1
|
Bagnoli E, Lin YE, Burel S, Jaimon E, Antico O, Themistokleous C, Nikoloff JM, Squires S, Morella I, Watzlawik JO, Fiesel FC, Springer W, Tonelli F, Lis P, Brooks SP, Dunnett SB, Brambilla R, Alessi DR, Pfeffer SR, Muqit MMK. Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain. Proc Natl Acad Sci U S A 2025; 122:e2412029122. [PMID: 39874296 PMCID: PMC11804522 DOI: 10.1073/pnas.2412029122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/08/2024] [Indexed: 01/30/2025] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation. In addition, we observe that a pool of the Rab-specific, protein phosphatase family member 1H phosphatase, is transcriptionally up-regulated and recruited to damaged mitochondria, independent of PINK1 or LRRK2 activity. Parallel signaling of LRRK2 and PINK1 pathways is supported by assessment of motor behavioral studies that show no evidence of genetic interaction in crossed mouse lines. Previously we showed loss of cilia in LRRK2 R1441C mice and herein we show that PINK1 KO mice exhibit a ciliogenesis defect in striatal cholinergic interneurons and astrocytes that interferes with Hedgehog induction of glial derived-neurotrophic factor transcription. This is not exacerbated in double-mutant LRRK2 and PINK1 mice. Overall, our analysis indicates that LRRK2 activation and/or loss of PINK1 function along parallel pathways to impair ciliogenesis, suggesting a convergent mechanism toward PD. Our data suggest that reversal of defects downstream of ciliogenesis offers a common therapeutic strategy for LRRK2 or PINK1 PD patients, whereas LRRK2 inhibitors that are currently in clinical trials are unlikely to benefit PINK1 PD patients.
Collapse
Affiliation(s)
- Enrico Bagnoli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Yu-En Lin
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Sophie Burel
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Ebsy Jaimon
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Odetta Antico
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Christos Themistokleous
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Jonas M. Nikoloff
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Samuel Squires
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Ilaria Morella
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia27100, Italy
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | | | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL32224
- Neuroscience PhD Program, Mayo Clinic, Graduate School of Biomedical Sciences, Jacksonville, FL32224
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL32224
- Neuroscience PhD Program, Mayo Clinic, Graduate School of Biomedical Sciences, Jacksonville, FL32224
| | - Francesca Tonelli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Pawel Lis
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Simon P. Brooks
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | - Stephen B. Dunnett
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | - Riccardo Brambilla
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia27100, Italy
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Suzanne R. Pfeffer
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Miratul M. K. Muqit
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
2
|
Zhang J, Liu S, Li Y, Xu G, Deng H, King-Jones K, Li S. Nutrient status alters developmental fates via a switch in mitochondrial homeodynamics. Nat Commun 2025; 16:1258. [PMID: 39893174 PMCID: PMC11787341 DOI: 10.1038/s41467-025-56528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Steroid hormones are powerful endocrine regulators, but little is known about how environmental conditions modulate steroidogenesis to reprogram developmental fates. Here, we use the Drosophila prothoracic gland (PG) to investigate how a nutrient restriction checkpoint (NRC) ensures or blocks developmental progression and sexual maturation via regulating steroidogenesis. Extensive transcriptome analysis of the PG reveals that pre-NRC starvation significantly downregulates mitochondria-associated genes. Pre-NRC starvation reduces prothoracicotropic neuropeptide hormone signaling, insulin signaling, and TORC1 activity in PG cells, which prevent mitochondrial fragmentation and import of Disembodied, a key steroidogenic enzyme. Ultimately, pre-NRC starvation causes severe mitophagy and proteasome dysfunction, blocking steroidogenesis and metamorphosis. By contrast, post-NRC starvation does not impair mitochondrial homeostasis in PG cells but reduces sit expression and induces moderate autophagy to promote steroidogenesis, leading to precocious metamorphosis. This study constitutes a paradigm for exploring how steroid hormone levels are controlled in response to environmental stress during developmental checkpoints.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China.
