1
|
Castañeda J, Rogers B, Sosa Y, Muñoz JA, Bhattarai B, Martinez AM, Phipps ML, Morales DP, Montoya Rush MN, Yacaman MJ, Montaño GA, Gibbs JG, Martinez JS. Atomically Precise Nanoclusters as Co-Catalysts for Light-Activated Microswimmer Motility. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411517. [PMID: 40376893 DOI: 10.1002/smll.202411517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/04/2025] [Indexed: 05/18/2025]
Abstract
Microswimmers are self-propelled particles that navigate fluid environments, offering significant potential for applications in environmental pollutant decomposition, biosensing, and targeted drug delivery. Their performance relies on engineered catalytic surfaces. Gold nanoclusters (AuNCs), with atomically precise structures, tunable optical properties, and high surface area-to-volume ratio, provide a new optimal catalyst for enhancing microswimmer propulsion. Unlike bulk gold or nanoparticles, AuNCs may deliver tunable photocatalytic activity and increased catalytic specificity, making them ideal co-catalysts for hybrid microswimmers. For the first time, this study combines AuNCs with TiO2/Cr2O3 Janus microswimmers, combining the unique properties of both materials. This hybrid system capitalizes on the tuned optical properties of AuNCs and their role as co-catalysts with TiO2, driving enhanced photocatalytic performance under ultraviolet (UV) excitation. Using motion analysis, it is shown that the AuNC-microswimmers exhibit significantly greater propulsion and mean squared displacement (MSD) as compared to controls. These findings suggest that the integration of nanoclusters with semiconductor materials enables state of the art, light-switchable microswimmers. These AuNC-microswimmer systems may thus offer new opportunities for environmental catalysis and other applications, providing precise control over catalytic and motile behaviors at the microscale.
Collapse
Affiliation(s)
- John Castañeda
- Department of Applied Physics and Materials Science and Center for Materials Interfaces in Research and Applications (¡MIRA!), Northern Arizona University, 1900 S Knoles Dr, Flagstaff, AZ, 86011, USA
| | - Blake Rogers
- Department of Applied Physics and Materials Science and Center for Materials Interfaces in Research and Applications (¡MIRA!), Northern Arizona University, 1900 S Knoles Dr, Flagstaff, AZ, 86011, USA
| | - Ysaris Sosa
- Department of Applied Physics and Materials Science and Center for Materials Interfaces in Research and Applications (¡MIRA!), Northern Arizona University, 1900 S Knoles Dr, Flagstaff, AZ, 86011, USA
| | - Jorge A Muñoz
- Department of Applied Physics and Materials Science and Center for Materials Interfaces in Research and Applications (¡MIRA!), Northern Arizona University, 1900 S Knoles Dr, Flagstaff, AZ, 86011, USA
| | - Badri Bhattarai
- Department of Applied Physics and Materials Science and Center for Materials Interfaces in Research and Applications (¡MIRA!), Northern Arizona University, 1900 S Knoles Dr, Flagstaff, AZ, 86011, USA
| | - Ashley M Martinez
- Department of Applied Physics and Materials Science and Center for Materials Interfaces in Research and Applications (¡MIRA!), Northern Arizona University, 1900 S Knoles Dr, Flagstaff, AZ, 86011, USA
| | - M Lisa Phipps
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Demosthenes P Morales
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Matthew N Montoya Rush
- Department of Surgery, Washington University in St. Louis School of Medicine, 1402 S Grand Blvd, St. Louis, MO, 63104, USA
| | - Miguel José Yacaman
- Department of Applied Physics and Materials Science and Center for Materials Interfaces in Research and Applications (¡MIRA!), Northern Arizona University, 1900 S Knoles Dr, Flagstaff, AZ, 86011, USA
| | - Gabriel A Montaño
- Department of Applied Physics and Materials Science and Center for Materials Interfaces in Research and Applications (¡MIRA!), Northern Arizona University, 1900 S Knoles Dr, Flagstaff, AZ, 86011, USA
| | - John G Gibbs
- Department of Applied Physics and Materials Science and Center for Materials Interfaces in Research and Applications (¡MIRA!), Northern Arizona University, 1900 S Knoles Dr, Flagstaff, AZ, 86011, USA
| | - Jennifer S Martinez
- Department of Applied Physics and Materials Science and Center for Materials Interfaces in Research and Applications (¡MIRA!), Northern Arizona University, 1900 S Knoles Dr, Flagstaff, AZ, 86011, USA
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| |
Collapse
|
2
|
Cates ME, Nardini C. Active phase separation: new phenomenology from non-equilibrium physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2025; 88:056601. [PMID: 40306295 DOI: 10.1088/1361-6633/add278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/30/2025] [Indexed: 05/02/2025]
Abstract
In active systems, whose constituents have non-equilibrium dynamics at local level, fluid-fluid phase separation is widely observed. Examples include the formation of membraneless organelles within cells; the clustering of self-propelled colloidal particles in the absence of attractive forces, and some types of ecological segregation. A schematic understanding of such active phase separation was initially borrowed from what is known for the equilibrium case, in which detailed balance holds at microscopic level. However it has recently become clear that in active systems the absence of detailed balance, although it leave phase separation qualitatively unchanged in some regimes (for example domain growth driven by interfacial tension via Ostwald ripening), can in other regimes radically alter its phenomenology at mechanistic level. For example, microphase separation can be caused by reverse Ostwald ripening, a process that is hard to imagine from an equilibrium perspective. This and other new phenomena arise because, instead of having a single, positive interfacial tension like their equilibrium counterparts, the fluid-fluid interfaces created by active phase separation can have several distinct interfacial tensions governing different properties, some of which can be negative. These phenomena can be broadly understood by studying continuum field theories for a single conserved scalar order parameter (the fluid density), supplemented with a velocity field in cases where momentum conservation is also present. More complex regimes arise in systems described by multiple scalar order parameters (especially with nonreciprocal interactions between these); or when an order parameter undergoes both conserved and non-conserved dynamics (such that the combination breaks detailed balance); or in systems that support orientational long-range order in one or more of the coexisting phases. In this Review, we survey recent progress in understanding the specific role of activity in phase separation, drawing attention to many open questions. We focus primarily on continuum theories, especially those with a single scalar order parameter, reviewing both analytical and numerical work. We compare their predictions with particle-based models, which have mostly been studied numerically although a few have been explicitly coarse-grained to continuum level. We also compare, where possible, with experimental results. In the latter case, qualitative comparisons are broadly encouraging whereas quantitative ones are hindered by the dynamical complexity of most experimental systems relative that of simplified (particle-level or continuum) models of active matter.
Collapse
Affiliation(s)
- M E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - C Nardini
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| |
Collapse
|
3
|
Kumar M, Sane S, Murali A, Thutupalli S. Temperature switchable self-propulsion activity of liquid crystalline microdroplets. SOFT MATTER 2025; 21:3782-3788. [PMID: 40242986 DOI: 10.1039/d4sm01382d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
We report on a switchable emulsion droplet microswimmer by utilizing a temperature-dependent transition of the droplet phase. The droplets, made from a liquid crystalline (LC) smectic phase material (T = 25 °C), self-propel only in their nematic and isotropic phases at elevated temperatures (T ≥ 33.5 °C). This transition between motile and non-motile states is fully reversible - in the motile state, the droplets exhibit persistent motion and directional memory over multiple heating-cooling cycles. Furthermore, we distinguish the state of rest from the state of motion by characterizing the chemical and hydrodynamic fields of the droplets. Next, we map the motility behaviour of the droplets across varying surfactant concentrations and temperatures, observing that swimming occurs only at sufficiently high surfactant concentrations and temperatures above the smectic-nematic phase transition temperature i.e. T ≥ 33.5 °C. Our work envisions the potential of LC emulsion droplets as temperature tunable microswimmers.
Collapse
Affiliation(s)
- Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India.
| | - Siddharth Sane
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India.
| | - Aniruddh Murali
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India.
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India.
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Hoskote Village, Bangalore, India
| |
Collapse
|
4
|
Son K, Bowal K, Kim K, Mahadevan L, Kim HY. Emergent functional dynamics of link-bots. SCIENCE ADVANCES 2025; 11:eadu8326. [PMID: 40344075 PMCID: PMC12063647 DOI: 10.1126/sciadv.adu8326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/04/2025] [Indexed: 05/11/2025]
Abstract
Synthetic active collectives, made of nonliving individuals that cooperatively change group shape and dynamics, hold promise for practical applications and understanding of their natural analogs. We investigate how simple steric interaction constraints between active individuals produce a versatile and functional system using the link-bot: a V-shape-based, single-stranded chain composed of active bots whose dynamics are defined by geometric linking constraints. A variety of emergent properties arises from this active polymer-like system, including locomotion, navigation, transportation, and competitive or cooperative interactions. By adjusting a few link parameters, we show how link-bots can perform diverse tasks, including traversing or obstructing narrow spaces, passing by or enclosing objects, and propelling loads in different directions. Overall, the reconfigurability of link-bots indicates their potential in developing programmable soft robotic systems with simple components and materials at any scale.
Collapse
Affiliation(s)
- Kyungmin Son
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kimberly Bowal
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Kwanwoo Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - L. Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Departments of Physics, and Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ho-Young Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Xie L, Liu J, Yang Z, Chen H, Wang Y, Du X, Fu Y, Song P, Yu J. Microrobotic Swarms for Cancer Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0686. [PMID: 40302783 PMCID: PMC12038165 DOI: 10.34133/research.0686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
Microrobotic swarms hold great promise for the revolution of cancer treatment. The coordination of miniaturized microrobots offers a unique approach to treating cancers at the cellular level with enhanced delivery efficiency and environmental adaptability. Prior studies have summarized the design, functionalization, and biomedical applications of microrobotic swarms. The strategies for actuation and motion control of swarms have also been introduced. In this review, we first give a detailed introduction to microrobot swarming. We then explore the design of microrobots and microrobotic swarms specifically engineered for cancer therapy, with a focus on tumor targeting, infiltration, and therapeutic efficacy. Moreover, the latest developments in active delivery methods and imaging techniques that enhance the precision of these systems are discussed. Finally, we categorize and analyze the various cancer therapies facilitated by functional microrobotic swarms, highlighting their potential to revolutionize treatment strategies for different cancer types.
