1
|
Jia X, Jing X, Li M, Gao M, Zhong Y, Li E, Liu Y, Li R, Yao G, Liu Q, Zhou M, Hou Y, An L, Hong Y, Li S, Zhang J, Wang W, Zhang K, Gong P, Chiu S. An adenosine analog shows high antiviral potency against coronavirus and arenavirus mainly through an unusual base pairing mode. Nat Commun 2024; 15:10750. [PMID: 39737930 PMCID: PMC11685483 DOI: 10.1038/s41467-024-54918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses. Importantly, treatment with HNC-1664 demonstrate anti-SARS-CoV-2 efficacy in infected K18-human ACE2 mice, with reduced viral titer and mortality, as well as improved lung injury. Enzymology data demonstrate that HNC-1664 inhibits RNA synthesis mainly at the pre-catalysis stage. The cryo-EM structures of HNC-1664-bound RdRP-RNA complexes from both SARS-CoV-2 and LASV reveal an unusual base pairing mode of HNC-1664 in part due to its base modification, thus revealing its great potency in binding but not catalysis. Under certain circumstances, 1664-TP can be slowly incorporated by RdRP through regular Watson-Crick base pairing, as evidenced by enzymology data and an HNC-1664-incorporated crystal structure of the RdRP-RNA complex. Overall, HNC-1664 achieves broad-spectrum characteristics by favoring an alternative base pairing strategy to non-catalytically block RNA synthesis, providing a novel concept for the rational development of NA drugs.
Collapse
Affiliation(s)
- Xiaoying Jia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Xuping Jing
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Minli Gao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Zhong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Rui Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Guoqiang Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiaojie Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Minmin Zhou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxia Hou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linfeng An
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yibao Hong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Wei Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, China.
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China.
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, China.
| |
Collapse
|
2
|
Deng H, Cao H, Wang Y, Li J, Dai J, Li LF, Qiu HJ, Li S. Viral replication organelles: the highly complex and programmed replication machinery. Front Microbiol 2024; 15:1450060. [PMID: 39144209 PMCID: PMC11322364 DOI: 10.3389/fmicb.2024.1450060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Viral infections usually induce the rearrangement of cellular cytoskeletal proteins and organelle membrane structures, thus creating independent compartments [termed replication organelles (ROs)] to facilitate viral genome replication. Within the ROs, viral replicases, including polymerases, helicases, and ligases, play functional roles during viral replication. These viral replicases are pivotal in the virus life cycle, and numerous studies have demonstrated that the viral replicases could be the potential targets for drugs development. Here, we summarize primarily the key replicases within viral ROs and emphasize the advancements of antiviral drugs targeting crucial viral replicases, providing novel insights into the future development of antiviral strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
3
|
Wang X, Jing X, Shi J, Liu Q, Shen S, Cheung PPH, Wu J, Deng F, Gong P. A jingmenvirus RNA-dependent RNA polymerase structurally resembles the flavivirus counterpart but with different features at the initiation phase. Nucleic Acids Res 2024; 52:3278-3290. [PMID: 38296832 PMCID: PMC11014250 DOI: 10.1093/nar/gkae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Jingmenviruses are a category of emerging segmented viruses that have garnered global attention in recent years, and are close relatives of the flaviviruses in the Flaviviridae family. One of their genome segments encodes NSP1 homologous to flavivirus NS5. NSP1 comprises both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRP) modules playing essential roles in viral genome replication and capping. Here we solved a 1.8-Å resolution crystal structure of the NSP1 RdRP module from Jingmen tick virus (JMTV), the type species of jingmenviruses. The structure highly resembles flavivirus NS5 RdRP despite a sequence identity less than 30%. NSP1 RdRP enzymatic properties were dissected in a comparative setting with several representative Flaviviridae RdRPs included. Our data indicate that JMTV NSP1 produces characteristic 3-mer abortive products similar to the hepatitis C virus RdRP, and exhibits the highest preference of terminal initiation and shorter-primer usage. Unlike flavivirus NS5, JMTV RdRP may require the MTase for optimal transition from initiation to elongation, as an MTase-less NSP1 construct produced more 4-5-mer intermediate products than the full-length protein. Taken together, this work consolidates the evolutionary relationship between the jingmenvirus group and the Flaviviridae family, providing a basis to the further understanding of their viral replication/transcription process.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuping Jing
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Junming Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Qiaojie Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Peter Pak-Hang Cheung
- Department of Chemical Pathology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Wang X, Xu T, Yao Y, Cheung PPH, Gao X, Zhang L. SARS-CoV-2 RNA-Dependent RNA Polymerase Follows Asynchronous Translocation Pathway for Viral Transcription and Replication. J Phys Chem Lett 2023; 14:10119-10128. [PMID: 37922192 DOI: 10.1021/acs.jpclett.3c01249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Translocation is one essential step for the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) to exert viral replication and transcription. Although cryo-EM structures of SARS-CoV-2 RdRp are available, the molecular mechanisms of dynamic translocation remain elusive. Herein, we constructed a Markov state model based on extensive molecular dynamics simulations to elucidate the translocation dynamics of the SARS-CoV-2 RdRp. We identified two intermediates that pinpoint the rate-limiting step of translocation and characterize the asynchronous movement of the template-primer duplex. The 3'-terminal nucleotide in the primer strand lags behind due to the uneven distribution of protein-RNA interactions, while the translocation of the template strand is delayed by the hurdle residue K500. Even so, the two strands share the same "ratchet" to stabilize the polymerase in the post-translocation state, suggesting a Brownian-ratchet model. Overall, our study provides intriguing insights into SARS-CoV-2 replication and transcription, which would open a new avenue for drug discoveries.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Chemical and Biological Engineering and Department of Mathematics, Hong Kong University of Science and Technology Kowloon, Clear Water Bay, Hong Kong
