellular heme and lack hemoprotein-based enzymatic activities, thereby providing an uncommon example of aerobic parasitic proliferation in the absence of heme. We further show that HpHbR facilitates the developmental progression from proliferating long slender forms to cell cycle-arrested stumpy forms in T. b. brucei. Accordingly, T. b. gambiense was found to be poorly competent for slender-to-stumpy differentiation unless a functional HpHbR receptor derived from T. b. brucei was genetically restored. Altogether, we identify heme-deficient metabolism and disrupted cellular differentiation as two distinct HpHbR-dependent evolutionary trade-offs for T. b. gambiense human infectivity.
Collapse
|
10
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Muro A, Nguewa P, Manzano-Román R. The Defensive Interactions of Prominent Infectious Protozoan Parasites: The Host's Complement System. Biomolecules 2022; 12:1564. [PMID: 36358913 PMCID: PMC9687244 DOI: 10.3390/biom12111564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 12/30/2023] Open
Abstract
The complement system exerts crucial functions both in innate immune responses and adaptive humoral immunity. This pivotal system plays a major role dealing with pathogen invasions including protozoan parasites. Different pathogens including parasites have developed sophisticated strategies to defend themselves against complement killing. Some of these strategies include the employment, mimicking or inhibition of host's complement regulatory proteins, leading to complement evasion. Therefore, parasites are proven to use the manipulation of the complement system to assist them during infection and persistence. Herein, we attempt to study the interaction´s mechanisms of some prominent infectious protozoan parasites including Plasmodium, Toxoplasma, Trypanosoma, and Leishmania dealing with the complement system. Moreover, several crucial proteins that are expressed, recruited or hijacked by parasites and are involved in the modulation of the host´s complement system are selected and their role for efficient complement killing or lysis evasion is discussed. In addition, parasite's complement regulatory proteins appear as plausible therapeutic and vaccine targets in protozoan parasitic infections. Accordingly, we also suggest some perspectives and insights useful in guiding future investigations.
Collapse
Affiliation(s)
- Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein 38811, Iran
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein 38811, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915173143, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft 7861615765, Iran
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
11
|
Macleod OJS, Cook AD, Webb H, Crow M, Burns R, Redpath M, Seisenberger S, Trevor CE, Peacock L, Schwede A, Kimblin N, Francisco AF, Pepperl J, Rust S, Voorheis P, Gibson W, Taylor MC, Higgins MK, Carrington M. Invariant surface glycoprotein 65 of Trypanosoma brucei is a complement C3 receptor. Nat Commun 2022; 13:5085. [PMID: 36038546 PMCID: PMC9424271 DOI: 10.1038/s41467-022-32728-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
African trypanosomes are extracellular pathogens of mammals and are exposed to the adaptive and innate immune systems. Trypanosomes evade the adaptive immune response through antigenic variation, but little is known about how they interact with components of the innate immune response, including complement. Here we demonstrate that an invariant surface glycoprotein, ISG65, is a receptor for complement component 3 (C3). We show how ISG65 binds to the thioester domain of C3b. We also show that C3 contributes to control of trypanosomes during early infection in a mouse model and provide evidence that ISG65 is involved in reducing trypanosome susceptibility to C3-mediated clearance. Deposition of C3b on pathogen surfaces, such as trypanosomes, is a central point in activation of the complement system. In ISG65, trypanosomes have evolved a C3 receptor which diminishes the downstream effects of C3 deposition on the control of infection. Trypanosomes evade the immune response through antigenic variation of a surface coat containing variant surface glycoproteins (VSG). They also express invariant surface glycoproteins (ISGs), which are less well understood. Here, Macleod et al. show that ISG65 of T. brucei is a receptor for complement component 3. They provide the crystal structure of T. brucei ISG65 in complex with complement C3d and show evidence that ISG65 is involved in reducing trypanosome susceptibility to C3-mediated clearance in vivo.