Collapse
Affiliation(s)
- Leiming Xie
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Jinbo Liu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Zhen Yang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Hui Chen
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yibin Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Xingzhou Du
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yongping Fu
- Department of Cardiovascular Medicine,
Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Peng Song
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Jiangfan Yu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
6
|
Kaur V, Khuntia SS, Taneja C, Chaudhuri A, Yogendran KP, Rakshit S. De-Novo Design of Actively Spinning and Gyrating Spherical Micro-Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419716. [PMID: 40008816 DOI: 10.1002/adma.202419716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/26/2025] [Indexed: 02/27/2025]
Abstract
Self-propelled lipid-based artificial cells that can achieve controlled rotation and directed translation present significant potential for biomedical applications, yet their engineering poses considerable challenges. Lipid vesicles synthesized via solution-based methods naturally adopt isotropic spherical shapes. Active motion of these spherical objects requires symmetry breaking and rigidity. In this study, giant vesicles are employed as chassis, utilizing enzymes that undergo cyclic, non-reciprocal conformational changes as power sources. Weak, transient protein-protein interactions induce lipid ordering leading to rigidity and spontaneous symmetry breaking. Upon activation of enzyme reactions, these spherical vesicles demonstrate a variety of motion patterns, from pure spinning to 3D spiral trajectories. From experiments and simulations, it is demonstrated how such motion enables the vesicles to cross complex barriers. By utilizing biocompatible and scalable materials, The methodology establishes a solid framework for the design of such self-propelled systems. The work paves the way for advancements in biomedical and environmental technologies such as targeted drug delivery and active matter research.
Collapse
Affiliation(s)
- Veerpal Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 140306, India
| | | | - Charu Taneja
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 140306, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 140306, India
| | - K P Yogendran
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 140306, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 140306, India
| |
Collapse
|
7
|
Prakash P, Baig Y, Peaudecerf FJ, Goldstein RE. Dynamics of an algae-bacteria microcosm: Photosynthesis, chemotaxis, and expulsion in inhomogeneous active matter. Proc Natl Acad Sci U S A 2025; 122:e2410225122. [PMID: 40096603 PMCID: PMC11962504 DOI: 10.1073/pnas.2410225122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/21/2025] [Indexed: 03/19/2025] Open
Abstract
In nature, there are significant relationships known between microorganisms from two kingdoms of life, as in the supply of vitamin B12 by bacteria to algae. Such interactions motivate general investigations into the spatiotemporal dynamics of metabolite exchanges. Here we study by experiment and theory a model system: a coculture of the bacterium Bacillus subtilis, an obligate aerobe that is chemotactic to oxygen, and a nonmotile mutant of the alga Chlamydomonas reinhardtii, which photosynthetically produces oxygen when illuminated. Strikingly, when a shaft of light illuminates a thin, initially uniform suspension of the two, the chemotactic influx of bacteria to the photosynthetically active region leads to expulsion of the algae from that area. We propose that this effect arises from advection by the inhomogeneous bacterial concentration. The resulting generalization of Fick's law has been proposed in the context of chemotaxis and is mathematically related to the "turbulent pumping" in magnetohydrodynamics.
Collapse
Affiliation(s)
- Praneet Prakash
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - Yasa Baig
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | | | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| |
Collapse
|
8
|
Yuan Y, Wu X, Kalleshappa B, Pumera M. Light-Programmable g-C 3N 4 Microrobots with Negative Photogravitaxis for Photocatalytic Antibiotic Degradation. RESEARCH (WASHINGTON, D.C.) 2025; 8:0565. [PMID: 39877466 PMCID: PMC11772662 DOI: 10.34133/research.0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Microrobots enhance contact with pollutants through their movement and flow-induced mixing, substantially improving wastewater treatment efficiency beyond traditional diffusion-limited methods. g-C3N4 is an affordable and environmentally friendly photocatalyst that has been extensively researched in various fields such as biomedicine and environmental remediation. However, compared to other photocatalytic materials like TiO2 and ZnO, which are widely used in the fabrication of micro- and nanorobots, research on g-C3N4 for these applications is still in its early stages. This work presents microrobots entirely based on g-C3N4 microtubes, which can initiate autonomous movement when exposed to ultraviolet and visible light. We observed distinct motion behaviors of the microrobots under light irradiation of different wavelengths. Specifically, under ultraviolet light, the microrobots exhibit negative photogravitaxis, while under visible light, they demonstrate a combination of 3-dimensional motion and 2-dimensional motion. Therefore, the wavelength of the light can be used for programming the motion style of the microrobots and subsequently their application. We show that the microrobots can effectively degrade the antibiotic tetracycline, displaying their potential for antibiotic removal. This exploration of autonomous motion behaviors under different wavelength conditions helps to expand research on g-C3N4-based microrobots and their potential for environmental remediation.
Collapse
Affiliation(s)
- Yunhuan Yuan
- Future Energy and Innovation Laboratory, Central European Institute of Technology,
Brno University of Technology, Brno 61200, Czech Republic
| | - Xianghua Wu
- Future Energy and Innovation Laboratory, Central European Institute of Technology,
Brno University of Technology, Brno 61200, Czech Republic
| | - Bindu Kalleshappa
- Future Energy and Innovation Laboratory, Central European Institute of Technology,
Brno University of Technology, Brno 61200, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology,
Brno University of Technology, Brno 61200, Czech Republic
- Department of Medical Research, China Medical University Hospital,
China Medical University, Taichung TW-40402, Taiwan
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science,
VSB – Technical University of Ostrava, Ostrava 70800, Czech Republic
| |
Collapse
|
9
|
Martín-Roca J, Barriuso G. CM, Martínez Fernández R, Betterelli Giuliano C, Zhang R, Valeriani C, Wilson LG. The carnivorous plant Genlisea harnesses active particle dynamics to prey on microfauna. Proc Natl Acad Sci U S A 2025; 122:e2409510121. [PMID: 39739813 PMCID: PMC11725881 DOI: 10.1073/pnas.2409510121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/16/2024] [Indexed: 01/02/2025] Open
Abstract
Carnivory in plants is an unusual trait that has arisen multiple times, independently, throughout evolutionary history. Plants in the genus Genlisea are carnivorous and feed on microorganisms that live in soil using modified subterranean leaf structures (rhizophylls). A surprisingly broad array of microfauna has been observed in the plants' digestive chambers, including ciliates, amoebae, and soil mites. Here, we show, through experiments and simulations, that Genlisea exploit active matter physics to "rectify" bacterial swimming and establish a local flux of bacteria through the structured environment of the rhizophyll toward the plant's digestion vesicle. In contrast, macromolecular digestion products are free to diffuse away from the digestion vesicle and establish a concentration gradient of carbon sources to draw larger microorganisms further inside the plant. Our experiments and simulations show that this mechanism is likely to be a localized one and that no large-scale efflux of digested matter is present.
Collapse
Affiliation(s)
- José Martín-Roca
- Departamento de Estructura de la Materia, Fisica Termica y Electronica, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid28040, Spain
| | - C. Miguel Barriuso G.
- Departamento de Estructura de la Materia, Fisica Termica y Electronica, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Raúl Martínez Fernández
- Departamento de Estructura de la Materia, Fisica Termica y Electronica, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid28040, Spain
| | | | - Rongjing Zhang
- Department of Physics, University of Science and Technology of China, Hefei230026, Anhui, China
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Fisica Termica y Electronica, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Laurence G. Wilson
- School of Physics, Engineering & Technology, University of York, Heslington, YorkYO10 5DD, United Kingdom
| |
Collapse
|
10
|
Al Harraq A, Patel R, Lee JG, Owoyele O, Chun J, Bharti B. Non-Reciprocity, Metastability, and Dynamic Reconfiguration in Co-Assembly of Active and Passive Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409489. [PMID: 39630594 PMCID: PMC11775524 DOI: 10.1002/advs.202409489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Living organisms often exhibit non-reciprocal interactions where the forces acting on the objects are not equal in magnitude or opposite in direction. The combination of reciprocal and non-reciprocal interactions between synthetic building blocks remains largely unexplored. Here, out-of-equilibrium assemblies of non-motile isotropic passive and metal-patched motile active particles are formed by overlapping bulk interactions with directed self-propulsion. An external alternating current (AC) electric field generates concurrent dipolar and induced-charge electrophoretic forces between the particles which are evaluated using microscopy. The interaction force measurements allow to determine the degree of reciprocity in interactions, which is tunable by designing the active particle and its trajectory. While linearly-propelled active particles evade assembly with passive particles, helically propelled active particles form active-passive clusters with dynamic reconfiguration and long-lived metastability. Large clusters display programmable fluctuations and reconfigurability by controlling the fraction of active particles. The study establishes principles of integrating reciprocal and non-reciprocal interactions in guided colloidal assembly of reconfigurable metastable structures.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
- Center for the Physics of Biological FunctionPrinceton UniversityPrincetonNJ08544USA
| | - Ruchi Patel
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
| | - Jin Gyun Lee
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO80303USA
| | - Ope Owoyele
- Department of Mechanical and Industrial EngineeringLouisiana State UniversityBaton RougeLA70803USA
| | - Jaehun Chun
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
| |
Collapse
|
11
|
Santra I, Olsen KS, Gupta D. Dynamics of switching processes: general results and applications in intermittent active motion. SOFT MATTER 2024. [PMID: 39545602 DOI: 10.1039/d4sm01054j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Systems switching between different dynamical phases is a ubiquitous phenomenon. The general understanding of such a process is limited. To this end, we present a general expression that captures fluctuations of a system exhibiting a switching mechanism. Specifically, we obtain an exact expression of the Laplace-transformed characteristic function of the particle's position. Then, the characteristic function is used to compute the effective diffusion coefficient of a system performing intermittent dynamics. Furthermore, we employ two examples: (1) generalized run-and-tumble active particle, and (2) an active particle switching its dynamics between generalized active run-and-tumble motion and passive Brownian motion. In each case, explicit computations of the spatial cumulants are presented. Our findings reveal that the particle's position probability density function exhibit rich behaviours due to intermittent activity. Numerical simulations confirm our findings.