| | - Tiantian Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Yao
- Department of Chemical and Biological Engineering and Department of Mathematics, Hong Kong University of Science and Technology Kowloon, Clear Water Bay, Hong Kong
| | - Peter Pak-Hang Cheung
- Li Ka Shing Institute of Health Sciences, Department of Chemical Pathology, Chinese University of Hong Kong, 999077, Hong Kong
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Fuzhou, Fujian 361005, China
| |
Collapse
|
5
|
Fang X, Lu G, Deng Y, Yang S, Hou C, Gong P. Unusual substructure conformations observed in crystal structures of a dicistrovirus RNA-dependent RNA polymerase suggest contribution of the N-terminal extension in proper folding. Virol Sin 2023; 38:531-540. [PMID: 37156298 PMCID: PMC10436059 DOI: 10.1016/j.virs.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
The Dicistroviridae is a virus family that includes many insect pathogens. These viruses contain a positive-sense RNA genome that is replicated by the virally encoded RNA-dependent RNA polymerase (RdRP) also named 3Dpol. Compared with the Picornaviridae RdRPs such as poliovirus (PV) 3Dpol, the Dicistroviridae representative Israeli acute paralysis virus (IAPV) 3Dpol has an additional N-terminal extension (NE) region that is about 40-residue in length. To date, both the structure and catalytic mechanism of the Dicistroviridae RdRP have remain elusive. Here we reported crystal structures of two truncated forms of IAPV 3Dpol, namely Δ85 and Δ40, both missing the NE region, and the 3Dpol protein in these structures exhibited three conformational states. The palm and thumb domains of these IAPV 3Dpol structures are largely consistent with those of the PV 3Dpol structures. However, in all structures, the RdRP fingers domain is partially disordered, while different conformations of RdRP substructures and interactions between them are also present. In particular, a large-scale conformational change occurred in the motif B-middle finger region in one protein chain of the Δ40 structure, while a previously documented alternative conformation of motif A was observed in all IAPV structures. These experimental data on one hand show intrinsic conformational variances of RdRP substructures, and on the other hand suggest possible contribution of the NE region in proper RdRP folding in IAPV.
Collapse
Affiliation(s)
- Xiang Fang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Lu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430207, China.
| |
Collapse
|
6
|
Li R, Wang M, Gong P. Crystal structure of a pre-chemistry viral RNA-dependent RNA polymerase suggests participation of two basic residues in catalysis. Nucleic Acids Res 2022; 50:12389-12399. [PMID: 36477355 PMCID: PMC9757066 DOI: 10.1093/nar/gkac1133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
The nucleic acid polymerase-catalyzed nucleotidyl transfer reaction associated with polymerase active site closure is a key step in the nucleotide addition cycle (NAC). Two proton transfer events can occur in such a nucleotidyl transfer: deprotonation of the priming nucleotide 3'-hydroxyl nucleophile and protonation of the pyrophosphate (PPi) leaving group. In viral RNA-dependent RNA polymerases (RdRPs), whether and how active site residues participate in this two-proton transfer reaction remained to be clarified. Here we report a 2.5 Å resolution crystal structure of enterovirus 71 (EV71) RdRP in a catalytically closed pre-chemistry conformation, with a proposed proton donor candidate K360 in close contact with the NTP γ-phosphate. Enzymology data reveal that K360 mutations not only reduce RdRP catalytic efficiency but also alter pH dependency profiles in both elongation and pre-elongation synthesis modes. Interestingly, mutations at R174, an RdRP-invariant residue in motif F, had similar effects with additional impact on the Michaelis constant of NTP (KM,NTP). However, direct participation in protonation was not evident for K360 or R174. Our data suggest that both K360 and R174 participate in nucleotidyl transfer, while their possible roles in acid-base or positional catalysis are discussed in comparison with other classes of nucleic acid polymerases.
Collapse
Affiliation(s)
| | | | - Peng Gong
- To whom correspondence should be addressed.
| |
Collapse
|
7
|
Abstract
The virus-encoded RNA-dependent RNA polymerase (RdRp) is responsible for viral replication, and its fidelity is closely related to viral diversity, pathogenesis, virulence, and fitness. Hepatitis C virus (HCV) and the second human pegivirus (HPgV-2) belong to the family Flaviviridae and share some features, including similar viral genome structure. Unlike HCV, HPgV-2 preserves a highly conserved genome sequence and low intrahost variation. However, the underlying mechanism remains to be elucidated. In this study, we evaluated the fidelity of HPgV-2 and HCV RdRp in an in vitro RNA polymerase reaction system. The results showed higher fidelity of HPgV-2 RdRp than HCV NS5B with respect to the misincorporation rate due to their difference in recognizing nucleoside triphosphate (NTP) substrates. Furthermore, HPgV-2 RdRp showed lower sensitivity than HCV to sofosbuvir, a nucleotide inhibitor against HCV RdRp, which explained the insusceptibility of HPgV-2 to direct-acting antiviral (DAA) therapy against HCV infection. Our results indicate that HPgV-2 could be an excellent model for studying the mechanisms involved in viral polymerase fidelity as well as RNA virus diversity and evolution. IMPORTANCE RNA viruses represent the most important pathogens for humans and animals and exhibit rapid evolution and high adaptive capacity, which is due to the high mutation rates for using the error-prone RNA-dependent RNA polymerase (RdRp) during replication. The fidelity of RdRp is closely associated with viral diversity, fitness, and pathogenesis. Previous studies have shown that the second human pegivirus (HPgV-2) exhibits a highly conserved genome sequence and low intrahost variation, which might be due to the fidelity of HPgV-2 RdRp. In this work, we used a series of in vitro RNA polymerase assays to evaluate the in vitro fidelity of HPgV-2 RdRp and compared it with that of HCV RdRp. The results indicated that HPgV-2 RdRp preserves significantly higher fidelity than HCV RdRp, which might contribute to the conservation of the HPgV-2 genome. The unique feature of HPgV-2 RdRp fidelity provides a new model for investigation of viral RdRp fidelity.
