1
|
Chen R, Li C, Zhao D, Yang G, Zeng L, Lin F, Xu H. Fabricating supramolecular pre-emergence herbicide CPAM-BPyHs for farming herbicide-resistant rice. Nat Commun 2025; 16:4347. [PMID: 40348750 PMCID: PMC12065884 DOI: 10.1038/s41467-025-59582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
Controlling weeds before their emergence is crucial for minimizing their impacts on crop yield and quality. Bipyridyl herbicides (BPyHs), a class of highly effective and broad-spectrum herbicides, cannot be used as pre-emergence herbicides because they can be absorbed and inactivated by negatively charged soil after application. Here, we design and fabricate an adsorbed-but-active supramolecular pre-emergence herbicide consisting of cationic polyacrylamide and bipyridyl herbicides (CPAM-BPyHs). CPAM is a positively charged polymer. It can preferentially bind to soil particles and shift their electric potential to a more positive value. Thus, it prevents not only runoff but also inactivation of BPyHs. We also develop a BPyHs-resistant rice line by mutation of the gene encoding L-type amino acid transporter 5 (OsLAT5). Field trial results show that the weed control efficiency of CPAM-diquat for direct-seeded herbicide-resistant rice line exceeds 90%. The herbicidal activity can maintain up to one month with only one application. This work offers a method for rice weed control and provides insights into the design of pesticides to prevent soil inactivation and runoff.
Collapse
Affiliation(s)
- Ronghua Chen
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Chaozheng Li
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Di Zhao
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guili Yang
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Lingda Zeng
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Fei Lin
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Mangan RM, Tinsley MC, Ferrari E, Polanczyk RA, Bussière LF. Crop diversity induces trade-offs in microbial biopesticide susceptibility that could delay pest resistance evolution. PLoS Pathog 2025; 21:e1013150. [PMID: 40392919 DOI: 10.1371/journal.ppat.1013150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/19/2025] [Indexed: 05/22/2025] Open
Abstract
Pathogens often exert strong selection on host populations, yet considerable genetic variation for infection defence persists. Environmental heterogeneity may cause fitness trade-offs that prevent fixation of host alleles affecting survival when exposed to pathogens in wild populations. Pathogens are extensively used in biocontrol for crop protection. However, the risks of pest resistance evolution to biocontrol are frequently underappreciated: the key drivers of fitness trade-offs for pathogen resistance remain unclear, both in natural and managed populations. We investigate whether pathogen identity or host diet has a stronger effect on allelic fitness by quantifying genetic variation and covariation for survival in an insect pest across distinct combinations of fungal pathogen infection and plant diet. We demonstrate substantial heritability, indicating considerable risks of biopesticide resistance evolution. Contrary to conventional thinking in host-pathogen biology, we found no strong genetic trade-offs for surviving exposure to two different fungal pathogen species. However, changes in plant diet dramatically altered selection, revealing diet-mediated genetic trade-offs affecting pest survival. Our data suggest that trade-offs in traits not strictly related to infection responses could nevertheless maintain genetic variation in natural and agricultural landscapes.
Collapse
Affiliation(s)
- Rosie M Mangan
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Matthew C Tinsley
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Ester Ferrari
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Ricardo A Polanczyk
- Júlio de Mesquita Filho State University of São Paulo, Faculty of Agrarian and Veterinary Sciences of Jaboticabal, Jaboticabal, São Paulo, Brazil
| | - Luc F Bussière
- Biological and Environmental Sciences & Gothenburg Global Biodiversity Centre, The University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Zhao Q, Zhou W, Lv W, Yuan Q, Zhang Y, Yang H, Huang W, Lv W. Long-term rice-eel co-culture system effectively alleviated the accumulation of antibiotic resistance genes in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125099. [PMID: 40121985 DOI: 10.1016/j.jenvman.2025.125099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Alleviating the accumulation of antibiotic resistance genes (ARGs) in farmlands is crucial for restricting the transfer of ARGs to crops and controlling the soil-borne microbiological health risk. Rice and eel co-culture (REC) systems have recently been used as an emerging integrated farming model that can stabilize grain yields and improve fertilizer availability. However, the influence of long-term REC system concerning the aggregation and health risk of ARGs in rice fields is still unclear. Here, we deciphered firstly the profile, potential of pathogenicity and mobility, and bacterial hosts for soil ARGs in the long-term REC system compared to the mono-rice (MR) culture system by collecting soil samples from 12 rice fields in Shanghai. The long-term REC system alleviated the accumulation of ARGs in soil, which is manifested in the abundance decrease of total ARGs and 11 ARG types (e.g., multidrug and aminoglycoside). The frequency of ARGs co-occurring with VFGs and MGEs was lower in the long-term REC system than in the MR system, indicating the lower pathogenicity and mobility potential for ARGs. The soil microbial community was identified to primarily drive the ARG discrepancy between the long-term REC and MR systems. In comparison with the MR system, long-term REC weakened the competitive advantage of ARG bacterial hosts, which might contribute to the decreased prevalence of antibiotic resistance. Overall, these findings uncovered the important role of long-term REC system in alleviating the accumulation of soil ARGs, providing theoretical support for antibiotic resistance risk control and sustainable agricultural strategic management.