Collapse
Affiliation(s)
- Ion Santra
- Institute for Theoretical Physics, Georg-August Universität Göttingen, 37077 Göttingen, Germany.
| | - Kristian Stølevik Olsen
- Institut für Theoretische Physik II - Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.
| | - Deepak Gupta
- Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453552, India
- Nordita, Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 23, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
12
|
Upadhyaya A, Akella VS. Stochastic migrations of Marangoni surfers between two lobes of a dumbbell-shaped confinement. SOFT MATTER 2024; 20:8775-8782. [PMID: 39451127 DOI: 10.1039/d4sm00914b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
We report an experimental investigation on the stochastic migration dynamics of Marangoni surfers (camphor-infused paper disks) between the two lobes of a dumbbell-shaped chamber. We characterize the migration dynamics using survival analysis of a configuration, wherein a configuration represents a distinct distribution of disks between the lobes. We observe that a configuration's stability decreases with increasing pairwise interactions. Consequently, the configuration with equal partitioning of disks between the lobes-that is exactly one-half of disks in each lobe for even-numbered systems but with one extra disk in either of the lobes for odd-numbered systems-has the lowest pairwise interactions, thus is always the most stable configuration. Furthermore, all configurations exhibit a stretched exponential decay with time, which is ascribed to a disk's activity decay with time or "aging"-a phenomenon validated by modeling a camphor disk as a chiral active particle (CAP) as initially proposed by Cruz et al.
Collapse
Affiliation(s)
- Alakesh Upadhyaya
- Department of Physics, Indian Institute of Technology Jammu, NH-44, Jagti Village, Jammu, J & K, India.
| | - V S Akella
- Department of Physics, Indian Institute of Technology Jammu, NH-44, Jagti Village, Jammu, J & K, India.
| |
Collapse
|
13
|
Fusi AD, Li Y, Tholen MME, Cieraad M, Albertazzi L, Padial TP, van Hest JCM, Abdelmohsen LKEA. Enzymatically-induced dynamic assemblies from surface functional stomatocyte nanoreactors. J Mater Chem B 2024; 12:11389-11401. [PMID: 39392374 PMCID: PMC11469296 DOI: 10.1039/d4tb01320d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Collective behavior has become a recent topic of investigation in systems chemistry. In pursuing this phenomenon, we present polymersome stomatocytes loaded with the enzyme urease, which show basic stigmergy-based communication and are capable of signal production, reception, and response by clustering with surface complementary binding partners. The collective behavior is transient and based on the widely known pH-sensitive non-covalent interactions between nitrilotriacetic acid (NTA) and histidine (His) moieties attached to the surface of urease-loaded and empty stomacytes, respectively. Upon the addition of the substrate urea, the urease stomatocytes are able to increase the environmental pH, allowing the NTA units to interact with the surface histidines on the complementary species, triggering the formation of transient clusters. The stomatocytes display a maximum clustering interaction at a pH between 6.3 and 7.3, and interparticle repulsive behavior outside this range. This leads to oscillating behavior, as the aggregates disassemble when the pH increases due to high local urease activity. After bulk pH conditions are restored, clustering can take place again. Within the detectable region of dynamic light scattering, individual stomatocytes can aggregate to agglomerates with 10 times their volume. Understanding and designing population behavior of active colloids can facilitate the execution of cooperative tasks, which are not feasible for individual colloids.
Collapse
Affiliation(s)
- Alexander D Fusi
- Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Yudong Li
- Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Marrit M E Tholen
- Faculty of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marlo Cieraad
- Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Lorenzo Albertazzi
- Faculty of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Tania Patiño Padial
- Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Loai K E A Abdelmohsen
- Faculty of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
14
|
Sanchez JM, Oliva J, Gomez-Solis C, Puentes-Prado E, Montes E, Juárez-Ramírez I, Garcia CR, Moreno Palmerin J. High removal of PS and PET microplastics from tap water by using Fe 2O 3 porous microparticles and photothermal irradiation with NIR light. CHEMOSPHERE 2024; 367:143538. [PMID: 39424154 DOI: 10.1016/j.chemosphere.2024.143538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
This work reports the synthesis of Fe2O3 (FeO) microparticles using the Pechini method and their use to remove microplastics from tap water. The analysis by electronic microscopy revealed that the FeO microparticles (FeMicroPs) have a porous structure and are formed by interconnected grains with sizes of 80-120 nm. In addition, the X-ray diffraction analysis pointed out that the FeMicroPs are composed of γ- Fe2O3 and α- Fe2O3 phases. To remove the PS and PET microplastics with sizes of 0.1-3 μm from the tap water, FeO was added to the contaminated water and the mixture of FeO + microplastics was irradiated with focused NIR light (980 nm). This provoked the melting of the microplastics on the FeO surface. Later, the FeMicroPs with adsorbed microplastics was recovered with magnets. This last procedure permitted a high removal of microplastics from the tap water, and the adsorption capacity was 1000 mg/g. In the next step, the microplastics adsorbed on the FeO were irradiated with NIR light to induce its thermal decomposition by photothermal irradiation, this in turn, produced the elimination of the microplastics from the FeO surface and allowed its reuse to remove more microplastics from the tap water. The elimination of the microplastics from the FeO surface was confirmed by the FTIR and Raman techniques, since the vibrational peaks associated with the microplastics disappeared from the FeO surface after the photothermal irradiation. Thus, the results of this investigation suggest that the photothermal irradiation with NIR light not only facilitates the removal of microplastics from the tap water, but also, it was useful to degrade the microplastics definitively without producing more contamination. This technique could be used to remove microplastics in water treatment plants.
Collapse
Affiliation(s)
- J M Sanchez
- Universidad de Guanajuato, Campus León, División de Ciencias e Ingenierías, Loma del Bosque 103, Colonia Lomas del Campestre, 37150, León, Gto., Mexico
| | - J Oliva
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México Boulevard Juriquilla 3001, 76230, Querétaro, Mexico.
| | - C Gomez-Solis
- Universidad de Guanajuato, Campus León, División de Ciencias e Ingenierías, Loma del Bosque 103, Colonia Lomas del Campestre, 37150, León, Gto., Mexico.
| | - E Puentes-Prado
- Department of Physics, Umeå University, SE-901 87 Umeå, Sweden
| | - E Montes
- Universidad de Guanajuato, Campus León, División de Ciencias e Ingenierías, Loma del Bosque 103, Colonia Lomas del Campestre, 37150, León, Gto., Mexico
| | - I Juárez-Ramírez
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - C R Garcia
- Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Coahuila, Unidad Camporredondo, 25020, Saltillo, Coahuila, Mexico
| | - J Moreno Palmerin
- Departamento de Minas, Metalurgía y Geología, Division de Ingenierías, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36500, Mexico
| |
Collapse
|
15
|
Jaiswal S, Thakur S. Response of chemically active dimer motor in phase-separating binary fluid mixture: Motility regulation and self-aggregation. Phys Rev E 2024; 110:L052601. [PMID: 39690691 DOI: 10.1103/physreve.110.l052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024]
Abstract
The design of synthetic chemically powered nanomotors often considers the fuel and product to be miscible. The propulsion properties of such motors can be altered if the binary fluid consisting of fuel and product is phase separating. The dynamical properties of a dimer motor in a phase-separating binary mixture are discussed. Depending on the strength of phase separation and the activity of the dimer, the single-motor propulsion velocity either decreases or reverses its direction. The velocity reversal is shown to be related to the generated fluid flow around the motor. The collective dynamics of the motors in such phase-separating fluid results in the formation of self-assembled structures.
Collapse
|
16
|
Lopez-Ceja J, Flores V, Juliano S, Machler S, Smith S, Mansingh G, Shen M, Tanjeem N. Programmable Crowding and Tunable Phases in a Binary Mixture of Colloidal Particles under Light-Driven Thermal Convection. J Phys Chem B 2024; 128:9244-9254. [PMID: 39047259 DOI: 10.1021/acs.jpcb.4c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We employ photothermally driven self-assembly of colloidal particles to design microscopic structures with programmable size and tunable order. The experimental system is based on a binary mixture of "plasmonic heater" gold nanoparticles and "assembly building block" microparticles. Photothermal heating of the gold nanoparticles under visible light causes a natural convection flow that efficiently assembles the microscale building block particles (diameter 1-10 μm) into a monolayer. We identify the onset of active Brownian motion of colloidal particles under this convective flow by varying the conditions of light intensity, gold nanoparticle concentration, and sample height. We realize a crowded assembly of microparticles around the center of illumination and show that the size of the particle crowd can be programmed using patterned light illumination. In a binary mixture of gold nanoparticles and polystyrene microparticles, we demonstrate the formation of rapid and large-scale crystalline monolayers, covering an area of 0.88 mm2 within 10 min. We find that the structural order of the assembly can be tuned by varying the surface charge of the nanoparticles and the size of the microparticles, giving rise to the formation of different phases-colloidal crystals, crowds, and gels. Using Monte Carlo simulations, we explain how the phases emerge from the interplay between hydrodynamic and electrostatic interactions, as well as the assembly kinetics. Our study demonstrates the promise of self-assembly with programmable shapes and structural order under nonequilibrium conditions using an accessible setup comprising only binary mixtures and LED light.
