1
|
Carvalho BC, Corrêa ALT, Silva ABD, Ciotti ÁM. Monitoring seawater temperature variability in stratified coastal waters: A case study for Alcatrazes Archipelago conservation area (SE Brazil). REGIONAL STUDIES IN MARINE SCIENCE 2025; 81:103991. [DOI: 10.1016/j.rsma.2024.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Graham NAJ, Wilson SK, Benkwitt CE, Bonne R, Govinden R, Robinson JPW. Increased resilience and a regime shift reversal through repeat mass coral bleaching. Ecol Lett 2024; 27:e14454. [PMID: 39739239 DOI: 10.1111/ele.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 01/02/2025]
Abstract
Ecosystems are substantially changing in response to ongoing climate change. For example, coral reefs have declined in coral dominance, with some reefs undergoing regime shifts to non-coral states. However, reef responses may vary through multiple heat stress events, with the rarity of long-term ecological datasets rendering such understanding uncertain. Assessing coral reefs across the inner Seychelles islands using a 28-year dataset, we document faster coral recovery from the 2016 than the 1998 marine heatwave event. Further, compositions of benthic and fish communities were more resistant to change following the more recent heat stress, having stabilized in a persistent altered state, with greater herbivory, following the 1998 climate disturbance. Counter to predictions, a macroalgal-dominated reef that had regime-shifted following the 1998 disturbance is transitioning to a coral-dominated state following the 2016 heat stress. Collectively, these patterns indicate that reef systems may be more resilient to repeat heatwave events than anticipated.
Collapse
Affiliation(s)
| | - Shaun K Wilson
- Australian Institute of Marine Science, Crawley, Western Australia, Australia
- Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | | | - Rodney Bonne
- Seychelles Parks and Gardens Authority, Victoria, Mahe, Seychelles
| | | | | |
Collapse
|
3
|
McClanahan TR, Friedlander AM, Wickel J, Graham NAJ, Bruggemann JH, Guillaume MMM, Chabanet P, Porter S, Schleyer MH, Azali MK, Muthiga NA. Testing for concordance between predicted species richness, past prioritization, and marine protected area designations in the western Indian Ocean. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14256. [PMID: 38545935 DOI: 10.1111/cobi.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 07/24/2024]
Abstract
Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25-km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment-species proxy and modeling approach can be considered among other important criteria for making conservation decisions.
Collapse
Affiliation(s)
- Tim R McClanahan
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
| | - Alan M Friedlander
- Pristine Seas, National Geographic Society, Washington, DC, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, Hawaii, USA
| | | | | | - J Henrich Bruggemann
- UMR 9220 ENTROPIE, Université de La Réunion - IRD - CNRS - IFREMER - UNC, Saint Denis, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| | - Mireille M M Guillaume
- Laboratoire d'Excellence CORAIL, Perpignan, France
- UMR BOREA, Muséum National d'Histoire Naturelle - Sorbonne U - CNRS - IRD - UCN - UA, Paris, France
| | - P Chabanet
- UMR 9220 ENTROPIE, Université de La Réunion - IRD - CNRS - IFREMER - UNC, Saint Denis, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| | - Sean Porter
- Oceanographic Research Institute, Durban, South Africa
| | | | - M Kodia Azali
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
| | - N A Muthiga
- Kenya Marine Program, Wildlife Conservation Society, Mombasa, Kenya
| |
Collapse
|
4
|
Ju H, Zhang J, Zou Y, Xie F, Tang X, Zhang S, Li J. Bacteria undergo significant shifts while archaea maintain stability in Pocillopora damicornis under sustained heat stress. ENVIRONMENTAL RESEARCH 2024; 250:118469. [PMID: 38354884 DOI: 10.1016/j.envres.2024.118469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Global warming reportedly poses a critical risk to coral reef ecosystems. Bacteria and archaea are crucial components of the coral holobiont. The response of archaea associated with warming is less well understood than that of the bacterial community in corals. Also, there have been few studies on the dynamics of the microbial community in the coral holobiont under long-term heat stress. In order to track the dynamic alternations in the microbial communities within the heat-stressed coral holobiont, three-week heat-stress monitoring was carried out on the coral Pocillopora damicornis. The findings demonstrate that the corals were stressed at 32 °C, and showed a gradual decrease in Symbiodiniaceae density with increasing duration of heat stress. The archaeal community in the coral holobiont remained relatively unaltered by the increasing temperature, whereas the bacterial community was considerably altered. Sustained heat stress exacerbated the dissimilarities among parallel samples of the bacterial community, confirming the Anna Karenina Principle in animal microbiomes. Heat stress leads to more complex and unstable microbial networks, characterized by an increased average degree and decreased modularity, respectively. With the extension of heat stress duration, the relative abundances of the gene (nifH) and genus (Tistlia) associated with nitrogen fixation increased in coral samples, as well as the potential pathogenic bacteria (Flavobacteriales) and opportunistic bacteria (Bacteroides). Hence, our findings suggest that coral hosts might recruit nitrogen-fixing bacteria during the initial stages of suffering heat stress. An environment that is conducive to the colonization and development of opportunistic and pathogenic bacteria when the coral host becomes more susceptible as heat stress duration increases.
Collapse
Affiliation(s)
- Huimin Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Feiyang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Filbee-Dexter K, Starko S, Pessarrodona A, Wood G, Norderhaug KM, Piñeiro-Corbeira C, Wernberg T. Marine protected areas can be useful but are not a silver bullet for kelp conservation. JOURNAL OF PHYCOLOGY 2024; 60:203-213. [PMID: 38546039 DOI: 10.1111/jpy.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Kelp forests are among the most valuable ecosystems on Earth, but they are increasingly being degraded and lost due to a range of human-related stressors, leading to recent calls for their improved management and conservation. One of the primary tools to conserve marine species and biodiversity is the establishment of marine protected areas (MPAs). International commitments to protect 30% of the world's ecosystems are gaining momentum, offering a promising avenue to secure kelp forests into the Anthropocene. However, a clear understanding of the efficacy of MPAs for conserving kelp forests in a changing ocean is lacking. In this perspective, we question whether strengthened global protection will create meaningful conservation outcomes for kelp forests. We explore the benefits of MPAs for kelp conservation under a suite of different stressors, focusing on empirical evidence from protected kelp forests. We show that MPAs can be effective against some drivers of kelp loss (e.g., overgrazing, kelp harvesting), particularly when they are maintained in the long-term and enforced as no-take areas. There is also some evidence that MPAs can reduce impacts of climate change through building resilience in multi-stressor situations. However, MPAs also often fail to provide protection against ocean warming, marine heatwaves, coastal darkening, and pollution, which have emerged as dominant drivers of kelp forest loss globally. Although well-enforced MPAs should remain an important tool to protect kelp forests, successful kelp conservation will require implementing an additional suite of management solutions that target these accelerating threats.