Collapse
Affiliation(s)
- Qingqing Zhao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Wenzong Zhou
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Weiwei Lv
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Quan Yuan
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yuning Zhang
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Hang Yang
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Weiwei Huang
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Weiguang Lv
- Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| |
Collapse
|
4
|
Goldberg-Cavalleri A, Franco-Ortega S, Brown S, Walker A, Rougemont B, Sinclair J, Brazier-Hicks M, Dale R, Onkokesung N, Edwards R. Functional Characterization of Cytochromes P450 Linked to Herbicide Detoxification and Selectivity in Winter Wheat and the Problem Competing Weed Blackgrass. ACS OMEGA 2025; 10:12270-12287. [PMID: 40191331 PMCID: PMC11966285 DOI: 10.1021/acsomega.4c11069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
The selective chemical control of wild grasses in wheat is primarily determined by the relative rates of herbicide metabolism, with the superfamily of cytochromes P450 (CYPs) playing a major role in catalyzing phase 1 detoxification reactions. This selectivity is enhanced by herbicide safeners, which induce CYP expression in cereals, or challenged by the evolution of nontarget site resistance (NTSR) in weeds such as blackgrass. Using transcriptomics, proteomics, and functional expression in recombinant yeast, CYPs linked to safener treatment and NTSR have been characterized in wheat and blackgrass. Safener treatment resulted in the induction of 13 families of CYPs in wheat and 5 in blackgrass, with CYP71, CYP72, CYP76, and CYP81 members active toward selective herbicides in the crop. Based on their expression and functional activities, three inducible TaCYP81s were shown to have major roles in safening in wheat. In contrast, a single AmCYP81 that was enhanced by NTSR, but not by safening, was found to dominate herbicide detoxification in blackgrass.
Collapse
Affiliation(s)
- Alina Goldberg-Cavalleri
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Sara Franco-Ortega
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Stewart Brown
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Andrew Walker
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | | | - John Sinclair
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire, Warfield RG42 6EY, U.K.
| | | | - Richard Dale
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire, Warfield RG42 6EY, U.K.
| | - Nawaporn Onkokesung
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Robert Edwards
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| |
Collapse
|
5
|
Li Z, Song J, Liu M, Tian J, Bai L, Pan L. Overexpressing of GT8 confers resistance to fenoxaprop-P-ethyl in Alopecurus japonicus. PEST MANAGEMENT SCIENCE 2025. [PMID: 40084545 DOI: 10.1002/ps.8764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Alopecurus japonicus is one of the most predominant weeds in wheat fields across China, where significant herbicide resistance has emerged over the past decade. RESULTS When compared to the susceptible (S) population, the resistant (R) population exhibited a 9.48-fold increase in resistance to fenoxaprop-P-ethyl. The R population displayed cross-resistance to haloxyfop-P-methyl, quizalofop-P-ethyl, clodinafop-propargyl, sethoxydim, clethodim and pinoxaden. No known resistance mutations or overexpression of ACCase were detected in the R population. The R population showed enhanced metabolism of fenoxaprop-P-ethyl, as evidenced by high-performance liquid chromatography analysis. The cytochrome P450 (CYP450) inhibitor malathion and the glutathione-S-transferase (GST) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) partially reversed resistance to fenoxaprop-P-ethyl in the R population. Six upregulated genes were identified via RNA-sequencing, including two CYP450 genes (CYP86B1 and CYP71C1), one GST gene (GSTT1) and three glycosyl transferase (GT) genes (UGT73C, GT8 and CGT). Specifically, the expression of GT8 in yeast decreased sensitivity to fenoxaprop-P-ethyl, suggesting its potential involvement in herbicide metabolism. Molecular docking analysis further suggests that GT8 may be involved in herbicide metabolism. CONCLUSION Our findings not only identified GT8 as partially responsible for the resistance of A. japonicus to fenoxaprop-P-ethyl, but also provide a valuable resource for crop genetic engineering. These insights also could inform the development of effective management strategies for A. japonicus. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zongfang Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jiarui Song
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Min Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Junhui Tian
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Wright J, Baker K, Barker T, Catchpole L, Durrant A, Fraser F, Gharbi K, Harrison C, Henderson S, Irish N, Kaithakottil G, Leitch IJ, Li J, Lucchini S, Neve P, Powell R, Rees H, Swarbreck D, Watkins C, Wood J, McTaggart S, Hall A, MacGregor D. Chromosome-scale genome assembly and de novo annotation of Alopecurus aequalis. Sci Data 2024; 11:1368. [PMID: 39695199 PMCID: PMC11655881 DOI: 10.1038/s41597-024-04222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Alopecurus aequalis is a winter annual or short-lived perennial bunchgrass which has in recent years emerged as the dominant agricultural weed of barley and wheat in certain regions of China and Japan, causing significant yield losses. Its robust tillering capacity and high fecundity, combined with the development of both target and non-target-site resistance to herbicides means it is a formidable challenge to food security. Here we report on a chromosome-scale assembly of A. aequalis with a genome size of 2.83 Gb. The genome contained 33,758 high-confidence protein-coding genes with functional annotation. Comparative genomics revealed that the genome structure of A. aequalis is more similar to Hordeum vulgare rather than the more closely related Alopecurus myosuroides.
Collapse
Affiliation(s)
| | - Kendall Baker
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Tom Barker
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Alex Durrant
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Fiona Fraser
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Christian Harrison
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, UK
- University College London, Rayne Building, University Street, London, UK
| | | | - Naomi Irish
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | | - Jun Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Paul Neve
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, UK
- University of Copenhagen, Plant and Environmental Sciences, Taastrup, Denmark
| | - Robyn Powell
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Hannah Rees
- Earlham Institute, Norwich Research Park, Norwich, UK
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, Wales, UK
| | | | - Chris Watkins
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Jonathan Wood
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Dana MacGregor
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, UK.