Collapse
Affiliation(s)
- Jose Lopez-Ceja
- Department of Mechanical Engineering, California State University, Fullerton, California 92831, United states
| | - Vanessa Flores
- Department of Mechanical Engineering, California State University, Fullerton, California 92831, United states
| | - Shirlaine Juliano
- Department of Biology, California State University, Fullerton, California 92831, United states
| | - Sean Machler
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Stephen Smith
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Gargi Mansingh
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Meng Shen
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Nabila Tanjeem
- Department of Physics, California State University, Fullerton, California 92831, United states
| |
Collapse
|
17
|
Chan CW, Yang Z, Gan Z, Zhang R. Interplay of chemotactic force, Péclet number, and dimensionality dictates the dynamics of auto-chemotactic chiral active droplets. J Chem Phys 2024; 161:014904. [PMID: 38953449 DOI: 10.1063/5.0207355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
In living and synthetic active matter systems, the constituents can self-propel and interact with each other and with the environment through various physicochemical mechanisms. Among these mechanisms, chemotactic and auto-chemotactic effects are widely observed. The impact of (auto-)chemotactic effects on achiral active matter has been a recent research focus. However, the influence of these effects on chiral active matter remains elusive. Here, we develop a Brownian dynamics model coupled with a diffusion equation to examine the dynamics of auto-chemotactic chiral active droplets in both quasi-two-dimensional (2D) and three-dimensional (3D) systems. By quantifying the droplet trajectory as a function of the dimensionless Péclet number and chemotactic strength, our simulations well reproduce the curling and helical trajectories of nematic droplets in a surfactant-rich solution reported by Krüger et al. [Phys. Rev. Lett. 117, 048003 (2016)]. The modeled curling trajectory in 2D exhibits an emergent chirality, also consistent with the experiment. We further show that the geometry of the chiral droplet trajectories, characterized by the pitch and diameter, can be used to infer the velocities of the droplet. Interestingly, we find that, unlike the achiral case, the velocities of chiral active droplets show dimensionality dependence: its mean instantaneous velocity is higher in 3D than in 2D, whereas its mean migration velocity is lower in 3D than in 2D. Taken together, our particle-based simulations provide new insights into the dynamics of auto-chemotactic chiral active droplets, reveal the effects of dimensionality, and pave the way toward their applications, such as drug delivery, sensors, and micro-reactors.
Collapse
Affiliation(s)
- Chung Wing Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
| | - Zheng Yang
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
- Interdisciplinary Programs Office, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Zecheng Gan
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
- Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| |
Collapse
|
18
|
Ruiz-Garcia M, Barriuso G CM, Alexander LC, Aarts DGAL, Ghiringhelli LM, Valeriani C. Discovering dynamic laws from observations: The case of self-propelled, interacting colloids. Phys Rev E 2024; 109:064611. [PMID: 39020989 DOI: 10.1103/physreve.109.064611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Active matter spans a wide range of time and length scales, from groups of cells and synthetic self-propelled colloids to schools of fish and flocks of birds. The theoretical framework describing these systems has shown tremendous success in finding universal phenomenology. However, further progress is often burdened by the difficulty of determining forces controlling the dynamics of individual elements within each system. Accessing this local information is pivotal for the understanding of the physics governing an ensemble of active particles and for the creation of numerical models capable of explaining the observed collective phenomena. In this work, we present ActiveNet, a machine-learning tool consisting of a graph neural network that uses the collective motion of particles to learn active and two-body forces controlling their individual dynamics. We verify our approach using numerical simulations of active Brownian particles, active particles undergoing underdamped Langevin dynamics, and chiral active Brownian particles considering different interaction potentials and values of activity. Interestingly, ActiveNet can equally learn conservative or nonconservative forces as well as torques. Moreover, ActiveNet has proven to be a useful tool to learn the stochastic contribution to the forces, enabling the estimation of the diffusion coefficients. Therefore, all coefficients of the equation of motion of Active Brownian Particles are captured. Finally, we apply ActiveNet to experiments of electrophoretic Janus particles, extracting the active and two-body forces controlling colloids' dynamics. On the one side, we have learned that the active force depends on the electric field and area fraction. On the other side, we have also discovered a dependence of the two-body interaction with the electric field that leads us to propose that the dominant force between active colloids is a screened electrostatic interaction with a constant length scale. We believe that the proposed methodological tool, ActiveNet, might open a new avenue for the study and modeling of experimental suspensions of active particles.
Collapse
Affiliation(s)
- Miguel Ruiz-Garcia
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Mathematics, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain
- Grupo Interdisciplinar Sistemas Complejos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | - Luca M Ghiringhelli
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin, Germany
- Department of Materials Science, Friedrich-Alexander Universität Erlangen-Nürnberg, Martensstrasse 5-7, 91058 Erlangen, Germany
| | | |
Collapse
|
19
|
Bashan R, Oppenheimer N. Hydrodynamically induced aggregation of two dimensional oriented active particles. SOFT MATTER 2024; 20:3901-3909. [PMID: 38536066 DOI: 10.1039/d3sm01670f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We investigate a system of co-oriented active particles interacting only via hydrodynamic and steric interactions in a two-dimensional fluid. We offer a new method of calculating the flow created by any active particle in such a fluid, focusing on the dynamics of flow fields with a high-order spatial decay, which we analyze using a geometric Hamiltonian. We show that when the particles are oriented and the flow has a single, odd power decay, such systems lead to stable, fractal-like aggregation, with the only exception being the force dipole. We discuss how our results can easily be generalized to more complicated force distributions and to other effective two-dimensional systems.
Collapse
Affiliation(s)
- Roee Bashan
- School of Physics and Astronomy and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| | - Naomi Oppenheimer
- School of Physics and Astronomy and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| |
Collapse
|
20
|
Dong H, Hu F, Ma X, Yang J, Pan L, Xu J. Collective Cell Radial Ordered Migration in Spatial Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307487. [PMID: 38520715 PMCID: PMC11132034 DOI: 10.1002/advs.202307487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Collective cells, a typical active matter system, exhibit complex coordinated behaviors fundamental for various developmental and physiological processes. The present work discovers a collective radial ordered migration behavior of NIH3T3 fibroblasts that depends on persistent top-down regulation with 2D spatial confinement. Remarkably, individual cells move in a weak-oriented, diffusive-like rather than strong-oriented ballistic manner. Despite this, the collective movement is spatiotemporal heterogeneous and radial ordering at supracellular scale, manifesting as a radial ordered wavefront originated from the boundary and propagated toward the center of pattern. Combining bottom-up cell-to-extracellular matrix (ECM) interaction strategy, numerical simulations based on a developed mechanical model well reproduce and explain above observations. The model further predicts the independence of geometric features on this ordering behavior, which is validated by experiments. These results together indicate such radial ordered collective migration is ascribed to the couple of top-down regulation with spatial restriction and bottom-up cellular endogenous nature.
Collapse
Affiliation(s)
- Hao Dong
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Fen Hu
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Xuehe Ma
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Jianyu Yang
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Leiting Pan
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
- State Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesCollege of Life SciencesNankai UniversityTianjin300071China
- Shenzhen Research Institute of Nankai UniversityShenzhenGuangdong518083China
- Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanShanxi030006China
| | - Jingjun Xu
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
- Shenzhen Research Institute of Nankai UniversityShenzhenGuangdong518083China
| |
Collapse
|
21
|
van der Ham S, Agudo-Canalejo J, Vutukuri HR. Role of Shape in Particle-Lipid Membrane Interactions: From Surfing to Full Engulfment. ACS NANO 2024; 18:10407-10416. [PMID: 38513125 PMCID: PMC11025115 DOI: 10.1021/acsnano.3c11106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Understanding and manipulating the interactions between foreign bodies and cell membranes during endo- and phagocytosis is of paramount importance, not only for the fate of living cells but also for numerous biomedical applications. This study aims to elucidate the role of variables such as anisotropic particle shape, curvature, orientation, membrane tension, and adhesive strength in this essential process using a minimal experimental biomimetic system comprising giant unilamellar vesicles and rod-like particles with different curvatures and aspect ratios. We find that the particle wrapping process is dictated by the balance between the elastic free energy penalty and adhesion free energy gain, leading to two distinct engulfment pathways, tip-first and side-first, emphasizing the significance of the particle orientation in determining the pathway. Moreover, our experimental results are consistent with theoretical predictions in a state diagram, showcasing how to control the wrapping pathway from surfing to partial to complete wrapping by the interplay between membrane tension and adhesive strength. At moderate particle concentrations, we observed the formation of rod clusters, which exhibited cooperative and sequential wrapping. Our study contributes to a comprehensive understanding of the mechanistic intricacies of endocytosis by highlighting how the interplay between the anisotropic particle shape, curvature, orientation, membrane tension, and adhesive strength can influence the engulfment pathway.
Collapse
Affiliation(s)
- Stijn van der Ham
- Active
Soft Matter and Bio-inspired Materials Lab, Faculty of Science and
Technology, MESA+ Institute, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Jaime Agudo-Canalejo
- Department
of Living Matter Physics, Max Planck Institute
for Dynamics and Self-Organization, Göttingen, D-37077, Germany
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United Kingdom
| | - Hanumantha Rao Vutukuri
- Active
Soft Matter and Bio-inspired Materials Lab, Faculty of Science and
Technology, MESA+ Institute, University
of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
22
|
Kudryavtseva V, Sukhorukov GB. Features of Anisotropic Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307675. [PMID: 38158786 DOI: 10.1002/adma.202307675] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Natural materials are anisotropic. Delivery systems occurring in nature, such as viruses, blood cells, pollen, and many others, do have anisotropy, while delivery systems made artificially are mostly isotropic. There is apparent complexity in engineering anisotropic particles or capsules with micron and submicron sizes. Nevertheless, some promising examples of how to fabricate particles with anisotropic shapes or having anisotropic chemical and/or physical properties are developed. Anisotropy of particles, once they face biological systems, influences their behavior. Internalization by the cells, flow in the bloodstream, biodistribution over organs and tissues, directed release, and toxicity of particles regardless of the same chemistry are all reported to be factors of anisotropy of delivery systems. Here, the current methods are reviewed to introduce anisotropy to particles or capsules, including loading with various therapeutic cargo, variable physical properties primarily by anisotropic magnetic properties, controlling directional motion, and making Janus particles. The advantages of combining different anisotropy in one entity for delivery and common problems and limitations for fabrication are under discussion.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| |
Collapse
|
23
|
Upadhyaya A, Akella VS. The narrow escape problem of a chiral active particle (CAP): an optimal scheme. SOFT MATTER 2024; 20:2280-2287. [PMID: 38356307 DOI: 10.1039/d4sm00045e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We report a simulation study on the narrow escape kinetics of a chiral active particle (CAP) confined to a circular domain with a narrow escape opening. The study's main objective is to optimize the CAP's escape chances as a function of the relevant parameters, such as translational and rotational speeds of the CAP, domain size, etc. We identified three regimes in the escape kinetics, namely the noise-dominated regime, the optimal regime, and the chiral activity-dominated regime. In particular, the optimal regime is characterized by an escape scheme that involves a direct passage to the domain boundary at first and then a unidirectional drift along the boundary towards the exit. Furthermore, we propose a non-dimensionalization approach to optimize the escape performance across microorganisms with varying motile characteristics. Additionally, we explore the influence of the translational and rotational noise on the CAP's escape kinetics.