| | - Yang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guanfeng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Huimin Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China.
| |
Collapse
|
3
|
Tahmasebinia F, Tang Y, Tang R, Zhang Y, Bonderer W, de Oliveira M, Laboret B, Chen S, Jian R, Jiang L, Snyder M, Chen CH, Shen Y, Liu Q, Liu B, Wu Z. The 40S ribosomal subunit recycling complex modulates mitochondrial dynamics and endoplasmic reticulum - mitochondria tethering at mitochondrial fission/fusion hotspots. Nat Commun 2025; 16:1021. [PMID: 39863576 PMCID: PMC11762756 DOI: 10.1038/s41467-025-56346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function. The complex binds to fission-fusion proteins located at mitochondrial hotspots, regulating the functional assembly of endoplasmic reticulum-mitochondria contact sites (ERMCSs). Furthermore, it alters the activity of mTORC1/2 pathways, suggesting a link between quality control and energy fluctuations. Effective communication is essential for resolving proteostasis-related stresses. Our study illustrates that the USP10-G3BP1 complex acts as a hub that interacts with various pathways to adapt to environmental stimuli promptly. It advances our molecular understanding of RQC regulation and helps explain the pathogenesis of human proteostasis and mitochondrial dysfunction diseases.
Collapse
Affiliation(s)
- Foozhan Tahmasebinia
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Yinglu Tang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Rushi Tang
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yi Zhang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Will Bonderer
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Maisa de Oliveira
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Bretton Laboret
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Yawei Shen
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Boxiang Liu
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore.
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|
4
|
Schmid ET, Schinaman JM, Liu-Abramowicz N, Williams KS, Walker DW. Accumulation of F-actin drives brain aging and limits healthspan in Drosophila. Nat Commun 2024; 15:9238. [PMID: 39455560 PMCID: PMC11512044 DOI: 10.1038/s41467-024-53389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The actin cytoskeleton is a key determinant of cell structure and homeostasis. However, possible tissue-specific changes to actin dynamics during aging, notably brain aging, are not understood. Here, we show that there is an age-related increase in filamentous actin (F-actin) in Drosophila brains, which is counteracted by prolongevity interventions. Critically, decreasing F-actin levels in aging neurons prevents age-onset cognitive decline and extends organismal healthspan. Mechanistically, we show that autophagy, a recycling process required for neuronal homeostasis, is disabled upon actin dysregulation in the aged brain. Remarkably, disrupting actin polymerization in aged animals with cytoskeletal drugs restores brain autophagy to youthful levels and reverses cellular hallmarks of brain aging. Finally, reducing F-actin levels in aging neurons slows brain aging and promotes healthspan in an autophagy-dependent manner. Our data identify excess actin polymerization as a hallmark of brain aging, which can be targeted to reverse brain aging phenotypes and prolong healthspan.
Collapse
Affiliation(s)
- Edward T Schmid
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Joseph M Schinaman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Naomi Liu-Abramowicz
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kylie S Williams
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Bitar S, Baumann T, Weber C, Abusaada M, Rojas-Charry L, Ziegler P, Schettgen T, Randerath IE, Venkataramani V, Michalke B, Hanschmann EM, Arena G, Krueger R, Zhang L, Methner A. Iron-sulfur cluster loss in mitochondrial CISD1 mediates PINK1 loss-of-function phenotypes. eLife 2024; 13:e97027. [PMID: 39159312 PMCID: PMC11383524 DOI: 10.7554/elife.97027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain. Familial cases of PD are often caused by mutations of PTEN-induced kinase 1 (PINK1) and the ubiquitin ligase Parkin, both pivotal in maintaining mitochondrial quality control. CISD1, a homodimeric mitochondrial iron-sulfur-binding protein, is a major target of Parkin-mediated ubiquitination. We here discovered a heightened propensity of CISD1 to form dimers in Pink1 mutant