1
|
Man Z, Zhang Y, Cai Y, Yuan X, Urbach HP. Construction of Chirality-Sorting Optical Force Pairs. PHYSICAL REVIEW LETTERS 2024; 133:233803. [PMID: 39714683 DOI: 10.1103/physrevlett.133.233803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 12/24/2024]
Abstract
Chiral objects are abundant in nature, and although the enantiomers have almost identical physical properties apart from their handedness, they can exhibit significantly different chemical properties and biological functions. This underscores the importance of sorting chiral substances. In this Letter, we demonstrate that chirality-sorting optical force pairs can be inversely generated in a tightly focused Gaussian beam by tailoring the input polarization state. We provide a detailed method for constructing the polarization state of the incident light to create the desired chiral optical field that generates the chirality-sorting optical force pairs. These force pairs precisely trap two opposite enantiomers at distinct predetermined positions within the same equilibrium plane, enabling their simultaneous identification and separation. Notably, the trapping positions and separation distances can be freely adjusted by altering the incident polarization parameters.
Collapse
Affiliation(s)
- Zhongsheng Man
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
- Optics Research Group, Delft University of Technology, Department of Imaging Physics, Lorentzweg 1, 2628CJ Delft, The Netherlands
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| | | | - Yangjian Cai
- Shandong Provincial Engineering and Technical Center of Light Manipulation and Shandong Provincial Key Laboratory of Optics and Photonics Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| | | | | |
Collapse
|
2
|
Nidhi V, Allaire A, Ait Athmane Z, Guenoun P, Testard F, Renault JP, Malloggi F. Making Mobile Nanotechnology Accessible: Is the Explicit Preparation of Janus Nanoparticle Necessary to Achieve Mobility? NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1796. [PMID: 39591037 PMCID: PMC11597384 DOI: 10.3390/nano14221796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
This study compares the mobility behaviour, in a H2O2 environment, of three different geometries of hybrid particle made of silica core functionalized by gold (nanoparticles or layer). It is known that the decomposition of H2O2 on gold surfaces drives mobility; however, the link between mobility orientation and the organization of gold on silica surfaces is still questionable. While conventional wisdom posits that asymmetric designs are crucial for generating phoretic forces or localized bubble propulsion, recent research suggests that symmetrical particles may also exhibit motility. To address this debate, we developed a robust workflow for synthesizing gold grafted silica nanoparticles with precise control over size and shape, enabling the direct comparison of their motile behaviour by dynamic light scattering and particle tracking velocimetry. Our results indicate, first, that a combination of techniques is necessary to overcome their intrinsic limitation and, second, that the inherent asymmetry generated by isotropic gold nanoparticle deposition onto silica surfaces may enable particle motility.
Collapse
Affiliation(s)
| | | | | | | | - Fabienne Testard
- Université Paris-Saclay, CEA Saclay, CNRS, NIMBE, UMR 3685, LIONS, 91191 Gif-Sur-Yvette CEDEX, France (A.A.); (P.G.)
| | - Jean-Philippe Renault
- Université Paris-Saclay, CEA Saclay, CNRS, NIMBE, UMR 3685, LIONS, 91191 Gif-Sur-Yvette CEDEX, France (A.A.); (P.G.)
| | - Florent Malloggi
- Université Paris-Saclay, CEA Saclay, CNRS, NIMBE, UMR 3685, LIONS, 91191 Gif-Sur-Yvette CEDEX, France (A.A.); (P.G.)
| |
Collapse
|
3
|
Wang N, Ng J, Wang GP. Morphology-independent general-purpose optical surface tractor beam. Nat Commun 2024; 15:6836. [PMID: 39122709 PMCID: PMC11315692 DOI: 10.1038/s41467-024-51100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Optical tractor beams capable of pulling particles backward have garnered significant and increasing interest. Traditional optical tractor beams are limited to free space beams with small forward wavevectors, enabling them to pull selected particles. Here, we present a comprehensive theory for the optical force exerted by a surface wave using analytical and numerical calculations, revealing the relationship between the canonical momentum and optical forces. Based on this theory, we demonstrate a general purpose optical surface tractor beam that can pull any passive particle, regardless of size, composition, or geometry. The tractor beam utilizes a surface wave with negative canonical momentum characterized by a single well-defined negative Bloch k vector. The tractor beam relies on a mechanism where the negative incident force always surpasses the recoil force. As such, the tractor beam, when excited on the surface of a double-negative index metamaterial, can pull particles with different morphologies.