| |
Collapse
|
7
|
Sun P, Niu L, He P, Yu H, Chen J, Cui H, Li X. Trp-574-Leu and the novel Pro-197-His/Leu mutations contribute to penoxsulam resistance in Echinochloa crus-galli (L.) P. Beauv. FRONTIERS IN PLANT SCIENCE 2024; 15:1488976. [PMID: 39654963 PMCID: PMC11625580 DOI: 10.3389/fpls.2024.1488976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Recently, due to the widespread use of the acetolactate synthase (ALS)-inhibiting herbicide penoxsulam in paddy fields in China, Echinochloa crus-galli (L.) P. Beauv. has become a problematic grass weed that is frequently not controlled, posing a threat to weed management and rice yield. There are many reports on target-site mutations of ALS inhibiting herbicides; however, the detailed penoxsulam resistance mechanism in E. crus-galli remains to be determined. Greenhouse and laboratory studies were conducted to characterize target-site resistance mechanisms in JL-R, AH-R, and HLJ-R suspected resistant populations of E. crus-galli survived the field-recommended dose of penoxsulam. The whole-plant dose-response testing of E. crus-galli to penoxsulam confirmed the evolution of moderate-level resistance in two populations, JL-R (9.88-fold) and HLJ-R (8.66-fold), and a high-level resistance in AH-R (59.71-fold) population. ALS gene sequencing identified specific mutations in resistant populations, including Pro-197-His in ALS1 for JL-R, Trp-574-Leu in ALS1 for AH-R, and Pro-197-Leu in ALS2 for HLJ-R. In vitro ALS activity assays demonstrated a significantly higher activity in AH-R compared to the susceptible population (YN-S). Molecular docking studies revealed that Trp-574-Leu mutation primarily reduced the enzyme's ability to bind to the triazole-pyrimidine ring of penoxsulam due to decreased π-π stacking interactions, while Pro-197-His/Leu mutations impaired binding to the benzene ring by altering hydrogen bonds and hydrophobic interactions. Additionally, the Pro-197-His/Leu amino acid residue changes resulted in alterations in the shape of the active channel, impeding the efficient entry of penoxsulam into the binding site in the ALS protein. The three mutant ALS proteins expressed via the Bac-to-Bac baculovirus system exhibited notably lower activity inhibition rates than the non-mutant ALS proteins to penoxsulam, indicating all three ALS mutations reduce sensitivity to penoxsulam. This study elucidated the distinct impacts of the Pro-197-His/Leu and Trp-574-Leu mutations in E. crus-galli to penoxsulam resistance. Notably, the Trp-574-Leu mutation conferred stronger resistance to penoxsulam compared to the Pro-197-His/Leu mutations in E. crus-galli. The Pro-197-His/Leu mutations were first detected in E. crus-galli conferring penoxsulam resistance. These findings provide deeper insights into the molecular mechanisms underlying target-site resistance to penoxsulam in E. crus-galli.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangju Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Renton M, Willse A, Aradhya C, Tyre A, Head G. Simulated herbicide mixtures delay both specialist monogenic and generalist polygenic resistance evolution in weeds. PEST MANAGEMENT SCIENCE 2024; 80:5983-5994. [PMID: 39096081 DOI: 10.1002/ps.8331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Evolution of herbicide-resistant weed populations is a major challenge to world food production. Using different herbicides in rotation and/or using different herbicides together as mixtures are strategies that may delay the selection of resistance. This study used simulation modelling to investigate whether mixtures and rotations can delay the selection of both generalist polygenic and specialist monogenic herbicide resistance, and whether these strategies are more likely to lead to the selection of generalist resistance in weed types with varying biological characteristics. RESULTS Our simulations suggest that well-designed effective herbicide mixtures should delay evolution of both polygenic and monogenic resistance better than rotations and single herbicides across all weed types. Both mixture and rotation strategies increased the likelihood of polygenic resistance compared to single-herbicide use, and the likelihood of polygenic resistance increased as the fecundity and competitiveness of the weed increased. Whether monogenic or polygenic resistance occurred in each case depended most on the relative initial allele frequencies. We did not find that herbicide mixtures were more likely than rotations to lead to the selection of generalist polygenic resistance. The simulated efficacy of mixtures over rotations decreased if components were used at reduced rates or when individual components had already been used solo. CONCLUSION Herbicide rotations and particularly well-designed mixtures should delay evolution of both polygenic and monogenic resistance, especially if used as part of an effective integrated weed management programme. However, herbicide mixtures and rotations may also increase the risk that resistance will be generalist polygenic rather than specialist monogenic. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Michael Renton
- School of Biological Sciences and Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Alan Willse
- Regulatory Science, Bayer Crop Science, St Louis, MO, USA
| | | | - Andrew Tyre
- Regulatory Science, Bayer Crop Science, St Louis, MO, USA
| | - Graham Head
- Regulatory Science, Bayer Crop Science, St Louis, MO, USA
| |
Collapse
|
9
|
Xu X, Jiang R, Wang X, Liu S, Dong M, Mao H, Li X, Ni Z, Lv N, Deng X, Xiong W, Tao C, Li R, Shen Q, Geisen S. Protorhabditis nematodes and pathogen-antagonistic bacteria interactively promote plant health. MICROBIOME 2024; 12:221. [PMID: 39468636 PMCID: PMC11520073 DOI: 10.1186/s40168-024-01947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Fertilization practices control bacterial wilt-causing Ralstonia solanacearum by shaping the soil microbiome. This microbiome is the start of food webs, in which nematodes act as major microbiome predators. However, the multitrophic links between nematodes and the performance of R. solanacearum and plant health, and how these links are affected by fertilization practices, remain unknown. RESULTS Here, we performed a field experiment under no-, chemical-, and bio-organic-fertilization regimes to investigate the potential role of nematodes in suppressing tomato bacterial wilt. We found that bio-organic fertilizers changed nematode community composition and increased abundances of bacterivorous nematodes (e.g., Protorhabditis spp.). We also observed that pathogen-antagonistic bacteria, such as Bacillus spp., positively correlated with abundances of bacterivorous nematodes. In subsequent laboratory and greenhouse experiments, we demonstrated that bacterivorous nematodes preferentially preyed on non-pathogen-antagonistic bacteria over Bacillus. These changes increased the performance of pathogen-antagonistic bacteria that subsequently suppressed R. solanacearum. CONCLUSIONS Overall, bacterivorous nematodes can reduce the abundance of plant pathogens, which might provide a novel protection strategy to promote plant health. Video Abstract.
