1
|
Cui H, Li J. Hydrogel adhesives for tissue recovery. Adv Colloid Interface Sci 2025; 341:103496. [PMID: 40168713 DOI: 10.1016/j.cis.2025.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Hydrogel adhesives (HAs) are promising and rewarding tools for improving tissue therapy management. Such HAs had excellent properties and potential applications in biological tissues, such as suture replacement, long-term administration, and hemostatic sealing. In this review, the common designs and the latest progress of HAs based on various methodologies are systematically concluded. Thereafter, how to deal with interfacial water to form a robust wet adhesion and how to balance the adhesion and non-adhesion are underlined. This review also provides a brief description of gelation strategies and raw materials. Finally, the potentials of wound healing, hemostatic sealing, controlled drug delivery, and the current applications in dermal, dental, ocular, cardiac, stomach, and bone tissues are discussed. The comprehensive insight in this review will inspire more novel and practical HAs in the future.
Collapse
Affiliation(s)
- Haohao Cui
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingguo Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Zhao T, Zhang H, Zhang J, Chen W, Xie J, Wu W. Tunable Wet Adhesion of Sprayable Microgel Glues Driven by a Phase Transition in Polymer Networks. ACS Macro Lett 2025; 14:671-678. [PMID: 40338677 DOI: 10.1021/acsmacrolett.5c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
With the emergence of human-computer interaction and related fields, how to realize tunable adhesion on wet and soft materials has become an important issue. In this letter, we propose a strategy for tunable wet adhesion by leveraging the phase transition of polymeric nanoparticles to achieve dynamic, multiscale, and multifactorial synergistic modulation. The strategy is validated by using stimuli-responsive polymer microgel dispersions as sprayable glues, which can switch between swollen and deswollen states through phase transitions, thereby tuning interfacial water molecules. This process dynamically tunes microscopic molecular interactions and the mesoscopic contact area between microgel nanoparticles and the substrate surface, as well as the cohesion within interfacial microgel layers. As a result, adhesion is enhanced in the swollen state, reaching about 373 N m-1, while it is weakened in the deswollen state due to water release. The tunable wet adhesion is reproducible, making the sprayable microgel glues of potential interest for applications (e.g., in hydrogel-based sensors for human motion detection).
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Haojie Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jinmeng Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianda Xie
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
3
|
Kundu S, Potenti S, Quinlan ZA, Willard H, Chen J, Noritake T, Levy N, Karimi Z, Jorissen H, Hancock JR, Drury C, Kelly LW, De Cola L, Chen S, Wangpraseurt D. Biomimetic chemical microhabitats enhance coral settlement. Trends Biotechnol 2025:S0167-7799(25)00126-X. [PMID: 40374388 DOI: 10.1016/j.tibtech.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/09/2025] [Accepted: 03/26/2025] [Indexed: 05/17/2025]
Abstract
Anthropogenic stressors pose substantial threats to the existence of coral reefs. Achieving successful coral recruitment stands as a bottleneck in reef restoration and hybrid reef engineering efforts. Here, we enhance coral settlement through the development of biomimetic microhabitats that replicate the chemical landscape of healthy reefs. We engineered a soft biomaterial, SNAP-X, comprising silica nanoparticles (NPs), biopolymers, and algal exometabolites, to enrich reef microhabitats with bioactive molecules from crustose coralline algae (CCA). Coral settlement was enhanced over 20-fold using SNAP-X-coated substrates compared with uncoated controls. SNAP-X is designed to release chemical signals slowly (>1 month) under natural seawater conditions, and can be rapidly applied to natural reef substrates via photopolymerization, facilitating the light-assisted 3D printing of microengineered habitats. We anticipate that these biomimetic chemical microhabitats will be widely used to augment coral settlement on degraded reefs and to support ecosystem processes on hybrid reefs.
Collapse
Affiliation(s)
- Samapti Kundu
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, San Diego, CA, USA
| | - Simone Potenti
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Zachary A Quinlan
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA; Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, USA
| | - Helena Willard
- Computational Science Lab, University of Amsterdam, Netherlands
| | - Justin Chen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, San Diego, CA, USA
| | - Timothy Noritake
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, San Diego, CA, USA
| | - Natalie Levy
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, San Diego, CA, USA
| | - Zahra Karimi
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, San Diego, CA, USA
| | - Hendrikje Jorissen
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, USA
| | - Joshua R Hancock
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, USA
| | - Linda Wegley Kelly
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Luisa De Cola
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; Department of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Shaochen Chen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, San Diego, CA, USA
| | - Daniel Wangpraseurt
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
4
|
Zhao Z, Zhang P, Zhao Y, Wang L, Zhang J, Bu F, Zhou W, Zhao R, Zhang X, Lv Z, Liu Y, Xia Y, Zhang W, Zhao T, Chao D, Li W, Zhao D. Versatile synthesis of uniform mesoporous superparticles from stable monomicelle units. Nat Protoc 2025; 20:1310-1351. [PMID: 39537994 DOI: 10.1038/s41596-024-01073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/13/2024] [Indexed: 11/16/2024]
Abstract
Superstructures with architectural complexity and unique functionalities are promising for a variety of practical applications in many fields, including mechanics, sensing, photonics, catalysis, drug delivery and energy storage/conversion. In the past five years, a number of attempts have been made to build superparticles based on amphiphilic polymeric micelle units, but most have failed owing to their inherent poor stability. Determining how to stabilize micelles and control their superassembly is critical to obtaining the desired mesoporous superparticles. Here we provide a detailed procedure for the preparation of ultrastable polymeric monomicelle building units, the creation of a library of ultrasmall organic-inorganic nanohybrids, the modular superassembly of monomicelles into hierarchical superstructures and creation of novel multilevel mesoporous superstructures. The protocol enables precise control of the number of monomicelle units and the derived mesopores for superparticles. We show that ultrafine nanohybrids display enhanced mechanical antipressure performance compared with pristine polymeric micelles, and describe the functional characterization of mesoporous superstructures that exhibit excellent oxygen reduction reactivity. Except for the time (4.5 d) needed for the preparation of the triblock polystyrene-block-poly(4-vinylpyridine)-block-poly(ethylene oxide) PS-PVP-PEO or the polystyrene-block-poly(acrylic acid)-block-poly(ethylene oxide) (PS-PAA-PEO) copolymer, the synthesis of the ultrastable monomicelle, ultrafine organic-inorganic nanohybrids, hierarchical superstructures and mesoporous superparticles require ~6, 30, 8 and 24 h, respectively. The time needed for all characterizations and applications are 18 and 10 h, respectively.
Collapse
Affiliation(s)
- Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
| | - Pengfei Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Yujuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Lipeng Wang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Jie Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Fanxing Bu
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Wanhai Zhou
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Ruizheng Zhao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Xingmiao Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Zirui Lv
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Yupu Liu
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Yuan Xia
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, China
| | - Wei Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Tiancong Zhao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Dongliang Chao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Wei Li
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Ye Y, Huang G, Zhang W, Wu J, Wu J, Li Y, Zhou X, Jia J, Xie Z, Yan B, Dawson KA, Chen J, Wang YF, Yan Y. Integrated Methodology from Synthesis to in Vivo Study that Identifies Nanostructure Shape "Hot Spots" in T Cell Receptor Repertoire. NANO LETTERS 2025; 25:7003-7011. [PMID: 40258069 PMCID: PMC12046591 DOI: 10.1021/acs.nanolett.5c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/23/2025]
Abstract
A new integrated tunable microfluidic particle synthesis and shape population analysis workflow allows us to study the immunological readouts for even highly complex shaped nanoparticles. Using this approach, we demonstrate that some gold nanoparticles, when injected parenterally, are taken up by axillary and brachial lymph nodes. We then show that specific nanoparticle shapes influence the primary structure of the T cell receptor, inducing changes in hypervariable complementary-determining regions (CDRs) and increasing the clonal diversity of the T cell receptor repertoires. These same particles were previously found to modify cellular epigenomes and elevate the level of autoantibodies. Our results are consistent with other emerging reports that precisely controlled nanoarchitectural features are recognized and captured in multiple tiers of biology, with potential implications for vaccine adjuvant design. Our conclusions may also be relevant to an extensive legacy of poorly understood epidemiological studies, suggesting links between some pollutant particulates and complex forms of immune dysregulation and autoimmune diseases.
Collapse
Affiliation(s)
- Yanqiu Ye
- Guangzhou
Key Laboratory for Research and Development of Nano-Biomedical Technology
for Diagnosis and Therapy, Guangdong Provincial Education Department
Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Department
of Oncology & Translational Medicine Center, The Second Affiliated
Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
- Centre
for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- School
of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Belfield, Dublin 4, Ireland
| | - Guohui Huang
- Guangzhou
Key Laboratory for Research and Development of Nano-Biomedical Technology
for Diagnosis and Therapy, Guangdong Provincial Education Department
Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Department
of Oncology & Translational Medicine Center, The Second Affiliated
Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
- Centre
for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Wei Zhang
- Centre
for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jiasheng Wu
- Guangzhou
Key Laboratory for Research and Development of Nano-Biomedical Technology
for Diagnosis and Therapy, Guangdong Provincial Education Department
Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Department
of Oncology & Translational Medicine Center, The Second Affiliated
Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Jianhao Wu
- Guangzhou
Key Laboratory for Research and Development of Nano-Biomedical Technology
for Diagnosis and Therapy, Guangdong Provincial Education Department
Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Department
of Oncology & Translational Medicine Center, The Second Affiliated
Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Yingxin Li
- Guangzhou
Key Laboratory for Research and Development of Nano-Biomedical Technology
for Diagnosis and Therapy, Guangdong Provincial Education Department
Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Department
of Oncology & Translational Medicine Center, The Second Affiliated
Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Xiaoxia Zhou
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Jianbo Jia
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Zengchun Xie
- Centre
for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bing Yan
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Kenneth A. Dawson
- Guangzhou
Key Laboratory for Research and Development of Nano-Biomedical Technology
for Diagnosis and Therapy, Guangdong Provincial Education Department
Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Department
of Oncology & Translational Medicine Center, The Second Affiliated
Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
- Centre
for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jingqi Chen
- Guangzhou
Key Laboratory for Research and Development of Nano-Biomedical Technology
for Diagnosis and Therapy, Guangdong Provincial Education Department
Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Department
of Oncology & Translational Medicine Center, The Second Affiliated
Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Yi-Feng Wang
- Guangzhou
Key Laboratory for Research and Development of Nano-Biomedical Technology
for Diagnosis and Therapy, Guangdong Provincial Education Department
Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Department
of Oncology & Translational Medicine Center, The Second Affiliated
Hospital & the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Yan Yan
- Centre
for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- School
of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Zhao W, Zhou Y, Zhang G, Li Y, Liao Z, Lai G, Jiang Y, Jia S, Su Z, Qi J, Zhang S. Efficient and Size-Controllable Method and Mechanism for Preparing Cellulose Nanospheres. Biomacromolecules 2025; 26:2665-2674. [PMID: 40040544 DOI: 10.1021/acs.biomac.5c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Cellulose nanosphere (CNS), reported as a novel cellulose material, has encountered significant challenges in achieving efficient and size-controllable preparation, which has considerably constrained its development. In this study, we have developed an innovative and size-controllable method that synthesizes CNS within only 7 min. A detailed investigation into the morphology, chemical structure, and crystalline structure of CNS was conducted, leading to the proposal of a formation mechanism for CNS. The mechanism is described as follows: cellulose dissolution, hydrophobic triethoxymethylsilane hydrolysis, condensation nucleation in supersaturation, growth through hydrogen-bonding interactions and condensation, and CNS forms in the critical supersaturation. The supersaturation level was controlled by adjusting the stirring speed, thus realizing the size-controllable preparation of CNS and verifying the proposed mechanism. The results demonstrate that the particle size of CNS increases from 63.4 ± 14.0 nm to 108.6 ± 27.1 nm as the stirring speed decreases from 1000 r/min to 300 r/min.