Collapse
Affiliation(s)
- Neng Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, China
| | - Jack Ng
- Department of Physics, Southern University of Science and Technology, Shenzhen, China.
| | - Guo Ping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, China.
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
4
|
Wang F, Hu Z, Zeng B, Xia C, Dong L, Wang H, Yang L, Wang Y. Submegahertz Nucleation of Plasmonic Vapor Microbubbles near a Solid Vertical Boundary. PHYSICAL REVIEW LETTERS 2024; 133:064001. [PMID: 39178449 DOI: 10.1103/physrevlett.133.064001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/27/2024] [Indexed: 08/25/2024]
Abstract
Laser triggered and photothermally induced vapor bubbles have emerged as promising approaches to facilitate optomechanical energy conversion for numerous applications in microfluidics and nanofluidics. Here, we report an observation of spontaneously triggered periodic nucleation of plasmonic vapor bubbles near a rigid sidewall with readily tuned nucleation frequency from 0.8 kHz to over 200 kHz. The detailed collapsing process of the vapor bubbles was experimentally and numerically investigated. We find that the lateral migration of residual bubbles toward the sidewall refreshes the laser spot area, terminates the subsequent steady bubble growth, and leads to the repeatable bubble nucleation. A mathematic model regarding the Kelvin impulses was derived. It shows that the competition between the rigid boundary induced Bjerknes force and laser irradiation caused thermal Marangoni force on collapsing bubbles governs the process. The model also leads to a criterion of γζ<0.34 for repeatable bubble nucleation, where γ is the normalized distance and ζ thermal Marangoni coefficient. This study demonstrates nucleation of violent vapor bubbles at extreme high frequencies, providing an approach to remotely realize strong localized flows in microfluidics and nanofluidics.
Collapse
Affiliation(s)
| | - Zhibin Hu
- Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People's Republic of China
| | | | | | - Lihua Dong
- Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People's Republic of China
| | | | | | | |
Collapse
|
5
|
Moon S, Martin LMA, Kim S, Zhang Q, Zhang R, Xu W, Luo T. Direct observation and identification of nanoplastics in ocean water. SCIENCE ADVANCES 2024; 10:eadh1675. [PMID: 38277449 PMCID: PMC10816700 DOI: 10.1126/sciadv.adh1675] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
Millions of tons of plastics enter the oceans yearly, and they can be fragmented by ultraviolet and mechanical means into nanoplastics. Here, we report the direct observation of nanoplastics in global ocean water leveraging a unique shrinking surface bubble deposition (SSBD) technique. SSBD involves optically heating plasmonic nanoparticles to form a surface bubble and leveraging the Marangoni flow to concentrate suspended nanoplastics onto the surface, allowing direct visualization using electron microscopy. With the plasmonic nanoparticles co-deposited in SSBD, the surface-enhanced Raman spectroscopy effect is enabled for direct chemical identification of trace amounts of nanoplastics. In the water samples from two oceans, we observed nanoplastics made of nylon, polystyrene, and polyethylene terephthalate-all common in daily consumables. The plastic particles have diverse morphologies, such as nanofibers, nanoflakes, and ball-stick nanostructures. These nanoplastics may profoundly affect marine organisms, and our results can provide critical information for appropriately designing their toxicity studies.