Collapse
Affiliation(s)
- Karen Filbee-Dexter
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| | - Samuel Starko
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Albert Pessarrodona
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Georgina Wood
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | | | - Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias, and CICA - Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
| | - Thomas Wernberg
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| |
Collapse
|
6
|
Johnson JV, Chequer AD, Goodbody-Gringley G. Insights from the 2-year-long human confinement experiment in Grand Cayman reveal the resilience of coral reef fish communities. Sci Rep 2023; 13:21806. [PMID: 38071390 PMCID: PMC10710434 DOI: 10.1038/s41598-023-49221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
In March 2020, the world went into lockdown to curb the spread of the novel coronavirus (SARS-CoV-2), with immediate impacts on wildlife across ecosystems. The strict 2-year long lockdown in Grand Cayman provided an unprecedented opportunity to assess how the 'human confinement experiment' influenced the community composition of reef fish. Using a suite of multivariate statistics, our findings revealed a stark increase in reef fish biomass during the 2 years of lockdown, especially among herbivores, including parrotfish, with drastic increases in juvenile parrotfishes identified. Additionally, when comparing baseline data of the community from 2018 to the 2 years during lockdown, over a three-fold significant increase in mean reef fish biomass was observed, with a clear shift in community composition. Our findings provide unique insights into the resilience of reef fish communities when local anthropogenic stressors are removed for an unprecedented length of time. Given the functional role of herbivores including parrotfish, our results suggest that reductions in human water-based activities have positive implications for coral reef ecosystems and should be considered in future management strategies.
Collapse
Affiliation(s)
- Jack V Johnson
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman, Cayman Islands.
| | - Alex D Chequer
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | | |
Collapse
|
7
|
Randrianarivo M, Botosoamananto RL, Guilhaumon F, Penin L, Todinanahary G, Adjeroud M. Effects of Madagascar marine reserves on juvenile and adult coral abundance, and the implication for population regulation. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106080. [PMID: 37422994 DOI: 10.1016/j.marenvres.2023.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Recruitment is a critical component in the dynamics of coral assemblages, and a key question is to determine the degree to which spatial heterogeneity of adults is influenced by pre-vs. post-settlement processes. We analyzed the density of juvenile and adult corals among 18 stations located at three regions around Madagascar, and examined the effects of Marine Protected Areas (MPAs). Our survey did not detect a positive effect of MPAs on juveniles, except for Porites at the study scale. The MPA effect was more pronounced for adults, notably for Acropora, Montipora, Seriatopora, and Porites at the regional scale. For most dominant genera, densities of juveniles and adults were positively correlated at the study scale, and at least at one of the three regions. These outcomes suggest recruitment-limitation relationships for several coral taxa, although differences in post-settlement events may be sufficiently strong to distort the pattern established at settlement for other populations. The modest benefits of MPAs on the density of juvenile corals demonstrated here argue in favor of strengthening conservation measures more specifically focused to protect recruitment processes.
Collapse
Affiliation(s)
- Mahery Randrianarivo
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Radonirina Lebely Botosoamananto
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - François Guilhaumon
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Lucie Penin
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France; Laboratoire d'Excellence "CORAIL", Paris, France
| | - Gildas Todinanahary
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar
| | - Mehdi Adjeroud
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de la Nouvelle-Calédonie, Perpignan, France; Laboratoire d'Excellence "CORAIL", Paris, France; PSL Université Paris, UAR 3278, CRIOBE EPHE-UPVD-CNRS, Perpignan, France.
| |
Collapse
|
8
|
Gove JM, Williams GJ, Lecky J, Brown E, Conklin E, Counsell C, Davis G, Donovan MK, Falinski K, Kramer L, Kozar K, Li N, Maynard JA, McCutcheon A, McKenna SA, Neilson BJ, Safaie A, Teague C, Whittier R, Asner GP. Coral reefs benefit from reduced land-sea impacts under ocean warming. Nature 2023; 621:536-542. [PMID: 37558870 PMCID: PMC10511326 DOI: 10.1038/s41586-023-06394-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
Coral reef ecosystems are being fundamentally restructured by local human impacts and climate-driven marine heatwaves that trigger mass coral bleaching and mortality1. Reducing local impacts can increase reef resistance to and recovery from bleaching2. However, resource managers lack clear advice on targeted actions that best support coral reefs under climate change3 and sector-based governance means most land- and sea-based management efforts remain siloed4. Here we combine surveys of reef change with a unique 20-year time series of land-sea human impacts that encompassed an unprecedented marine heatwave in Hawai'i. Reefs with increased herbivorous fish populations and reduced land-based impacts, such as wastewater pollution and urban runoff, had positive coral cover trajectories predisturbance. These reefs also experienced a modest reduction in coral mortality following severe heat stress compared to reefs with reduced fish populations and enhanced land-based impacts. Scenario modelling indicated that simultaneously reducing land-sea human impacts results in a three- to sixfold greater probability of a reef having high reef-builder cover four years postdisturbance than if either occurred in isolation. International efforts to protect 30% of Earth's land and ocean ecosystems by 2030 are underway5. Our results reveal that integrated land-sea management could help achieve coastal ocean conservation goals and provide coral reefs with the best opportunity to persist in our changing climate.