Collapse
Affiliation(s)
- Weixiong Zhao
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuhang Zhou
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Guichao Zhang
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yue Li
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zixuan Liao
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Gaorong Lai
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yongze Jiang
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shanshan Jia
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhiping Su
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jinqiu Qi
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shaobo Zhang
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
7
|
Chu Z, Liu X, Zhao T, Jiang D, Zhao J, Dong X, Yeung KWK, Liu X, Liao Y, Ouyang L. Self-healing Ppy-hydrogel promotes diabetic skin wound healing through enhanced sterilization and macrophage orchestration triggered by NIR. Biomaterials 2025; 315:122964. [PMID: 39550986 DOI: 10.1016/j.biomaterials.2024.122964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Non-healing diabetic foot ulcers are the knotty public health issue due to the uncontrolled bacterial infection, prolonged inflammation, and inferior vessel remodeling. In this work, polypyrrole (Ppy) was added into the hybrid hydrogel containing polyvinyl alcohol (PVA), polyethylene glycol (PEG), and hyaluronan (HA) to acquire superior mechanism and photothermal ability. The Ppy composited hybrid hydrogel could effectively kill bacteria through accumulating heat on the hydrogel surface. RNA-Seq analysis shows that the heat accumulation could enhance phagosome of macrophage and M1 activation, which further accelerate bacteria clearance. Benefitting from the bacteria clearance, macrophage could transform its phenotype to M2 in Ppy composited hybrid hydrogel group with near infrared light (NIR) stimulation. The related genes expression in keratinization, keratinocyte differentiation, and establishment of the skin barrier in the skin were up-regulated and collagen and vascular endothelial growth factor (VEGF) expression level are also enhanced. In summary, Ppy composited hybrid hydrogel could effectively solve the issues of infection and poor wound healing in diabetic foot ulcers, making it an ideal candidate dressing for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Zhuangzhuang Chu
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Department of Dental Implantology, Linyi People's Hospital, Linyi, 276003, China
| | - Xingdan Liu
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tong Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Dongya Jiang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Kelvin W K Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Liping Ouyang
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
8
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2025; 9:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
9
|
Leventis N, Soni R, Bartels J, Begag R, Yaghoobnejad Asl H. Form-Factor Control of Alginate Aerogels Via Thixotropic Sols: From Monoliths to Fibers to Films. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9891-9912. [PMID: 39902721 DOI: 10.1021/acsami.4c21134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Producing homogeneous alginate aerogel monoliths is challenging due to the uncontrollably fast gelation of sodium alginate (NaALG) solutions, which is typically induced with metal ions. This issue is overcome by decoupling molding from gelation. Aqueous NaALG solutions are first converted into thixotropic liquids via in situ acidification with acetic acid (AcOH) generated gradually through the hydrolysis of acetic anhydride (Ac2O), thus, providing time for casting in molds. The resulting solid-like thixotropic liquids are rigidized into wet gels conforming to the molds by a membraneless dialysis process via nonsolvent-induced phase separation, treatment with strong acids (HCl), or aqueous metal ion solutions (Ca2+, Cu2+, Fe3+, Ni2+, Ag+, Au3+). The thixotropic nature of the NaALG/Ac2O mixtures enables extrusion into fibers or spreading into films, followed by rigidization using the same methods. Wet gels in monolithic, fibrous, or film form were dried into aerogels with supercritical fluid (SCF) CO2. All aerogels were characterized by SEM, N2-sorption porosimetry, IR spectroscopy, solid-state CP MAS 13C NMR, and elemental analysis. Oscillatory rheology tracked the transition of NaALG to thixotropic liquids during Ac2O and AcOH titrations run in parallel. Thixotropic liquids from both titrations were rigidized with the nonsolvent-induced phase separation method and were processed into aerogels establishing that AcOH from the hydrolysis of Ac2O converts up to ∼30% mol/mol of NaALG to alginic acid (ALGH). Conversion of the remaining NaALG in thixotropic liquids to ALGH (>95% mol/mol) requires a strong acid (HCl), while rigidization with metal ions just replaces residual Na. Dynamic mechanical analysis (DMA) showed nearly identical storage moduli (E') for wet gels and aerogels, confirming that the solid network is formed during the rigidization step and is unaffected by subsequent processing. Notably, elemental analysis, porosimetry, and DMA data indicated that gels rigidized with Fe3+ included a secondary network, which, based on literature Mössbauer reports, is assigned to sol-gel-derived iron oxide.
Collapse
Affiliation(s)
- Nicholas Leventis
- Aspen Aerogels, Inc., 30 Forbes Road, Bldg. B, Northborough, Massachusetts 01532, United States
| | - Rushi Soni
- Aspen Aerogels, Inc., 30 Forbes Road, Bldg. B, Northborough, Massachusetts 01532, United States
| | - Joshua Bartels
- Aspen Aerogels, Inc., 30 Forbes Road, Bldg. B, Northborough, Massachusetts 01532, United States
| | - Redouane Begag
- Aspen Aerogels, Inc., 30 Forbes Road, Bldg. B, Northborough, Massachusetts 01532, United States
| | - Hooman Yaghoobnejad Asl
- Aspen Aerogels, Inc., 30 Forbes Road, Bldg. B, Northborough, Massachusetts 01532, United States
| |
Collapse
|
10
|
Gao C, Sun H, Du J. Unusual Endotaxy Growth of Hexagonal Nanosheets by the Self-Assembly of a Homopolymer. Angew Chem Int Ed Engl 2025; 64:e202420079. [PMID: 39727146 DOI: 10.1002/anie.202420079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 12/28/2024]
Abstract
A classical crystallization usually grows epitaxially from a crystal nucleus. Presented in this study is an unusual endotaxy growth manner of a crystalline homopolymer to form hexagonal nanosheets. The amphiphilic homopolymer, poly(3-(4-(phenyldiazenyl)phenoxy)propyl methacrylate) (PAzoPMA), is first annealed in isopropanol to afford a hexagonal nut-like structure. Then, the PAzoPMA crystallizes from the inner wall to the center to form a thin bottom, which grows upwards along the bottom, leading to the formation of the evenly hexagonal nanosheets. The energy fluctuation by molecular dynamics (MD) simulation during self-assembly confirms the packing state of PAzoPMA chains in different solvents. In isopropanol, the total energy is the lowest, demonstrating the tight regular arrangement of polymer chains. In addition, the non-bonding interaction energy is also the lowest, leading to the favorable contact with solvent molecules and the formation of hexagonal nanosheets. Otherwise, nanowires and giant large compound micelles are formed in ethanol and n-butanol, respectively. Overall, an unusual endotaxy crystallization manner of an amphiphilic homopolymer is observed during the preparation of hexagonal nanosheets, which brings fresh insight for understanding the crystallization behavior of polymers and preparing functional soft nanomaterials.
Collapse
Affiliation(s)
- Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
11
|
Imani S, Li X, Chen K, Maghsoudloo M, Jabbarzadeh Kaboli P, Hashemi M, Khoushab S, Li X. Computational biology and artificial intelligence in mRNA vaccine design for cancer immunotherapy. Front Cell Infect Microbiol 2025; 14:1501010. [PMID: 39902185 PMCID: PMC11788159 DOI: 10.3389/fcimb.2024.1501010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Messenger RNA (mRNA) vaccines offer an adaptable and scalable platform for cancer immunotherapy, requiring optimal design to elicit a robust and targeted immune response. Recent advancements in bioinformatics and artificial intelligence (AI) have significantly enhanced the design, prediction, and optimization of mRNA vaccines. This paper reviews technologies that streamline mRNA vaccine development, from genomic sequencing to lipid nanoparticle (LNP) formulation. We discuss how accurate predictions of neoantigen structures guide the design of mRNA sequences that effectively target immune and cancer cells. Furthermore, we examine AI-driven approaches that optimize mRNA-LNP formulations, enhancing delivery and stability. These technological innovations not only improve vaccine design but also enhance pharmacokinetics and pharmacodynamics, offering promising avenues for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Xiaoyan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Keyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | | | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Xiaoping Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Ksouri R, Odabas S, Yar Sağlam AS. Exosome loaded 3D printed magnetic PLA constructs: a candidate for bone tissue engineering. PROGRESS IN ADDITIVE MANUFACTURING 2025; 10:247-260. [DOI: 10.1007/s40964-024-00619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/07/2024] [Indexed: 01/05/2025]
|
13
|
Zhao Y, Zhang J, Zhang G, Huang H, Tan WS, Cai H. Injectable Nanocomposite Hydrogel with Synergistic Biofilm Eradication and Enhanced Re-epithelialization for Accelerated Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69086-69102. [PMID: 39635909 DOI: 10.1021/acsami.4c17855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Diabetic wounds remain a critical clinical challenge due to their harsh microenvironment, which impairs cellular function, hinders re-epithelialization and tissue remodeling, and slows healing. Injectable nanocomposite hydrogel dressings offer a promising strategy for diabetic wound repair. In this study, we developed an injectable nanocomposite hydrogel dressing (HDL@W379) using LAP@W379 nanoparticles and an injectable hyaluronic acid-based hydrogel (HA-ADH-ODEX). This dressing provided a sustained, pH-responsive release of W379 antimicrobial peptides, effectively regulating the wound microenvironment to enhance healing. The HDL@W379 hydrogel featured multifunctional properties, including mechanical stability, injectability, self-healing, biocompatibility, and tissue adhesion. In vitro, the HDL@W379 hydrogel achieved synergistic biofilm elimination and subsequent activation of basal cell migration and endothelial cell tube formation. Pathway analysis indicated that the HDL@W379 hydrogel enhances basal cell migration through MEK/ERK pathway activation. In methicillin-resistant Staphylococcus aureus (MRSA)-infected diabetic wounds, the HDL@W379 hydrogel accelerated wound healing by inhibiting bacterial proliferation and promoting re-epithelialization, regenerating the granulation tissue, enhancing collagen deposition, and facilitating angiogenesis. Overall, this strategy of biofilm elimination and basal cell activation to continuously regulate the diabetic wound microenvironment offers an innovative approach to treating chronic wounds.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jingwei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Guofeng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
14
|
Naskar A, Kilari S, Baranwal G, Kane J, Misra S. Nanoparticle-Based Drug Delivery for Vascular Applications. Bioengineering (Basel) 2024; 11:1222. [PMID: 39768040 PMCID: PMC11673055 DOI: 10.3390/bioengineering11121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/05/2025] Open
Abstract
Nanoparticle (NP)-based drug delivery systems have received widespread attention due to the excellent physicochemical properties of nanomaterials. Different types of NPs such as lipid NPs, poly(lactic-co-glycolic) acid (PLGA) NPs, inorganic NPs (e.g., iron oxide and Au), carbon NPs (graphene and carbon nanodots), 2D nanomaterials, and biomimetic NPs have found favor as drug delivery vehicles. In this review, we discuss the different types of customized NPs for intravascular drug delivery, nanoparticle behaviors (margination, adhesion, and endothelium uptake) in blood vessels, and nanomaterial compatibility for successful drug delivery. Additionally, cell surface protein targets play an important role in targeted drug delivery, and various vascular drug delivery studies using nanoparticles conjugated to these proteins are reviewed. Finally, limitations, challenges, and potential solutions for translational research regarding NP-based vascular drug delivery are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.N.); (S.K.); (G.B.); (J.K.)