Collapse
|
8
|
Shi Y, Wang J, Batista VS. Translocation pause of remdesivir-containing primer/template RNA duplex within SARS-CoV-2’s RNA polymerase complexes. Front Mol Biosci 2022; 9:999291. [PMID: 36387272 PMCID: PMC9640752 DOI: 10.3389/fmolb.2022.999291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/07/2022] [Indexed: 01/18/2023] Open
Abstract
The mechanism of remdesivir incorporation into the RNA primer by the RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains to be fully established at the molecular level. Here, we compare molecular dynamics (MD) simulations after incorporation of either remdesivir monophosphate (RMP) or adenosine monophosphate (AMP). We find that the Mg2+-pyrophosphate (PPi) binds more tightly to the polymerase when the added RMP is at the third primer position than in the AMP added complex. The increased affinity of Mg2+-PPi to the RMP-added primer/template (P/T) RNA duplex complex introduces a new hydrogen bond of a substituted cyano group in RMP with the K593 sidechain. The new interactions disrupt a switching mechanism of a hydrogen bond network that is essential for translocation of the P/T duplex product and for opening of a vacant NTP-binding site necessary for next primer extension. Furthermore, steric interactions between the sidechain of S861 and the 1′-cyano group of RMP at position i+3 hinders translocation of RMP to the i + 4 position, where i labels the insertion site. These findings are particularly valuable to guide the design of more effective inhibitors of SARS-CoV-2 RNA polymerase.
Collapse
Affiliation(s)
- Yuanjun Shi
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- *Correspondence: Jimin Wang, ; Victor S. Batista,
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, CT, United States
- *Correspondence: Jimin Wang, ; Victor S. Batista,
| |
Collapse
|
9
|
Inhibition of Viral RNA-Dependent RNA Polymerases by Nucleoside Inhibitors: An Illustration of the Unity and Diversity of Mechanisms. Int J Mol Sci 2022; 23:ijms232012649. [PMID: 36293509 PMCID: PMC9604226 DOI: 10.3390/ijms232012649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
RNA-dependent RNA polymerase (RdRP) is essential for the replication and expression of RNA viral genomes. This class of viruses comprise a large number of highly pathogenic agents that infect essentially all species of plants and animals including humans. Infections often lead to epidemics and pandemics that have remained largely out of control due to the lack of specific and reliable preventive and therapeutic regimens. This unmet medical need has led to the exploration of new antiviral targets, of which RdRP is a major one, due to the fact of its obligatory need in virus growth. Recent studies have demonstrated the ability of several synthetic nucleoside analogs to serve as mimics of the corresponding natural nucleosides. These mimics cause stalling/termination of RdRP, or misincorporation, preventing virus replication or promoting large-scale lethal mutations. Several such analogs have received clinical approval and are being routinely used in therapy. In parallel, the molecular structural basis of their inhibitory interactions with RdRP is being elucidated, revealing both traditional and novel mechanisms including a delayed chain termination effect. This review offers a molecular commentary on these mechanisms along with their clinical implications based on analyses of recent results, which should facilitate the rational design of structure-based antiviral drugs.
Collapse
|
10
|
Ramaswamy K, Rashid M, Ramasamy S, Jayavelu T, Venkataraman S. Revisiting Viral RNA-Dependent RNA Polymerases: Insights from Recent Structural Studies. Viruses 2022; 14:2200. [PMID: 36298755 PMCID: PMC9612308 DOI: 10.3390/v14102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
RNA-dependent RNA polymerases (RdRPs) represent a distinctive yet versatile class of nucleic acid polymerases encoded by RNA viruses for the replication and transcription of their genome. The structure of the RdRP is comparable to that of a cupped right hand consisting of fingers, palm, and thumb subdomains. Despite the presence of a common structural core, the RdRPs differ significantly in the mechanistic details of RNA binding and polymerization. The present review aims at exploring these incongruities in light of recent structural studies of RdRP complexes with diverse cofactors, RNA moieties, analogs, and inhibitors.