Collapse
Affiliation(s)
- Jamison M Gove
- Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), Honolulu, HI, USA.
| | - Gareth J Williams
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK.
| | - Joey Lecky
- Pacific Islands Regional Office, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Eric Brown
- National Park of American Samoa, Pago Pago, American Samoa, USA
| | | | - Chelsie Counsell
- Cooperative Institute for Marine and Atmospheric Research, Honolulu, HI, USA
| | - Gerald Davis
- Pacific Islands Regional Office, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Mary K Donovan
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, USA
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
| | | | | | - Kelly Kozar
- National Park Service, Pacific Island Network Inventory and Monitoring, Hawai'i National Park, HI, USA
| | - Ning Li
- Department of Ocean and Resources Engineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | - Amanda McCutcheon
- National Park Service, Pacific Island Network Inventory and Monitoring, Hawai'i National Park, HI, USA
| | - Sheila A McKenna
- National Park Service, Pacific Island Network Inventory and Monitoring, Hawai'i National Park, HI, USA
| | | | - Aryan Safaie
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | | | | | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, USA
- School of Ocean Futures, Arizona State University, Hilo, HI, USA
| |
Collapse
|
9
|
Fariñas-Franco JM, Cook RL, Gell FR, Harries DB, Hirst N, Kent F, MacPherson R, Moore C, Mair JM, Porter JS, Sanderson WG. Are we there yet? Management baselines and biodiversity indicators for the protection and restoration of subtidal bivalve shellfish habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161001. [PMID: 36539096 DOI: 10.1016/j.scitotenv.2022.161001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Biodiversity loss and degradation of natural habitats is increasing at an unprecedented rate. Of all marine habitats, biogenic reefs created by once-widespread shellfish, are now one of the most imperilled, and globally scarce. Conservation managers seek to protect and restore these habitats, but suitable baselines and indicators are required, and detailed scientific accounts are rare and inconsistent. In the present study the biodiversity of a model subtidal habitat, formed by the keystone horse mussel Modiolus modiolus (L.), was analysed across its Northeast Atlantic biogeographical range. Consistent samples of 'clumped' mussels were collected at 16 locations, covering a wide range of environmental conditions. Analysis of the associated macroscopic biota showed high biodiversity across all sites, cumulatively hosting 924 marine macroinvertebrate and algal taxa. There was a rapid increase in macroinvertebrate biodiversity (H') and community evenness (J) between 2 and 10 mussels per clump, reaching an asymptote at mussel densities of 10 per clump. Diversity declined at more northern latitudes, with depth and in coarser substrata with the fastest tidal flows. Diversity metrics corrected for species abundance were generally high across the habitats sampled, with significant latitudinal variability caused by current, depth and substrate type. Faunal community composition varied significantly between most sites and was difficult to assign to a 'typical' M. modiolus assemblage, being significantly influenced by regional environmental conditions, including the presence of algal turfs. Within the context of the rapid global increase in protection and restoration of bivalve shellfish habitats, site and density-specific values of diversity are probably the best targets for conservation management and upon which to base monitoring programmes.
Collapse
Affiliation(s)
- Jose M Fariñas-Franco
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK; Marine and Freshwater Research Centre and Department of Natural Resource and the Environment, School of Science and Computing, Atlantic Technological University, Old Dublin Road, Galway H91 T8NW, Ireland.
| | - Robert L Cook
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Fiona R Gell
- Fisheries Directorate, Department of Environment Food and Agriculture, Isle of Man Government, St John's, Isle of Man
| | - Dan B Harries
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Natalie Hirst
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Flora Kent
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK; Scottish Natural Heritage, Silvan House, 231 Corstorphine Rd, Edinburgh EH12 7AT, UK
| | - Rebecca MacPherson
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Colin Moore
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - James M Mair
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Joanne S Porter
- International Centre for Island Technology, Heriot-Watt University, Franklin Road, Stromness, Orkney KW16 3AN, UK
| | - William G Sanderson
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| |
Collapse
|
10
|
Chaplin-Kramer R, Chappell MJ, Bennett EM. Un-yielding: Evidence for the agriculture transformation we need. Ann N Y Acad Sci 2023; 1520:89-104. [PMID: 36576483 DOI: 10.1111/nyas.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There has been a seismic shift in the center of gravity of scientific writing and thinking about agriculture over the past decades, from a prevailing focus on maximizing yields toward a goal of balancing trade-offs and ensuring the delivery of multiple ecosystem services. Maximizing crop yields often results in a system where most benefits accrue to very few (in the form of profits), alongside irreparable environmental harm to agricultural ecosystems, landscapes, and people. Here, we present evidence that an un-yielding, which we define as de-emphasizing the importance of yields alone, is necessary to achieve the goal of a more Food secure, Agrobiodiverse, Regenerative, Equitable and just (FARE) agriculture. Focusing on yields places the emphasis on one particular outcome of agriculture, which is only an intermediate means to the true endpoint of human well-being. Using yields as a placeholder for this outcome ignores the many other benefits of agriculture that people also care about, like health, livelihoods, and a sense of place. Shifting the emphasis to these multiple benefits rather than merely yields, and to their equitable delivery to all people, we find clear scientific evidence of win-wins for people and nature through four strategies that foster FARE agriculture: reduced disturbance, systems reintegration, diversity, and justice (in the form of securing rights to land and other resources). Through a broad review of the current state of agriculture, desired futures, and the possible pathways to reach them, we argue that while trade-offs between some ecosystem services in agriculture are unavoidable, the same need not be true of the end benefits we desire from them.