| |
Collapse
|
15
|
Ma Q, Xiong J, Zhou Y, Zhang S, Wang J, Li W, Zou X, Yan F. Predicting Fatigue Damage in Hydrogels Through Force-Induced Luminescence Enhancement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413874. [PMID: 39520329 DOI: 10.1002/adma.202413874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Fatigue damage of polymers occurs under long-term load cycling, resulting in irreversible fracture failure, which is difficult to predict. The real-time monitoring of material fatigue damage is of great significance. Here, tough hydrogels are prepared with force-induced confined luminescence enhancement of carbonated polymer quantum dot (CPD) clusters to realize the visualization of fracture process and the monitoring of fatigue damage. The enhanced interactions induced by force between the clusters and the polymer in the confined space inhibit the non-radiative leaps and promote the radiative leaps to quantify the fatigue damage into optical signals. Rigid CPDs with abundant active sites on the surface can form dynamic reversible bonds with polymer and dissipate stress concentration, which significantly enhances the crack propagation strain (8000%) and fracture energy (26.4 kJ m-2) of hydrogels. CPD hydrogels have a wide range of applications in novel information encryption and luminescent robotics.
Collapse
Affiliation(s)
- Qi Ma
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiaofeng Xiong
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yawen Zhou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shilong Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiayu Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Research Center for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
16
|
Li J, Yang H, Cai Y, Gu R, Chen Y, Wang Y, Dong Y, Zhao Q. Ag quantum dots-doped poly (vinyl alcohol)/chitosan hydrogel coatings to prevent catheter-associated urinary tract infections. Int J Biol Macromol 2024; 282:136405. [PMID: 39423980 DOI: 10.1016/j.ijbiomac.2024.136405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
The prevention of catheter-associated urinary tract infections (CAUTIs) significantly impacts the reduction of morbidity and mortality associated with the use of indwelling urinary catheters. This study focused on developing an antibacterial double network hydrogel coating for latex urinary catheters, which incorporated Ag quantum dots (Ag QDs) in a polyvinyl alcohol (PVA)-chitosan (CS) double network hydrogel matrix. The PVA-CS-Ag QDs, referred to as the PCA hydrogel coating exhibited excellent mechanical and physiochemical properties with controlled release of Ag QDs. The antibacterial properties of the PCA hydrogel-coated urinary catheters were studied against both gram-negative Escherichia coli (E. coli, ATCC25922) and gram-positive Staphylococcus aureus (S. aureus, ATCC29213). The continuous release of CS oligomers and Ag QDs from the hydrogel coating contributed to the synergistic antibacterial and antiadhesion effects. Measurements of the Ag release rate revealed that even after 30 days, the concentration of Ag QDs from the PCA hydrogel-coated urinary catheters remained significantly higher than the effective antibacterial concentration of the total Ag (0.1 μg·L-1). These results indicated that the PCA hydrogel coating not only efficiently prevented bacteria attachment, but also exhibited long-term antibacterial activity, thereby inhibiting biofilm formation. Furthermore, the PCA hydrogel-coated urinary catheter demonstrated excellent biocompatibility and hemocompatibility. Overall, this novel PCA hydrogel-coated urinary catheter, with its exceptional antibacterial properties, holds great potential in reducing the incidence of CAUTIs.
Collapse
Affiliation(s)
- Jianxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yongwei Cai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Ronghua Gu
- Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yao Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yimeng Wang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Yuhang Dong
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Qi Zhao
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK.
| |
Collapse
|
17
|
Naseem S, Rizwan M. Seaweed-derived etherified carboxymethyl cellulose for sustainable tissue engineering. Carbohydr Res 2024; 545:109291. [PMID: 39437464 DOI: 10.1016/j.carres.2024.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Biodegradability, biocompatibility, abundant supply from renewable sources, and affordability are the outstanding properties of cellulose that have prompted substantial studies into its potential in biomedical applications. Beyond terrestrial sources of cellulose, seaweeds have attracted much attention as a potential source of cellulose because they are widely available. Cellulose and its byproducts may be extracted from various macroalgae species, including red, green, and brown algae. The extracted cellulose's qualities vary depending on the algae species, age, and extraction process utilized. Cellulose's characteristics are enhanced through chemical modifications, specifically etherification and esterification, which substitute functional groups for hydroxyl groups, yielding a range of products, including cellulose acetate (CA), cellulose nitrate, cellulose sulfate, methylcellulose, and carboxymethyl cellulose (CMC). The ability to modify CMC characteristics for particular applications is explored through techniques including grafting processes mixing, and cross-linking with other polymers. Moreover, tissue engineering is given significant consideration in the growing use of CMC and its altered forms in biological applications. These alterations allow for the production of scaffolds that promote tissue regeneration and cell proliferation, enabling CMC-based scaffolds for various tissue engineering uses. This review provides a comprehensive overview of CMC's properties, modifications, and potential in tissue engineering.
Collapse
Affiliation(s)
- Sobia Naseem
- Department of Polymer & Process Engineering, University of Engineering and Technology, Lahore, Pakistan; Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan.
| |
Collapse
|
18
|
Huang X, Zhang L, Hang J, Quinn T, Nasar NKA, Lin Y, Hu C, Pang X, Chen X, Davis TP, Qiao R. 4D Printing Hybrid Soft Robots Enabled by Shape-Transformable Liquid Metal Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409789. [PMID: 39300941 DOI: 10.1002/adma.202409789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Indexed: 09/22/2024]
Abstract
In recent years, soft robotics has emerged as a rapidly expanding frontier research field that draws inspiration from the locomotion mechanisms of soft-bodied creatures in nature to achieve smooth and complex motion for diverse applications. However, the fabrication of soft robots with hybrid structures remains challenging due to limitations in material selection and the complex, multi-step processes involved in traditional manufacturing methods. Herein, a novel direct one-step additive manufacturing (3D printing) approach is introduced for the fabrication of hybrid robots composed of soft and rigid components for sophisticated tasks. Inspired by the shape-transformable liquid metal nanoparticles (LMNPs), a functional material toolkit with tuneable mechanical properties and deformability is developed by integrating differently shaped gallium-based nanoparticles (GNPs) into the 3D printing polymers. Then the direct printing of assembled or one-piece hybrid soft-rigid robots is presented through a single recipe of GNPs-integrated inks. This fabrication method enables precise control of the mechanical properties and shape memory properties within the hybrid structures of robot body with a customized structure design. Their capabilities are further demonstrated through the design and fabrication of hybrid robots as high-precision gripper, bioinspired motor, and hand rehabilitation device.
Collapse
Affiliation(s)
- Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Liwen Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiangyu Hang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas Quinn
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Naufal Kabir Ahamed Nasar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
19
|
Antunes Filho S, Pizzorno Backx B, Foguel D. Green nanotechnology in phytosynthesis and its efficiency in inhibiting bacterial biofilm formation: implications for medicine. BIOFOULING 2024; 40:645-659. [PMID: 39319552 DOI: 10.1080/08927014.2024.2407036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Nanotechnology is used in several biomedical applications, including antimicrobial and antibiofilm applications using nanomaterials. Bacterial biofilm varies according to the strain; the matrix is very strong and resistant. In this sense, phytosynthesis is an important method for combating bacterial biofilms through the use of metallic nanoparticles (silver, gold, or copper) with increased marketing and technical-scientific potential. In this review, we seek to gather the leading publications on the use of phytosynthesized metallic nanoparticles against bacterial biofilms. Furthermore, this study aims to understand the main characteristics and parameters of these nanomaterials, their antibiofilm efficiency, and the presence or absence of cytotoxicity in these developed technologies.
Collapse
Affiliation(s)
- Sérgio Antunes Filho
- NUMPEX - UFRJ, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Uysal Y, Görkem Doğaroğlu Z, Çaylali Z, Karakulak DS. Rosemary-Mediated Green Synthesis of ZnO Nanoparticles and their Integration into Hydrogel Matrices: Evaluating Effects on Wheat Growth and Antibacterial Properties. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400120. [PMID: 39545255 PMCID: PMC11557514 DOI: 10.1002/gch2.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Indexed: 11/17/2024]
Abstract
In this study, the impact of zinc oxide nanoparticles (ZnO-NPs) generated using rosemary extract, synthesized using environmentally friendly processes and integrated into a cross-linked polymer matrix, on growth performance of wheat is evaluated. Rosemary extract used as coating, stabilizing, and reducing agents in this green synthesis method. Fourier transform infrared spectroscopy analyses demonstrated the presence of phytochemical constituents of the plant extract that served as capping agents during the synthesis process. The nanoparticles are sprayed to the plant leaves. The effects of nanoparticles within the hydrogel on plant development are compared with the effects of nanoparticles in suspension. The percentage of seed germination is unaffected by either rosemary- or raw-ZnO-NPs; however, the root and shoot elongation are considerably impacted by the nanoparticle treatments. The threshold concentrations are determined as 3000 mg L-1 for rosemary-ZnO-NPs and 2000 mg L-1 for raw-ZnO-NPs. Additionally, antibacterial test results showed that the activity level on Escherichia coli is higher for rosemary-ZnO-NPs compared to raw-ZnO-NPs. The results of this research may provide guidance on how green synthesis methods and the use of nanoparticle-hydrogel composites in plant breeding can be used in future agricultural applications. This can be considered an important step in terms of agricultural innovations and sustainability.