Collapse
Affiliation(s)
- Seunghyun Moon
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Leisha M. A. Martin
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
- MNT SmartSolutions, 204 Bryn Mawr, Albuquerque, NM 87106, USA
| | - Seongmin Kim
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Qiushi Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Renzheng Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Wei Xu
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Sustainable Energy of Notre Dame (ND Energy), University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
6
|
Ren YX, Frueh J, Zhang Z, Rutkowski S, Zhou Y, Mao H, Kong C, Tverdokhlebov SI, Liu W, Wong KKY, Li B. Topologically protected optical pulling force on synthetic particles through photonic nanojet. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:239-249. [PMID: 39635297 PMCID: PMC11501283 DOI: 10.1515/nanoph-2023-0740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/29/2023] [Indexed: 12/07/2024]
Abstract
A dielectric microsphere concentrates light into a photonic nanojet (PNJ), and swims towards the near-infrared laser in response to the nanojet-mediated force. In contrast, a Janus particle with an opaque metal layer was thought to be impossible to concentrate light into a stable nanojet. However, the Janus particle may experience optical torque owing to the inhomogeneous composition on both sides even in linearly polarized non-resonant light. Herein, we report on topologically protected PNJ produced by a synthetic Janus particle, and observed the backaction force on the Janus particle. Due to symmetry, the counter-propagating beams can both form PNJ on the respective opposite sides, and pull Janus particles towards respective sources. Furthermore, we unveil that the hysteresis on backaction force with respect to the injection power also exists on synthetic Janus particle compared with their dielectric counterparts. Additionally, the magnitude of the backaction force varies between power increase and decrease stages even with the same laser power. We anticipate that the observation offers great possibilities to pull irregular particles by concentrating light with the particle, and such scheme may be applied for parallel particle manipulation and classification.
Collapse
Affiliation(s)
- Yu-Xuan Ren
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Johannes Frueh
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050Tomsk, Russian Federation
| | - Zhisen Zhang
- Institute of Carbon Neutrality, ShanghaiTech University, Shanghai, 201210, China
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Sven Rutkowski
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050Tomsk, Russian Federation
| | - Yi Zhou
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, SAR999077, China
| | - Huade Mao
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, SAR999077, China
| | - Cihang Kong
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Sergei I. Tverdokhlebov
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050Tomsk, Russian Federation
| | - Wen Liu
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Kenneth K. Y. Wong
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, SAR999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, SAR999077, China
| | - Bo Li
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| |
Collapse
|
7
|
Wang HY, Ma R, Liu GD, Wang LL, Lin Q. Optical force conversion and conveyor belt effect with coupled graphene plasmon waveguide modes. OPTICS EXPRESS 2023; 31:32422-32433. [PMID: 37859046 DOI: 10.1364/oe.495863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
We propose a double-layer graphene sheets side coupling to a strip of graphene to obtain the optical pulling or pushing force. Combined with coupled mode theory and finite-difference time-domain simulations, it is found that the conveyor belt effect can be realized in conjunction with the lateral optical equilibrium effect upon the radiation loss κe equal to the intrinsic loss κo. The maximum total optical force acting on the strip in the symmetric mode (S-mode) can be up to ∼5.95 in the unit of 1/c and the anti-symmetric (AS-mode) mode reach ∼2.75 1/c. The optical trapping potential Ux and optical trapping force Fx for the S-mode have a value around -22.5 kBT/W and 240 pN/W, while for the AS-mode can up to ∼-56 kBT/W and 520 pN/W, respectively. Our work opens a new avenue for optical manipulation with potential applications in optoelectronic devices and lab-on-a-chip platforms.