flies and in dopaminergic neurons from PINK1 mutation patients. The dimer consists of two monomers that are covalently linked by a disulfide bridge. In this conformation CISD1 cannot coordinate the iron-sulfur cofactor. Overexpressing Cisd, the Drosophila ortholog of CISD1, and a mutant Cisd incapable of binding the iron-sulfur cluster in Drosophila reduced climbing ability and lifespan. This was more pronounced with mutant Cisd and aggravated in Pink1 mutant flies. Complete loss of Cisd, in contrast, rescued all detrimental effects of Pink1 mutation on climbing ability, wing posture, dopamine levels, lifespan, and mitochondrial ultrastructure. Our results suggest that Cisd, probably iron-depleted Cisd, operates downstream of Pink1 shedding light on PD pathophysiology and implicating CISD1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Sara Bitar
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Mainz, Germany
| | - Timo Baumann
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Mainz, Germany
| | - Christopher Weber
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Mainz, Germany
| | - Majd Abusaada
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Mainz, Germany
| | - Liliana Rojas-Charry
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Mainz, Germany
| | - Patrick Ziegler
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - Isabella Eva Randerath
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German, Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Eva-Maria Hanschmann
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Giuseppe Arena
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
| | - Rejko Krueger
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg
- Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Li Zhang
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Mainz, Germany
| | - Axel Methner
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute for Molecular Medicine, Mainz, Germany
| |
Collapse
|
6
|
Martinez A, Sanchez-Martinez A, Pickering JT, Twyning MJ, Terriente-Felix A, Chen PL, Chen CH, Whitworth AJ. Mitochondrial CISD1/Cisd accumulation blocks mitophagy and genetic or pharmacological inhibition rescues neurodegenerative phenotypes in Pink1/parkin models. Mol Neurodegener 2024; 19:12. [PMID: 38273330 PMCID: PMC10811860 DOI: 10.1186/s13024-024-00701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction and toxic protein aggregates have been shown to be key features in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease (PD). Functional analysis of genes linked to PD have revealed that the E3 ligase Parkin and the mitochondrial kinase PINK1 are important factors for mitochondrial quality control. PINK1 phosphorylates and activates Parkin, which in turn ubiquitinates mitochondrial proteins priming them and the mitochondrion itself for degradation. However, it is unclear whether dysregulated mitochondrial degradation or the toxic build-up of certain Parkin ubiquitin substrates is the driving pathophysiological mechanism leading to PD. The iron-sulphur cluster containing proteins CISD1 and CISD2 have been identified as major targets of Parkin in various proteomic studies. METHODS We employed in vivo Drosophila and human cell culture models to study the role of CISD proteins in cell and tissue viability as well as aged-related neurodegeneration, specifically analysing aspects of mitophagy and autophagy using orthogonal assays. RESULTS We show that the Drosophila homolog Cisd accumulates in Pink1 and parkin mutant flies, as well as during ageing. We observed that build-up of Cisd is particularly toxic in neurons, resulting in mitochondrial defects and Ser65-phospho-Ubiquitin accumulation. Age-related increase of Cisd blocks mitophagy and impairs autophagy flux. Importantly, reduction of Cisd levels upregulates mitophagy in vitro and in vivo, and ameliorates pathological phenotypes in locomotion, lifespan and neurodegeneration in Pink1/parkin mutant flies. In addition, we show that pharmacological inhibition of CISD1/2 by rosiglitazone and NL-1 induces mitophagy in human cells and ameliorates the defective phenotypes of Pink1/parkin mutants. CONCLUSION Altogether, our studies indicate that Cisd accumulation during ageing and in Pink1/parkin mutants is a key driver of pathology by blocking mitophagy, and genetically and pharmacologically inhibiting CISD proteins may offer a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Aitor Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain.