Collapse
Affiliation(s)
- Yağmur Uysal
- Engineering FacultyEnvironmental Engineering DepartmentMersin UniversityMersinTurkey
| | | | - Zehranur Çaylali
- Engineering FacultyEnvironmental Engineering DepartmentMersin UniversityMersinTurkey
| | | |
Collapse
|
21
|
Fang J, Wang X, Lai H, Li W, Yao X, Pan Z, Mao R, Yan Y, Xie C, Lin J, Sun W, Li R, Wang J, Dai J, Xu K, Yu X, Xu T, Duan W, Qian J, Ouyang H, Dai X. Decoding the mechanical characteristics of the human anterior cruciate ligament entheses through graduated mineralization interfaces. Nat Commun 2024; 15:9253. [PMID: 39462005 PMCID: PMC11513108 DOI: 10.1038/s41467-024-53542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The anterior cruciate ligament is anchored to the femur and tibia via specialized interfaces known as entheses. These play a critical role in ligament homeostasis and joint stability by transferring forces, varying in magnitude and direction between structurally and functionally dissimilar tissues. However, the precise structural and mechanical characteristics underlying the femoral and tibial entheses and their intricate interplay remain elusive. In this study, two thin-graduated mineralization regions in the femoral enthesis (~21 μm) and tibial enthesis (~14 μm) are identified, both exhibiting distinct biomolecular compositions and mineral assembly patterns. Notably, the femoral enthesis interface exhibits progressively maturing hydroxyapatites, whereas the mineral at the tibial enthesis interface region transitions from amorphous calcium phosphate to hydroxyapatites with increasing crystallinity. Proteomics results reveal that Matrix Gla protein uniquely enriched at the tibial enthesis interface, may stabilize amorphous calcium phosphate, while C-type lectin domain containing 11 A, enriched at the femoral enthesis interface, could facilitate the interface mineralization. Moreover, the finite element analysis indicates that the femoral enthesis model exhibited higher resistance to shearing, whereas the tibial enthesis model contributes to tensile resistance, suggesting that the discrepancy in biomolecular expression and the corresponding mineral assembly heterogeneities collectively contribute to the superior mechanical properties of both the femoral enthesis and tibial enthesis models. These findings provide novel perspectives on the structure-function relationships of anterior cruciate ligament entheses, paving the way for improved management of anterior cruciate ligament injury and regeneration.
Collapse
Affiliation(s)
- Jinghua Fang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhao Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Huinan Lai
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wenyue Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Zongyou Pan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Renwei Mao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yiyang Yan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Xie
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou, China
| | - Junxin Lin
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Sun
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou, China
| | - Jiajie Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jiacheng Dai
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinning Yu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Tengjing Xu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Wangping Duan
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China.
| | - Hongwei Ouyang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou, China.
| | - Xuesong Dai
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
22
|
Guo J, Shu X, Yu S, Guo C, Shen G, Chen L, Zhou J, Xiao J, Guo H, Chen Y, Zeng Z, Wang P. Injectable hydrogel microsphere-bomb for MRSA-infected chronic osteomyelitis. J Control Release 2024; 376:337-353. [PMID: 39413850 DOI: 10.1016/j.jconrel.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Biofilm and bone tissue defect induced by the bacterial infection severely impede chronic osteomyelitis treatment. It is critical to break though the densely and obstinate biofilm so that the target drugs can deliver to the infected bone more effectively. Herein, an acoustically responsive multifunctional hydrogel microsphere-bomb (EMgel) was designed and prepared by microfluidic technology, which could be injected to the focus of bone infection, and blasted into the nidus deeply to destroy the bacterial biofilm matrix barrier under penetrating ultrasound, so the encapsulated natural polyphenolic EGCG and bioactive MoS2 released to repair the damaged bone. The results proved the hydrogel microsphere-bomb exhibited controlling drug release, favorable antibacterial (as high as 99 %), high biofilm resistance, fascinating antioxidation, good cytocompatibility, and osteogenic differentiation. The acoustically responsive microsphere-bomb further proved their fantastic ability to eradicate biofilm and promote bone regeneration in the Methicillin-resistant Staphylococcus aureus (MRSA) infected chronic osteomyelitis model due to the synergy effects of EGCG and bioactive MoS2. Especially, immunohistochemical staining showed lower inflammatory reaction and higher expression of OCN in EMgel group treated with ultrasound wave. This study presents a new design of hydrogel microsphere-based intelligence drug delivery for osteomyelitis treatment, which exhibit great promising potential for dealing with chronic orthopedic infections, drug delivery system and tissue engineering.
Collapse
Affiliation(s)
- Jiayi Guo
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xian Shu
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Cuiping Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Guangxin Shen
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong Province, Foshan 528031, China
| | - Longsheng Chen
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jiayi Zhou
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Jiangwei Xiao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Huilong Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Yi Chen
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Zhiwen Zeng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
| | - Ping Wang
- Department of Ultrasound, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
23
|
Nifontova G, Safaryan S, Khristidis Y, Smirnova O, Vosough M, Shpichka A, Timashev P. Advancing wound healing by hydrogel-based dressings loaded with cell-conditioned medium: a systematic review. Stem Cell Res Ther 2024; 15:371. [PMID: 39420416 PMCID: PMC11488269 DOI: 10.1186/s13287-024-03976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Wound healing represents a complex biological process, critically important in clinical practice due to its direct implication in a patient's recovery and quality of life. Conservative wound management frequently falls short in providing an ideal environment for the optimal tissue regeneration, often resulting in extended healing periods and elevated risk of infection and other complications. The emerging biomaterials, particularly hydrogels, have shown substantial promise in addressing these challenges by offering properties such as biocompatibility, biodegradability, and the ability to cure wound environment. Recent advancements have highlighted the therapeutic potential of integrating cell-derived conditioned medium (CM) into hydrogel matrices. Cell-derived CM represents a rich array of bioactive molecules, demonstrating significant efficacy in modulating cellular activities crucial for wound healing, including cellular proliferation, migration, and angiogenesis. METHODS The methodology of this review adheres to the standards set by the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The review includes a selection of studies published within the last five years, focusing on in vivo experiments involving various types of skin injuries treated with topically applied hydrogels loaded with CM (H-CM). The search strategy refers to the PICO framework and includes the assessment of study quality by CAMARADES tool. RESULTS The systematic review represents a detailed evaluation of H-CM dressings wound healing efficiency based on the experimental results of cell-based assays and animal wound models. The study targets to reveal wound healing capacity of H-CM dressings, and provides a comparative data analysis, limitations of methods and discussions of H-CM role in advancing the wound healing therapy. CONCLUSIONS The data presented demonstrate that H-CM is a promising material for advanced wound healing and regenerative medicine. These dressings possess proved in vitro/in vivo efficacy that highlights their strong clinical potential and paves the way to further investigations of H-CM formulations within clinical trials.
Collapse
Affiliation(s)
- Galina Nifontova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Sofia Safaryan
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Yana Khristidis
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, 1665666311, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia.
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| |
Collapse
|
24
|
Ahmed E, Mulay P, Ramirez C, Tirado-Mansilla G, Cheong E, Gormley AJ. Mapping Biomaterial Complexity by Machine Learning. Tissue Eng Part A 2024; 30:662-680. [PMID: 39135398 DOI: 10.1089/ten.tea.2024.0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Biomaterials often have subtle properties that ultimately drive their bespoke performance. Given this nuanced structure-function behavior, the standard scientific approach of one experiment at a time or design of experiment methods is largely inefficient for the discovery of complex biomaterials. More recently, high-throughput experimentation coupled with machine learning methods has matured beyond expert users allowing scientists and engineers from diverse backgrounds to access these powerful data science tools. As a result, we now have the opportunity to strategically utilize all available data from high-throughput experiments to train efficacious models and map the structure-function behavior of biomaterials for their discovery. Herein, we discuss this necessary shift to data-driven determination of structure-function properties of biomaterials as we highlight how machine learning is leveraged in identifying physicochemical cues for biomaterials in tissue engineering, gene delivery, drug delivery, protein stabilization, and antifouling materials. We also discuss data-mining approaches that are coupled with machine learning to map biomaterial functions that reduce the load on experimental approaches for faster biomaterial discovery. Ultimately, harnessing the prowess of machine learning will lead to accelerated discovery and development of optimal biomaterial designs.
Collapse
Affiliation(s)
- Eman Ahmed
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Prajakatta Mulay
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Cesar Ramirez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Gabriela Tirado-Mansilla
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Eugene Cheong
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
25
|
Zhang J, Li J, Zhang Y, Zhao Y, Shen J, Du F, Chen Y, Li M, Wu X, Chen M, Xiao Z, Deng S. Bilayer hydrogel with a protective film and a regenerative hydrogel for effective diabetic wound treatment. Biomater Sci 2024; 12:5036-5051. [PMID: 39189321 DOI: 10.1039/d4bm00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Diabetic foot ulcers (DFUs) are one of the most serious complications of diabetes, often leading to necrosis and amputation. DFU is caused by the intricate diabetic microenvironment, including ischemia, hypoxia, hyperinflammation, reduced angiogenesis, and persistent infection. Traditional wound dressings made of single or mixed materials often struggle to meet all the requirements for effective diabetic wound healing. In contrast, multilayer dressings comprising more than single layers have the potential to address these challenges by combining their diverse chemical and physical properties. In this study, we developed a bilayer hydrogel comprising a GelMA-ALG-nano-ZnO protective film and a COL1-PRP regenerative hydrogel for facilitating diabetic wound healing. We demonstrated the protective properties against bacterial infection of the protective film, while highlighting the regenerative potential of the COL1-PRP hydrogel in promoting fibroblast and MUVEC migration, extracellular matrix secretion and deposition, and angiogenesis. Importantly, the bilayer hydrogel exhibited superior efficacy in promoting full-thickness wound healing in a diabetic rat model compared to its single-layer hydrogel counterparts. This multi-layer approach offers a promising strategy for addressing the complexities of diabetic foot treatment and improving clinical outcomes.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yang Zhang
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| |
Collapse
|
26
|
Dore MD, Laurent Q, Lachance-Brais C, Das T, Luo X, Sleiman HF. DNA Hierarchical Superstructures from Micellar Units: Stiff Hydrogels and Anisotropic Nanofibers. Chemistry 2024; 30:e202401453. [PMID: 38951115 DOI: 10.1002/chem.202401453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Supramolecular materials have been assembled using a wide range of interactions, including the hydrophobic effect, DNA base-pairing, and hydrogen bonding. Specifically, DNA amphiphiles with a hydrophobic building block self-assemble into diverse morphologies depending on the length and composition of both blocks. Herein, we take advantage of the orthogonality of different supramolecular interactions - the hydrophobic effect, Watson-Crick-Franklin base pairing and RNA kissing loops - to create hierarchical self-assemblies with controlled morphologies on both the nanometer and the micrometer scales. Assembly through base-pairing leads to the formation of hybrid, multi-phasic hydrogels with high stiffness and self-healing properties. Assembly via hydrophobic core interactions gives anisotropic, discrete assemblies, where DNA fibers with one sequence are terminated with DNA spheres bearing different sequences. This work opens new avenues for the bottom-up construction of DNA-based materials, with promising applications in drug delivery, tissue engineering, and the creation of complex DNA structures from a minimum array of components.