Collapse
|
8
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
9
|
Mandal A, Lee E, Luo T. Analytical model of optical force on supercavitating plasmonic nanoparticles. OPTICS EXPRESS 2023; 31:21972-21987. [PMID: 37381282 DOI: 10.1364/oe.491699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Optical manipulation of nanoparticles (NPs) in liquid has garnered increasing interest for various applications, ranging from biological systems to nanofabrication. A plane wave as an optical source has recently been shown to be capable of pushing or pulling an NP when the NP is encapsulated by a nanobubble (NB) in water. However, the lack of an accurate model to describe the optical force on NP-in-NB systems hinders a comprehensive understanding of NP motion mechanisms. In this study, we present an analytical model using vector spherical harmonics to accurately capture the optical force and the resultant trajectory of an NP in an NB. We test the developed model using a solid Au NP as an example. By visualizing the vector field line of the optical force, we reveal the possible moving paths of the NP in the NB. This study can provide valuable insights for designing experiments to manipulate supercaviting NPs using plane waves.
Collapse
|
10
|
Ding H, Chen Z, Ponce C, Zheng Y. Optothermal rotation of micro-/nano-objects. Chem Commun (Camb) 2023; 59:2208-2221. [PMID: 36723196 PMCID: PMC10189788 DOI: 10.1039/d2cc06955e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Due to its contactless and fuel-free operation, optical rotation of micro-/nano-objects provides tremendous opportunities for cellular biology, three-dimensional (3D) imaging, and micro/nanorobotics. However, complex optics, extremely high operational power, and the applicability to limited objects restrict the broader use of optical rotation techniques. This Feature Article focuses on a rapidly emerging class of optical rotation techniques, termed optothermal rotation. Based on light-mediated thermal phenomena, optothermal rotation techniques overcome the bottlenecks of conventional optical rotation by enabling versatile rotary control of arbitrary objects with simpler optics using lower powers. We start with the fundamental thermal phenomena and concepts: thermophoresis, thermoelectricity, thermo-electrokinetics, thermo-osmosis, thermal convection, thermo-capillarity, and photophoresis. Then, we highlight various optothermal rotation techniques, categorizing them based on their rotation modes (i.e., in-plane and out-of-plane rotation) and the thermal phenomena involved. Next, we explore the potential applications of these optothermal manipulation techniques in areas such as single-cell mechanics, 3D bio-imaging, and micro/nanomotors. We conclude the Feature Article with our insights on the operating guidelines, existing challenges, and future directions of optothermal rotation.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Carolina Ponce
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Ding H, Chen Z, Ponce C, Zheng Y. Optothermal rotation of micro-/nano-objects in liquids. ARXIV 2023:arXiv:2301.04297v2. [PMID: 36713256 PMCID: PMC9882580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Controllable rotation of micro-/nano-objects provides tremendous opportunities for cellular biology, three-dimensional (3D) imaging, and micro/nanorobotics. Among different rotation techniques, optical rotation is particularly attractive due to its contactless and fuel-free operation. However, optical rotation precision is typically impaired by the intrinsic optical heating of the target objects. Optothermal rotation, which harnesses light-modulated thermal effects, features simpler optics, lower operational power, and higher applicability to various objects. In this Feature Article, we discuss the recent progress of optothermal rotation with a focus on work from our research group. We categorize the various rotation techniques based on distinct physical mechanisms, including thermophoresis, thermoelectricity, thermo-electrokinetics, thermo-osmosis, thermal convection, and thermo-capillarity. Benefiting from the different rotation modes (i.e., in-plane and out-of-plane rotation), diverse applications in single-cell mechanics, 3D bio-imaging, and micro/nanomotors are demonstrated. We conclude the article with our perspectives on the operating guidelines, existing challenges, and future directions of optothermal rotation.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Carolina Ponce
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Near-infrared-laser-navigated dancing bubble within water via a thermally conductive interface. Nat Commun 2022; 13:5749. [PMID: 36180429 PMCID: PMC9525293 DOI: 10.1038/s41467-022-33424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Precise manipulation of droplets or bubbles hosts a broad range of applications for microfluidic devices, drug delivery, and soft robotics. Generally the existing approaches via passively designing structured surfaces or actively applying external stimuli, inherently confine their motions within the planar or curved geometry at a slow speed. Consequently the realization of 3D manipulation, such as of the underwater bubbles, remains challenging. Here, during the near-infrared-laser impacting on water, by simply introducing a thermally conductive interface, we unexpectedly observe a spontaneously bouncing bubble with hundreds-of-micrometer diameter at tens-of-Hertz frequency. The unique formation of temperature inversion layer in our system generates the depth-dependent thermal Marangoni force responsible for the bouncing behavior. Both the scaling analysis and numerical simulation agree with observations quantitatively. Furthermore, by controlling the navigation speed of the laser beam, the bubble not only shows excellent steerability with velocity up to 40 mm/s, but also exhibits distinctive behaviors from bouncing to dancing within water. We demonstrate the potential applications by steering the bubble within water to specifically interact with tiny objects, shedding light on the fabrication of bubble-based compositions in materials science and contamination removal in water treatment. Precise manipulation of droplets or bubbles hosts a broad range of applications for microfluidic devices, drug delivery, and soft robotics. Here, Hu et al. show the manipulation of Marangoni-driven dancing bubbles on water using a near-infrared-laser in a frequency of tens-of-Hertz.