Collapse
Affiliation(s)
- Xu Xu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Renqiang Jiang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xinling Wang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shanshan Liu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Menghui Dong
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Hancheng Mao
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xingrui Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ziyu Ni
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Nana Lv
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuhui Deng
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wu Xiong
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chengyuan Tao
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
10
|
Xu H, Wang L, Zhu M, Chen X. Epiphytic Fungi Can Drive a Trade-Off Between Pathogen and Herbivore Resistance in Invasive Ipomoea cairica. Microorganisms 2024; 12:2130. [PMID: 39597519 PMCID: PMC11596056 DOI: 10.3390/microorganisms12112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Trade-offs between different defense traits exist commonly in plants. However, no evidence suggests that symbiotic microbes can drive a trade-off between plant pathogen and herbivore defense. The present study aims to investigate whether the mixture of epiphytic Fusarium oxysporum and Fusarium fujikuroi can drive the trade-off between the two defense traits in invasive Ipomoea cairica. Surface-sterilized I. cairica cuttings pre-inoculated with the epiphytic fungal mixture served as an epiphyte-inoculated (E+) group, while cuttings sprayed with sterile PDB served as an epiphyte-free (E-) group. After 3 days of incubation, E+ and E- cuttings were subjected to the challenge from a fungal pathogen and an insect herbivore, respectively. The results suggested that E+ cuttings had less rotted and yellowed leaf rates per plant than E- cuttings after Colletotrichum gloeosporioides infection. On the contrary, E+ cuttings had higher absolute and relative fresh weight losses per leaf than E- cuttings after Taiwania circumdata introduction. In the absence of challenges from the two natural enemies, salicylic acid and H2O2 accumulation occurred in E+ cuttings, which activated their SA-dependent pathogen defense and resulted in an increase in chitinase and β-1,3-glucanase activities. Although jasmonic acid accumulation also occurred in E+ cuttings, their JA-dependent herbivore defense responses were antagonized by SA signaling, leading to a decrease in total phenol content and phenylalanine ammonia-lyase activity. The activity of generalized defense enzymes, including superoxide dismutase, peroxidase, and catalase, did not differ between E+ and E- cuttings. Together, our findings indicate that a trade-off between pathogen and herbivore defense in I. cairica had already been driven by the epiphytic fungal mixture before the challenge by the two natural enemies. This study provides a novel insight into biocontrol strategies for I. cairica.
Collapse
Affiliation(s)
- Hua Xu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (H.X.); (L.W.)
| | - Lixing Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (H.X.); (L.W.)
| | - Minjie Zhu
- Hunan Polytechnic of Environment and Biology, Hengyang 421005, China;
| | - Xuhui Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
11
|
Lowe C, Onkokesung N, Goldberg A, Beffa R, Neve P, Edwards R, Comont D. RNA and protein biomarkers for detecting enhanced metabolic resistance to herbicides mesosulfuron-methyl and fenoxaprop-ethyl in black-grass (Alopecurus myosuroides). PEST MANAGEMENT SCIENCE 2024; 80:2539-2551. [PMID: 38375975 DOI: 10.1002/ps.7960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND The evolution of non-target site resistance (NTSR) to herbicides leads to a significant reduction in herbicide control of agricultural weed species. Detecting NTSR in weed populations prior to herbicide treatment would provide valuable information for effective weed control. While not all NTSR mechanisms have been fully identified, enhanced metabolic resistance (EMR) is one of the better studied, conferring tolerance through increased herbicide detoxification. Confirming EMR towards specific herbicides conventionally involves detecting metabolites of the active herbicide molecule in planta, but this approach is time-consuming and requires access to well-equipped laboratories. RESULTS In this study, we explored the potential of using molecular biomarkers to detect EMR before herbicide treatment in black-grass (Alopecurus myosuroides). We tested the reliability of selected biomarkers to predict EMR and survival after herbicide treatments in both reference and 27 field-derived black-grass populations collected from sites across the UK. The combined analysis of the constitutive expression of biomarkers and metabolism studies confirmed three proteins, namely, AmGSTF1, AmGSTU2 and AmOPR1, as differential biomarkers of EMR toward the herbicides fenoxaprop-ethyl and mesosulfuron in black-grass. CONCLUSION Our findings demonstrate that there is potential to use molecular biomarkers to detect EMR toward specific herbicides in black-grass without reference to metabolism analysis. However, biomarker development must include testing at both transcript and protein levels in order to be reliable indicators of resistance. This work is a first step towards more robust resistance biomarker development, which could be expanded into other herbicide chemistries for on-farm testing and monitoring EMR in uncharacterised black-grass populations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Claudia Lowe
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Nawaporn Onkokesung
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Alina Goldberg
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Roland Beffa
- Senior Scientific Consultant, Liederbach, Germany
| | - Paul Neve
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Robert Edwards
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - David Comont
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| |
Collapse
|
12
|
Wang Z, Jiang M, Yin F, Wang M, Jiang J, Liao M, Cao H, Zhao N. Metabolism-Based Nontarget-Site Mechanism Is the Main Cause of a Four-Way Resistance in Shortawn Foxtail ( Alopecurus aequalis Sobol.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12014-12028. [PMID: 38748759 DOI: 10.1021/acs.jafc.4c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Alopecurus aequalis Sobol. is a predominant grass weed in Chinese winter wheat fields, posing a substantial threat to crop production owing to its escalating herbicide resistance. This study documented the initial instance of an A. aequalis population (AHFT-3) manifesting resistance to multiple herbicides targeting four distinct sites: acetyl-CoA carboxylase (ACCase), acetolactate synthase, photosystem II, and 1-deoxy-d-xylulose-5-phosphate synthase. AHFT-3 carried an Asp-to-Gly mutation at codon 2078 of ACCase, with no mutations in the remaining three herbicide target genes, and exhibited no overexpression of any target gene. Compared with the susceptible population AHFY-3, AHFT-3 metabolized mesosulfuron-methyl, isoproturon, and bixlozone faster. The inhibition and comparison of herbicide-detoxifying enzyme activities indicated the participation of cytochrome P450s in the resistance to all four herbicides, with glutathione S-transferases specifically linked to mesosulfuron-methyl. Three CYP72As and a Tau class glutathione S-transferase, markedly upregulated in resistant plants, potentially played pivotal roles in the multiple-herbicide-resistance phenotype.