Collapse
Affiliation(s)
- Rebecca Chaplin-Kramer
- Natural Capital Project, Stanford University, Stanford, California, USA.,Institute on the Environment, University of Minnesota, St. Paul, Minnesota, USA
| | - M Jahi Chappell
- Center for Regional Food Systems, Department of Community Sustainability, Michigan State University, East Lansing, Michigan, USA.,Centre for Agroecology, Water and Resilience, Coventry University, Coventry, UK
| | - Elena M Bennett
- Department of Natural Resource Sciences and Bieler School of Environment, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
A contemporary baseline of Madagascar's coral assemblages: Reefs with high coral diversity, abundance, and function associated with marine protected areas. PLoS One 2022; 17:e0275017. [PMID: 36264983 PMCID: PMC9584525 DOI: 10.1371/journal.pone.0275017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
Madagascar is a major hotspot of biodiversity in the Western Indian Ocean, but, as in many other regions, coral reefs surrounding the island confront large-scale disturbances and human-induced local stressors. Conservation actions have been implemented with encouraging results for fisheries, though their benefit on coral assemblages has never been rigorously addressed. In this context, we analyzed the multiscale spatial variation of the composition, generic richness, abundance, life history strategies, and cover of coral assemblages among 18 stations placed at three regions around the island. The potential influences of marine protected areas (MPAs), algal cover, substrate rugosity, herbivorous fish biomass, and geographic location were also analyzed. Our results highlight the marked spatial variability, with variation at either or both regional and local scales for all coral descriptors. The northeast coastal region of Masoala was characterized by the high abundance of coral colonies, most notably of the competitive Acropora and Pocillopora genera and stress-tolerant taxa at several stations. The southwest station of Salary Nord was distinguished by lower abundances, with depauperate populations of competitive taxa. On the northwest coast, Nosy-Be was characterized by higher diversity and abundance as well as by high coral cover (~42-70%) recorded at unfished stations. Results clearly underline the positive effects of MPAs on all but one of the coral descriptors, particularly at Nosy-Be where the highest contrast between fished and unfished stations was observed. Biomass of herbivorous fishes, crustose coralline algae cover, and substrate rugosity were also positively related to several coral descriptors. The occurrence of reefs with high diversity, abundance, and cover of corals, including the competitive Acropora, is a major finding of this study. Our results strongly support the implementation of locally managed marine areas with strong involvement by primary users, particularly to assist in management in countries with reduced logistic and human resources such as Madagascar.
Collapse
|
12
|
Biological trade-offs underpin coral reef ecosystem functioning. Nat Ecol Evol 2022; 6:701-708. [PMID: 35379939 DOI: 10.1038/s41559-022-01710-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/20/2022] [Indexed: 11/08/2022]
Abstract
Human impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential ecosystem services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass. This lack of quantitative assessments of multiple process-based ecosystem functions hinders local and regional conservation efforts. Here we combine global coral reef fish community surveys and bioenergetic models to quantify five key ecosystem functions mediated by coral reef fishes. We show that functions exhibit critical trade-offs driven by varying community structures, such that no community can maximize all functions. Furthermore, functions are locally dominated by few species, but the identity of dominant species substantially varies at the global scale. In fact, half of the 1,110 species in our dataset are functionally dominant in at least one location. Our results reinforce the need for a nuanced, locally tailored approach to coral reef conservation that considers multiple ecological functions beyond the effect of standing stock biomass.
Collapse
|
13
|
Johnson JV, Dick JTA, Pincheira-Donoso D. Marine protected areas do not buffer corals from bleaching under global warming. BMC Ecol Evol 2022; 22:58. [PMID: 35508975 PMCID: PMC9066861 DOI: 10.1186/s12862-022-02011-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rising temperature of the oceans has been identified as the primary driver of mass coral reef declines via coral bleaching (expulsion of photosynthetic endosymbionts). Marine protected areas (MPAs) have been implemented throughout the oceans with the aim of mitigating the impact of local stressors, enhancing fish biomass, and sustaining biodiversity overall. In coral reef regions specifically, protection from local stressors and the enhanced ecosystem function contributed by MPAs are expected to increase coral resistance to global-scale stressors such as marine heatwaves. However, MPAs still suffer from limitations in design, or fail to be adequately enforced, potentially reducing their intended efficacy. Here, we address the hypothesis that the local-scale benefits resulting from MPAs moderate coral bleaching under global warming related stress. RESULTS Bayesian analyses reveal that bleaching is expected to occur in both larger and older MPAs when corals are under thermal stress from marine heatwaves (quantified as Degree Heating Weeks, DHW), but this is partially moderated in comparison to the effects of DHW alone. Further analyses failed to identify differences in bleaching prevalence in MPAs relative to non-MPAs for coral reefs experiencing different levels of thermal stress. Finally, no difference in temperatures where bleaching occurs between MPA and non-MPA sites was found. CONCLUSIONS Our findings suggest that bleaching is likely to occur under global warming regardless of protected status. Thus, while protected areas have key roles for maintaining ecosystem function and local livelihoods, combatting the source of global warming remains the best way to prevent the decline of coral reefs via coral bleaching.
Collapse
Affiliation(s)
- Jack V Johnson
- Macrobiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Daniel Pincheira-Donoso
- Macrobiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
14
|
Gilmour JP, Cook KL, Ryan NM, Puotinen ML, Green RH, Heyward AJ. A tale of two reef systems: Local conditions, disturbances, coral life histories, and the climate catastrophe. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2509. [PMID: 34870357 DOI: 10.1002/eap.2509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Coral reefs have evolved over millennia to survive disturbances. Yet, in just a few decades chronic local pressures and the climate catastrophe have accelerated so quickly that most coral reefs are now threatened. Rising ocean temperatures and recurrent bleaching pose the biggest threat, affecting even remote and well-managed reefs on global scales. We illustrate how coral bleaching is altering reefs by contrasting the dynamics of adjacent reef systems over more than two decades. Both reef systems sit near the edge of northwest Australia's continental shelf, have escaped chronic local pressures and are regularly affected by tropical storms and cyclones. The Scott reef system has experienced multiple bleaching events, including mass bleaching in 1998 and 2016, from which it is unlikely to fully recover. The Rowley Shoals has maintained a high cover and diversity of corals and has not yet been impacted by mass bleaching. We show how the dynamics of both reef systems were driven by a combination of local environment, exposure to disturbances and coral life history traits, and consider future shifts in community structure with ongoing climate change. We then demonstrate how applying knowledge of community dynamics at local scales can aid management strategies to slow the degradation of coral reefs until carbon emissions and other human impacts are properly managed.