Collapse
Affiliation(s)
- Kavitha Ramaswamy
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Mariya Rashid
- Taiwan International Graduate Program, Molecular Cell Biology (National Defense Medical Center and Academia Sinica), Taipei 115, Taiwan;
| | - Selvarajan Ramasamy
- National Research Center for Banana, Somarasempettai−Thogaimalai Rd, Podavur, Tamil Nadu 639103, India;
| | - Tamilselvan Jayavelu
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Sangita Venkataraman
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| |
Collapse
|
11
|
Hao H, Liu W, Miao Y, Ma L, Yu B, Liu L, Yang C, Zhang K, Chen Z, Yang J, Zheng Z, Zhang B, Deng F, Gong P, Yuan J, Hu Z, Guan W. N4-acetylcytidine regulates the replication and pathogenicity of enterovirus 71. Nucleic Acids Res 2022; 50:9339-9354. [PMID: 35971620 PMCID: PMC9458434 DOI: 10.1093/nar/gkac675] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Chemical modifications are important for RNA function and metabolism. N4-acetylcytidine (ac4C) is critical for the translation and stability of mRNA. Although ac4C is found in RNA viruses, the detailed mechanisms through which ac4C affects viral replication are unclear. Here, we reported that the 5' untranslated region of the enterovirus 71 (EV71) genome was ac4C modified by the host acetyltransferase NAT10. Inhibition of NAT10 and mutation of the ac4C sites within the internal ribosomal entry site (IRES) suppressed EV71 replication. ac4C enhanced viral RNA translation via selective recruitment of PCBP2 to the IRES and boosted RNA stability. Additionally, ac4C increased the binding of RNA-dependent RNA polymerase (3D) to viral RNA. Notably, ac4C-deficient mutant EV71 showed reduced pathogenicity in vivo. Our findings highlighted the essential role of ac4C in EV71 infection and provided insights into potential antiviral treatments.
Collapse
Affiliation(s)
- Haojie Hao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China,Hanshan Normal University, Chaozhou 521041, China,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Weichi Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yuanjiu Miao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ma
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baocheng Yu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lishi Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunjie Yang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Kui Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Jingwen Yang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Zhenhua Zheng
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Bo Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Fei Deng
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Peng Gong
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Jianhui Yuan
- Correspondence may also be addressed to Jianhui Yuan.
| | - Zhangli Hu
- Correspondence may also be addressed to Zhangli Hu.
| | - Wuxiang Guan
- To whom correspondence should be addressed. Tel: +86 27 87197258; Fax: +86 27 87197258;
| |
Collapse
|
12
|
Goulet A, Cambillau C, Roussel A, Imbert I. Structure Prediction and Analysis of Hepatitis E Virus Non-Structural Proteins from the Replication and Transcription Machinery by AlphaFold2. Viruses 2022; 14:1537. [PMID: 35891516 PMCID: PMC9316534 DOI: 10.3390/v14071537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans globally. Considered for a long while a public health issue only in developing countries, the HEV infection is now a global public health concern. Most human infections are caused by the HEV genotypes 1, 2, 3 and 4 (HEV-1 to HEV-4). Although HEV-3 and HEV-4 can evolve to chronicity in immunocompromised patients, HEV-1 and HEV-2 lead to self-limited infections. HEV has a positive-sense single-stranded RNA genome of ~7.2 kb that is translated into a large pORF1 replicative polyprotein, essential for the viral RNA genome replication and transcription. Unfortunately, the composition and structure of these replicases are still unknown. The recent release of the powerful machine-learning protein structure prediction software AlphaFold2 (AF2) allows us to accurately predict the structure of proteins and their complexes. Here, we used AF2 with the replicase encoded by the polyprotein pORF1 of the human-infecting HEV-3. The boundaries and structures reveal five domains or nonstructural proteins (nsPs): the methyltransferase, Zn-binding domain, macro, helicase, and RNA-dependent RNA polymerase, reliably predicted. Their substrate-binding sites are similar to those observed experimentally for other related viral proteins. Precisely knowing enzyme boundaries and structures is highly valuable to recombinantly produce stable and active proteins and perform structural, functional and inhibition studies.
Collapse
Affiliation(s)
- Adeline Goulet
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7255, LISM, 31 Chemin Joseph Aiguier, 13009 Marseille, France; (A.G.); (A.R.)
| | - Christian Cambillau
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
- AlphaGraphix, 24 Carrer d’Amont, 66210 Formiguères, France
| | - Alain Roussel
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7255, LISM, 31 Chemin Joseph Aiguier, 13009 Marseille, France; (A.G.); (A.R.)
| | - Isabelle Imbert
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7255, LISM, 31 Chemin Joseph Aiguier, 13009 Marseille, France; (A.G.); (A.R.)
| |
Collapse
|
13
|
Lee MD, Creagh JW, Fredericks LR, Crabtree AM, Patel JS, Rowley PA. The Characterization of a Novel Virus Discovered in the Yeast Pichia membranifaciens. Viruses 2022; 14:v14030594. [PMID: 35337001 PMCID: PMC8951182 DOI: 10.3390/v14030594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
Mycoviruses are widely distributed across fungi, including the yeasts of the Saccharomycotina subphylum. This manuscript reports the first double-stranded RNA (dsRNA) virus isolated from Pichia membranifaciens. This novel virus has been named Pichia membranifaciens virus L-A (PmV-L-A) and is a member of the Totiviridae. PmV-L-A is 4579 bp in length, with RNA secondary structures similar to the packaging, replication, and frameshift signals of totiviruses that infect Saccharomycotina yeasts. PmV-L-A was found to be part of a monophyletic group within the I-A totiviruses, implying a shared ancestry between mycoviruses isolated from the Pichiaceae and Saccharomycetaceae yeasts. Energy-minimized AlphaFold2 molecular models of the PmV-L-A Gag protein revealed structural conservation with the Gag protein of Saccharomyces cerevisiae virus L-A (ScV-L-A). The predicted tertiary structure of the PmV-L-A Pol and other homologs provided a possible mechanism for totivirus RNA replication due to structural similarities with the RNA-dependent RNA polymerases of mammalian dsRNA viruses. Insights into the structure, function, and evolution of totiviruses gained from yeasts are essential because of their emerging role in animal disease and their parallels with mammalian viruses.