Collapse
Affiliation(s)
- Zilu Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Fan Yin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mali Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jinfang Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ning Zhao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
13
|
Montgomery J, Morran S, MacGregor DR, McElroy JS, Neve P, Neto C, Vila-Aiub MM, Sandoval MV, Menéndez AI, Kreiner JM, Fan L, Caicedo AL, Maughan PJ, Martins BAB, Mika J, Collavo A, Merotto A, Subramanian NK, Bagavathiannan MV, Cutti L, Islam MM, Gill BS, Cicchillo R, Gast R, Soni N, Wright TR, Zastrow-Hayes G, May G, Malone JM, Sehgal D, Kaundun SS, Dale RP, Vorster BJ, Peters B, Lerchl J, Tranel PJ, Beffa R, Fournier-Level A, Jugulam M, Fengler K, Llaca V, Patterson EL, Gaines TA. Current status of community resources and priorities for weed genomics research. Genome Biol 2024; 25:139. [PMID: 38802856 PMCID: PMC11129445 DOI: 10.1186/s13059-024-03274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.
Collapse
Affiliation(s)
- Jacob Montgomery
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Sarah Morran
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Dana R MacGregor
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - J Scott McElroy
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Paul Neve
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Célia Neto
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Martin M Vila-Aiub
- IFEVA-Conicet-Department of Ecology, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Analia I Menéndez
- Department of Ecology, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina
| | - Julia M Kreiner
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Longjiang Fan
- Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Ana L Caicedo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter J Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | - Jagoda Mika
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Aldo Merotto
- Department of Crop Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Nithya K Subramanian
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Luan Cutti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Robert Cicchillo
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Roger Gast
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Neeta Soni
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Terry R Wright
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | | | - Gregory May
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Deepmala Sehgal
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Shiv Shankhar Kaundun
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Richard P Dale
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Barend Juan Vorster
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Bodo Peters
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Roland Beffa
- Senior Scientist Consultant, Herbicide Resistance Action Committee / CropLife International, Liederbach, Germany
| | | | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Kevin Fengler
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Victor Llaca
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Eric L Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
14
|
Idziak R, Waligóra H, Majchrzak L, Szulc P. Multifunctional Adjuvants Affect Sulfonylureas with Synthetic Auxin Mixture in Weed and Maize Grain Yield. PLANTS (BASEL, SWITZERLAND) 2024; 13:1480. [PMID: 38891289 PMCID: PMC11174635 DOI: 10.3390/plants13111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
A field study in the years 2017-2019 was carried out to evaluate the impact of novel adjuvant formulations on the efficacy of sulfonylurea and synthetic auxin herbicides. Treatments included nicosulfuron + rimsulfuron + dicamba (N+R+D) at full and reduced rates with three multicomponent (TEST-1, TEST-2, TEST-3) as well as standard (MSO, S) adjuvants. In this greenhouse study, Echinochloa crus-galli seeds were planted and treated with N+R+D at 2-3 leaf stages. The water with the desired pH (4, 7, and 9) for the preparation of the spray liquid was prepared by incorporating citric acid or K3PO4 to either lower or raise the pH of the water. Adjuvant TEST-1 added to the spray liquid at pH 4 increased the effectiveness to 68%, TEST-2 to 81%, and TEST-3 to 80%, compared to 73% and 66% with the MSO and S. The efficacy of N+R+D at pH 7 with TEST-1 increased to 83%, TEST-2 to 82%, and TEST-3 to 77%, but with MSO, it increased to 81%, and 71% with S. Adjuvants TEST-1, TEST-2, and TEST-3 in the liquid at pH 9 increased efficacy to 76 and 80%, compared to 79 and 63% with MSO or S adjuvants. N+R+D applied with TEST-1, TEST-2, and TEST-3 provided greater weed control than herbicides with surfactant (S) and similar or even better than with standard methylated seed oil (MSO) adjuvants. Maize grain yield after herbicide-with-tested-adjuvant application was higher than from an untreated check, and comparable to yield from herbicide-with-MSO treatment, but higher than from S treatment.
Collapse
Affiliation(s)
| | | | | | - Piotr Szulc
- Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland; (R.I.); (H.W.); (L.M.)
| |
Collapse
|
15
|
Cusaro CM, Capelli E, Picco AM, Brusoni M. Incidence of resistance to ALS and ACCase inhibitors in Echinochloa species and soil microbial composition in Northern Italy. Sci Rep 2024; 14:10544. [PMID: 38719860 PMCID: PMC11078947 DOI: 10.1038/s41598-024-59856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
The increasing amount of weeds surviving herbicide represents a very serious problem for crop management. The interaction between microbial community of soil and herbicide resistance, along with the potential evolutive consequences, are still poorly known and need to be investigated to better understand the impact on agricultural management. In our study, we analyzed the microbial composition of soils in 32 farms, located in the Northern Italy rice-growing area (Lombardy) with the aim to evaluate the relationship between the microbial composition and the incidence of resistance to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibiting herbicides in Echinochloa species. We observed that the coverage of weeds survived herbicide treatment was higher than 60% in paddy fields with a low microbial biodiversity and less than 5% in those with a high microbial biodiversity. Fungal communities showed a greater reduction in richness than Bacteria. In soils with a reduced microbial diversity, a significant increase of some bacterial and fungal orders (i.e. Lactobacillales, Malasseziales and Diaporthales) was observed. Interestingly, we identified two different microbial profiles linked to the two conditions: high incidence of herbicide resistance (H-HeR) and low incidence of herbicide resistance (L-HeR). Overall, the results we obtained allow us to make hypotheses on the greater or lesser probability of herbicide resistance occurrence based on the composition of the soil microbiome and especially on the degree of biodiversity of the microbial communities.