Collapse
Affiliation(s)
- James P Gilmour
- The Australian Institute of Marine Science, Indian Ocean Marine Research Centre, The University of Western Australia, Crawley, Western Australia, Australia
- Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - Kylie L Cook
- The Australian Institute of Marine Science, Indian Ocean Marine Research Centre, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole M Ryan
- The Australian Institute of Marine Science, Indian Ocean Marine Research Centre, The University of Western Australia, Crawley, Western Australia, Australia
| | - Marjetta L Puotinen
- The Australian Institute of Marine Science, Indian Ocean Marine Research Centre, The University of Western Australia, Crawley, Western Australia, Australia
| | - Rebecca H Green
- Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
- ARC Centre of Excellence for Coral Reef Studies, University of Western Australia, Crawley, Western Australia, Australia
| | - Andrew J Heyward
- The Australian Institute of Marine Science, Indian Ocean Marine Research Centre, The University of Western Australia, Crawley, Western Australia, Australia
- Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
15
|
Arif S, Graham NAJ, Wilson S, MacNeil MA. Causal drivers of climate‐mediated coral reef regime shifts. Ecosphere 2022. [DOI: 10.1002/ecs2.3956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Suchinta Arif
- Department of Biology Dalhousie University Halifax Nova Scotia Canada
| | | | - Shaun Wilson
- Department of Biodiversity Conservation and Attractions Perth Western Australia Australia
- Oceans Institute University of Western Australia Crawley Western Australia Australia
| | - M. Aaron MacNeil
- Department of Biology Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
16
|
Climate-induced increases in micronutrient availability for coral reef fisheries. ONE EARTH (CAMBRIDGE, MASS.) 2022; 5:98-108. [PMID: 35128392 PMCID: PMC8791602 DOI: 10.1016/j.oneear.2021.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Climate change is transforming coral reefs, threatening supply of essential dietary micronutrients from small-scale fisheries to tropical coastal communities. Yet the nutritional value of reef fisheries and climate impacts on micronutrient availability remain unclear, hindering efforts to sustain food and nutrition security. Here, we measure nutrient content in coral reef fishes in Seychelles and show that reef fish are important sources of selenium and zinc and contain levels of calcium, iron, and omega-3 fatty acids comparable with other animal-source foods. Using experimental fishing, we demonstrate that iron and zinc are enriched in fishes caught on regime-shifted macroalgal habitats, whereas selenium and omega-3 varied among species. We find substantial increases in nutrients available to fisheries over two decades following coral bleaching, particularly for iron and zinc after macroalgal regime shifts. Our findings indicate that, if managed sustainably, coral reef fisheries could remain important micronutrient sources along tropical coastlines despite escalating climate impacts. Coral reef fishes are important sources of essential dietary nutrients Nutrients available to fisheries increased after mass coral bleaching Iron and zinc were higher in reef fishes caught on macroalgal habitats Coral reefs can remain key sources of nutritious food despite climate impacts
Tropical small-scale fisheries supply nutritious and affordable seafood to hundreds of millions of people, including catches from coral reefs that are vulnerable to marine heatwaves. Climate changes therefore threaten seafood supply in places where food insecurity is most prevalent, but what is the nutrient value of climate-impacted coral reefs? We analyzed nutrient content of 43 tropical reef fish species in Seychelles and found that coral reef fish contain similar levels of iron, selenium, and zinc as chicken, pork, and beef and higher levels of calcium and omega-3 fatty acids. By integrating nutrient data with fish surveys collected before and after mass coral bleaching, we show that high post-bleaching fish biomass led to greater nutrient supply for fisheries, particularly for iron and zinc. Sustainable management of reef fisheries can therefore continue to support tropical food and nutrition security, despite climate impacts to reef ecosystems.
Collapse
|
17
|
Hadj-Hammou J, McClanahan TR, Graham NAJ. Decadal shifts in traits of reef fish communities in marine reserves. Sci Rep 2021; 11:23470. [PMID: 34873242 PMCID: PMC8648868 DOI: 10.1038/s41598-021-03038-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
Abstract
Marine reserves are known to impact the biomass, biodiversity, and functions of coral reef fish communities, but the effect of protective management on fish traits is less explored. We used a time-series modelling approach to simultaneously evaluate the abundance, biomass, and traits of eight fish families over a chronosequence spanning 44 years of protection. We constructed a multivariate functional space based on six traits known to respond to management or disturbance and affect ecosystem processes: size, diet, position in the water column, gregariousness, reef association, and length at maturity. We show that biomass increased with a log-linear trend over the time-series, but abundance only increased after 20 years of closure, and with more variation among reserves. This difference is attributed to recovery rates being dependent on body sizes. Abundance-weighted traits and the associated multivariate space of the community change is driven by increased proportions over time of the trait categories: 7-15 cm body size; planktivorous; species low in the water column; medium-large schools; and species with high levels of reef association. These findings suggest that the trait compositions emerging after the cessation of fishing are novel and dynamic.
Collapse
Affiliation(s)
- Jeneen Hadj-Hammou
- Lancaster University Environment Centre, Lancaster University, Lancaster, UK.
| | - Tim R McClanahan
- Wildlife Conservation Society, Global Marine Programs, Bronx, NY, 10460, USA
| | - Nicholas A J Graham
- Lancaster University Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
18
|
Gajdzik L, DeCarlo TM, Aylagas E, Coker DJ, Green AL, Majoris JE, Saderne VF, Carvalho S, Berumen ML. A portfolio of climate-tailored approaches to advance the design of marine protected areas in the Red Sea. GLOBAL CHANGE BIOLOGY 2021; 27:3956-3968. [PMID: 34021662 PMCID: PMC8453993 DOI: 10.1111/gcb.15719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 05/04/2023]
Abstract
Intensified coastal development is compromising the health and functioning of marine ecosystems. A key example of this is the Red Sea, a biodiversity hotspot subjected to increasing local human pressures. While some marine-protected areas (MPAs) were placed to alleviate these stressors, it is unclear whether these MPAs are managed or enforced, thus providing limited protection. Yet, most importantly, MPAs in the Red Sea were not designed using climate considerations, likely diminishing their effectiveness against global stressors. Here, we propose to tailor the design of MPAs in the Red Sea by integrating approaches to enhance climate change mitigation and adaptation. First, including coral bleaching susceptibility could produce a more resilient network of MPAs by safeguarding reefs from different thermal regions that vary in spatiotemporal bleaching responses, reducing the risk that all protected reefs will bleach simultaneously. Second, preserving the basin-wide genetic connectivity patterns that are assisted by mesoscale eddies could further ensure recovery of sensitive populations and maintain species potential to adapt to environmental changes. Finally, protecting mangrove forests in the northern and southern Red Sea that act as major carbon sinks could help offset greenhouse gas emissions. If implemented with multinational cooperation and concerted effort among stakeholders, our portfolio of climate-tailored approaches may help build a network of MPAs in the Red Sea that protects more effectively its coastal resources against escalating coastal development and climate instability. Beyond the Red Sea, we anticipate this study to serve as an example of how to improve the utility of tropical MPAs as climate-informed conservation tools.