Collapse
Affiliation(s)
- Michael D Dore
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | - Quentin Laurent
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | | | - Trishalina Das
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | - Xin Luo
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| |
Collapse
|
27
|
Dos Santos DM, Moon JI, Kim DS, Bassous NJ, Marangon CA, Campana-Filho SP, Correa DS, Kang MH, Kim WJ, Shin SR. Hierarchical Chitin Nanocrystal-Based 3D Printed Dual-Layer Membranes Hydrogels: A Dual Drug Delivery Nano-Platform for Periodontal Tissue Regeneration. ACS NANO 2024; 18:24182-24203. [PMID: 39163106 DOI: 10.1021/acsnano.4c05558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Periodontitis, a prevalent chronic inflammatory disease caused by bacteria, poses a significant challenge to current treatments by merely slowing their progression. Herein, we propose an innovative solution in the form of hierarchical nanostructured 3D printed bilayer membranes that serve as dual-drug delivery nanoplatforms and provide scaffold function for the regeneration of periodontal tissue. Nanocomposite hydrogels were prepared by combining lipid nanoparticle-loaded grape seed extract and simvastatin, as well as chitin nanocrystals, which were then 3D printed into a bilayer membrane that possesses antimicrobial properties and multiscale porosity for periodontal tissue regeneration. The constructs exhibited excellent mechanical properties by adding chitin nanocrystals and provided a sustained release of distinct drugs over 24 days. We demonstrated that the bilayer membranes are cytocompatible and have the ability to induce bone-forming markers in human mesenchymal stem cells, while showing potent antibacterial activity against pathogens associated with periodontitis. In vivo studies further confirmed the efficacy of bilayer membranes in enhancing alveolar bone regeneration and reducing inflammation in a periodontal defect model. This approach suggests promising avenues for the development of implantable constructs that not only combat infections, but also promote the regeneration of periodontal tissue, providing valuable insights into advanced periodontitis treatment strategies.
Collapse
Affiliation(s)
- Danilo Martins Dos Santos
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| | - Jae-I Moon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Da-Seul Kim
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Nicole Joy Bassous
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Crisiane Aparecida Marangon
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| | - Sergio Paulo Campana-Filho
- Sao Carlos Institute of Chemistry/University of São Paulo, Av. Trabalhador Sao-carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Deng C, Qin C, Li Z, Lu L, Tong Y, Yuan J, Yin F, Cheng Y, Wu C. Diatomite-incorporated hierarchical scaffolds for osteochondral regeneration. Bioact Mater 2024; 38:305-320. [PMID: 38745590 PMCID: PMC11091463 DOI: 10.1016/j.bioactmat.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Osteochondral regeneration involves the highly challenging and complex reconstruction of cartilage and subchondral bone. Silicon (Si) ions play a crucial role in bone development. Current research on Si ions mainly focuses on bone repair, by using silicate bioceramics with complex ion compositions. However, it is unclear whether the Si ions have important effect on cartilage regeneration. Developing a scaffold that solely releases Si ions to simultaneously promote subchondral bone repair and stimulate cartilage regeneration is critically important. Diatomite (DE) is a natural diatomaceous sediment that can stably release Si ions, known for its abundant availability, low cost, and environmental friendliness. Herein, a hierarchical osteochondral repair scaffold is uniquely designed by incorporating gradient DE into GelMA hydrogel. The adding DE microparticles provides a specific Si source for controlled Si ions release, which not only promotes osteogenic differentiation of rBMSCs (rabbit bone marrow mesenchymal stem cells) but also enhances proliferation and maturation of chondrocytes. Moreover, DE-incorporated hierarchical scaffolds significantly promoted the regeneration of cartilage and subchondral bone. The study suggests the significant role of Si ions in promoting cartilage regeneration and solidifies their foundational role in enhancing bone repair. Furthermore, it offers an economic and eco-friendly strategy for developing high value-added osteochondral regenerative bioscaffolds from low-value ocean natural materials.
Collapse
Affiliation(s)
- Cuijun Deng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, PR China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Laiya Lu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200032, PR China
| | - Yifan Tong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Jiaqi Yuan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200032, PR China
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| |
Collapse
|
29
|
Michel R, Corté L. Hydrogel-tissue adhesion by particle bridging: sensitivity to interfacial wetting and tissue composition. SOFT MATTER 2024; 20:5122-5133. [PMID: 38894656 DOI: 10.1039/d4sm00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Solid particles placed at the interface between hydrogels and biological tissues can create an adhesive joint through the adsorption of macromolecules onto their surfaces. Here, we investigated how this adhesion by particle bridging depends on the wetting of tissue surfaces and on the heterogeneities in tissue composition. Ex vivo peeling experiments were performed using poly(ethylene glycol) films coated with aggregates of silica nanoparticles deposited on the internal tissues of porcine liver. We show that the adhesion produced by particle bridging is altered by the presence of fluid wetting the tissue-hydrogel interface. For both uncoated and coated films, a transition from lubricated to adhesive contact was observed when all the interfacial fluid was drained. The presence of a silica nanoparticle coating shifted the transition towards more hydrated conditions and significantly enhanced adhesion in the adhesive regime. After 5 min of contact, the adhesion energy achieved on liver parenchyma with the coated films (7.7 ± 1.9 J m-2) was more than twice that of the uncoated films (3.2 ± 0.3 J m-2) or with a surgical cyanoacrylate glue (2.9 ± 1.9 J m-2). Microscopic observations during and after peeling revealed different detachment processes through either particle detachment or cohesive fracture in the tissue. These mechanisms could be directly related to the microanatomy of the liver parenchyma. The effects of both interfacial wetting and tissue composition on adhesion may provide guidelines to tailor the design of tissue adhesives using particle bridging.
Collapse
Affiliation(s)
- Raphaël Michel
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005, Paris, France.
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Laurent Corté
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005, Paris, France.
- Centre des Matériaux, MINES Paris, CNRS, PSL University, 63-65 rue Henri-Auguste Desbruères, 91003, Evry, France.
| |
Collapse
|
30
|
Li Z, Guo H, Jin X. Fabrication of Uniform Anionic Polymeric Nanoplatelets as Building Blocks for Constructing Conductive Hydrogels with Enhancing Conductive and Mechanical Properties. Macromol Rapid Commun 2024; 45:e2400008. [PMID: 38659335 DOI: 10.1002/marc.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Conductive hydrogels play a crucial role in advancing technologies like implantable bioelectronics and wearable electronic devices, owing to their favorable conductivity and appropriate mechanical properties. Here, a novel bottom-up approach is reported for crafting conductive nanocomposite hydrogels to achieve enhancing conductive and mechanical properties. In this approach, new poly(ɛ-caprolactone)-based block copolymers with sulfonic groups are first synthesized and self-assembled into uniform polyanionic nanoplatelets. Subsequently, these negatively charged nanoplatelets, with sulfonic groups on the surface, are employed as nanoadditives for the polymerization of 3,4-ethylenedioxythiophene (EDOT), resulting in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/nanoplatelet complex with 3.8 times enhanced electrical conductivity compared with their counterparts prepared using block copolymers (BCPs). Blending the (PEDOT:PSS)/nanoplatelet complex with calcium alginate, nanocomposite hydrogels are successfully prepared. In comparison with hydrogels with (PEDOT:PSS)/BCP complexes prepared by a top-down method, the nanocomposite hydrogels are found to show twice as strong mechanical strength and 1.6 times higher conductivity. This work provides valuable insights into the bottom-up construction of conductive hydrogels for bioelectronics using well-controlled polymeric nanoplatelets.
Collapse
Affiliation(s)
- Zehua Li
- School of Chemistry, Beijing Institute of Technology, Beijing, 102488, China
| | - Hui Guo
- School of Chemistry, Beijing Institute of Technology, Beijing, 102488, China
| | - Xuhui Jin
- School of Chemistry, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
31
|
Akmal MH, Kalashgrani MY, Mousavi SM, Rahmanian V, Sharma N, Gholami A, Althomali RH, Rahman MM, Chiang WH. Recent advances in synergistic use of GQD-based hydrogels for bioimaging and drug delivery in cancer treatment. J Mater Chem B 2024; 12:5039-5060. [PMID: 38716622 DOI: 10.1039/d4tb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Graphene quantum dot (GQD) integration into hydrogel matrices has become a viable approach for improving drug delivery and bioimaging in cancer treatment in recent years. Due to their distinct physicochemical characteristics, graphene quantum dots (GQDs) have attracted interest as adaptable nanomaterials for use in biomedicine. When incorporated into hydrogel frameworks, these nanomaterials exhibit enhanced stability, biocompatibility, and responsiveness to external stimuli. The synergistic pairing of hydrogels with GQDs has created new opportunities to tackle the problems related to drug delivery and bioimaging in cancer treatment. Bioimaging plays a pivotal role in the early detection and monitoring of cancer. GQD-based hydrogels, with their excellent photoluminescence properties, offer a superior platform for high-resolution imaging. The tunable fluorescence characteristics of GQDs enable real-time visualization of biological processes, facilitating the precise diagnosis and monitoring of cancer progression. Moreover, the drug delivery landscape has been significantly transformed by GQD-based hydrogels. Because hydrogels are porous, therapeutic compounds may be placed into them and released in a controlled environment. The large surface area and distinct interactions of graphene quantum dots (GQDs) with medicinal molecules boost loading capacity and release dynamics, ultimately improving therapeutic efficacy. Moreover, GQD-based hydrogels' stimulus-responsiveness allows for on-demand medication release, which minimizes adverse effects and improves therapeutic outcomes. The ability of GQD-based hydrogels to specifically target certain cancer cells makes them notable. Functionalizing GQDs with targeting ligands minimizes off-target effects and delivers therapeutic payloads to cancer cells selectively. Combined with imaging capabilities, this tailored drug delivery creates a theranostic platform for customized cancer treatment. In this study, the most recent advancements in the synergistic use of GQD-based hydrogels are reviewed, with particular attention to the potential revolution these materials might bring to the area of cancer theranostics.
Collapse
Affiliation(s)
- Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | | | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, QC, Canada
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| |
Collapse
|
32
|
Liu L, Meng X, Li M, Chu Z, Tong Z. Regulation of Two-Dimensional Platelet Micelles with Tunable Core Composition Distribution via Coassembly Seeded Growth Approach. ACS Macro Lett 2024; 13:542-549. [PMID: 38629823 DOI: 10.1021/acsmacrolett.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Seeded growth termed "living" crystallization-driven self-assembly (CDSA) has been identified as a powerful method to create one- or two-dimensional nanoparticles. Epitaxial crystallization is usually regarded as the growth mechanism for the formation of uniform micelles. From this perspective, the unimer depositing rate is largely related to the crystallization temperature, which is a key factor to determine the crystallization rate and regulate the core composition distribution among nanoparticles. In the present work, the coassembly of two distinct crystallizable polymers is explored in detail in a one-pot seeded growth protocol. Results have shown that polylactone containing a larger number of methylene groups (-CH2-) in their repeating units such as poly(η-octalactone) (POL) has a faster crystallization rate compared to poly(ε-caprolactone) (PCL) with a smaller number of -CH2- at ambient temperature (25 °C), thus a block or blocky platelet structure with heterogeneous composition distribution is formed. In contrast, when the crystallization temperature decreases to 4 °C, the difference of crystallization rate between both cores become negligible. Consequently, a completely random component distribution within 2D platelets is observed. Moreover, we also reveal that the core component of seed micelles is also paramount for the coassembly seeded growth, and a unique structure of flower-like platelet micelle is created from the coassembly of PCL/POL using POL core-forming seeds. This study on the formation of platelet micelles by one-pot seeded growth using two crystallizable components offers a considerable scope for the design of 2D polymer nanomaterials with a controlled core component distribution.