Collapse
Affiliation(s)
- Olivia J S Macleod
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Alexander D Cook
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.,Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Mandy Crow
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Roisin Burns
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Maria Redpath
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Stefanie Seisenberger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Camilla E Trevor
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Lori Peacock
- Bristol Veterinary School and School of Biological Sciences, University of Bristol, Bristol, UK
| | - Angela Schwede
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Nicola Kimblin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Amanda F Francisco
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Julia Pepperl
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Steve Rust
- Antibody Discovery and Protein Engineering, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Paul Voorheis
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Wendy Gibson
- Bristol Veterinary School and School of Biological Sciences, University of Bristol, Bristol, UK
| | - Martin C Taylor
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK. .,Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
12
|
A multifaceted strategy to improve recombinant expression and structural characterisation of a Trypanosoma invariant surface protein. Sci Rep 2022; 12:12706. [PMID: 35882923 PMCID: PMC9325691 DOI: 10.1038/s41598-022-16958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Identification of a protein minimal fragment amenable to crystallisation can be time- and labour intensive especially if large amounts are required and the protein has a complex fold and functionally important post-translational modifications. In addition, a lack of homologues and structural information can further complicate the design of a minimal expression construct. Recombinant expression in E. coli promises high yields, low costs and fast turnover times, but falls short for many extracellular, eukaryotic proteins. Eukaryotic expression systems provide an alternative but are costly, slow and require special handling and equipment. Using a member of a structurally uncharacterized, eukaryotic receptor family as an example we employ hydrogen–deuterium exchange mass spectrometry (HDX-MS) guided construct design in conjunction with truncation scanning and targeted expression host switching to identify a minimal expression construct that can be produced with high yields and moderate costs.
Collapse
|
13
|
Matthews KR, Larcombe S. Comment on 'Unexpected plasticity in the life cycle of Trypanosoma brucei'. eLife 2022; 11:74985. [PMID: 35103595 PMCID: PMC8806180 DOI: 10.7554/elife.74985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Schuster et al. make the important observation that small numbers of trypanosomes can infect tsetse flies, and further argue that this can occur whether the infecting parasites are developmentally ‘slender’ or ‘stumpy’(Schuster et al., 2021). We welcome their careful experiments but disagree that they require a rethink of the trypanosome life-cycle. Instead, the study reveals that stumpy forms are more likely to successfully infect flies, the key limit on parasite transmission, and we predict this advantage would be greatly amplified in tsetse infections in the field. Further, we argue that stumpy forms are defined by a suite of molecular adaptations for life-cycle progression, with morphology being a secondary feature. Finally, their dominance in chronic infections means most natural tsetse infections would involve stumpy forms, even in small numbers. Our interpretation does not require re-evaluation of the obligatory life cycle of the parasite, where stumpy forms are selected to sustain transmission.
Collapse
Affiliation(s)
- Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Larcombe
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Tinti M, Ferguson MAJ. Visualisation of experimentally determined and predicted protein N-glycosylation and predicted glycosylphosphatidylinositol anchor addition in Trypanosoma brucei. Wellcome Open Res 2022; 7:33. [PMID: 35284639 PMCID: PMC8886175 DOI: 10.12688/wellcomeopenres.17640.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Trypanosoma brucei is a protozoan parasite and the etiological agent of human and animal African trypanosomiasis. The organism
cycles between its mammalian host and tsetse vector. The host-dwelling bloodstream form of the parasite is covered with a monolayer of variant surface glycoprotein (VSG) that enables it to escape both the innate and adaptive immune systems. Within this coat reside lower-abundance surface glycoproteins that function as receptors and/or nutrient transporters. The glycosylation of the
Trypanosoma brucei surface proteome is essential to evade the immune response and is mediated by three oligosaccharyltransferase genes; two of which, TbSTT3A and TbSTT3B, are expressed in the bloodstream form of the parasite. Methods: We processed a recent dataset of our laboratory to visualise putative glycosylation sites of the Trypanosoma brucei proteome. We provided a visualisation for the predictions of glycosylation carried by TbSTT3A and TbSTT3B, and we augmented the visualisation with predictions for Glycosylphosphatidylinositol anchoring sites, domains and topology of the Trypanosoma brucei proteome. Conclusions: We created a web service to explore the glycosylation sites of the Trypanosoma brucei oligosaccharyltransferases substrates, using data described in a recent publication of our laboratory. We also made a machine learning algorithm available as a web service, described in our recent publication, to distinguish between TbSTT3A and TbSTT3B substrates.