Collapse
|
13
|
Ding H, Chen Z, Kollipara PS, Liu Y, Kim Y, Huang S, Zheng Y. Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells. ACS NANO 2022; 16:10878-10889. [PMID: 35816157 PMCID: PMC9901196 DOI: 10.1021/acsnano.2c03111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Optical manipulation of tiny objects has benefited many research areas ranging from physics to biology to micro/nanorobotics. However, limited manipulation modes, intense lasers with complex optics, and applicability to limited materials and geometries of objects restrict the broader uses of conventional optical tweezers. Herein, we develop an optothermal platform that enables the versatile manipulation of synthetic micro/nanoparticles and live cells using an ultralow-power laser beam and a simple optical setup. Five working modes (i.e., printing, tweezing, rotating, rolling, and shooting) have been achieved and can be switched on demand through computer programming. By incorporating a feedback control system into the platform, we realize programmable multimodal control of micro/nanoparticles, enabling autonomous micro/nanorobots in complex environments. Moreover, we demonstrate in situ three-dimensional single-cell surface characterizations through the multimodal optothermal manipulation of live cells. This programmable multimodal optothermal platform will contribute to diverse fundamental studies and applications in cellular biology, nanotechnology, robotics, and photonics.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Youngsun Kim
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Suichu Huang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, 92 Xidazhijie St., Harbin 15001, China
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Ding H, Kollipara PS, Kim Y, Kotnala A, Li J, Chen Z, Zheng Y. Universal optothermal micro/nanoscale rotors. SCIENCE ADVANCES 2022; 8:eabn8498. [PMID: 35704582 PMCID: PMC9200276 DOI: 10.1126/sciadv.abn8498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/02/2022] [Indexed: 05/29/2023]
Abstract
Rotation of micro/nano-objects is important for micro/nanorobotics, three-dimensional imaging, and lab-on-a-chip systems. Optical rotation techniques are especially attractive because of their fuel-free and remote operation. However, current techniques require laser beams with designed intensity profile and polarization or objects with sophisticated shapes or optical birefringence. These requirements make it challenging to use simple optical setups for light-driven rotation of many highly symmetric or isotropic objects, including biological cells. Here, we report a universal approach to the out-of-plane rotation of various objects, including spherically symmetric and isotropic particles, using an arbitrary low-power laser beam. Moreover, the laser beam is positioned away from the objects to reduce optical damage from direct illumination. The rotation mechanism based on opto-thermoelectrical coupling is elucidated by rigorous experiments combined with multiscale simulations. With its general applicability and excellent biocompatibility, our universal light-driven rotation platform is instrumental for various scientific research and engineering applications.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abhay Kotnala
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jingang Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihan Chen
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
15
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Lee E, Luo T. Negative optical force field on supercavitating titanium nitride nanoparticles by a single plane wave. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:79-86. [PMID: 39635001 PMCID: PMC11501752 DOI: 10.1515/nanoph-2021-0503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 12/07/2024]
Abstract
A pulling motion of supercavitating plasmonic nanoparticle (NP) by a single plane wave has received attention for the fundamental physics and potential applications in various fields (e.g., bio-applications, nanofabrication, and nanorobotics). Here, the supercavitating NP depicts a state where a nanobubble encapsulates the NP, which can be formed via the photo-thermal heating process in a liquid. In this letter, we theoretically study the optical force on a supercavitating titanium nitride (TiN) NP by a single plane wave at near-infrared wavelengths to explore optical conditions that can potentially initiate the backward motion of the NP against the wave-propagating direction. An analysis with vector spherical harmonics is used to quantify the optical force on the NP efficiently. Next, the vector field line of the optical force is introduced to visualize the light-driven motion of the NP in a nanobubble. Finally, we characterize the vector field lines at various optical conditions (e.g., various sizes of NP and nanobubble, and wavelength), and we find a suitable window of the optical state which can potentially activate the backward motion of the supercavitating TiN NP.