Collapse
Affiliation(s)
- Alakesh Upadhyaya
- Department of Physics, Indian Institute of Technology Jammu, NH-44, Jagti Village, Jammu, J & K, India.
| | - V S Akella
- Department of Physics, Indian Institute of Technology Jammu, NH-44, Jagti Village, Jammu, J & K, India.
| |
Collapse
|
24
|
Liang Z, Joh H, Lian B, Fan DE. Light-stimulated micromotor swarms in an electric field with accurate spatial, temporal, and mode control. SCIENCE ADVANCES 2023; 9:eadi9932. [PMID: 37878697 PMCID: PMC10599615 DOI: 10.1126/sciadv.adi9932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Swarming, a phenomenon widely present in nature, is a hallmark of nonequilibrium living systems that harness external energy into collective locomotion. The creation and study of manmade swarms may provide insights into their biological counterparts and shed light to the rules of life. Here, we propose an innovative mechanism for rationally creating multimodal swarms with unprecedented spatial, temporal, and mode control. The research is realized in a system made of optoelectric semiconductor nanorods that can rapidly morph into three distinct modes, i.e., network formation, collectively enhanced rotation, and droplet-like clustering, pattern, and switch in-between under light stimulation in an electric field. Theoretical analysis and semiquantitative modeling well explain the observation by understanding the competition between two countering effects: the electrostatic assembly for orderliness and electrospinning-induced disassembly for disorderliness. This work could inspire the rational creation of new classes of reconfigurable swarms for both fundamental research and emerging applications.
Collapse
Affiliation(s)
- Zexi Liang
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hyungmok Joh
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bin Lian
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Donglei Emma Fan
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
25
|
Janiak J, Li Y, Ferry Y, Doinikov AA, Ahmed D. Acoustic microbubble propulsion, train-like assembly and cargo transport. Nat Commun 2023; 14:4705. [PMID: 37543657 PMCID: PMC10404234 DOI: 10.1038/s41467-023-40387-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/20/2023] [Indexed: 08/07/2023] Open
Abstract
Achieving controlled mobility of microparticles in viscous fluids can become pivotal in biologics, biotechniques, and biomedical applications. The self-assembly, trapping, and transport of microparticles are being explored in active matter, micro and nanorobotics, and microfluidics; however, little work has been done in acoustics, particularly in active matter and robotics. This study reports the discovery and characterization of microbubble behaviors in a viscous gel that is confined to a slight opening between glass boundaries in an acoustic field. Where incident waves encounter a narrow slit, acoustic pressure is amplified, causing the microbubbles to nucleate and cavitate within it. Intermittent activation transforms microbubbles from spherical to ellipsoidal, allowing them to be trapped within the interstice. Continuous activation propels ellipsoidal microbubbles through shape and volume modes that is developed at their surfaces. Ensembles of microbubbles self-assemble into a train-like arrangement, which in turn capture, transport, and release microparticles.
Collapse
Affiliation(s)
- Jakub Janiak
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Yuyang Li
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Yann Ferry
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Alexander A Doinikov
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland.
| |
Collapse
|
26
|
Narayanan T, Chèvremont W, Zinn T. Small-angle X-ray scattering in the era of fourth-generation light sources. J Appl Crystallogr 2023; 56:939-946. [PMID: 37555224 PMCID: PMC10405582 DOI: 10.1107/s1600576723004971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 08/10/2023] Open
Abstract
Recently, fourth-generation synchrotron sources with several orders of magnitude higher brightness and higher degree of coherence compared with third-generation sources have come into operation. These new X-ray sources offer exciting opportunities for the investigation of soft matter and biological specimens by small-angle X-ray scattering (SAXS) and related scattering methods. The improved beam properties together with the advanced pixel array detectors readily enhance the angular resolution of SAXS and ultra-small-angle X-ray scattering in the pinhole collimation. The high degree of coherence is a major boost for the X-ray photon correlation spectroscopy (XPCS) technique, enabling the equilibrium dynamics to be probed over broader time and length scales. This article presents some representative examples illustrating the performance of SAXS and XPCS with the Extremely Brilliant Source at the European Synchrotron Radiation Facility. The rapid onset of radiation damage is a significant challenge with the vast majority of samples, and appropriate protocols need to be adopted for circumventing this problem.
Collapse
Affiliation(s)
| | | | - Thomas Zinn
- ESRF – The European Synchrotron, 38043 Grenoble, France
- Diamond Light Source, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
27
|
Rey M, Volpe G, Volpe G. Light, Matter, Action: Shining Light on Active Matter. ACS PHOTONICS 2023; 10:1188-1201. [PMID: 37215318 PMCID: PMC10197137 DOI: 10.1021/acsphotonics.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023]
Abstract
Light carries energy and momentum. It can therefore alter the motion of objects on the atomic to astronomical scales. Being widely available, readily controllable, and broadly biocompatible, light is also an ideal tool to propel microscopic particles, drive them out of thermodynamic equilibrium, and make them active. Thus, light-driven particles have become a recent focus of research in the field of soft active matter. In this Perspective, we discuss recent advances in the control of soft active matter with light, which has mainly been achieved using light intensity. We also highlight some first attempts to utilize light's additional properties, such as its wavelength, polarization, and momentum. We then argue that fully exploiting light with all of its properties will play a critical role in increasing the level of control over the actuation of active matter as well as the flow of light itself through it. This enabling step will advance the design of soft active matter systems, their functionalities, and their transfer toward technological applications.
Collapse
Affiliation(s)
- Marcel Rey
- Physics
Department, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Giovanni Volpe
- Physics
Department, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Giorgio Volpe
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| |
Collapse
|
28
|
Siebers F, Jayaram A, Blümler P, Speck T. Exploiting compositional disorder in collectives of light-driven circle walkers. SCIENCE ADVANCES 2023; 9:eadf5443. [PMID: 37058561 PMCID: PMC10104457 DOI: 10.1126/sciadv.adf5443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Emergent behavior in collectives of "robotic" units with limited capabilities that is robust and programmable is a promising route to perform tasks on the micro and nanoscale that are otherwise difficult to realize. However, a comprehensive theoretical understanding of the physical principles, in particular steric interactions in crowded environments, is still largely missing. Here, we study simple light-driven walkers propelled through internal vibrations. We demonstrate that their dynamics is well captured by the model of active Brownian particles, albeit with an angular speed that differs between individual units. Transferring to a numerical model, we show that this polydispersity of angular speeds gives rise to specific collective behavior: self-sorting under confinement and enhancement of translational diffusion. Our results show that, while naively perceived as imperfection, disorder of individual properties can provide another route to realize programmable active matter.
Collapse
|
29
|
Patel K, Stark H. Fluid interfaces laden by force dipoles: towards active matter-driven microfluidic flows. SOFT MATTER 2023; 19:2241-2253. [PMID: 36912619 DOI: 10.1039/d3sm00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, nonlinear microfluidics in combination with lab-on-a-chip devices has opened a new avenue for chemical and biomedical applications such as droplet formation and cell sorting. In this article, we integrate ideas from active matter into a microfluidic setting, where two fluid layers with identical densities but different viscosities flow through a microfluidic channel. Most importantly, the fluid interface is laden with active particles that act with dipolar forces on the adjacent fluids and thereby generate flows. We perform lattice-Boltzmann simulations and combine them with phase field dynamics of the interface and an advection-diffusion equation for the density of active particles. We show that only contractile force dipoles can destabilize the flat fluid interface. It develops a viscous finger from which droplets break up. For interfaces with non-zero surface tension, a critical value of activity equal to the surface tension is necessary to trigger the instability. Since activity depends on the density of force dipoles, the interface can develop steady deformation. Lastly, we demonstrate how to control droplet formation using switchable activity.
Collapse
Affiliation(s)
- Kuntal Patel
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
30
|
Ghellab SE, Zhang X, Yang Y, Wang S, Basharat M, Zhou X, Lei L, Zhou Y, Wang Y, Fang H, Gao Y. Cell-Mimic Directional Cargo Transportation in a Visible-Light-Activated Colloidal Motor/Lipid Tube System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204260. [PMID: 36424173 DOI: 10.1002/smll.202204260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Active tether and transportation of cargoes on cytoskeletal highway enabled by molecular motors is key for accurate delivery of vesicles and organelles in the complex intracellular environment. Here, a hybrid system composed of colloidal motors and self-assembled lipid tubes is designed to mimic the subcellular traffic system in living cells. The colloidal motors, composed of gold-coated hematite, display light-activated self-propulsion tunable by the light intensity and the concentration of hydrogen peroxide fuel. Importantly, the motors show light-switchable binding with lipid cargoes and attachment to the lipid tubes, whereby the latter act as the motor highways. Upon assembly, the colloidal motor/lipid tube system demonstrates directional delivery of lipid vesicles, emulating intracellular transportation. The assembly and function of the hybrid system are rationalized by a cooperative action of light-triggered electrophoretic and hydrodynamic effects, supported by finite element analysis. A synthetic analog of the biological protein motor/cytoskeletal filament system is realized for the manipulation and delivery of different matter at the microscale, which is expected to be a promising platform for various applications in materials science, nanotechnology, microfluidics, and synthetic biology.