Collapse
Affiliation(s)
- Michele Tinti
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5HN, UK
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5HN, UK
| |
Collapse
|
15
|
Knüsel S, Jenni A, Benninger M, Bütikofer P, Roditi I. Persistence of Trypanosoma brucei as early procyclic forms and social motility are dependent on glycosylphosphatidylinositol transamidase. Mol Microbiol 2021; 117:802-817. [PMID: 34954848 PMCID: PMC9303471 DOI: 10.1111/mmi.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022]
Abstract
Glycosylphosphatidylinositol (GPI)‐linked molecules are surface‐exposed membrane components that influence the infectivity, virulence and transmission of many eukaryotic pathogens. Procyclic (insect midgut) forms of Trypanosoma brucei do not require GPI‐anchored proteins for growth in suspension culture. Deletion of TbGPI8, and inactivation of the GPI:protein transamidase complex, is tolerated by cultured procyclic forms. Using a conditional knockout, we show TbGPI8 is required for social motility (SoMo). This collective migration by cultured early procyclic forms has been linked to colonization of the tsetse fly digestive tract. The SoMo‐negative phenotype was observed after a lag phase with respect to loss of TbGPI8 and correlated with an unexpectedly slow loss of procyclins, the major GPI‐anchored proteins. Procyclins are not essential for SoMo, however, suggesting a requirement for at least one other GPI‐anchored protein. Loss of TbGPI8 initiates the transition from early to late procyclic forms; this effect was observed in a subpopulation in suspension culture, and was more pronounced when cells were cultured on SoMo plates. Our results indicate two, potentially interlinked, scenarios that may explain the previously reported failure of TbGPI8 deletion mutants to establish a midgut infection in the tsetse fly: interference with stage‐specific gene expression and absence of SoMo.
Collapse
Affiliation(s)
- Sebastian Knüsel
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Aurelio Jenni
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland.,Graduate School for Chemical and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Mattias Benninger
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
16
|
Cook AD, Higgins MK. High-throughput hit-squad tackles trypanosomes. Trends Parasitol 2021; 37:772-774. [PMID: 34315657 DOI: 10.1016/j.pt.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022]
Abstract
African trypanosomes cause diseases of humans and their livestock. To date, a much-desired vaccine has been elusive, due in part to the immune evasion mechanisms of these cunning parasites. However, Autheman et al. have used a bold, high-throughput screen to provide hope that vaccines may be on the way.
Collapse
|
17
|
Abstract
African trypanosomes are responsible for important diseases of humans and animals in sub-Saharan Africa. The best-studied species is Trypanosoma brucei, which is characterized by development in the mammalian host between morphologically slender and stumpy forms. The latter are adapted for transmission by the parasite's vector, the tsetse fly. The development of stumpy forms is driven by density-dependent quorum-sensing (QS), the molecular basis for which is now coming to light. In this review, I discuss the historical context and biological features of trypanosome QS and how it contributes to the parasite's infection dynamics within its mammalian host. Also, I discuss how QS can be lost in different trypanosome species, such as T. brucei evansi and T. brucei equiperdum, or modulated when parasites find themselves competing with others of different genotypes or of different trypanosome species in the same host. Finally, I consider the potential to exploit trypanosome QS therapeutically. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Keith R Matthews
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
18
|
Ji Z, Tinti M, Ferguson MAJ. Proteomic identification of the UDP-GlcNAc: PI α1-6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei. PLoS One 2021; 16:e0244699. [PMID: 33735232 PMCID: PMC7971885 DOI: 10.1371/journal.pone.0244699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/21/2021] [Indexed: 01/04/2023] Open
Abstract