Collapse
Affiliation(s)
- Carlo Maria Cusaro
- Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy
| | - Enrica Capelli
- Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy
| | - Anna Maria Picco
- Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy
| | - Maura Brusoni
- Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
16
|
Metcalfe H, Storkey J, Hull R, Bullock JM, Whitmore A, Sharp RT, Milne AE. Trade-offs constrain the success of glyphosate-free farming. Sci Rep 2024; 14:8001. [PMID: 38580796 PMCID: PMC10997608 DOI: 10.1038/s41598-024-58183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Glyphosate, the most widely used herbicide, is linked with environmental harm and there is a drive to replace it in agricultural systems. We model the impacts of discontinuing glyphosate use and replacing it with cultural control methods. We simulate winter wheat arable systems reliant on glyphosate and typical in northwest Europe. Removing glyphosate was projected to increase weed abundance, herbicide risk to the environment, and arable plant diversity and decrease food production. Weed communities with evolved resistance to non-glyphosate herbicides were not projected to be disproportionately affected by removing glyphosate, despite the lack of alternative herbicidal control options. Crop rotations with more spring cereals or grass leys for weed control increased arable plant diversity. Stale seedbed techniques such as delayed drilling and choosing ploughing instead of minimum tillage had varying effects on weed abundance, food production, and profitability. Ploughing was the most effective alternative to glyphosate for long-term weed control while maintaining production and profit. Our findings emphasize the need for careful consideration of trade-offs arising in scenarios where glyphosate is removed. Integrated Weed Management (IWM) with more use of cultural control methods offers the potential to reduce chemical use but is sensitive to seasonal variability and can incur negative environmental and economic impacts.
Collapse
Affiliation(s)
- H Metcalfe
- Net Zero & Resilient Farming, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| | - J Storkey
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - R Hull
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - J M Bullock
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - A Whitmore
- Net Zero & Resilient Farming, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - R T Sharp
- Net Zero & Resilient Farming, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - A E Milne
- Net Zero & Resilient Farming, Rothamsted Research, Harpenden, AL5 2JQ, UK
| |
Collapse
|
17
|
Ballu A, Ugazio C, Duplaix C, Noly A, Wullschleger J, Torriani SFF, Dérédec A, Carpentier F, Walker AS. Preventing multi-resistance: New insights for managing fungal adaptation. Environ Microbiol 2024; 26:e16614. [PMID: 38570900 DOI: 10.1111/1462-2920.16614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Sustainable crop protection is vital for food security, yet it is under threat due to the adaptation of a diverse and evolving pathogen population. Resistance can be managed by maximising the diversity of selection pressure through dose variation and the spatial and temporal combination of active ingredients. This study explores the interplay between operational drivers for maximising the sustainability of management strategies in relation to the resistance status of fungal populations. We applied an experimental evolution approach to three artificial populations of Zymoseptoria tritici, an economically significant wheat pathogen, each differing in initial resistance status. Our findings reveal that diversified selection pressure curtails the selection of resistance in naïve populations and those with low frequencies of single resistance. Increasing the number of modes of action most effectively delays resistance development, surpassing the increase in the number of fungicides, fungicide choice based on resistance risk, and temporal variation in fungicide exposure. However, this approach favours generalism in the evolved populations. The prior presence of multiple resistant isolates and their subsequent selection in populations override the effects of diversity in management strategies, thereby invalidating any universal ranking. Therefore, the initial resistance composition must be specifically considered in sustainable resistance management to address real-world field situations.
Collapse
Affiliation(s)
- Agathe Ballu
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Claire Ugazio
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | | | - Alicia Noly
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | | | | | - Anne Dérédec
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Florence Carpentier
- Université Paris-Saclay, INRAE, UR MaIAGE, Jouy-en-Josas, France
- AgroParisTech, Palaiseau Cedex, France
| | | |
Collapse
|
18
|
Höfer M, Schäfer M, Wang Y, Wink S, Xu S. Genetic Mechanism of Non-Targeted-Site Resistance to Diquat in Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2024; 13:845. [PMID: 38592881 PMCID: PMC10975167 DOI: 10.3390/plants13060845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Understanding non-target-site resistance (NTSR) to herbicides represents a pressing challenge as NTSR is widespread in many weeds. Using giant duckweed (Spirodela polyrhiza) as a model, we systematically investigated genetic and molecular mechanisms of diquat resistance, which can only be achieved via NTSR. Quantifying the diquat resistance of 138 genotypes, we revealed an 8.5-fold difference in resistance levels between the most resistant and most susceptible genotypes. Further experiments suggested that diquat uptake and antioxidant-related processes jointly contributed to diquat resistance in S. polyrhiza. Using a genome-wide association approach, we identified several candidate genes, including a homolog of dienelactone hydrolase, that are associated with diquat resistance in S. polyrhiza. Together, these results provide new insights into the mechanisms and evolution of NTSR in plants.