Collapse
Affiliation(s)
- Eungkyu Lee
- Department of Electronic Engineering, Kyung Hee University, Yongin-si17104, Gyeonggi-do, Republic of Korea
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame46556, IN, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame46556, IN, USA
- Center for Sustainable Energy of Notre Dame (ND Energy), University of Notre Dame, Notre Dame46556, IN, USA
| |
Collapse
|
17
|
Jin R, Xu Y, Dong ZG, Liu Y. Optical Pulling Forces Enabled by Hyperbolic Metamaterials. NANO LETTERS 2021; 21:10431-10437. [PMID: 34898220 DOI: 10.1021/acs.nanolett.1c03772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We propose a novel approach to generating optical pulling forces on a gold nanowire, which are placed inside or above a hyperbolic metamaterial and subjected to plane wave illumination. Two mechanisms are found to induce the optical pulling force, including the concave isofrequency contour of the hyperbolic metamaterial and the excitation of directional surface plasmon polaritons. We systematically study the optical forces under various conditions, including the wavelength, the angle of incidence of light, and the nanowire radius. It is shown that the optical pulling force enabled by hyperbolic metamaterials is broadband and insensitive to the angle of incidence. The mechanisms and results reported here open a new avenue to manipulating nanoscale objects.
Collapse
Affiliation(s)
| | | | - Zheng-Gao Dong
- Physics Department, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
18
|
Zhang Q, Li R, Lee E, Luo T. Optically Driven Gold Nanoparticles Seed Surface Bubble Nucleation in Plasmonic Suspension. NANO LETTERS 2021; 21:5485-5492. [PMID: 33939430 DOI: 10.1021/acs.nanolett.0c04913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal surface bubbles play important roles in applications like microfluidics and biosensing, but their formation on transparent substrates immersed in a plasmonic nanoparticle (NP) suspension has an unknown origin. Here, we reveal NPs deposited on the transparent substrate by optical forces are responsible for the nucleation of such photothermal surface bubbles. We show the surface bubble formation is always preceded by the optically driven NPs moving toward and deposited to the surface. Interestingly, such optically driven motion can happen both along and against the photon stream. The laser power density thresholds to form a surface bubble drastically differ depending on if the surface is forward- or backward-facing the light propagation direction. We attributed this to different optical power densities needed to enable optical pulling and pushing of NPs in the suspension, as optical pulling requires higher light intensity to excite supercavitation around NPs to enable proper optical configuration.