The first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in all eukaryotes is the addition of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI) which is catalysed by a UDP-GlcNAc: PI α1-6 GlcNAc-transferase, also known as GPI GnT. This enzyme has been shown to be a complex of seven subunits in mammalian cells and a similar complex of six homologous subunits has been postulated in yeast. Homologs of these mammalian and yeast subunits were identified in the Trypanosoma brucei predicted protein database. The putative catalytic subunit of the T. brucei complex, TbGPI3, was epitope tagged with three consecutive c-Myc sequences at its C-terminus. Immunoprecipitation of TbGPI3-3Myc followed by native polyacrylamide gel electrophoresis and anti-Myc Western blot showed that it is present in a ~240 kDa complex. Label-free quantitative proteomics were performed to compare anti-Myc pull-downs from lysates of TbGPI-3Myc expressing and wild type cell lines. TbGPI3-3Myc was the most highly enriched protein in the TbGPI3-3Myc lysate pull-down and the expected partner proteins TbGPI15, TbGPI19, TbGPI2, TbGPI1 and TbERI1 were also identified with significant enrichment. Our proteomics data also suggest that an Arv1-like protein (TbArv1) is a subunit of the T. brucei complex. Yeast and mammalian Arv1 have been previously implicated in GPI biosynthesis, but here we present the first experimental evidence for physical association of Arv1 with GPI biosynthetic machinery. A putative E2-ligase has also been tentatively identified as part of the T. brucei UDP-GlcNAc: PI α1-6 GlcNAc-transferase complex.
Collapse
Affiliation(s)
- Zhe Ji
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
19
|
Pays E, Nolan DP. Genetic and immunological basis of human African trypanosomiasis. Curr Opin Immunol 2021; 72:13-20. [PMID: 33721725 PMCID: PMC8589022 DOI: 10.1016/j.coi.2021.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Human African trypanosomiasis, or sleeping sickness, results from infection by two subspecies of the protozoan flagellate parasite Trypanosoma brucei, termed Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, prevalent in western and eastern Africa respectively. These subspecies escape the trypanolytic potential of human serum, which efficiently acts against the prototype species Trypanosoma brucei brucei, responsible for the Nagana disease in cattle. We review the various strategies and components used by trypanosomes to counteract the immune defences of their host, highlighting the adaptive genomic evolution that occurred in both parasite and host to take the lead in this battle. The main parasite surface antigen, named Variant Surface Glycoprotein or VSG, appears to play a key role in different processes involved in the dialogue with the host.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium.
| | - Derek P Nolan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
20
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
21
|
Sampaio Guther ML, Prescott AR, Kuettel S, Tinti M, Ferguson MAJ. Nucleotide sugar biosynthesis occurs in the glycosomes of procyclic and bloodstream form Trypanosoma brucei. PLoS Negl Trop Dis 2021; 15:e0009132. [PMID: 33592041 PMCID: PMC7909634 DOI: 10.1371/journal.pntd.0009132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/26/2021] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
In Trypanosoma brucei, there are fourteen enzymatic biotransformations that collectively convert glucose into five essential nucleotide sugars: UDP-Glc, UDP-Gal, UDP-GlcNAc, GDP-Man and GDP-Fuc. These biotransformations are catalyzed by thirteen discrete enzymes, five of which possess putative peroxisome targeting sequences. Published experimental analyses using immunofluorescence microscopy and/or digitonin latency and/or subcellular fractionation and/or organelle proteomics have localized eight and six of these enzymes to the glycosomes of bloodstream form and procyclic form T. brucei, respectively. Here we increase these glycosome localizations to eleven in both lifecycle stages while noting that one, phospho-N-acetylglucosamine mutase, also localizes to the cytoplasm. In the course of these studies, the heterogeneity of glycosome contents was also noted. These data suggest that, unlike other eukaryotes, all of nucleotide sugar biosynthesis in T. brucei is compartmentalized to the glycosomes in both lifecycle stages. The implications are discussed.
Collapse
Affiliation(s)
- Maria Lucia Sampaio Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sabine Kuettel
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Kumar A, Sindhu J, Kumar P. In-silico identification of fingerprint of pyrazolyl sulfonamide responsible for inhibition of N-myristoyltransferase using Monte Carlo method with index of ideality of correlation. J Biomol Struct Dyn 2020; 39:5014-5025. [DOI: 10.1080/07391102.2020.1784286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|