Collapse
Affiliation(s)
- Mark D. Lee
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Jack W. Creagh
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Lance R. Fredericks
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Angela M. Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Jagdish Suresh Patel
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
- Correspondence:
| |
Collapse
|
14
|
Pimentel SC, Upton HE, Collins K. Separable structural requirements for cDNA synthesis, nontemplated extension, and template jumping by a non-LTR retroelement reverse transcriptase. J Biol Chem 2022; 298:101624. [PMID: 35065960 PMCID: PMC8857657 DOI: 10.1016/j.jbc.2022.101624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Broad evolutionary expansion of polymerase families has enabled specialization of their activities for distinct cellular roles. In addition to template-complementary synthesis, many polymerases extend their duplex products by nontemplated nucleotide addition (NTA). This activity is exploited for laboratory strategies of cloning and sequencing nucleic acids and could have important biological function, although the latter has been challenging to test without separation-of-function mutations. Several retroelement and retroviral reverse transcriptases (RTs) support NTA and also template jumping, by which the RT performs continuous complementary DNA (cDNA) synthesis using physically separate templates. Previous studies that aimed to dissect the relationship between NTA and template jumping leave open questions about structural requirements for each activity and their interdependence. Here, we characterize the structural requirements for cDNA synthesis, NTA, template jumping, and the unique terminal transferase activity of Bombyx mori R2 non-long terminal repeat retroelement RT. With sequence alignments and structure modeling to guide mutagenesis, we generated enzyme variants across motifs generally conserved or specific to RT subgroups. Enzyme variants had diverse NTA profiles not correlated with other changes in cDNA synthesis activity or template jumping. Using these enzyme variants and panels of activity assay conditions, we show that template jumping requires NTA. However, template jumping by NTA-deficient enzymes can be rescued using primer duplex with a specific length of 3′ overhang. Our findings clarify the relationship between NTA and template jumping as well as additional activities of non-long terminal repeat RTs, with implications for the specialization of RT biological functions and laboratory applications.
Collapse
Affiliation(s)
- Sydney C Pimentel
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | - Heather E Upton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA.
| |
Collapse
|
15
|
Gong P. Within and Beyond the Nucleotide Addition Cycle of Viral RNA-dependent RNA Polymerases. Front Mol Biosci 2022; 8:822218. [PMID: 35083282 PMCID: PMC8784604 DOI: 10.3389/fmolb.2021.822218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Nucleotide addition cycle (NAC) is a fundamental process utilized by nucleic acid polymerases when carrying out nucleic acid biosynthesis. An induced-fit mechanism is usually taken by these polymerases upon NTP/dNTP substrate binding, leading to active site closure and formation of a phosphodiester bond. In viral RNA-dependent RNA polymerases, the post-chemistry translocation is stringently controlled by a structurally conserved motif, resulting in asymmetric movement of the template-product duplex. This perspective focuses on viral RdRP NAC and related mechanisms that have not been structurally clarified to date. Firstly, RdRP movement along the template strand in the absence of catalytic events may be relevant to catalytic complex dissociation or proofreading. Secondly, pyrophosphate or non-cognate NTP-mediated cleavage of the product strand 3′-nucleotide can also play a role in reactivating paused or arrested catalytic complexes. Furthermore, non-cognate NTP substrates, including NTP analog inhibitors, can not only alter NAC when being misincorporated, but also impact on subsequent NACs. Complications and challenges related to these topics are also discussed.
Collapse
Affiliation(s)
- Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, China
- *Correspondence: Peng Gong,
| |
Collapse
|
16
|
Simulating coxsackievirus B3 infection with an accessible computational model of its complete kinetics. STAR Protoc 2021; 2:100940. [PMID: 34806049 PMCID: PMC8585652 DOI: 10.1016/j.xpro.2021.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We describe how to use a publicly available computational model for coxsackievirus B3 (CVB3) infection that we recast as a graphical user interface (GUI). The GUI-based implementation enables non-computationalists to incorporate systems-biology modeling into their research and teaching. The model simulates the full life cycle of CVB3, including the host antiviral response, and includes 44 alterable parameters. The model simplifies some viral life cycle processes to improve interpretability and utility when performing in silico experiments. For complete details on the use and execution of this protocol, please refer to Lopacinski et al. (2021). Tool for simulating coxsackievirus B3 infections with a graphical user interface Extensive functionality for parameter changes, data display, and export Installations available for Windows, MacOS, or Linux
Collapse
|
17
|
Wu J, Wang H, Liu Q, Li R, Gao Y, Fang X, Zhong Y, Wang M, Wang Q, Rao Z, Gong P. Remdesivir overcomes the S861 roadblock in SARS-CoV-2 polymerase elongation complex. Cell Rep 2021; 37:109882. [PMID: 34653416 PMCID: PMC8498683 DOI: 10.1016/j.celrep.2021.109882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/05/2021] [Accepted: 10/04/2021] [Indexed: 12/02/2022] Open
Abstract
Remdesivir (RDV), a nucleotide analog with broad-spectrum features, has exhibited effectiveness in COVID-19 treatment. However, the precise working mechanism of RDV when targeting the viral RNA-dependent RNA polymerase (RdRP) has not been fully elucidated. Here, we solve a 3.0-Å structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RdRP elongation complex (EC) and assess RDV intervention in polymerase elongation phase. Although RDV could induce an “i+3” delayed termination in meta-stable complexes, only pausing and subsequent elongation are observed in the EC. A comparative investigation using an enterovirus RdRP further confirms similar delayed intervention and demonstrates that steric hindrance of the RDV-characteristic 1′-cyano at the −4 position is responsible for the “i+3” intervention, although two representative Flaviviridae RdRPs do not exhibit similar behavior. A comparison of representative viral RdRP catalytic complex structures indicates that the product RNA backbone encounters highly conserved structural elements, highlighting the broad-spectrum intervention potential of 1′-modified nucleotide analogs in anti-RNA virus drug development.