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Jake T Pickering
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Madeleine J Twyning
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Ana Terriente-Felix
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Po-Lin Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
7
|
Ham SJ, Yoo H, Woo D, Lee DH, Park KS, Chung J. PINK1 and Parkin regulate IP 3R-mediated ER calcium release. Nat Commun 2023; 14:5202. [PMID: 37626046 PMCID: PMC10457342 DOI: 10.1038/s41467-023-40929-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Although defects in intracellular calcium homeostasis are known to play a role in the pathogenesis of Parkinson's disease (PD), the underlying molecular mechanisms remain unclear. Here, we show that loss of PTEN-induced kinase 1 (PINK1) and Parkin leads to dysregulation of inositol 1,4,5-trisphosphate receptor (IP3R) activity, robustly increasing ER calcium release. In addition, we identify that CDGSH iron sulfur domain 1 (CISD1, also known as mitoNEET) functions downstream of Parkin to directly control IP3R. Both genetic and pharmacologic suppression of CISD1 and its Drosophila homolog CISD (also known as Dosmit) restore the increased ER calcium release in PINK1 and Parkin null mammalian cells and flies, respectively, demonstrating the evolutionarily conserved regulatory mechanism of intracellular calcium homeostasis by the PINK1-Parkin pathway. More importantly, suppression of CISD in PINK1 and Parkin null flies rescues PD-related phenotypes including defective locomotor activity and dopaminergic neuronal degeneration. Based on these data, we propose that the regulation of ER calcium release by PINK1 and Parkin through CISD1 and IP3R is a feasible target for treating PD pathogenesis.
Collapse
Affiliation(s)
- Su Jin Ham
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heesuk Yoo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daihn Woo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da Hyun Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
| | - Jongkyeong Chung
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Hao T, Yu J, Wu Z, Jiang J, Gong L, Wang B, Guo H, Zhao H, Lu B, Engelender S, He H, Song Z. Hypoxia-reprogramed megamitochondrion contacts and engulfs lysosome to mediate mitochondrial self-digestion. Nat Commun 2023; 14:4105. [PMID: 37433770 DOI: 10.1038/s41467-023-39811-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
Mitochondria are the key organelles for sensing oxygen, which is consumed by oxidative phosphorylation to generate ATP. Lysosomes contain hydrolytic enzymes that degrade misfolded proteins and damaged organelles to maintain cellular homeostasis. Mitochondria physically and functionally interact with lysosomes to regulate cellular metabolism. However, the mode and biological functions of mitochondria-lysosome communication remain largely unknown. Here, we show that hypoxia remodels normal tubular mitochondria into megamitochondria by inducing broad inter-mitochondria contacts and subsequent fusion. Importantly, under hypoxia, mitochondria-lysosome contacts are promoted, and certain lysosomes are engulfed by megamitochondria, in a process we term megamitochondria engulfing lysosome (MMEL). Both megamitochondria and mature lysosomes are required for MMEL. Moreover, the STX17-SNAP29-VAMP7 complex contributes to mitochondria-lysosome contacts and MMEL under hypoxia. Intriguingly, MMEL mediates a mode of mitochondrial degradation, which we termed mitochondrial self-digestion (MSD). Moreover, MSD increases mitochondrial ROS production. Our results reveal a mode of crosstalk between mitochondria and lysosomes and uncover an additional pathway for mitochondrial degradation.