Collapse
Affiliation(s)
- Laura Gajdzik
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Present address:
Division of Aquatic ResourcesDepartment of Land and Natural ResourcesState of HawaiʻiHonoluluHI96813USA
| | - Thomas M. DeCarlo
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Present address:
College of Natural and Computational SciencesHawaiʻi Pacific UniversityHonoluluHI96813USA
| | - Eva Aylagas
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Darren J. Coker
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Alison L. Green
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - John E. Majoris
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Vincent F. Saderne
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Susana Carvalho
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Michael L. Berumen
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
19
|
Cheutin MC, Villéger S, Hicks CC, Robinson JPW, Graham NAJ, Marconnet C, Restrepo CXO, Bettarel Y, Bouvier T, Auguet JC. Microbial Shift in the Enteric Bacteriome of Coral Reef Fish Following Climate-Driven Regime Shifts. Microorganisms 2021; 9:microorganisms9081711. [PMID: 34442789 PMCID: PMC8398123 DOI: 10.3390/microorganisms9081711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Replacement of coral by macroalgae in post-disturbance reefs, also called a “coral-macroalgal regime shift”, is increasing in response to climate-driven ocean warming. Such ecosystem change is known to impact planktonic and benthic reef microbial communities but few studies have examined the effect on animal microbiota. In order to understand the consequence of coral-macroalgal shifts on the coral reef fish enteric bacteriome, we used a metabarcoding approach to examine the gut bacteriomes of 99 individual fish representing 36 species collected on reefs of the Inner Seychelles islands that, following bleaching, had either recovered to coral domination, or shifted to macroalgae. While the coral-macroalgal shift did not influence the diversity, richness or variability of fish gut bacteriomes, we observed a significant effect on the composition (R2 = 0.02; p = 0.001), especially in herbivorous fishes (R2 = 0.07; p = 0.001). This change is accompanied by a significant increase in the proportion of fermentative bacteria (Rikenella, Akkermensia, Desulfovibrio, Brachyspira) and associated metabolisms (carbohydrates metabolism, DNA replication, and nitrogen metabolism) in relation to the strong turnover of Scarinae and Siganidae fishes. Predominance of fermentative metabolisms in fish found on macroalgal dominated reefs indicates that regime shifts not only affect the taxonomic composition of fish bacteriomes, but also have the potential to affect ecosystem functioning through microbial functions.
Collapse
Affiliation(s)
- Marie-Charlotte Cheutin
- UMR MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, 34095 Montpellier, France; (S.V.); (C.M.); (C.X.O.R.); (Y.B.); (T.B.); (J.-C.A.)
- Correspondence:
| | - Sébastien Villéger
- UMR MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, 34095 Montpellier, France; (S.V.); (C.M.); (C.X.O.R.); (Y.B.); (T.B.); (J.-C.A.)
| | - Christina C. Hicks
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; (C.C.H.); (J.P.W.R.); (N.A.J.G.)
| | - James P. W. Robinson
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; (C.C.H.); (J.P.W.R.); (N.A.J.G.)
| | - Nicholas A. J. Graham
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; (C.C.H.); (J.P.W.R.); (N.A.J.G.)
| | - Clémence Marconnet
- UMR MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, 34095 Montpellier, France; (S.V.); (C.M.); (C.X.O.R.); (Y.B.); (T.B.); (J.-C.A.)
| | - Claudia Ximena Ortiz Restrepo
- UMR MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, 34095 Montpellier, France; (S.V.); (C.M.); (C.X.O.R.); (Y.B.); (T.B.); (J.-C.A.)
| | - Yvan Bettarel
- UMR MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, 34095 Montpellier, France; (S.V.); (C.M.); (C.X.O.R.); (Y.B.); (T.B.); (J.-C.A.)
| | - Thierry Bouvier
- UMR MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, 34095 Montpellier, France; (S.V.); (C.M.); (C.X.O.R.); (Y.B.); (T.B.); (J.-C.A.)
| | - Jean-Christophe Auguet
- UMR MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, 34095 Montpellier, France; (S.V.); (C.M.); (C.X.O.R.); (Y.B.); (T.B.); (J.-C.A.)
| |
Collapse
|
20
|
Ferrier-Pagès C, Leal MC, Calado R, Schmid DW, Bertucci F, Lecchini D, Allemand D. Noise pollution on coral reefs? - A yet underestimated threat to coral reef communities. MARINE POLLUTION BULLETIN 2021; 165:112129. [PMID: 33588103 DOI: 10.1016/j.marpolbul.2021.112129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 05/08/2023]
Abstract
Noise pollution is an anthropogenic stressor that is increasingly recognized for its negative impact on the physiology, behavior and fitness of marine organisms. Driven by the recent expansion of maritime shipping, artisanal fishing and tourism (e.g., motorboats used for recreational purpose), underwater noise increased greatly on coral reefs. In this review, we first provide an overview on how reef organisms sense and use sound. Thereafter we review the current knowledge on how underwater noise affects different reef organisms. Although the majority of available examples are limited to few fish species, we emphasize how the impact of noise differs based on an organisms' acoustic sensitivity, mobility and developmental stage, as well as between noise type, source and duration. Finally, we highlight measures available to governments, the shipping industry and individual users and provide directions for polices and research aimed to manage this global issue of noise emission on coral reefs.