Collapse
Affiliation(s)
- Qiushi Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ruiyang Li
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Eungkyu Lee
- Department of Electronic Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Center for Sustainable Energy of Notre Dame (ND Energy), University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
19
|
Fu X, Liu S, Chen B, Tang J, Zhu Y. Observation and Control of Unidirectional Ballistic Dynamics of Nanoparticles at a Liquid-Gas Interface by 4D Electron Microscopy. ACS NANO 2021; 15:6801-6810. [PMID: 33733750 DOI: 10.1021/acsnano.0c10417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding and controlling the dynamics of active Brownian objects far from equilibrium are fundamentally important for emerging technologies such as artificial micro/nanomotors for drug deliveries and noninvasive microsurgery. However, direct observation and control of unidirectional propulsion of individual nanoscale objects are technically challenging due to the required spatiotemporal resolution. Here, we report in situ visualization and manipulation of unidirectional superfast ballistic dynamics of a single-photon-activated gold nanoparticle (NP) along the liquid-gas interface by four-dimensional electron microscopy (4D EM) at nanometer and nanosecond scales. We observed that, upon repetitive femtosecond laser excitation, the NP at the liquid-gas interface exhibits a continuously superfast unidirectional translation with a linear dependence of its root mean squared velocity (νrms) on either the laser fluence or repetition rate. Under a single femtosecond pulse excitation, the NP exhibits a superfast ballistic translation at the nanosecond time scale. Combined experiment and physical modeling reveals that the superfast unidirectional, ballistic translation is driven by unidirectional random impulsive forces arising from the nanobubbles (NBs) induced by enhanced laser heating as a result of plasmonic excitation, which is controllable by tuning the laser characteristics. This directional plasmonic NB-propulsion mechanism sheds light on the design of light-controllable artificially intelligent micro/nanomotor systems.
Collapse
Affiliation(s)
- Xuewen Fu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Siyu Liu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Bin Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jau Tang
- Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yimei Zhu
- Condensed Matter Physics and Material Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
20
|
Huang D, Schiffbauer J, Lee E, Luo T. Ballistic Brownian motion of supercavitating nanoparticles. Phys Rev E 2021; 103:042104. [PMID: 34005868 DOI: 10.1103/physreve.103.042104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/09/2021] [Indexed: 11/07/2022]
Abstract
We show that the Brownian motion of a nanoparticle (NP) can reach a ballistic limit when intensely heated to form supercavitation. As the NP temperature increases, its Brownian motion displays a sharp transition from normal to ballistic diffusion upon the formation of a vapor bubble to encapsulate the NP. Intense heating allows the NP to instantaneously extend the bubble boundary via evaporation, so the NP moves in a low-friction gaseous environment. We find the dynamics of the supercavitating NP is largely determined by the near field effect, i.e., highly localized vapor phase property in the vicinity of the NP.
Collapse
Affiliation(s)
- Dezhao Huang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jarrod Schiffbauer
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, Colorado 81503, USA
| | - Eungkyu Lee
- Department of Electronic Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
21
|
Davoodabadi A, Ghasemi H. Evaporation in nano/molecular materials. Adv Colloid Interface Sci 2021; 290:102385. [PMID: 33662599 DOI: 10.1016/j.cis.2021.102385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/29/2022]
Abstract
Evaporation is a physical phenomenon with fundamental significance to both nature and technology ranging from plant transpiration to DNA engineering. Various analytical and empirical relationships have been proposed to characterize evaporation kinetics at macroscopic scales. However, theoretical models to describe the kinetics of evaporation from nano and sub-nanometer (molecular) confinements are absent. On the other hand, the fast advancements in technology concentrated on development of nano/molecular-scale devices demand appropriate models that can accurately predict physics of phase-change in these systems. A thorough understanding of the physics of evaporation in nano/molecular materials is, thus, of critical importance to develop the required models. This understanding is also crucial to explain the intriguing evaporation-related phenomena that only take place when the characteristic length of the system drops to several nanometers. Here, we comprehensively review the underlying physics of evaporation phenomenon and discuss the effects of nano/molecular confinement on evaporation. The role of liquid-wall interface-related phenomena including the effects of disjoining pressure and flow slippage on evaporation from nano/molecular confinements are discussed. Different driving forces that can induce evaporation in small confinements, such as heat transfer, pressure drop, cavitation and density fluctuations are elaborated. Hydrophobic confinement induced evaporation and its potential application for synthetic ion channels are discussed in detail. Evaporation of water as molecular clusters rather than isolated molecules is discussed. Despite the lack of experimental investigations on evaporation at nanoscale, there exist an extensive body of literature that have applied different simulation techniques to predict the phase change behavior of liquids in nanoconfinements. We infer that exploring the effect of electrostatic interactions and flow slippage to enhance evaporation from nanoconduits is an interesting topic for future endeavors. Further future studies could be devoted to developing nano/molecular channels with evaporation-based gating mechanism and utilization of 2D materials to tune energy barrier for evaporation leading to enhanced evaporation.