Collapse
Affiliation(s)
- Tianshu Hao
- College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jianglong Yu
- College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhida Wu
- College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jie Jiang
- College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China
| | - Longlong Gong
- College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China
| | - Bingjun Wang
- College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China
| | - Hanze Guo
- College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China
| | - Huabin Zhao
- College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China
| | - Bin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Simone Engelender
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - He He
- College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Zhiyin Song
- College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
9
|
Zhou YX, Wei J, Deng G, Hu A, Sun PY, Zhao X, Song BL, Luo J. Delivery of low-density lipoprotein from endocytic carriers to mitochondria supports steroidogenesis. Nat Cell Biol 2023:10.1038/s41556-023-01160-6. [PMID: 37277481 DOI: 10.1038/s41556-023-01160-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 05/01/2023] [Indexed: 06/07/2023]
Abstract
The low-density lipoprotein (LDL) is a major cholesterol carrier in circulation and is internalized into cells through LDL receptor (LDLR)-mediated endocytosis. The LDLR protein is highly expressed in the steroidogenic organs and LDL cholesterol is an important source for steroidogenesis. Cholesterol must be transported into the mitochondria, where steroid hormone biosynthesis initiates. However, how LDL cholesterol is conveyed to the mitochondria is poorly defined. Here, through genome-wide small hairpin RNA screening, we find that the outer mitochondrial membrane protein phospholipase D6 (PLD6), which hydrolyses cardiolipin to phosphatidic acid, accelerates LDLR degradation. PLD6 promotes the entrance of LDL and LDLR into the mitochondria, where LDLR is degraded by mitochondrial proteases and LDL-carried cholesterol is used for steroid hormone biosynthesis. Mechanistically, the outer mitochondrial membrane protein CISD2 binds to the cytosolic tail of LDLR and tethers LDLR+ vesicles to the mitochondria. The fusogenic lipid phosphatidic acid generated by PLD6 facilitates the membrane fusion of LDLR+ vesicles with the mitochondria. This intracellular transport pathway of LDL-LDLR bypasses the lysosomes and delivers cholesterol to the mitochondria for steroidogenesis.
Collapse
Affiliation(s)
- Yu-Xia Zhou
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Jian Wei
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Gang Deng
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Ao Hu
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Pu-Yu Sun
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Xiaolu Zhao
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China.
| | - Jie Luo
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
McCoin CS, Franczak E, Washburn MP, Sardiu ME, Thyfault JP. Acute exercise dynamically modulates the hepatic mitochondrial proteome. Mol Omics 2022; 18:840-852. [PMID: 35929479 PMCID: PMC9633379 DOI: 10.1039/d2mo00143h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exercise powerfully increases energy metabolism and substrate flux in tissues, a process reliant on dramatic changes in mitochondrial energetics. Liver mitochondria play a multi-factorial role during exercise to fuel hepatic glucose output. We previously showed acute exercise activates hepatic mitophagy, a pathway to recycle low-functioning/damaged mitochondria, however little is known how individual bouts of exercise alters the hepatic mitochondrial proteome. Here we leveraged proteomics to examine changes in isolated hepatic mitochondria both immediately after and 2 hours post an acute, 1 hour bout of treadmill exercise in female mice. Further, we utilized leupeptin, a lysosomal inhibitor, to capture and measure exercise-induced changes in mitochondrial proteins that would have been unmeasured due to their targeting for lysosomal degradation. Proteomic analysis of enriched hepatic mitochondria identified 3241 total proteins. Functional enrichment analysis revealed robust enrichment for proteins critical to the mitochondria including metabolic pathways, tricarboxylic acid cycle, and electron transport system. Compared to the sedentary condition, exercise elevated processes regulating lipid localization, Il-5 signaling, and protein phosphorylation in isolated mitochondria. t-SNE analysis identified 4 unique expressional clusters driven by time-dependent changes in protein expression. Isolation of proteins significantly altered with exercise from each cluster revealed influences of leupeptin and exercise both independently and cooperatively modulating mitochondrial protein expressional profiles. Overall, we provide evidence that acute exercise rapidly modulates changes in the proteins/pathways of isolated hepatic mitochondria that include fatty acid metabolism/storage, post-translational protein modification, inflammation, and oxidative stress. In conclusion, the hepatic mitochondrial proteome undergoes extensive remodeling with a bout of exercise.