Collapse
Affiliation(s)
- Salah Eddine Ghellab
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinyuan Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yicheng Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Shuo Wang
- Julong College, Shenzhen Technology University, Shenzhen, 518118, China
| | - Majid Basharat
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Xuemao Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Lijie Lei
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Hui Fang
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Nanophotonics Research Center, College of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
31
|
Fusi AD, Li Y, Llopis‐Lorente A, Patiño T, van Hest JCM, Abdelmohsen LKEA. Achieving Control in Micro-/Nanomotor Mobility. Angew Chem Int Ed Engl 2023; 62:e202214754. [PMID: 36413146 PMCID: PMC10107182 DOI: 10.1002/anie.202214754] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Unprecedented opportunities exist for the generation of advanced nanotechnologies based on synthetic micro/nanomotors (MNMs), such as active transport of medical agents or the removal of pollutants. In this regard, great efforts have been dedicated toward controlling MNM motion (e.g., speed, directionality). This was generally performed by precise engineering and optimizing of the motors' chassis, engine, powering mode (i.e., chemical or physical), and mechanism of motion. Recently, new insights have emerged to control motors mobility, mainly by the inclusion of different modes that drive propulsion. With high degree of synchronization, these modes work providing the required level of control. In this Minireview, we discuss the diverse factors that impact motion; these include MNM morphology, modes of mobility, and how control over motion was achieved. Moreover, we highlight the main limitations that need to be overcome so that such motion control can be translated into real applications.
Collapse
Affiliation(s)
- Alexander D. Fusi
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| | - Yudong Li
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| | - A. Llopis‐Lorente
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Institute of Molecular Recognition and Technological Development (IDM)Universitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
| | - Tania Patiño
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| | - Jan C. M. van Hest
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| | - Loai K. E. A. Abdelmohsen
- Departments of Chemical Engineering and Chemistry, and Biomedical EngineeringInstitute for Complex Molecular SystemsTechnische Universiteit EindhovenHet Kranenveld 145612AZ EindhovenThe Netherlands
| |
Collapse
|
32
|
Hosseini M, Babayekhorasani F, Guo Z, Liang K, Chen V, Spicer PT. Propulsion, deformation, and confinement response of hollow nanocellulose millimotors. J Colloid Interface Sci 2022; 628:435-445. [PMID: 35998466 DOI: 10.1016/j.jcis.2022.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
HYPOTHESIS Micromotor and nanomotor particles are typically made using dense solid particles that can sediment or be trapped in confined flow environments. Creation of much larger motors should be possible if a very low-density system is used with sufficient strength to carry liquid and still experience propulsive motion. Light, dense millimotors should also be able to deform more than dense solid ones in constrictions. EXPERIMENTS Millimotors are created from permeable capsules of bacterial cellulose that are coated with catalse-containing metal-organic frameworks, enabling reactive propulsion in aqueous hydrogen peroxide. The motion of the motors is quantified using particle tracking and the deformation is measured using microcapillary compression and flow through confined channels. FINDINGS Two different propulsion mechanisms are dominant depending on the motor surface chemistry: oxygen bubbles are expelled from hydrophilic millimotors, driving motion via recoil force and buoyancy. Hydrophobic millimotors remain attached to growing bubbles and move by buoyancy alone. Despite their large size, the low-density capsules compress to pass through contractions that would impede and be blocked by solid motors. The sparse structure but relatively large size of the motors enables them to transport significant volumes of liquid using minimal solid mass as a motor support structure.
Collapse
Affiliation(s)
- Maryam Hosseini
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | | | - Ziyi Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Vicki Chen
- School of Chemical Engineering, University of Queensland, Queensland 4072, Australia
| | - Patrick T Spicer
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
33
|
Kato AN, Takeuchi KA, Sano M. Active colloid with externally induced periodic bipolar motility and its cooperative motion. SOFT MATTER 2022; 18:5435-5445. [PMID: 35820174 DOI: 10.1039/d2sm00363e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Active matter physics has been developed with various types of self-propelled particles, including those with polar and bipolar motility and beyond. However, the bipolar motions experimentally realized so far have been either random along the axis or periodic at intrinsic frequencies. Here we report another kind of bipolar active particles, whose periodic bipolar self-propulsion is set externally at a controllable frequency. We used Quincke rollers-dielectric particles suspended in a conducting liquid driven by an electric field-under an AC electric field instead of the usually used DC field. Reciprocating motion of a single particle at the external frequency was observed experimentally and characterized theoretically as stable periodic motion. Experimentally, we observed not only the reciprocating motion but also non-trivial active Brownian particle (ABP)-like persistent motion in a long time scale. This resulted in a Lorentzian spectrum around zero frequency, which is not accounted for by a simple extension of the conventional model of Quincke rollers to the AC field. It was found that ABP-like motion can be reproduced by considering the top-bottom asymmetry in the experimental system. Moreover, we found a rotational diffusion coefficient much larger than the thermal one, as also reported in previous experiments, which may have resulted from roughness of the electrode surface. We also found self-organized formation of small clusters, such as doublets and triplets, and characterized cooperative motion of particles therein. The AC Quincke rollers reported here may serve as a model experimental system of bipolar active matter, which appears to deserve further investigations.
Collapse
Affiliation(s)
- Airi N Kato
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Kazumasa A Takeuchi
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaki Sano
- Institute of Natural Sciences, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Song S, Llopis-Lorente A, Mason AF, Abdelmohsen LKEA, van Hest JCM. Confined Motion: Motility of Active Microparticles in Cell-Sized Lipid Vesicles. J Am Chem Soc 2022; 144:13831-13838. [PMID: 35867803 PMCID: PMC9354240 DOI: 10.1021/jacs.2c05232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Active materials can transduce external energy into kinetic
energy
at the nano and micron length scales. This unique feature has sparked
much research, which ranges from achieving fundamental understanding
of their motility to the assessment of potential applications. Traditionally,
motility is studied as a function of internal features such as particle
topology, while external parameters such as energy source are assessed
mainly in bulk. However, in real-life applications, confinement plays
a crucial role in determining the type of motion active particles
can adapt. This feature has been however surprisingly underexplored
experimentally. Here, we showcase a tunable experimental platform
to gain an insight into the dynamics of active particles in environments
with restricted 3D topology. Particularly, we examined the autonomous
motion of coacervate micromotors confined in giant unilamellar vesicles
(GUVs) spanning 10–50 μm in diameter and varied parameters
including fuel and micromotor concentration. We observed anomalous
diffusion upon confinement, leading to decreased motility, which was
more pronounced in smaller compartments. The results indicate that
the theoretically predicted hydrodynamic effect dominates the motion
mechanism within this platform. Our study provides a versatile approach
to understand the behavior of active matter under controlled, compartmentalized
conditions.
Collapse
Affiliation(s)
- Shidong Song
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Antoni Llopis-Lorente
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland.,Institute of Molecular Recognition and Technological Development (IDM); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alexander F Mason
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| |
Collapse
|
35
|
Huang Y, Guo J, Li Y, Li H, Fan DE. 2D-Material-Integrated Micromachines: Competing Propulsion Strategy and Enhanced Bacterial Disinfection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203082. [PMID: 35656917 DOI: 10.1002/adma.202203082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/27/2022] [Indexed: 06/15/2023]
Abstract
2D transition-metal-dichalcogenide materials, such as molybdenum disulfide (MoS2 ) have received immense interest owing to their remarkable structure-endowed electronic, catalytic, and mechanical properties for applications in optoelectronics, energy storage, and wearable devices. However, 2D materials have been rarely explored in the field of micro/nanomachines, motors, and robots. Here, MoS2 with anatase TiO2 is successfully integrated into an original one-side-open hollow micromachine, which demonstrates increased light absorption of TiO2 -based micromachines to the visible region and the first observed motion acceleration in response to ionic media. Both experimentation and theoretical analysis suggest the unique type-II bandgap alignment of MoS2 /TiO2 heterojunction that accounts for the observed unique locomotion owing to a competing propulsion mechanism. Furthermore, by leveraging the chemical properties of MoS2 /TiO2 , the micromachines achieve sunlight-powered water disinfection with 99.999% Escherichia coli lysed in an hour. This research suggests abundant opportunities offered by 2D materials in the creation of a new class of micro/nanomachines and robots.
Collapse
Affiliation(s)
- Yun Huang
- Materials Science and Engineering Program, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jianhe Guo
- Materials Science and Engineering Program, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yufan Li
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Huaizhi Li
- Materials Science and Engineering Program, University of Texas at Austin, Austin, TX, 78712, USA
| | - Donglei Emma Fan
- Materials Science and Engineering Program, University of Texas at Austin, Austin, TX, 78712, USA
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
36
|
Piskunen P, Huusela M, Linko V. Nanoswimmers Based on Capped Janus Nanospheres. MATERIALS 2022; 15:ma15134442. [PMID: 35806570 PMCID: PMC9267829 DOI: 10.3390/ma15134442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
Nanoswimmers are synthetic nanoscale objects that convert the available surrounding free energy to a directed motion. For example, bacteria with various flagella types serve as textbook examples of the minuscule swimmers found in nature. Along these lines, a plethora of artificial hybrid and non-hybrid nanoswimmers have been introduced, and they could find many uses, e.g., for targeted drug delivery systems (TDDSs) and controlled drug treatments. Here, we discuss a certain class of nanoparticles, i.e., functional, capped Janus nanospheres that can be employed as nanoswimmers, their subclasses and properties, as well as their various implementations. A brief outlook is given on different fabrication and synthesis methods, as well as on the diverse compositions used to prepare nanoswimmers, with a focus on the particle types and materials suitable for biomedical applications. Several recent studies have shown remarkable success in achieving temporally and spatially controlled drug delivery in vitro using Janus-particle-based TDDSs. We believe that this review will serve as a concise introductory synopsis for the interested readers. Therefore, we hope that it will deepen the general understanding of nanoparticle behavior in biological matrices.