Collapse
Affiliation(s)
- Christine Ferrier-Pagès
- Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine 1er, MC-98000, Monaco.
| | - Miguel C Leal
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Frédéric Bertucci
- Functional and Evolutionary Morphology Lab, University of Liege, Belgium; PSL University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, 98729 Moorea, French Polynesia
| | - David Lecchini
- PSL University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, 98729 Moorea, French Polynesia; Laboratoire d'Excellence "CORAIL", Perpignan, France
| | - Denis Allemand
- Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine 1er, MC-98000, Monaco
| |
Collapse
|
21
|
Russ GR, Rizzari JR, Abesamis RA, Alcala AC. Coral cover a stronger driver of reef fish trophic biomass than fishing. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02224. [PMID: 32866333 PMCID: PMC7816266 DOI: 10.1002/eap.2224] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 05/21/2023]
Abstract
An influential paradigm in coral reef ecology is that fishing causes trophic cascades through reef fish assemblages, resulting in reduced herbivory and thus benthic phase shifts from coral to algal dominance. Few long-term field tests exist of how fishing affects the trophic structure of coral reef fish assemblages, and how such changes affect the benthos. Alternatively, benthic change itself may drive the trophic structure of reef fish assemblages. Reef fish trophic structure and benthic cover were quantified almost annually from 1983 to 2014 at two small Philippine islands (Apo, Sumilon). At each island a No-Take Marine Reserve (NTMR) site and a site open to subsistence reef fishing were monitored. Thirteen trophic groups were identified. Large planktivores often accounted for >50% of assemblage biomass. Significant NTMR effects were detected at each island for total fish biomass, but for only 2 of 13 trophic components: generalist large predators and large planktivores. Fishing-induced changes in biomass of these components had no effect on live hard coral (HC) cover. In contrast, HC cover affected biomass of 11 of 13 trophic components significantly. Positive associations with HC cover were detected for total fish biomass, generalist large predators, piscivores, obligate coral feeders, large planktivores, and small planktivores. Negative associations with HC cover were detected for large benthic foragers, detritivores, excavators, scrapers, and sand feeders. These associations of fish biomass to HC cover were most clear when environmental disturbances (e.g., coral bleaching, typhoons) reduced HC cover, often quickly (1-2 yr), and when HC recovered, often slowly (5-10 yr). As HC cover changed, the biomass of 11 trophic components of the fish assemblage changed. Benthic and fish assemblages were distinct at all sites from the outset, remaining so for 31 yr, despite differences in fishing pressure and disturbance history. HC cover alone explained ~30% of the variability in reef fish trophic structure, whereas fishing alone explained 24%. Furthermore, HC cover affected more trophic groups more strongly than fishing. Management of coral reefs must include measures to maintain coral reef habitats, not just measures to reduce fishing by NTMRs.
Collapse
Affiliation(s)
- Garry R. Russ
- College of Science and Engineering and ARC Centre for Coral Reef StudiesJames Cook UniversityTownsvilleQueensland4811Australia
| | - Justin R. Rizzari
- School of Life and Environmental SciencesDeakin UniversityGeelong Waurn Ponds CampusGeelongVictoria3216Australia
| | - Rene A. Abesamis
- Silliman University Angelo King Center for Research and Environmental ManagementSilliman UniversityDumaguete City6200Philippines
| | - Angel C. Alcala
- Silliman University Angelo King Center for Research and Environmental ManagementSilliman UniversityDumaguete City6200Philippines
| |
Collapse
|
22
|
Inter-Habitat Variability in Parrotfish Bioerosion Rates and Grazing Pressure on an Indian Ocean Reef Platform. DIVERSITY 2020. [DOI: 10.3390/d12100381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parrotfish perform a variety of vital ecological functions on coral reefs, but we have little understanding of how these vary spatially as a result of inter-habitat variability in species assemblages. Here, we examine how two key ecological functions that result from parrotfish feeding, bioerosion and substrate grazing, vary between habitats over a reef scale in the central Maldives. Eight distinct habitats were delineated in early 2015, prior to the 2016 bleaching event, each supporting a unique parrotfish assemblage. Bioerosion rates varied from 0 to 0.84 ± 0.12 kg m−2 yr−1 but were highest in the coral rubble- and Pocillopora spp.-dominated habitat. Grazing pressure also varied markedly between habitats but followed a different inter-habitat pattern from that of bioerosion, with different contributing species. Total parrotfish grazing pressure ranged from 0 to ~264 ± 16% available substrate grazed yr-1 in the branching Acropora spp.-dominated habitat. Despite the importance of these functions in influencing reef-scale physical structure and ecological health, the highest rates occurred over less than 30% of the platform area. The results presented here provide new insights into within-reef variability in parrotfish ecological functions and demonstrate the importance of considering how these interact to influence reef geo-ecology.
Collapse
|
23
|
Underwood JN, Richards Z, Berry O, Oades D, Howard A, Gilmour JP. Extreme seascape drives local recruitment and genetic divergence in brooding and spawning corals in remote north-west Australia. Evol Appl 2020; 13:2404-2421. [PMID: 33005230 PMCID: PMC7513722 DOI: 10.1111/eva.13033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Management strategies designed to conserve coral reefs threatened by climate change need to incorporate knowledge of the spatial distribution of inter- and intra-specific genetic diversity. We characterized patterns of genetic diversity and connectivity using single nucleotide polymorphisms (SNPs) in two reef-building corals to explore the eco-evolutionary processes that sustain populations in north-west Australia. Our sampling focused on the unique reefs of the Kimberley; we collected the broadcast spawning coral Acropora aspera (n = 534) and the brooding coral Isopora brueggemanni (n = 612) across inter-archipelago (tens to hundreds of kilometres), inter-reef (kilometres to tens of kilometres) and within-reef (tens of metres to a few kilometres) scales. Initial analysis of A. aspera identified four highly divergent lineages that were co-occurring but morphologically similar. Subsequent population analyses focused on the most abundant and widespread lineage, Acropora asp-c. Although the overall level of geographic subdivision was greater in the brooder than in the spawner, fundamental similarities in patterns of genetic structure were evident. Most notably, limits to gene flow were observed at scales <35 kilometres. Further, we observed four discrete clusters and a semi-permeable barrier to dispersal that were geographically consistent between species. Finally, sites experiencing bigger tides were more connected to the metapopulation and had greater gene diversity than those experiencing smaller tides. Our data indicate that the inshore reefs of the Kimberley are genetically isolated from neighbouring oceanic bioregions, but occasional dispersal between inshore archipelagos is important for the redistribution of evolutionarily important genetic diversity. Additionally, these results suggest that networks of marine reserves that effectively protect reefs from local pressures should be spaced within a few tens of kilometres to conserve the existing patterns of demographic and genetic connectivity.