Collapse
Affiliation(s)
- Colin S McCoin
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, 64128, USA
- KU Diabetes Institute and Kansas Center for Metabolism and Obesity Research, Kansas City, MO, 64128, USA
| | - Edziu Franczak
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Michael P Washburn
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mihaela E Sardiu
- Department of Biostatistics and Data Science, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - John P Thyfault
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, 64128, USA
- KU Diabetes Institute and Kansas Center for Metabolism and Obesity Research, Kansas City, MO, 64128, USA
- Department of Internal Medicine-Division of Endocrinology and Metabolism, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Kansas City Veterans Affairs Medical Center, Kansas City, MO, 64128, USA
| |
Collapse
|
11
|
Liu P, Chang K, Requejo G, Bai H. mTORC2 protects the heart from high-fat diet-induced cardiomyopathy through mitochondrial fission in Drosophila. Front Cell Dev Biol 2022; 10:866210. [PMID: 35912118 PMCID: PMC9334792 DOI: 10.3389/fcell.2022.866210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
High-fat diet (HFD)-induced obesity has become the major risk factor for the development of cardiovascular diseases, but the underlying mechanisms remain poorly understood. Here, we use Drosophila as a model to study the role of mTORC2 in HFD-induced mitochondrial fission and cardiac dysfunction. We find that knockdown of mTORC2 subunit rictor blocks HFD-induced mitochondrial fragmentation and Drp1 recruitment. Knockdown of rictor further impairs cardiac contractile function under HFD treatment. Surprisingly, knockdown of Akt, the major effector of mTORC2, did not affect HFD-induced mitochondrial fission. Similar to mTORC2 inhibition, knockdown of Drp1 blocks HFD-induced mitochondrial fragmentation and induces contractile defects. Furthermore, overexpression of Drp1 restored HFD-induced mitochondrial fragmentation in rictor knockdown flies. Thus, we uncover a novel function of mTORC2 in protecting the heart from HFD treatment through Drp1-dependent mitochondrial fission.
Collapse
Affiliation(s)
- Peiduo Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kai Chang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Guillermo Requejo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Hua Bai
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
12
|
Mitochondrial a Kinase Anchor Proteins in Cardiovascular Health and Disease: A Review Article on Behalf of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology. Int J Mol Sci 2022; 23:ijms23147691. [PMID: 35887048 PMCID: PMC9322728 DOI: 10.3390/ijms23147691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.
Collapse
|
13
|
Qu C, Yang W, Kan Y, Zuo H, Wu M, Zhang Q, Wang H, Wang D, Chen J. RhoA/ROCK Signaling Regulates Drp1-Mediated Mitochondrial Fission During Collective Cell Migration. Front Cell Dev Biol 2022; 10:882581. [PMID: 35712666 PMCID: PMC9194559 DOI: 10.3389/fcell.2022.882581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Collective migration plays critical roles in developmental, physiological and pathological processes, and requires a dynamic actomyosin network for cell shape change, cell adhesion and cell-cell communication. The dynamic network of mitochondria in individual cells is regulated by mitochondrial fission and fusion, and is required for cellular processes including cell metabolism, apoptosis and cell division. But whether mitochondrial dynamics interplays with and regulates actomyosin dynamics during collective migration is not clear. Here, we demonstrate that proper regulation of mitochondrial dynamics is critical for collective migration of Drosophila border cells during oogenesis, and misregulation of fission or fusion results in reduction of ATP levels. Specifically, Drp1 is genetically required for border cell migration, and Drp1-mediated mitochondrial fission promotes formation of leading protrusion, likely through its regulation of ATP levels. Reduction of ATP levels by drug treatment also affects protrusion formation as well as actomyosin dynamics. Importantly, we find that RhoA/ROCK signaling, which is essential for actin and myosin dynamics during border cell migration, could exert its effect on mitochondrial fission through regulating Drp1’s recruitment to mitochondria. These findings suggest that RhoA/ROCK signaling may couple or coordinate actomyosin dynamics with mitochondrial dynamics to achieve optimal actomyosin function, leading to protrusive and migratory behavior.