Collapse
Affiliation(s)
- Martin Höfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Martin Schäfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Yangzi Wang
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Samuel Wink
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Shuqing Xu
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| |
Collapse
|
19
|
Harrison C, Noleto-Dias C, Ruvo G, Hughes DJ, Smith DP, Mead A, Ward JL, Heuer S, MacGregor DR. The mechanisms behind the contrasting responses to waterlogging in black-grass ( Alopecurus myosuroides) and wheat ( Triticum aestivum). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23193. [PMID: 38417910 DOI: 10.1071/fp23193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
Black-grass (Alopecurus myosuroides ) is one of the most problematic agricultural weeds of Western Europe, causing significant yield losses in winter wheat (Triticum aestivum ) and other crops through competition for space and resources. Previous studies link black-grass patches to water-retaining soils, yet its specific adaptations to these conditions remain unclear. We designed pot-based waterlogging experiments to compare 13 biotypes of black-grass and six cultivars of wheat. These showed that wheat roots induced aerenchyma when waterlogged whereas aerenchyma-like structures were constitutively present in black-grass. Aerial biomass of waterlogged wheat was smaller, whereas waterlogged black-grass was similar or larger. Variability in waterlogging responses within and between these species was correlated with transcriptomic and metabolomic changes in leaves of control or waterlogged plants. In wheat, transcripts associated with regulation and utilisation of phosphate compounds were upregulated and sugars and amino acids concentrations were increased. Black-grass biotypes showed limited molecular responses to waterlogging. Some black-grass amino acids were decreased and one transcript commonly upregulated was previously identified in screens for genes underpinning metabolism-based resistance to herbicides. Our findings provide insights into the different waterlogging tolerances of these species and may help to explain the previously observed patchiness of this weed's distribution in wheat fields.
Collapse
Affiliation(s)
- Christian Harrison
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, Hertfordshire, UK
| | - Clarice Noleto-Dias
- Rothamsted Research, Plant Sciences for the Bioeconomy, Harpenden, Hertfordshire, UK
| | - Gianluca Ruvo
- Rothamsted Research, Plant Sciences for the Bioeconomy, Harpenden, Hertfordshire, UK
| | - David J Hughes
- Rothamsted Research, Intelligent Data Ecosystems, Harpenden, Hertfordshire, UK
| | - Daniel P Smith
- Rothamsted Research, Intelligent Data Ecosystems, Harpenden, Hertfordshire, UK
| | - Andrew Mead
- Rothamsted Research, Intelligent Data Ecosystems, Harpenden, Hertfordshire, UK
| | - Jane L Ward
- Rothamsted Research, Plant Sciences for the Bioeconomy, Harpenden, Hertfordshire, UK
| | - Sigrid Heuer
- International Consultant Crop Improvement and Food Security, Harpenden, UK
| | - Dana R MacGregor
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, Hertfordshire, UK
| |
Collapse
|
20
|
Brunharo CACG, Tranel PJ. Repeated evolution of herbicide resistance in Lolium multiflorum revealed by haplotype-resolved analysis of acetyl-CoA carboxylase. Evol Appl 2023; 16:1969-1981. [PMID: 38143902 PMCID: PMC10739073 DOI: 10.1111/eva.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/27/2023] [Accepted: 10/24/2023] [Indexed: 12/26/2023] Open
Abstract
Herbicide resistance in weeds is one of the greatest challenges in modern food production. The grass species Lolium multiflorum is an excellent model species to investigate evolution under similar selection pressure because populations have repeatedly evolved resistance to many herbicides, utilizing a multitude of mechanisms to neutralize herbicide damage. In this work, we investigated the gene that encodes acetyl-CoA carboxylase (ACCase), the target site of the most successful herbicide group available for grass weed control. We sampled L. multiflorum populations from agricultural fields with history of intense herbicide use, and studied their response to three ACCase-inhibiting herbicides. To elucidate the mechanisms of herbicide resistance and the genetic relationship among populations, we resolved the haplotypes of 97 resistant and susceptible individuals by sequencing ACCase amplicons using long-read DNA sequencing technologies. Our dose-response data indicated the existence of many, often unpredictable, resistance patterns to ACCase-inhibiting herbicides, where populations exhibited as much as 37-fold reduction in herbicide response. The majority of the populations exhibited resistance to all three herbicides studied. Phylogenetic and molecular genetic analyses revealed multiple evolutionary origins of resistance-endowing ACCase haplotypes, as well as widespread admixture in the region regardless of cropping system. The amplicons generated were diverse, with haplotypes exhibiting 26-110 polymorphisms. Polymorphisms included insertions and deletions 1-31 bp in length, none of which were associated with the resistance phenotype based on an association analysis. We also found evidence that some populations have multiple mechanisms of resistance. Our results highlight the astounding genetic diversity in L. multiflorum populations, and the potential for repeated evolution of herbicide resistance across the landscape that challenges weed management approaches and jeopardizes sustainable weed control practices. We provide an in-depth discussion of the evolutionary and practical implications of our results.
Collapse
Affiliation(s)
- Caio A. C. G. Brunharo
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | |
Collapse
|
21
|
Fu W, MacGregor DR, Comont D, Saski CA. Sequence Characterization of Extra-Chromosomal Circular DNA Content in Multiple Blackgrass ( Alopecurus myosuroides) Populations. Genes (Basel) 2023; 14:1905. [PMID: 37895254 PMCID: PMC10606437 DOI: 10.3390/genes14101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Alopecurus myosuroides (blackgrass) is a problematic weed of Western European winter wheat, and its success is largely due to widespread multiple-herbicide resistance. Previous analysis of F2 seed families derived from two distinct blackgrass populations exhibiting equivalent non-target site resistance (NTSR) phenotypes shows resistance is polygenic and evolves from standing genetic variation. Using a CIDER-seq pipeline, we show that herbicide-resistant (HR) and herbicide-sensitive (HS) F3 plants from these F2 seed families as well as the parent populations they were derived from carry extra-chromosomal circular DNA (eccDNA). We identify the similarities and differences in the coding structures within and between resistant and sensitive populations. Although the numbers and size of detected eccDNAs varied between the populations, comparisons between the HR and HS blackgrass populations identified shared and unique coding content, predicted genes, and functional protein domains. These include genes related to herbicide detoxification such as Cytochrome P450s, ATP-binding cassette transporters, and glutathione transferases including AmGSTF1. eccDNA content was mapped to the A. myosuroides reference genome, revealing genomic regions at the distal end of chromosome 5 and the near center of chromosomes 1 and 7 as regions with a high number of mapped eccDNA gene density. Mapping to 15 known herbicide-resistant QTL regions showed that the eccDNA coding sequences matched twelve, with four QTL matching HS coding sequences; only one region contained HR coding sequences. These findings establish that, like other pernicious weeds, blackgrass has eccDNAs that contain homologs of chromosomal genes, and these may contribute genetic heterogeneity and evolutionary innovation to rapidly adapt to abiotic stresses, including herbicide treatment.