Collapse
Affiliation(s)
- Liping Liu
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiancheng Meng
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Meili Li
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zhenyan Chu
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zaizai Tong
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
33
|
Dzyhovskyi V, Romani A, Pula W, Bondi A, Ferrara F, Melloni E, Gonelli A, Pozza E, Voltan R, Sguizzato M, Secchiero P, Esposito E. Characterization Methods for Nanoparticle-Skin Interactions: An Overview. Life (Basel) 2024; 14:599. [PMID: 38792620 PMCID: PMC11122446 DOI: 10.3390/life14050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Research progresses have led to the development of different kinds of nanoplatforms to deliver drugs through different biological membranes. Particularly, nanocarriers represent a precious means to treat skin pathologies, due to their capability to solubilize lipophilic and hydrophilic drugs, to control their release, and to promote their permeation through the stratum corneum barrier. A crucial point in the development of nano-delivery systems relies on their characterization, as well as in the assessment of their interaction with tissues, in order to predict their fate under in vivo administration. The size of nanoparticles, their shape, and the type of matrix can influence their biodistribution inside the skin strata and their cellular uptake. In this respect, an overview of some characterization methods employed to investigate nanoparticles intended for topical administration is presented here, namely dynamic light scattering, zeta potential, scanning and transmission electron microscopy, X-ray diffraction, atomic force microscopy, Fourier transform infrared and Raman spectroscopy. In addition, the main fluorescence methods employed to detect the in vitro nanoparticles interaction with skin cell lines, such as fluorescence-activated cell sorting or confocal imaging, are described, considering different examples of applications. Finally, recent studies on the techniques employed to determine the nanoparticle presence in the skin by ex vivo and in vivo models are reported.
Collapse
Affiliation(s)
- Valentyn Dzyhovskyi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
| | - Arianna Romani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Elisabetta Melloni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
| | - Arianna Gonelli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Elena Pozza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
| | - Rebecca Voltan
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| |
Collapse
|
34
|
Wang R, He X, Su S, Bai J, Liu H, Zhou F. Multifunctional tannic acid-based nanocomposite methacrylated silk fibroin hydrogel with the ability to scavenge reactive oxygen species and reduce inflammation for bone regeneration. Int J Biol Macromol 2024; 266:131357. [PMID: 38580010 DOI: 10.1016/j.ijbiomac.2024.131357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The microenvironment of bone defect site is vital for bone regeneration. Severe bone defect is often accompanied with severe inflammation and elevated generation of reactive oxygen species (ROS) during bone repair. In recent years, the unfriendly local microenvironment has been paid more and more attention. Some bioactive materials with the ability to regulate the microenvironment to promote bone regeneration urgently need to be developed. Here, we develop a multifunctional composite hydrogel composed of photo-responsive methacrylate silk fibroin (SFMA), laponite (LAP) nanocomposite and tannic acid (TA), aiming to endow hydrogel with antioxidant, anti-inflammatory and osteogenic induction ability. Characterization results confirmed that the SFMA-LAP@TA hydrogel could significantly improve the mechanical properties of hydrogel. The ROS-Scavenging ability of the hydrogel enabled bone marrow mesenchymal stem cells (BMSCs) to survive against H2O2-induced oxidative stress. In addition, the SFMA-LAP@TA hydrogel effectively decreased the expression of pro-inflammatory factors in RAW264.7. More importantly, the SFMA-LAP@TA hydrogel could enhance the expression of osteogenic markers of BMSCs under inflammatory condition and greatly promote new bone formation in a critical-sized cranial defect model. Above all, the multifunctional hydrogel could effectively promote bone regeneration in vitro and in vivo by scavenging ROS and reducing inflammation, providing a prospective strategy for bone regeneration.
Collapse
Affiliation(s)
- Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shilong Su
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
35
|
Wang R, He X, Chen Z, Su S, Bai J, Liu H, Zhou F. A nanoparticle reinforced microporous methacrylated silk fibroin hydrogel to promote bone regeneration. Biomater Sci 2024; 12:2121-2135. [PMID: 38456326 DOI: 10.1039/d3bm01901b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Natural polymer-based hydrogels have been widely applied in bone tissue engineering due to their excellent biocompatibility and outstanding ability of drug encapsulation. However, they have relatively weak mechanical properties and lack bioactivity. Hence, we developed a bioactive nanoparticle composite hydrogel by incorporating LAPONITE®, which is an osteo-inductive inorganic nanoparticle. The incorporation of the nanoparticle significantly enhanced its mechanical properties. In vitro evaluation indicated that the nanocomposite hydrogel could exhibit good biocompatibility. Besides, the nanocomposite hydrogel was proved to have excellent osteogenic ability with up-regulated expression of osteogenic markers such as type I collagen (COL-I), runt-related transcription factor-2 (Runx-2) and osteocalcin (OCN). Furthermore, the in vivo study confirmed that the composite nanocomposite hydrogel could significantly promote new bone formation, providing a prospective strategy for bone tissue regeneration.
Collapse
Affiliation(s)
- Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Shilong Su
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
36
|
Ma H, Zou Y, Liu L, Zhang X, Yu J, Fan Y. Mussel-inspired chitin nanofiber adherable hydrogel sensor with interpenetrating network and great fatigue resistance for motion and acoustics monitoring. Int J Biol Macromol 2024; 263:130059. [PMID: 38340919 DOI: 10.1016/j.ijbiomac.2024.130059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
A method for grafting dopamine onto TEMPO-oxidized chitin nanofibers (TOChN) was developed, achieving a surface grafting rate of 54 % through the EDC/NHS reaction. This process resulted in the formation of dopamine-grafted TOChN (TOChN-DA). Subsequently, an adherent, highly sensitive, fatigue-resistant conductive PAM/TOChN-PDA/Fe3+ (PTPF) hydrogel was successfully synthesized based on the composition of polyacrylamide (PAM) and TOChN-DA, which exhibited good cell compatibility, a tensile strength of 89.42 kPa, and a high adhesion strength of 62.56 kPa with 1.2 wt% TOChN-DA. Notably, the PTPF hydrogel showed stable adherence to various surfaces, such as rubber, copper, and human skin. Specifically, the addition of FeCl3 contributed to a multifunctional design in the PTPF interpenetrating network (IPN) hydrogel, endowing it with conductivity, cohesion, and antioxidant properties, which facilitated sensitive motion and acoustics monitoring. Moreover, the PTPF hydrogel demonstrated exceptional fatigue resistance and sensing stability, maintaining performance at 50 % strain over 1000 cycles. These attributes render the PTPF hydrogel a promising candidate for advanced biosensors in medical and athletic applications.
Collapse
Affiliation(s)
- Huazhong Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Yujun Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Xian Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| |
Collapse
|
37
|
Li X, Zou J, He Z, Sun Y, Song X, He W. The interaction between particles and vascular endothelium in blood flow. Adv Drug Deliv Rev 2024; 207:115216. [PMID: 38387770 DOI: 10.1016/j.addr.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Particle-based drug delivery systems have shown promising application potential to treat human diseases; however, an incomplete understanding of their interactions with vascular endothelium in blood flow prevents their inclusion into mainstream clinical applications. The flow performance of nano/micro-sized particles in the blood are disturbed by many external/internal factors, including blood constituents, particle properties, and endothelium bioactivities, affecting the fate of particles in vivo and therapeutic effects for diseases. This review highlights how the blood constituents, hemodynamic environment and particle properties influence the interactions and particle activities in vivo. Moreover, we briefly summarized the structure and functions of endothelium and simulated devices for studying particle performance under blood flow conditions. Finally, based on particle-endothelium interactions, we propose future opportunities for novel therapeutic strategies and provide solutions to challenges in particle delivery systems for accelerating their clinical translation. This review helps provoke an increasing in-depth understanding of particle-endothelium interactions and inspires more strategies that may benefit the development of particle medicine.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongshan He
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co., LtD., Jinan 250000, PR China
| | - Xiangrong Song
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China.
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China.
| |
Collapse
|
38
|
Dawda S, Shen Z, Dogariu A. Measuring nanoparticles shape by structured illumination. Sci Rep 2024; 14:5348. [PMID: 38438414 PMCID: PMC10912601 DOI: 10.1038/s41598-024-53665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/03/2024] [Indexed: 03/06/2024] Open
Abstract
Exploiting the size and shape of nanoparticles is critical for engineering the optical and mechanical properties of nanoparticle systems that are ubiquitous in everyday life. However, accurate determination of nanoparticle morphology usually requires elaborated methods such as XRD or TEM, which are not suitable for non-invasive and rapid control. Dynamic light scattering on the other hand, relies on the motion of nanoparticles and mixes different rotational and translational diffusion coefficients to infer synthetic information about the shape in terms of effective hydrodynamic characteristics. Here, we introduce a new scattering approach for measuring shape. We demonstrate analytically, numerically, and experimentally that the contrast of low-intensity fluctuations arising from the scattering of classically entangled optical fields allows determining the polarimetric anisotropy of nanoparticles. By leveraging the active variation of illumination structuring, we control the non-Gaussian statistics of the measured fluctuations, which, in turn, provides means to improve the measurement sensitivity. This technique offers practical opportunities for applications ranging from molecular chemistry to drug delivery to nanostructures synthesis where the real-time, quantitative assessment of nanoparticles shapes is indispensable.