Collapse
Affiliation(s)
- Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Haofeng Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Qiaojie Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Rui Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Gao
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiang Fang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Zhong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meihua Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Zihe Rao
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China.
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei 430071, China; Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China.
| |
Collapse
|
18
|
The nucleotide addition cycle of the SARS-CoV-2 polymerase. Cell Rep 2021; 36:109650. [PMID: 34433083 PMCID: PMC8367775 DOI: 10.1016/j.celrep.2021.109650] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 12/29/2022] Open
Abstract
Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We use a high-throughput magnetic-tweezers approach to develop a mechanochemical description of this core polymerase. The core polymerase exists in at least three catalytically distinct conformations, one being kinetically consistent with incorporation of incorrect nucleotides. We provide evidence that the RNA-dependent RNA polymerase (RdRp) uses a thermal ratchet instead of a power stroke to transition from the pre- to post-translocated state. Ultra-stable magnetic tweezers enable the direct observation of coronavirus polymerase deep and long-lived backtracking that is strongly stimulated by secondary structures in the template. The framework we present here elucidates one of the most important structure-dynamics-function relationships in human health today and will form the grounds for understanding the regulation of this complex.
Collapse
|
19
|
Xu X, Zhang L, Chu JTS, Wang Y, Chin AWH, Chong TH, Dai Z, Poon LLM, Cheung PPH, Huang X. A novel mechanism of enhanced transcription activity and fidelity for influenza A viral RNA-dependent RNA polymerase. Nucleic Acids Res 2021; 49:8796-8810. [PMID: 34379778 PMCID: PMC8421151 DOI: 10.1093/nar/gkab660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
During RNA elongation, the influenza A viral (IAV) RNA-dependent RNA polymerase (RdRp) residues in the active site interact with the triphosphate moiety of nucleoside triphosphate (NTP) for catalysis. The molecular mechanisms by which they control the rate and fidelity of NTP incorporation remain elusive. Here, we demonstrated through enzymology, virology and computational approaches that the R239 and K235 in the PB1 subunit of RdRp are critical to controlling the activity and fidelity of transcription. Contrary to common beliefs that high-fidelity RdRp variants exert a slower incorporation rate, we discovered a first-of-its-kind, single lysine-to-arginine mutation on K235 exhibited enhanced fidelity and activity compared with wild-type. In particular, we employed a single-turnover NTP incorporation assay for the first time on IAV RdRp to show that K235R mutant RdRp possessed a 1.9-fold increase in the transcription activity of the cognate NTP and a 4.6-fold increase in fidelity compared to wild-type. Our all-atom molecular dynamics simulations further elucidated that the higher activity is attributed to the shorter distance between K235R and the triphosphate moiety of NTP compared with wild-type. These results provide novel insights into NTP incorporation and fidelity control mechanisms, which lay the foundation for the rational design of IAV vaccine and antiviral targets.
Collapse
Affiliation(s)
- Xinzhou Xu
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.,Bioengineering Graduate Program, Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Julie Tung Sem Chu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuqing Wang
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.,Bioengineering Graduate Program, Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alex Wing Hong Chin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre for Immunity and Infection, Hong Kong Science Park, Hong Kong, China
| | - Tin Hang Chong
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Zixi Dai
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Leo Lit Man Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre for Immunity and Infection, Hong Kong Science Park, Hong Kong, China
| | - Peter Pak-Hang Cheung
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Li Ka Shing Medical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xuhui Huang
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
20
|
Winston DS, Boehr DD. Allosteric and dynamic control of RNA-dependent RNA polymerase function and fidelity. Enzymes 2021; 49:149-193. [PMID: 34696831 DOI: 10.1016/bs.enz.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All RNA viruses encode an RNA-dependent RNA polymerase (RdRp) responsible for genome replication. It is now recognized that enzymes in general, and RdRps specifically, are dynamic macromolecular machines such that their moving parts, including active site loops, play direct functional roles. While X-ray crystallography has provided deep insight into structural elements important for RdRp function, this methodology generally provides only static snapshots, and so is limited in its ability to report on dynamic fluctuations away from the lowest energy conformation. Nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations and other biophysical techniques have brought new insight into RdRp function by their ability to characterize the trajectories, kinetics and thermodynamics of conformational motions. In particular, these methodologies have identified coordinated motions among conserved structural motifs necessary for nucleotide selection and incorporation. Disruption of these motions through amino acid substitutions or inhibitor binding impairs RdRp function. Understanding and re-engineering these motions thus provides exciting new avenues for anti-viral strategies. This chapter outlines the basics of these methodologies, summarizes the dynamic motions observed in different RdRps important for nucleotide selection and incorporation, and illustrates how this information can be leveraged towards rational vaccine strain development and anti-viral drug design.