Collapse
Affiliation(s)
- Jim N Underwood
- Australian Institute of Marine Science Indian Oceans Marine Research Centre, Crawley Perth WA Australia
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
| | - Zoe Richards
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
- Trace and Environmental DNA Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Department of Aquatic Zoology Western Australian Museum Welshpool WA Australia
| | - Oliver Berry
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
- CSIRO Oceans and Atmosphere Indian Oceans Marine Research Centre, Crawley Perth WA Australia
| | - Daniel Oades
- Bardi Jawi Rangers Kimberley Land Council Broome WA Australia
| | - Azton Howard
- Bardi Jawi Rangers Kimberley Land Council Broome WA Australia
| | - James P Gilmour
- Australian Institute of Marine Science Indian Oceans Marine Research Centre, Crawley Perth WA Australia
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
| |
Collapse
|
24
|
Tebbett SB, Goatley CHR, Streit RP, Bellwood DR. Algal turf sediments limit the spatial extent of function delivery on coral reefs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139422. [PMID: 32460082 DOI: 10.1016/j.scitotenv.2020.139422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
The presence of key organisms is frequently associated with the delivery of specific ecosystem functions. Areas with such organisms are therefore often considered to have greater levels of these functions. While this assumption has been the backbone of coral reef ecosystem-based management approaches for decades, we currently have only a limited understanding of how fish presence equates to function on coral reefs and whether this relationship is susceptible to stressors. To assess the capacity of a stressor to shape function delivery we used a multi-scale approach ranging from tens of kilometres across the continental shelf of Australia's Great Barrier Reef, down to centimetres within a reef habitat. At each scale, we quantified the spatial extent of a model function (detritivory) by a coral reef surgeonfish (Ctenochaetus striatus) and its potential to be shaped by sediments. At broad spatial scales, C. striatus presence was correlated strongly with algal turf sediment loads, while at smaller spatial scales, function delivery appears to be constrained by algal turf sediment distributions. In all cases, sediment loads above ~250-500 g m-2 were associated with a marked decrease in fish abundance or feeding activity, suggesting that a common ecological threshold lies within this range. Our results reveal a complex functional dynamic between proximate agents of function delivery (fish) and the ultimate drivers of function delivery (sediments), which emphasizes: a) weaknesses in the assumed links between fish presence and function, and b) the multi-scale capacity of algal turf sediments to shape reef processes. Unless direct extractive activities (e.g. fishing) are the main driver of function loss on coral reefs, managing to conserve fish abundance is unlikely to yield the desired outcomes. It only addresses one potential driver. Instead, management of both the agents that deliver functions (e.g. fishes), and the drivers that modify functions (e.g. sediments), is needed.
Collapse
Affiliation(s)
- Sterling B Tebbett
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Christopher H R Goatley
- Function, Evolution and Anatomy Research Lab and Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; Australian Museum Research Institute, Australian Museum, Sydney, New South Wales 2010, Australia
| | - Robert P Streit
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
25
|
Hartill ÉC, Waller RG, Auster PJ. Deep coral habitats of Glacier Bay National Park and Preserve, Alaska. PLoS One 2020; 15:e0236945. [PMID: 32750086 PMCID: PMC7402505 DOI: 10.1371/journal.pone.0236945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022] Open
Abstract
Glacier Bay National Park and Preserve (GBNPP) in Southeast Alaska is a system of glaciated fjords with a unique and recent history of deglaciation. As such, it can serve as a natural laboratory for studying patterns of distribution in marine communities with proximity to glacial influence. In order to examine the changes in fjord-based coral communities, underwater photo-quadrats were collected during multipurpose dives with a remotely operated vehicle (ROV) in March of 2016. Ten sites were chosen to represent the geochronological and oceanographic gradients present in GBNPP. Each site was surveyed vertically between 100 and 420 meters depth and photo-quadrats were extracted from the video strip transects for analysis. The ROV was equipped with onboard CTD which recorded environmental data (temperature and salinity), in order to confirm the uniformity of these characteristics at depth across the fjords. The percent cover and diversity of species were lowest near the glaciated heads of the fjords and highest in the Central Channel and at the mouths of the fjords. Diversity is highest where characteristics such as low sedimentation and increased tidal currents are predominant. The diverse communities at the mouths of the fjords and in the Central Channel were dominated by large colonies of the Red Tree Coral, Primnoa pacifica, as well as sponges, brachiopods, multiple species of cnidarians, echinoderms, molluscs and arthropods. The communities at the heads of the fjords were heavily dominated by pioneering species such as brachiopoda, hydrozoan turf, the encrusting stoloniferan coral Sarcodyction incrustans, and smaller colonies of P. pacifica. This research documents a gradient of species dominance from the Central Channel to the heads of the glaciated fjords, which is hypothesized to be driven by a combination of physical and biological factors such as glacial sedimentation, nutrient availability, larval dispersal, and competition.
Collapse
Affiliation(s)
- Élise C. Hartill
- Darling Marine Center, School of Marine Sciences, University of Maine, Walpole, Maine United States of America
- * E-mail:
| | - Rhian G. Waller
- Darling Marine Center, School of Marine Sciences, University of Maine, Walpole, Maine United States of America
- Sven Lovén Centre, Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Peter J. Auster
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
- Mystic Aquarium–Sea Research Foundation, Mystic, Connecticut, United States of America
| |
Collapse
|