Collapse
Affiliation(s)
- Petteri Piskunen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland; (P.P.); (M.H.)
| | - Martina Huusela
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland; (P.P.); (M.H.)
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland; (P.P.); (M.H.)
- LIBER Center of Excellence, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Correspondence:
| |
Collapse
|
37
|
Abstract
The increasing accumulation of persistent nondegradable microplastics in the marine environment represents a global environmental problem. Among emerging approaches to tackle microplastics are micro- and nanomotors, tiny devices capable of autonomous propulsion powered by chemical fuels or light. These devices are capable of on-the-fly recognition, capture, and decomposition of pollutants. In the past, various micromotors were designed to efficiently remove and degrade soluble organic pollutants. Current effort is given to the rational design and surface functionalization to achieve micromotors capable of capturing, transporting, and releasing microplastics of different shapes and chemical structures. The catalytic micromotors performing photocatalysis and photo-Fenton chemistry hold great promise for the degradation of most common plastics. In this review, we highlight recent progress in the field of micromotors for microplastics treatment. These tiny self-propelled machines are expected to stimulate a quantum leap in environmental remediation.
Collapse
Affiliation(s)
- Soňa Hermanová
- Center
for Nanorobotics and Machine Intelligence, Department of Food Technology, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic
| | - Martin Pumera
- Center
for Nanorobotics and Machine Intelligence, Department of Food Technology, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-616 00, Czech Republic
| |
Collapse
|
38
|
Boymelgreen A, Schiffbauer J, Khusid B, Yossifon G. Synthetic electrically driven colloids: a platform for understanding collective behavior in soft matter. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Madden IP, Wang L, Simmchen J, Luijten E. Hydrodynamically Controlled Self-Organization in Mixtures of Active and Passive Colloids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107023. [PMID: 35304973 DOI: 10.1002/smll.202107023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Active particles are known to exhibit collective behavior and induce structure in a variety of soft-matter systems. However, many naturally occurring complex fluids are mixtures of active and passive components. The authors examine how activity induces organization in such multi-component systems. Mixtures of passive colloids and colloidal micromotors are investigated and it is observed that even a small fraction of active particles induces reorganization of the passive components in an intriguing series of phenomena. Experimental observations are combined with large-scale simulations that explicitly resolve the near- and far-field effects of the hydrodynamic flow and simultaneously accurately treat the fluid-colloid interfaces. It is demonstrated that neither conventional molecular dynamics simulations nor the reduction of hydrodynamic effects to phoretic attractions can explain the observed phenomena, which originate from the flow field that is generated by the active colloids and subsequently modified by the aggregating passive units. These findings not only offer insight into the organization of biological or synthetic active-passive mixtures, but also open avenues to controlling the behavior of passive building blocks by means of small amounts of active particles.
Collapse
Affiliation(s)
- Ian P Madden
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Linlin Wang
- Department of Physical Chemistry, TU Dresden, Zellescher Weg 19, 01062, Dresden, Germany
| | - Juliane Simmchen
- Department of Physical Chemistry, TU Dresden, Zellescher Weg 19, 01062, Dresden, Germany
| | - Erik Luijten
- Departments of Materials Science and Engineering, Engineering Sciences and Applied Mathematics, Chemistry, Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
40
|
Clopés J, Gompper G, Winkler RG. Alignment and propulsion of squirmer pusher-puller dumbbells. J Chem Phys 2022; 156:194901. [DOI: 10.1063/5.0091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The properties of microswimmer dumbbells composed of pusher-puller pairs are investigated by mesoscale hydrodynamic simulations employing the multiparticle collision dynamics approach for the fluid. An individual microswimmer is represented by a squirmer, and various active-stress combinations in a dumbbell are considered. The squirmers are connected by a bond, which does not impose any geometrical restriction on the individual rotational motion. Our simulations reveal a strong influence of the squirmers' flow fields on the orientation of their propulsion directions, their fluctuations, and the swimming behavior of a dumbbell. The properties of pusher-puller pairs with equal magnitude of the active stresses dependent only weakly on the stress magnitude. This is similar to dumbbells of microswimmers without hydrodynamic interactions. However, for non-equal stress magnitudes, the active stress implies strong orientational correlations of the swimmers' propulsion directions with respect to each other as well as the bond vector. The orientational coupling is most pronounced for pairs with large differences of the active stress magnitude. The alignment of the squirmer propulsion directions with respect to each other is preferentially orthogonal in dumbbells with a strong pusher and weak puller, and antiparallel in the opposite case when the puller dominates. These strong correlations affect the active motion of dumbbells which is faster for strong pushers and slower for strong pullers.
Collapse
Affiliation(s)
| | - Gerhard Gompper
- Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, Germany
| | - Roland G. Winkler
- Institute for Advanced Simulation, Forschungszentrum Jülich, Germany
| |
Collapse
|
41
|
Yuan S, Lin X, He Q. Reconfigurable assembly of colloidal motors towards interactive soft materials and systems. J Colloid Interface Sci 2022; 612:43-56. [PMID: 34974257 DOI: 10.1016/j.jcis.2021.12.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Due to the highly flexible reconfiguration of swarms, collective behaviors have provided various natural organisms with a powerful adaptivity to the complex environment. To mimic these natural systems and construct artificial intelligent soft materials, self-propelled colloidal motors that can convert diverse forms of energy into swimming-like movement in fluids afford an ideal model system at the micro-/nanoscales. Through the coupling of local gradient fields, colloidal motors driven by chemical reactions or externally physical fields can assembly into swarms with adaptivity. Here, we summarize the progress on reconfigurable assembly of colloidal motors which is driven and modulated by chemical reactions and external fields (e.g., light, ultrasonic, electric, and magnetic fields). The adaptive reconfiguration behaviors and the corresponding mechanisms are discussed in detail. The future directions and challenges are also addressed for developing colloidal motor-based interactive soft matter materials and systems with adaptation and interactive functions comparable to that of natural systems.
Collapse
Affiliation(s)
- Shurui Yuan
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, YiKuangJie 2, Harbin 150080, China
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, YiKuangJie 2, Harbin 150080, China.
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, YiKuangJie 2, Harbin 150080, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; Oujiang Laboratory, Wenzhou 325000, China.
| |
Collapse
|
42
|
Basharat M, Shah ZH, Ikram M, Ghellab SE, Hassan QU, Ilyas T, Lei L, Lin G, Gao Y. Inorganic-Organic Hybrid Copolymeric Colloids as Multicolor Emission, Fuel-Free, UV- and Visible-Light-Actuated Micropumps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107621. [PMID: 35142080 DOI: 10.1002/smll.202107621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Light-actuated micromachines are of enormous interest due to their ability to harvest light for triggering catalytic reactions to acquire free energy for mechanical work. This work presents an inorganic-organic hybrid copolymeric poly(cyclotriphosphazene-co-barbituric acid) colloid, which displays multiwavelength excited emission and catalytic activities, exploiting the unique structural, chemical, and optical features of inorganic heterocyclic ring hexachlorocyclotriphosphazene and organic co-monomer barbituric acid. Specifically, this work reveals particle-resolved unusual multicolor emission under excitation with the same or different wavelengths of light using fluorescence microscopy. The result is rationalized by density functional theory studies. In this work, the authors find that emission is coincident with fluorometric measurements, and the photocatalytic properties are anticipated from the overall band structure. This work also demonstrates the use of these colloids as micropumps, which can be remotely activated by UV, blue, and green lights under fuel-free conditions, and ascribe the behavior to ionic diffusiophoresis arising from light-triggered generation of H+ and other charged species. This work offers a new class of polymeric colloids with multiple-wavelength excited emission and catalytic activities, which is expected to open new opportunities in the design of fuel-free, photo-actuated micromachines and active systems.
Collapse
Affiliation(s)
- Majid Basharat
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zameer Hussain Shah
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
| | - Muhammad Ikram
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Salah Eddine Ghellab
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qadeer-Ul Hassan
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tayiba Ilyas
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lijie Lei
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Guanhua Lin
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, P. R. China
| |
Collapse
|
43
|
Sahu DK, Dhara S. Electrophoresis of metal-dielectric Janus particles with dipolar director symmetry in nematic liquid crystals. SOFT MATTER 2022; 18:1819-1824. [PMID: 35166748 DOI: 10.1039/d1sm01653a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We study the electrophoresis of metal-dielectric Janus particles with dipolar director symmetry in two nematic liquid crystals (LCs) having the same sign of conductivity anisotropy (Δσ) but opposite signs of dielectric anisotropy (Δε). The applied ac electric field is parallel and perpendicular to the director for positive and negative dielectric anisotropy LCs, respectively. We show that the Janus dipolar particles propel faster than the non-Janus dipolar particles in both LCs. The propelling speed of the Janus dipolar particles is also significantly higher compared to the quadrupolar Janus particles studied previously. We map the electroosmotic flow fields surrounding a Janus dipolar particle using microparticle image velocimetry (μ-PIV) and show that the flow on a metal hemisphere is stronger than that on a dielectric hemisphere. Altogether, Janus dipolar particles demonstrate efficient electrophoresis compared to both Janus and non-Janus quadrupolar particles. These findings may be useful for applications in active matter, microrobotic and microfluidic devices.