Collapse
Affiliation(s)
- Dennis S Winston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
21
|
Gong P. Structural basis of viral RNA-dependent RNA polymerase nucleotide addition cycle in picornaviruses. Enzymes 2021; 49:215-233. [PMID: 34696833 DOI: 10.1016/bs.enz.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of processive nucleic acid polymerases, carrying out DNA-independent replication/transcription processes. Although viral RdRPs have versatile global structures, they do share a structurally highly conserved active site comprising catalytic motifs A-G. In spite of different initiation modes, the nucleotide addition cycle (NAC) in the RdRP elongation phase probably follows consistent mechanisms. In this chapter, representative structures of picornavirus RdRP elongation complexes are used to illustrate RdRP NAC mechanisms. In the pre-chemistry part of the NAC, RdRPs utilize a unique palm domain-based active site closure that can be further decomposed into two sequential steps. In the post-chemistry part of the NAC, the translocation process is stringently controlled by the RdRP-specific motif G, resulting in asymmetric movements of the template-product RNA. Future efforts to elucidate regulation/intervention mechanisms by mismatched NTPs or nucleotide analog antivirals are necessary to achieve comprehensive understandings of viral RdRP NAC.
Collapse
Affiliation(s)
- Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, China.
| |
Collapse
|
22
|
Ferrero DS, Falqui M, Verdaguer N. Snapshots of a Non-Canonical RdRP in Action. Viruses 2021; 13:v13071260. [PMID: 34203380 PMCID: PMC8310298 DOI: 10.3390/v13071260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
RNA viruses typically encode their own RNA-dependent RNA polymerase (RdRP) to ensure genome replication and transcription. The closed “right hand” architecture of RdRPs encircles seven conserved structural motifs (A to G) that regulate the polymerization activity. The four palm motifs, arranged in the sequential order A to D, are common to all known template dependent polynucleotide polymerases, with motifs A and C containing the catalytic aspartic acid residues. Exceptions to this design have been reported in members of the Permutotetraviridae and Birnaviridae families of positive single stranded (+ss) and double-stranded (ds) RNA viruses, respectively. In these enzymes, motif C is located upstream of motif A, displaying a permuted C–A–B–D connectivity. Here we study the details of the replication elongation process in the non-canonical RdRP of the Thosea asigna virus (TaV), an insect virus from the Permutatetraviridae family. We report the X-ray structures of three replicative complexes of the TaV polymerase obtained with an RNA template-primer in the absence and in the presence of incoming rNTPs. The structures captured different replication events and allowed to define the critical interactions involved in: (i) the positioning of the acceptor base of the template strand, (ii) the positioning of the 3’-OH group of the primer nucleotide during RNA replication and (iii) the recognition and positioning of the incoming nucleotide. Structural comparisons unveiled a closure of the active site on the RNA template-primer binding, before rNTP entry. This conformational rearrangement that also includes the repositioning of the motif A aspartate for the catalytic reaction to take place is maintained on rNTP and metal ion binding and after nucleotide incorporation, before translocation.
Collapse
|
23
|
Structures of telomerase at several steps of telomere repeat synthesis. Nature 2021; 593:454-459. [PMID: 33981033 DOI: 10.1038/s41586-021-03529-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/09/2021] [Indexed: 12/14/2022]
Abstract
Telomerase is unique among the reverse transcriptases in containing a noncoding RNA (known as telomerase RNA (TER)) that includes a short template that is used for the processive synthesis of G-rich telomeric DNA repeats at the 3' ends of most eukaryotic chromosomes1. Telomerase maintains genomic integrity, and its activity or dysregulation are critical determinants of human longevity, stem cell renewal and cancer progression2,3. Previous cryo-electron microscopy structures have established the general architecture, protein components and stoichiometries of Tetrahymena and human telomerase, but our understandings of the details of DNA-protein and RNA-protein interactions and of the mechanisms and recruitment involved remain limited4-6. Here we report cryo-electron microscopy structures of active Tetrahymena telomerase with telomeric DNA at different steps of nucleotide addition. Interactions between telomerase reverse transcriptase (TERT), TER and DNA reveal the structural basis of the determination of the 5' and 3' template boundaries, handling of the template-DNA duplex and separation of the product strand during nucleotide addition. The structure and binding interface between TERT and telomerase protein p50 (a homologue of human TPP17,8) define conserved interactions that are required for telomerase activation and recruitment to telomeres. Telomerase La-related protein p65 remodels several regions of TER, bridging the 5' and 3' ends and the conserved pseudoknot to facilitate assembly of the TERT-TER catalytic core.
Collapse
|
24
|
Yang C, Huang Y, Liu S. Therapeutic Development in COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:435-448. [PMID: 33973193 DOI: 10.1007/978-3-030-63761-3_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2, the disease has spread rapidly worldwide and developed into a global pandemic, causing a significant impact on the global health system and economic development. Scientists have been racing to find effective drugs and vaccines for the treatment and prevention of COVID-19. However, due to the diversity of clinical manifestations caused by COVID-19, no standard antiviral regimen beyond supportive therapy has been established. Ongoing clinical trials are underway to evaluate the efficacy of drugs that primarily act on the viral replication cycle or enhanced immunity of patients. This chapter will summarize the currently used antiviral and adjuvant therapies in clinical practice and provide a theoretical basis for the future treatment of COVID-19.