Collapse
Affiliation(s)
- Shubham Dawda
- CREOL, The College of Optics and Photonics, 4304 Scorpius Street, Orlando, FL, 32816, USA
| | - Zhean Shen
- CREOL, The College of Optics and Photonics, 4304 Scorpius Street, Orlando, FL, 32816, USA
| | - Aristide Dogariu
- CREOL, The College of Optics and Photonics, 4304 Scorpius Street, Orlando, FL, 32816, USA.
| |
Collapse
|
39
|
Wang H, Ding Q, Luo Y, Wu Z, Yu J, Chen H, Zhou Y, Zhang H, Tao K, Chen X, Fu J, Wu J. High-Performance Hydrogel Sensors Enabled Multimodal and Accurate Human-Machine Interaction System for Active Rehabilitation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309868. [PMID: 38095146 DOI: 10.1002/adma.202309868] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/03/2023] [Indexed: 12/22/2023]
Abstract
Human-machine interaction (HMI) technology shows an important application prospect in rehabilitation medicine, but it is greatly limited by the unsatisfactory recognition accuracy and wearing comfort. Here, this work develops a fully flexible, conformable, and functionalized multimodal HMI interface consisting of hydrogel-based sensors and a self-designed flexible printed circuit board. Thanks to the component regulation and structural design of the hydrogel, both electromyogram (EMG) and forcemyography (FMG) signals can be collected accurately and stably, so that they are later decoded with the assistance of artificial intelligence (AI). Compared with traditional multichannel EMG signals, the multimodal human-machine interaction method based on the combination of EMG and FMG signals significantly improves the efficiency of human-machine interaction by increasing the information entropy of the interaction signals. The decoding accuracy of the interaction signals from only two channels for different gestures reaches 91.28%. The resulting AI-powered active rehabilitation system can control a pneumatic robotic glove to assist stroke patients in completing movements according to the recognized human motion intention. Moreover, this HMI interface is further generalized and applied to other remote sensing platforms, such as manipulators, intelligent cars, and drones, paving the way for the design of future intelligent robot systems.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiahao Yu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Huizhi Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, P. R. China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Yubin Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, P. R. China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - He Zhang
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering (SCUT) Ministry of Education, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoliang Chen
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jun Fu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering (SCUT) Ministry of Education, South China University of Technology, Guangzhou, 510641, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
40
|
Rana H, Anamika, Sareen D, Goswami S. Nanocellulose-Based Ecofriendly Nanocomposite for Effective Wastewater Remediation: A Study on Its Process Optimization, Improved Swelling, Adsorption, and Thermal and Mechanical Behavior. ACS OMEGA 2024; 9:8904-8922. [PMID: 38434840 PMCID: PMC10905691 DOI: 10.1021/acsomega.3c06924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 03/05/2024]
Abstract
A nanocellulose (NC)-based cross-linked adsorbent has been employed herein for the removal of dye pollutants (e.g., methylene blue) from the textile industry. The synthesized hydrogel was optimized to achieve the best concentrations of the adsorbent constituents, i.e., 1.55% guar gum, 1.46% NC, and 0.84% borax for achieving the maximum swelling index (SI, 3741.42%) and higher adsorption capacity (qe, 24.05 mg g-1). 98.8% of dye qe was achieved at optimal conditions of pH 8 within 30 min at 30 °C. Adsorption isotherms and kinetics investigations showed good correlation with the Freundlich adsorption isotherm model (R2 > 0.9889; ΔG° = -4.71; ΔH° = -12.30; ΔS° = -0.025) as well as the pseudo-second-order kinetics model, indicating multilayered and intricate adsorption mechanisms for dye removal. The study of thermodynamic parameters confirmed the exothermic nature of the adsorption process. The adsorption-desorption study of the resulting hydrogel exhibited 64.58% dye removal efficiency even after 4 consecutive cycles of reuse. Further, scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction analysis revealed the surface morphology, functional moieties, thermal behavior, and crystallinity pattern of the hydrogel. Rheological analysis demonstrated pseudoplastic flow and improved mechanical behavior for the hydrogel. The current study found that the synthesized adsorbent with a higher SI and qe has a noticeable potential for the removal of dye pollutants from wastewater.
Collapse
Affiliation(s)
- Harshdeep Rana
- Chemical
Engineering Division, Center of Innovative
and Applied Bioprocessing, Mohali, Punjab 140306, India
- Department
of Biochemistry, Panjab University, Hargobind Khorana Block, Sector-25, Chandigarh 160014, India
| | - Anamika
- Chemical
Engineering Division, Center of Innovative
and Applied Bioprocessing, Mohali, Punjab 140306, India
| | - Dipti Sareen
- Department
of Biochemistry, Panjab University, Hargobind Khorana Block, Sector-25, Chandigarh 160014, India
| | - Saswata Goswami
- Chemical
Engineering Division, Center of Innovative
and Applied Bioprocessing, Mohali, Punjab 140306, India
| |
Collapse
|
41
|
Brisson ERL, Worthington MJH, Kerai S, Müllner M. Nanoscale polymer discs, toroids and platelets: a survey of their syntheses and potential applications. Chem Soc Rev 2024; 53:1984-2021. [PMID: 38173417 DOI: 10.1039/d1cs01114f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Polymer self-assembly has become a reliable and versatile workhorse to produce polymeric nanomaterials. With appropriate polymer design and monomer selection, polymers can assemble into shapes and morphologies beyond well-studied spherical and cylindrical micellar structures. Steadfast access to anisotropic polymer nanoparticles has meant that the fabrication and application of 2D soft matter has received increasing attention in recent years. In this review, we focus on nanoscale polymer discs, toroids, and platelets: three morphologies that are often interrelated and made from similar starting materials or common intermediates. For each morphology, we illustrate design rules, and group and discuss commonly used self-assembly strategies. We further highlight polymer compositions, fundamental principles and self-assembly conditions that enable precision in bottom-up fabrication strategies. Finally, we summarise potential applications of such nanomaterials, especially in the context of biomedical research and template chemistry and elaborate on future endeavours in this space.
Collapse
Affiliation(s)
- Emma R L Brisson
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Max J H Worthington
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Simran Kerai
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 NSW, Australia
| |
Collapse
|
42
|
Ricotti L, Cafarelli A, Manferdini C, Trucco D, Vannozzi L, Gabusi E, Fontana F, Dolzani P, Saleh Y, Lenzi E, Columbaro M, Piazzi M, Bertacchini J, Aliperta A, Cain M, Gemmi M, Parlanti P, Jost C, Fedutik Y, Nessim GD, Telkhozhayeva M, Teblum E, Dumont E, Delbaldo C, Codispoti G, Martini L, Tschon M, Fini M, Lisignoli G. Ultrasound Stimulation of Piezoelectric Nanocomposite Hydrogels Boosts Chondrogenic Differentiation in Vitro, in Both a Normal and Inflammatory Milieu. ACS NANO 2024; 18:2047-2065. [PMID: 38166155 PMCID: PMC10811754 DOI: 10.1021/acsnano.3c08738] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/04/2024]
Abstract
The use of piezoelectric nanomaterials combined with ultrasound stimulation is emerging as a promising approach for wirelessly triggering the regeneration of different tissue types. However, it has never been explored for boosting chondrogenesis. Furthermore, the ultrasound stimulation parameters used are often not adequately controlled. In this study, we show that adipose-tissue-derived mesenchymal stromal cells embedded in a nanocomposite hydrogel containing piezoelectric barium titanate nanoparticles and graphene oxide nanoflakes and stimulated with ultrasound waves with precisely controlled parameters (1 MHz and 250 mW/cm2, for 5 min once every 2 days for 10 days) dramatically boost chondrogenic cell commitment in vitro. Moreover, fibrotic and catabolic factors are strongly down-modulated: proteomic analyses reveal that such stimulation influences biological processes involved in cytoskeleton and extracellular matrix organization, collagen fibril organization, and metabolic processes. The optimal stimulation regimen also has a considerable anti-inflammatory effect and keeps its ability to boost chondrogenesis in vitro, even in an inflammatory milieu. An analytical model to predict the voltage generated by piezoelectric nanoparticles invested by ultrasound waves is proposed, together with a computational tool that takes into consideration nanoparticle clustering within the cell vacuoles and predicts the electric field streamline distribution in the cell cytoplasm. The proposed nanocomposite hydrogel shows good injectability and adhesion to the cartilage tissue ex vivo, as well as excellent biocompatibility in vivo, according to ISO 10993. Future perspectives will involve preclinical testing of this paradigm for cartilage regeneration.
Collapse
Affiliation(s)
- Leonardo Ricotti
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Andrea Cafarelli
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Cristina Manferdini
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Diego Trucco
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Lorenzo Vannozzi
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Elena Gabusi
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Fontana
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Paolo Dolzani
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Yasmin Saleh
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Enrico Lenzi
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Marta Columbaro
- Piattaforma
di Microscopia Elettronica, IRCCS Istituto
Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Manuela Piazzi
- Istituto
di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS Istituto
Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Jessika Bertacchini
- Department
of Surgery, Medicine, Dentistry and Morphological Sciences with Interest
in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Aliperta
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Markys Cain
- Electrosciences
Ltd., Farnham, Surrey GU9 9QT, U.K.
| | - Mauro Gemmi
- Center
for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Paola Parlanti
- Center
for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Carsten Jost
- PlasmaChem
GmbH, Schwarzschildstraße
10, 12489 Berlin, Germany
| | - Yirij Fedutik
- PlasmaChem
GmbH, Schwarzschildstraße
10, 12489 Berlin, Germany
| | - Gilbert Daniel Nessim
- Department
of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat
Gan 52900, Israel
| | - Madina Telkhozhayeva
- Department
of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat
Gan 52900, Israel
| | - Eti Teblum
- Department
of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat
Gan 52900, Israel
| | | | - Chiara Delbaldo
- Struttura
Complessa Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giorgia Codispoti
- Struttura
Complessa Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Lucia Martini
- Struttura
Complessa Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Matilde Tschon
- Struttura
Complessa Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Milena Fini
- Scientific Director, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Gina Lisignoli
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
43
|
Kaewchuchuen J, Matthew SAL, Phuagkhaopong S, Bimbo LM, Seib FP. Functionalising silk hydrogels with hetero- and homotypic nanoparticles. RSC Adv 2024; 14:3525-3535. [PMID: 38259992 PMCID: PMC10801455 DOI: 10.1039/d3ra07634b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Despite many reports detailing silk hydrogels, the development of composite silk hydrogels with homotypic and heterotypic silk nanoparticles and their impact on material mechanics and biology have remained largely unexplored. We hypothesise that the inclusion of nanoparticles into silk-based hydrogels enables the formation of homotropic and heterotropic material assemblies. The aim was to explore how well these systems allow tuning of mechanics and cell adhesion to ultimately control the cell-material interface. We utilised nonporous silica nanoparticles as a standard reference and compared them to nanoparticles derived from Bombyx mori silk and Antheraea mylitta (tasar) silk (approximately 100-150 nm in size). Initially, physically cross-linked B. mori silk hydrogels were prepared containing silica, B. mori silk nanoparticles, or tasar silk nanoparticles at concentrations of either 0.05% or 0.5% (w/v). The initial modulus (stiffness) of these nanoparticle-functionalised silk hydrogels was similar. Stress relaxation was substantially faster for nanoparticle-modified silk hydrogels than for unmodified control hydrogels. Increasing the concentrations of B. mori silk and silica nanoparticles slowed stress relaxation, while the opposite trend was observed for hydrogels modified with tasar nanoparticles. Cell attachment was similar for all hydrogels, but proliferation during the initial 24 h was significantly improved with the nanoparticle-modified hydrogels. Overall, this study demonstrates the manufacture and utilisation of homotropic and heterotropic silk hydrogels.