Collapse
Affiliation(s)
- Dinesh Kumar Sahu
- School of Physics, University of Hyderabad, Hyderabad 500 046, India.
| | - Surajit Dhara
- School of Physics, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
44
|
Araki T, Gomez-Solano JR, Maciołek A. Relaxation to steady states of a binary liquid mixture around an optically heated colloid. Phys Rev E 2022; 105:014123. [PMID: 35193287 DOI: 10.1103/physreve.105.014123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
We study the relaxation dynamics of a binary liquid mixture near a light-absorbing Janus particle after switching on and off illumination using experiments and theoretical models. The dynamics is controlled by the temperature gradient formed around the heated particle. Our results show that the relaxation is asymmetric: The approach to a nonequilibrium steady state is much slower than the return to thermal equilibrium. Approaching a nonequilibrium steady state after a sudden temperature change is a two-step process that overshoots the response of spatial variance of the concentration field. The initial growth of concentration fluctuations after switching on illumination follows a power law in agreement with the hydrodynamic and purely diffusive model. The energy outflow from the system after switching off illumination is well described by a stretched exponential function of time with characteristic time proportional to the ratio of the energy stored in the steady state to the total energy flux in this state.
Collapse
Affiliation(s)
- Takeaki Araki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Juan Ruben Gomez-Solano
- Instituto de Física, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Código Postal 04510, Mexico
| | - Anna Maciołek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
- Max-Planck-Institut für Intelligente Systeme Stuttgart, Heisenbergstraße 3, D-70569 Stuttgart, Germany
| |
Collapse
|
45
|
Zampetaki AV, Liebchen B, Ivlev AV, Löwen H. Collective self-optimization of communicating active particles. Proc Natl Acad Sci U S A 2021; 118:e2111142118. [PMID: 34853169 PMCID: PMC8670500 DOI: 10.1073/pnas.2111142118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
The quest for how to collectively self-organize in order to maximize the survival chances of the members of a social group requires finding an optimal compromise between maximizing the well-being of an individual and that of the group. Here we develop a minimal model describing active individuals which consume or produce, and respond to a shared resource-such as the oxygen concentration for aerotactic bacteria or the temperature field for penguins-while urging for an optimal resource value. Notably, this model can be approximated by an attraction-repulsion model, but, in general, it features many-body interactions. While the former prevents some individuals from closely approaching the optimal value of the shared "resource field," the collective many-body interactions induce aperiodic patterns, allowing the group to collectively self-optimize. Arguably, the proposed optimal field-based collective interactions represent a generic concept at the interface of active matter physics, collective behavior, and microbiological chemotaxis. This concept might serve as a useful ingredient to optimize ensembles of synthetic active agents or to help unveil aspects of the communication rules which certain social groups use to maximize their survival chances.
Collapse
Affiliation(s)
- Alexandra V Zampetaki
- Center for Astrochemical Studies, Max-Planck-Institut für Extraterrestrische Physik, 85741 Garching, Germany
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Alexei V Ivlev
- Center for Astrochemical Studies, Max-Planck-Institut für Extraterrestrische Physik, 85741 Garching, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
46
|
Santra I, Basu U, Sabhapandit S. Direction reversing active Brownian particle in a harmonic potential. SOFT MATTER 2021; 17:10108-10119. [PMID: 34726222 DOI: 10.1039/d1sm01118a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We study the two-dimensional motion of an active Brownian particle of speed v0, with intermittent directional reversals in the presence of a harmonic trap of strength μ. The presence of the trap ensures that the position of the particle eventually reaches a steady state where it is bounded within a circular region of radius v0/μ, centered at the minimum of the trap. Due to the interplay between the rotational diffusion constant DR, reversal rate γ, and the trap strength μ, the steady state distribution shows four different types of shapes, which we refer to as active-I & II, and passive-I & II phases. In the active-I phase, the weight of the distribution is concentrated along an annular region close to the circular boundary, whereas in active-II, an additional central diverging peak appears giving rise to a Mexican hat-like shape of the distribution. The passive-I is marked by a single Boltzmann-like centrally peaked distribution in the large DR limit. On the other hand, while the passive-II phase also shows a single central peak, it is distinguished from passive-I by a non-Boltzmann like divergence near the origin. We characterize these phases by calculating the exact analytical forms of the distributions in various limiting cases. In particular, we show that for DR ≪ γ, the shape transition of the two-dimensional position distribution from active-II to passive-II occurs at μ = γ. We compliment these analytical results with numerical simulations beyond the limiting cases and obtain a qualitative phase diagram in the (DR, γ, μ-1) space.
Collapse
Affiliation(s)
- Ion Santra
- Raman Research Institute, Bengaluru 560080, India
| | - Urna Basu
- Raman Research Institute, Bengaluru 560080, India
- S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | | |
Collapse
|
47
|
Alamcheril MP, Jain U, Babu SB. Can playing Spirograph lead to an ordered structure in self-propelled particles? SOFT MATTER 2021; 17:9507-9513. [PMID: 34617553 DOI: 10.1039/d1sm01050f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the local dynamics of microorganisms infecting a cell could help us develop efficient strategies to counter their aggregation. In the present study we have introduced a simple model of self-propelled particles (SPPs) with constant linear velocity, both in 2 and 3 dimensions, which captures the essential features of a microorganism's aggregation as well the dynamics around an attractive point (AP). The static behavior shows the presence of an icosahedral structure for a finite number of SPPs, and a hexagonal closed packed structure for an infinite number of SPPs, which was confirmed using Steinhardt bond order parameters for a 3-dimensional model. For a single SPP the dynamic behaviour involves the formation of orbits around the AP, which can be categorised into three dynamical regions based on the strength of coupling between the AP and SPP. For weak coupling we observe a rosette-like trajectory reminiscent of the pattern formed by the Spirograph toy. For intermediate coupling, circular trajectories were observed, and for very strong coupling the SPP was static and was always aligned with the AP. The radial distance from the AP to SPP was determined by the angular velocities of the SPP for the rosette-like region whereas for the circular and static regions, it was determined by the coupling constant. Even for a finite number of SPPs we observed the same behavior as long as the SPPs could rotate around the AP without colliding with each other.
Collapse
Affiliation(s)
- Mephin Philip Alamcheril
- Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Umang Jain
- Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Sujin B Babu
- Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
48
|
Zhou X, Wang S, Xian L, Shah ZH, Li Y, Lin G, Gao Y. Ionic Effects in Ionic Diffusiophoresis in Chemically Driven Active Colloids. PHYSICAL REVIEW LETTERS 2021; 127:168001. [PMID: 34723584 DOI: 10.1103/physrevlett.127.168001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/20/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
We study experimentally the effect of added salt in the phoretic motion of chemically driven colloidal particles. We show that the response of passive colloids to a fixed active colloid, be it attractive or repulsive, depends on the ionic strength, the ζ potential, and the size of the passive colloids. We further report that the direction of self-propulsion of Janus colloids can be reversed by decreasing their ζ potential below a critical value. By constructing an effective model that treats the colloid and ions as a whole subjected to the concentration field of generated ions and takes into account the joint effect of both generated and background ions in determining the Debye length, we demonstrate that the response of the passive colloids and the velocity of the Janus colloids can be quantitatively captured by this model under the ionic diffusiophoresis theory beyond the infinitely-thin-double-layer limit.
Collapse
Affiliation(s)
- Xuemao Zhou
- Institute for Advanced Study, Shenzhen University, 518060 Shenzhen, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Shuo Wang
- Institute for Advanced Study, Shenzhen University, 518060 Shenzhen, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Longbin Xian
- Institute for Advanced Study, Shenzhen University, 518060 Shenzhen, China
| | - Zameer Hussain Shah
- Institute for Advanced Study, Shenzhen University, 518060 Shenzhen, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Yurou Li
- Institute for Advanced Study, Shenzhen University, 518060 Shenzhen, China
| | - Guanhua Lin
- Institute for Advanced Study, Shenzhen University, 518060 Shenzhen, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, 518060 Shenzhen, China
| |
Collapse
|
49
|
Wittmann M, Ali A, Gemming T, Stavale F, Simmchen J. Semiconductor-Based Microswimmers: Attention to Detail Matters. J Phys Chem Lett 2021; 12:9651-9656. [PMID: 34586814 DOI: 10.1021/acs.jpclett.1c02658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal active matter is known for its sensitivity to external conditions; for example, the swimming speeds depend strongly on substrates, fuel concentration, and in the case of light-driven colloids, the illumination. While these points are regularly considered, the nanoscopic material properties of the motor bodies are often barely mentioned, but they are highly influential in the case of photocatalysts. In order to demonstrate the influence of subtle differences in chemical composition and interfacing between the different material compounds, we designed a system based on colloidal titania spheres asymmetrized by different nanoscale cobalt oxide species. We examine how the material properties and combinations lead to highly specific catalytic activity and cross-relate the subtle differences to the typical active behaviors of these complex materials.
Collapse
Affiliation(s)
- Martin Wittmann
- Freigeist Group, Physical Chemistry TU Dresden, Zellescher Weg 19, 01062 Dresden, Germany
| | - Astrid Ali
- Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Dr. Xavier Sigaud, 150 - Urca, Rio de Janeiro 22290-180, Brazil
| | - Thomas Gemming
- Leibniz IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| | - Fernando Stavale
- Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Dr. Xavier Sigaud, 150 - Urca, Rio de Janeiro 22290-180, Brazil
| | - Juliane Simmchen
- Freigeist Group, Physical Chemistry TU Dresden, Zellescher Weg 19, 01062 Dresden, Germany
| |
Collapse
|
50
|
Joh H, Fan DE. Materials and Schemes of Multimodal Reconfigurable Micro/Nanomachines and Robots: Review and Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101965. [PMID: 34410023 DOI: 10.1002/adma.202101965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Mechanically programmable, reconfigurable micro/nanoscale materials that can dynamically change their mechanical properties or behaviors, or morph into distinct assemblies or swarms in response to stimuli have greatly piqued the interest of the science community due to their unprecedented potentials in both fundamental research and technological applications. To date, a variety of designs of hard and soft materials, as well as actuation schemes based on mechanisms including chemical reactions and magnetic, acoustic, optical, and electric stimuli, have been reported. Herein, state-of-the-art micro/nanostructures and operation schemes for multimodal reconfigurable micro/nanomachines and swarms, as well as potential new materials and working principles, challenges, and future perspectives are discussed.
Collapse
Affiliation(s)
- Hyungmok Joh
- Materials Science and Engineering Program, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Donglei Emma Fan
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|