Collapse
Affiliation(s)
- Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Guangzhou, China.
| |
Collapse
|
25
|
Bocanegra R, Ismael Plaza GA, Pulido CR, Ibarra B. DNA replication machinery: Insights from in vitro single-molecule approaches. Comput Struct Biotechnol J 2021; 19:2057-2069. [PMID: 33995902 PMCID: PMC8085672 DOI: 10.1016/j.csbj.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
The replisome is the multiprotein molecular machinery that replicates DNA. The replisome components work in precise coordination to unwind the double helix of the DNA and replicate the two strands simultaneously. The study of DNA replication using in vitro single-molecule approaches provides a novel quantitative understanding of the dynamics and mechanical principles that govern the operation of the replisome and its components. ‘Classical’ ensemble-averaging methods cannot obtain this information. Here we describe the main findings obtained with in vitro single-molecule methods on the performance of individual replisome components and reconstituted prokaryotic and eukaryotic replisomes. The emerging picture from these studies is that of stochastic, versatile and highly dynamic replisome machinery in which transient protein-protein and protein-DNA associations are responsible for robust DNA replication.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - G A Ismael Plaza
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Carlos R Pulido
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
26
|
Bera SC, Seifert M, Kirchdoerfer RN, van Nies P, Wubulikasimu Y, Quack S, Papini FS, Arnold JJ, Canard B, Cameron CE, Depken M, Dulin D. The nucleotide addition cycle of the SARS-CoV-2 polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.27.437309. [PMID: 33791706 PMCID: PMC8010733 DOI: 10.1101/2021.03.27.437309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We have used a high-throughput magnetic-tweezers approach to develop a mechanochemical description of this core polymerase. The core polymerase exists in at least three catalytically distinct conformations, one being kinetically consistent with incorporation of incorrect nucleotides. We provide the first evidence that an RdRp uses a thermal ratchet instead of a power stroke to transition from the pre- to post-translocated state. Ultra-stable magnetic tweezers enables the direct observation of coronavirus polymerase deep and long-lived backtrack that are strongly stimulated by secondary structure in the template. The framework presented here elucidates one of the most important structure-dynamics-function relationships in human health today, and will form the grounds for understanding the regulation of this complex.
Collapse
Affiliation(s)
- Subhas Chandra Bera
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Mona Seifert
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Robert N. Kirchdoerfer
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Pauline van Nies
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Yibulayin Wubulikasimu
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Salina Quack
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Flávia S. Papini
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille Université, UMR 7257, Polytech Case 925, 13009 Marseille, France
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - David Dulin
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Yang J, Jing X, Yi W, Li XD, Yao C, Zhang B, Zheng Z, Wang H, Gong P. Crystal structure of a tick-borne flavivirus RNA-dependent RNA polymerase suggests a host adaptation hotspot in RNA viruses. Nucleic Acids Res 2021; 49:1567-1580. [PMID: 33406260 PMCID: PMC7897508 DOI: 10.1093/nar/gkaa1250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 01/07/2023] Open
Abstract
The RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of nucleic acid polymerases. RdRPs are essential in virus life cycle due to their central role in viral genome replication/transcription processes. However, their contribution in host adaption has not been well documented. By solving the RdRP crystal structure of the tick-borne encephalitis virus (TBEV), a tick-borne flavivirus, and comparing the structural and sequence features with mosquito-borne flavivirus RdRPs, we found that a region between RdRP catalytic motifs B and C, namely region B-C, clearly bears host-related diversity. Inter-virus substitutions of region B-C sequence were designed in both TBEV and mosquito-borne Japanese encephalitis virus backbones. While region B-C substitutions only had little or moderate effect on RdRP catalytic activities, virus proliferation was not supported by these substitutions in both virus systems. Importantly, a TBEV replicon-derived viral RNA replication was significantly reduced but not abolished by the substitution, suggesting the involvement of region B-C in viral and/or host processes beyond RdRP catalysis. A systematic structural analysis of region B-C in viral RdRPs further emphasizes its high level of structure and length diversity, providing a basis to further refine its relevance in RNA virus-host interactions in a general context.
Collapse
Affiliation(s)
- Jieyu Yang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuping Jing
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfu Yi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Xiao-Dan Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Chen Yao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | | | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China
| |
Collapse
|
28
|
Wang Q, Wu J, Wang H, Gao Y, Liu Q, Mu A, Ji W, Yan L, Zhu Y, Zhu C, Fang X, Yang X, Huang Y, Gao H, Liu F, Ge J, Sun Q, Yang X, Xu W, Liu Z, Yang H, Lou Z, Jiang B, Guddat LW, Gong P, Rao Z. Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell 2020; 182:417-428.e13. [PMID: 32526208 PMCID: PMC7242921 DOI: 10.1016/j.cell.2020.05.034] [Citation(s) in RCA: 438] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 01/18/2023]
Abstract
Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre- and post- translocated polymerase complexes. Compared with the apo complex, the structures show notable structural rearrangements happening to nsp12 and its co-factors nsp7 and nsp8 to accommodate the nucleic acid, whereas there are highly conserved residues in nsp12, positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanism of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription and replication machinery. Structures of SARS-CoV-2 RNA polymerase in complexes with RNA revealed Conformational changes in nsp8 and its interaction with the exiting RNA are observed Incorporation and delayed-chain-termination mechanism of remdesivir is elucidated Transition model from primase complex to polymerase complex is proposed
Collapse
Affiliation(s)
- Quan Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei, 430071, China
| | - Haofeng Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Sciences, Tianjin University, Tianjin, China
| | - Yan Gao
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Qiaojie Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei, 430071, China
| | - An Mu
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
| | - Wenxin Ji
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
| | - Liming Yan
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang Fang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yucen Huang
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Hailong Gao
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
| | - Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ji Ge
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Qianqian Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhijie Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhiyong Lou
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Australia
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei, 430071, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China.
| |
Collapse
|