Collapse
Affiliation(s)
- Jirada Kaewchuchuen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Saphia A L Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Suttinee Phuagkhaopong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University Bangkok Thailand
| | - Luis M Bimbo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra 3000-548 Coimbra Portugal
- CNC - Center for Neuroscience and Cell Biology, Rua Larga, University of Coimbra 3004-504 Coimbra Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, Rua Larga, University of Coimbra 3004-504 Coimbra Portugal
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Fraunhofer Institute for Molecular Biology & Applied Ecology Branch Bioresources, Ohlebergsweg 12 35392 Giessen Germany
- Friedrich Schiller University Jena, Institute of Pharmacy Lessingstr. 8 07743 Jena Germany +49 3641 9 499 00
| |
Collapse
|
44
|
Sun D, Chang Q, Lu F. Immunomodulation in diabetic wounds healing: The intersection of macrophage reprogramming and immunotherapeutic hydrogels. J Tissue Eng 2024; 15:20417314241265202. [PMID: 39071896 PMCID: PMC11283672 DOI: 10.1177/20417314241265202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Diabetic wound healing presents a significant clinical challenge due to the interplay of systemic metabolic disturbances and local inflammation, which hinder the healing process. Macrophages undergo a phenotypic shift from M1 to M2 during wound healing, a transition pivotal for effective tissue repair. However, in diabetic wounds, the microenvironment disrupts this phenotypic polarization, perpetuating inflammation, and impeding healing. Reprograming macrophages to restore their M2 phenotype offers a potential avenue for modulating the wound immune microenvironment and promoting healing. This review elucidates the mechanisms underlying impaired macrophage polarization toward the M2 phenotype in diabetic wounds and discusses novel strategies, including epigenetic and metabolic interventions, to promote macrophage conversion to M2. Hydrogels, with their hydrated 3D cross-linked structure, closely resemble the physiological extracellular matrix and offer advantageous properties such as biocompatibility, tunability, and versatility. These characteristics make hydrogels promising candidates for developing immunomodulatory materials aimed at addressing diabetic wounds. Understanding the role of hydrogels in immunotherapy, particularly in the context of macrophage reprograming, is essential for the development of advanced wound care solutions. This review also highlights recent advancements in immunotherapeutic hydrogels as a step toward precise and effective treatments for diabetic wounds.
Collapse
Affiliation(s)
- Dan Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Xiao L, Parkinson SJ, Xia T, Edge P, O’Reilly RK. Enhancing the Scalability of Crystallization-Driven Self-Assembly Using Flow Reactors. ACS Macro Lett 2023; 12:1636-1641. [PMID: 37972303 PMCID: PMC10734305 DOI: 10.1021/acsmacrolett.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Anisotropic materials have garnered significant attention due to their potential applications in cargo delivery, surface modification, and composite reinforcement. Crystallization-driven self-assembly (CDSA) is a practical way to access anisotropic structures, such as 2D platelets. Living CDSA, where platelets are formed by using seed particles, allows the platelet size to be well controlled. Nonetheless, the current method of platelet preparation is restricted to low concentrations and small scales, resulting in inefficient production, which hampers its potential for commercial applications. To address this limitation, continuous flow reactors were employed to improve the production efficiency. Flow platforms ensure consistent product quality by maintaining the same parameters throughout the process, circumventing batch-to-batch variations and discrepancies observed during scale-up. In this study, we present the first demonstration of living CDSA performed within flow reactors. A continuous flow system was established, and the epitaxial growth of platelets was initially conducted to study the influence of flow parameters such as temperature, residence time, and flow rate on the morphology of platelets. Comparison of different epitaxial growth manners of seeds and platelets was made when using seeds to perform living CDSA. Size-controllable platelets from seeds can be obtained from a series flow system by easily tuning flow rates. Additionally, uniform platelets were continuously collected, exhibiting improved size and dispersity compared to those obtained in batch reactions.
Collapse
Affiliation(s)
- Laihui Xiao
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Sam J. Parkinson
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Tianlai Xia
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Phillippa Edge
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
46
|
Hussain S, Maktedar SS. Structural, functional and mechanical performance of advanced Graphene-based composite hydrogels. RESULTS IN CHEMISTRY 2023; 6:101029. [DOI: 10.1016/j.rechem.2023.101029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
47
|
Xia T, Tong Z, Xie Y, Arno MC, Lei S, Xiao L, Rho JY, Ferguson CTJ, Manners I, Dove AP, O’Reilly RK. Tuning the Functionality of Self-Assembled 2D Platelets in the Third Dimension. J Am Chem Soc 2023; 145:25274-25282. [PMID: 37938914 PMCID: PMC10682995 DOI: 10.1021/jacs.3c08770] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
The decoration of 2D nanostructures using heteroepitaxial growth is of great importance to achieve functional assemblies employed in biomedical, electrical, and mechanical applications. Although the functionalization of polymers before self-assembly has been investigated, the exploration of direct surface modification in the third dimension from 2D nanostructures has, to date, been unexplored. Here, we used living crystallization-driven self-assembly to fabricate poly(ε-caprolactone)-based 2D platelets with controlled size. Importantly, surface modification of the platelets in the third dimension was achieved by using functional monomers and light-induced polymerization. This method allows us to selectively regulate the height and fluorescence properties of the nanostructures. Using this approach, we gained unprecedented spatial control over the surface functionality in the specific region of complex 2D platelets.
Collapse
Affiliation(s)
- Tianlai Xia
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Zaizai Tong
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, People’s
Republic of China
| | - Yujie Xie
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Maria C. Arno
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Shixing Lei
- Department
of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Laihui Xiao
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Julia Y. Rho
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Calum T. J. Ferguson
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Ian Manners
- Department
of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Andrew P. Dove
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| |
Collapse
|
48
|
Zhu L, Liu L, Varlas S, Wang RY, O'Reilly RK, Tong Z. Understanding the Seeded Heteroepitaxial Growth of Crystallizable Polymers: The Role of Crystallization Thermodynamics. ACS NANO 2023. [PMID: 37979190 DOI: 10.1021/acsnano.3c09130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Seeded heteroepitaxial growth is a "living" crystallization-driven self-assembly (CDSA) method that has emerged as a promising route to create uniform segmented nanoparticles with diverse core chemistries by using chemically distinct core-forming polymers. Our previous results have demonstrated that crystallization kinetics is a key factor that determines the occurrence of heteroepitaxial growth, but an in-depth understanding of controlling heteroepitaxy from the perspective of crystallization thermodynamics is yet unknown. Herein, we select crystallizable aliphatic polycarbonates (PxCs) with a different number of methylene groups (xCH2, x = 4, 6, 7, 12) in their repeating units as model polymers to explore the effect of lattice match and core compatibility on the seeded growth behavior. Seeded growth of PxCs-containing homopolymer/block copolymer blend unimers from poly(ε-caprolactone) (PCL) core-forming seed platelet micelles exhibits distinct crystal growth behavior at subambient temperatures, which is governed by the lattice match and core compatibility. A case of seeded growth with better core compatibility and a smaller lattice mismatch follows epitaxial growth, where the newly created crystal domain has the same structural orientation as the original platelet substrate. In contrast, a case of seeded growth with better core compatibility but a larger lattice mismatch shows nonepitaxial growth with less-defined crystal orientations in the platelet plane. Additionally, a case of seeded growth with poor core compatibility and larger lattice mismatch results in polydisperse platelet micelles, whereby crystal formation is not nucleated from the crystalline substrate. These findings reveal important factors that govern the specific crystal growth during a seeded growth approach by using compositionally distinct cores, which would further guide researchers in designing 2D segmented materials via polymer crystallization approaches.
Collapse
Affiliation(s)
- Lingyuan Zhu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Liping Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
| | - Rui-Yang Wang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zaizai Tong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
49
|
Shang W, Zeng M, Tanvir ANM, Wang K, Saeidi-Javash M, Dowling A, Luo T, Zhang Y. Hybrid Data-Driven Discovery of High-Performance Silver Selenide-Based Thermoelectric Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212230. [PMID: 37493182 DOI: 10.1002/adma.202212230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Optimizing material compositions often enhances thermoelectric performances. However, the large selection of possible base elements and dopants results in a vast composition design space that is too large to systematically search using solely domain knowledge. To address this challenge, a hybrid data-driven strategy that integrates Bayesian optimization (BO) and Gaussian process regression (GPR) is proposed to optimize the composition of five elements (Ag, Se, S, Cu, and Te) in AgSe-based thermoelectric materials. Data is collected from the literature to provide prior knowledge for the initial GPR model, which is updated by actively collected experimental data during the iteration between BO and experiments. Within seven iterations, the optimized AgSe-based materials prepared using a simple high-throughput ink mixing and blade coating method deliver a high power factor of 2100 µW m-1 K-2 , which is a 75% improvement from the baseline composite (nominal composition of Ag2 Se1 ). The success of this study provides opportunities to generalize the demonstrated active machine learning technique to accelerate the development and optimization of a wide range of material systems with reduced experimental trials.
Collapse
Affiliation(s)
- Wenjie Shang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Minxiang Zeng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - A N M Tanvir
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ke Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mortaza Saeidi-Javash
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA, 90840, USA
| | - Alexander Dowling
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yanliang Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
50
|
Shen S, Zhang J, Han Y, Pu C, Duan Q, Huang J, Yan B, You X, Lin R, Shen X, Qiu X, Hou H. A Core-Shell Nanoreinforced Ion-Conductive Implantable Hydrogel Bioelectronic Patch with High Sensitivity and Bioactivity for Real-Time Synchronous Heart Monitoring and Repairing. Adv Healthc Mater 2023; 12:e2301990. [PMID: 37467758 DOI: 10.1002/adhm.202301990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
To achieve synchronous repair and real-time monitoring the infarcted myocardium based on an integrated ion-conductive hydrogel patch is challenging yet intriguing. Herein, a novel synthetic strategy is reported based on core-shell-structured curcumin-nanocomposite-reinforced ion-conductive hydrogel for synchronous heart electrophysiological signal monitoring and infarcted heart repair. The nanoreinforcement and multisite cross-linking of bioactive curcumin nanoparticles enable well elasticity with negligible hysteresis, implantability, ultrahigh mechanoelectrical sensitivity (37 ms), and reliable sensing capacity (over 3000 cycles) for the nanoreinforced hydrogel. Results of in vitro and in vivo experiments demonstrate that such solely physical microenvironment of electrophysiological and biomechanical characteristics combining with the role of bioactive curcumin exert the synchronous benefit of regulating inflammatory microenvironment, promoting angiogenesis, and reducing myocardial fibrosis for effective myocardial infarction (MI) repair. Especially, the hydrogel sensors offer the access for achieving accurate acquisition of cardiac signals, thus monitoring the whole MI healing process. This novel bioactive and electrophysiological-sensing ion-conductive hydrogel cardiac patch highlights a versatile strategy promising for synchronous integration of in vivo real-time monitoring the MI status and excellent MI repair performance.
Collapse
Affiliation(s)
- Si Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yanni Han
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Chunyi Pu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Qixiang Duan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jianxing Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Bing Yan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoxi Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|