Collapse
Affiliation(s)
- Chen Qu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yating Kan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Hui Zuo
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Mengqi Wu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Qing Zhang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Heng Wang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Heng Wang, ; Dou Wang, ; Jiong Chen,
| | - Dou Wang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Heng Wang, ; Dou Wang, ; Jiong Chen,
| | - Jiong Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Heng Wang, ; Dou Wang, ; Jiong Chen,
| |
Collapse
|
14
|
He Y, Chen Y, Yao L, Wang J, Sha X, Wang Y. The Inflamm-Aging Model Identifies Key Risk Factors in Atherosclerosis. Front Genet 2022; 13:865827. [PMID: 35706446 PMCID: PMC9191626 DOI: 10.3389/fgene.2022.865827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Atherosclerosis, one of the main threats to human life and health, is driven by abnormal inflammation (i.e., chronic inflammation or oxidative stress) during accelerated aging. Many studies have shown that inflamm-aging exerts a significant impact on the occurrence of atherosclerosis, particularly by inducing an immune homeostasis imbalance. However, the potential mechanism by which inflamm-aging induces atherosclerosis needs to be studied more thoroughly, and there is currently a lack of powerful prediction models.Methods: First, an improved inflamm-aging prediction model was constructed by integrating aging, inflammation, and disease markers with the help of machine learning methods; then, inflamm-aging scores were calculated. In addition, the causal relationship between aging and disease was identified using Mendelian randomization. A series of risk factors were also identified by causal analysis, sensitivity analysis, and network analysis.Results: Our results revealed an accelerated inflamm-aging pattern in atherosclerosis and suggested a causal relationship between inflamm-aging and atherosclerosis. Mechanisms involving inflammation, nutritional balance, vascular homeostasis, and oxidative stress were found to be driving factors of atherosclerosis in the context of inflamm-aging.Conclusion: In summary, we developed a model integrating crucial risk factors in inflamm-aging and atherosclerosis. Our computation pipeline could be used to explore potential mechanisms of related diseases.
Collapse
Affiliation(s)
- Yudan He
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Yao Chen
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Lilin Yao
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Junyi Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yin Wang,
| |
Collapse
|
15
|
UQCRC1 engages cytochrome c for neuronal apoptotic cell death. Cell Rep 2021; 36:109729. [PMID: 34551295 DOI: 10.1016/j.celrep.2021.109729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/15/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Human ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) is an evolutionarily conserved core subunit of mitochondrial respiratory chain complex III. We recently identified the disease-associated variants of UQCRC1 from patients with familial parkinsonism, but its function remains unclear. Here we investigate the endogenous function of UQCRC1 in the human neuronal cell line and the Drosophila nervous system. Flies with neuronal knockdown of uqcrc1 exhibit age-dependent parkinsonism-resembling defects, including dopaminergic neuron reduction and locomotor decline, and are ameliorated by UQCRC1 expression. Lethality of uqcrc1-KO is also rescued by neuronally expressing UQCRC1, but not the disease-causing variant, providing a platform to discern the pathogenicity of this mutation. Furthermore, UQCRC1 associates with the apoptosis trigger cytochrome c (cyt-c), and uqcrc1 deficiency increases cyt-c in the cytoplasmic fraction and activates the caspase cascade. Depleting cyt-c or expression of the anti-apoptotic p35 ameliorates uqcrc1-mediated neurodegeneration. Our findings identify a role for UQCRC1 in regulating cyt-c-induced apoptosis.
Collapse
|
16
|
Prole DL, Chinnery PF, Jones NS. Visualizing, quantifying, and manipulating mitochondrial DNA in vivo. J Biol Chem 2020; 295:17588-17601. [PMID: 33454000 PMCID: PMC7762947 DOI: 10.1074/jbc.rev120.015101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial DNA (mtDNA) encodes proteins and RNAs that support the functions of mitochondria and thereby numerous physiological processes. Mutations of mtDNA can cause mitochondrial diseases and are implicated in aging. The mtDNA within cells is organized into nucleoids within the mitochondrial matrix, but how mtDNA nucleoids are formed and regulated within cells remains incompletely resolved. Visualization of mtDNA within cells is a powerful means by which mechanistic insight can be gained. Manipulation of the amount and sequence of mtDNA within cells is important experimentally and for developing therapeutic interventions to treat mitochondrial disease. This review details recent developments and opportunities for improvements in the experimental tools and techniques that can be used to visualize, quantify, and manipulate the properties of mtDNA within cells.
Collapse
Affiliation(s)
- David L Prole
- Department of Mathematics, Imperial College London, London, United Kingdom; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom; Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, United Kingdom.
| |
Collapse
|