Collapse
|
22
|
Chen Z, Kollipara PS, Ding H, Pughazhendi A, Zheng Y. Liquid Optothermoelectrics: Fundamentals and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1315-1336. [PMID: 33410698 PMCID: PMC7856676 DOI: 10.1021/acs.langmuir.0c03182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Liquid thermoelectricity describes the redistribution of ions in an electrolytic solution under the influence of temperature gradients, which leads to the formation of electric fields. The thermoelectric field is effective in driving the thermophoretic migration of charged colloidal particles for versatile manipulation. However, traditional macroscopic thermoelectric fields are not suitable for particle manipulations at high spatial resolution. Inspired by optical tweezers and relevant optical manipulation techniques, we employ laser interaction with light-absorbing nanostructures to achieve subtle heat management on the micro- and nanoscales. The resulting thermoelectric fields are exploited to develop new optical technologies, leading to a research field known as liquid optothermoelectrics. This Invited Feature Article highlights our recent works on advancing fundamentals, technologies, and applications of optothermoelectrics in colloidal solutions. The effects of light irradiation, substrates, electrolytes, and particles on the optothermoelectric manipulations of colloidal particles along with their theoretical limitations are discussed in detail. Our optothermoelectric technologies with the versatile capabilities of trapping, manipulating, and pulling colloidal particles at low optical power are finding applications in microswimmers and nanoscience. With its intricate interfacial processes and tremendous technological promise, optothermoelectrics in colloidal solutions will remain relevant for the foreseeable future.
Collapse
|
23
|
Yang Y, Zhao Y. Discretized Motion of Surface Walker under a Nonuniform AC Magnetic Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11125-11137. [PMID: 32822199 DOI: 10.1021/acs.langmuir.0c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The motion of peanut-shaped magnetic microrods (PSMRs) with different magnetic moment (Ms) orientations φM under a nonuniform AC magnetic field has been investigated systematically. When gradually changing φM from 90° (perpendicular to the long axis of the PSMR) to 0°, the motion of the PSMR evolves from rolling to precession, then to tumbling. Systematic investigations on the translational velocity vp versus the magnitude of the applied magnetic field B and the angular velocity ωB show that the overall motion of the PSMRs can be divided into four different zones: Brownian motion zone, synchronized zone, asynchronized zone, and oscillation zone. The vp-ωB relationship can be rescaled by a critical frequency ωc, which is determined by Ms, B, and a hydrodynamic term. An intrinsic quality factor qm for the translational motion of a magnetically driven micro-/nanomotor is defined and is found to range from 0.73 to 13.65 T-1 in the literature, while the Fe PSMRs in the current work give the highest qm (= 25.48 T-1). High speed movies reveal that both the tumbling and precession motions of the PSMRs have a discretized nature. At the instances when the magnetic field changes direction, the PSMR performs an instantaneous rotation and the strong hydrodynamic wall effect would impose a driving force to move the PSMR translationally, and about more than 60% of the time, the PSMR neither rotates nor moves translationally. Based on this discretized motion nature, an analytic expression for qm is found to be determined by the shape of the surface walker, the hydrodynamics near a wall, and the magnetic properties of the surface walker. This work can help us to better understand the motion of magnetic surface walkers and gain insight into designing better micro-/nanomotors.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|