Collapse
Affiliation(s)
- Wangfang Fu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Dana R. MacGregor
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, Hertfordshire AL5 2JQ, UK; (D.R.M.); (D.C.)
| | - David Comont
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, Hertfordshire AL5 2JQ, UK; (D.R.M.); (D.C.)
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
22
|
Rob MM, Hossen K, Ozaki K, Teruya T, Kato-Noguchi H. Phytotoxicity and Phytotoxic Substances in Calamus tenuis Roxb. Toxins (Basel) 2023; 15:595. [PMID: 37888626 PMCID: PMC10611027 DOI: 10.3390/toxins15100595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Calamus tenuis is a shrub species distributed across South Asia. It grows well in diversified habitats and tends to dominate plants in the surrounding environment. The phytotoxicity of C. tenuis and the action of its phytochemicals against other plant species could explain its dominant behavior. Compounds with phytotoxic activity are in high demand as prospective sources of ecofriendly bioherbicides. Therefore, we investigated the phytotoxicity of C. tenuis. Aqueous methanol extracts of this plant species significantly limited the growth of four test plant species, two monocots (barnyard grass and timothy), and two dicots (alfalfa and cress), in a dose- and species-dependent manner. Bio-directed chromatographic isolation of the C. tenuis extracts yielded two major active substances: a novel compound, calamulactone {(S)-methyl 8-(5-oxo-2,5-dihydrofuran-2-yl) octanoate}, and 3-oxo-α-ionone. Both of the identified compounds exerted strong growth inhibitory effects on cress and timothy seedlings. The concentrations of 3-oxo-α-ionone and calamulactone required to limit the growth of the cress seedlings by 50% (I50) were 281.6-199.5 and 141.1-105.5 µM, respectively, indicating that the effect of calamulactone was stronger with lower I50 values. Similarly, the seedlings of timothy also showed a considerably higher sensitivity to calamulactone (I50: 40.5-84.4 µM) than to 3-oxo-α-ionone (I50: 107.8-144.7 µM). The findings indicated that the leaves of C. tenuis have marked growth-inhibitory potential, and could affect surrounding plants to exert dominance over the surrounding plant community. Moreover, the two identified phytotoxic substances might play a key role in the phytotoxicity of C. tenuis, and could be a template for bioherbicide development. This paper was the first to report calamulactone and its phytotoxicity.
Collapse
Affiliation(s)
- Md. Mahfuzur Rob
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Japan
- Department of Horticulture, Faculty of Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Kawsar Hossen
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Japan
- Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Kaori Ozaki
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan;
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan;
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Japan
| |
Collapse
|
23
|
Yang Y, Zhang W, Liu W, He D, Wan W. Irreversible community difference between bacterioplankton generalists and specialists in response to lake dredging. WATER RESEARCH 2023; 243:120344. [PMID: 37482008 DOI: 10.1016/j.watres.2023.120344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Understanding response of bacterioplankton community responsible for maintaining ecological functions of aquatic ecosystems to environmental disturbance is an important subject. However, it remains largely unclear how bacterioplankton generalists and specialists respond to dredging disturbance. Illumina MiSeq sequencing and statistical analyses were used to evaluate landscape patterns, evolutionary potentials, environmental adaptability, and community assembly processes of generalists and specialists in response to dredging in eutrophic Lake Nanhu. The Proteobacteria and Actinobacteria dominated bacterioplankton communities of generalists and specialists, and abundances of Proteobacteria decreased and Actinobacteria increased after dredging. The generalists displayed higher phylogenetic distance, richness difference, speciation rate, extinction rate, and diversification rate as well as stronger environmental adaptation than that of specialists. In contrast, the specialists rather than generalists showed higher community diversity, taxonomic distance, and species replacement as well as closer phylogenetic clustering. Stochastic processes dominated community assemblies of generalists and specialists, and stochasticity exhibited a larger effect on community assembly of generalists rather than specialists. Our results emphasized that lake dredging could change landscape patterns of bacterioplankton generalists and specialists, whereas the short-term dredging conducted within one year was unable to reverse community difference between generalists and specialists. Our findings extend our understanding of how bacterioplankton generalists and specialists responding to dredging disturbance, and these findings might in turn call on long-term dredging for better ecological restoration of eutrophic lakes.
Collapse
Affiliation(s)
- Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Donglan He
- College of Life Science, South-Central Minzu University, Wuhan 430070, China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China.
| |
Collapse
|
24
|
Verdú I, González-Pleiter M, Leganés F, Fernández-Piñas F, Rosal R. Leaching of herbicides mixtures from pre-exposed agricultural plastics severely impact microalgae. CHEMOSPHERE 2023; 326:138475. [PMID: 36958502 DOI: 10.1016/j.chemosphere.2023.138475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Farmlands represent a source of aged plastics and pesticides to the surrounding environments. It has been shown that chemicals can be sorbed and desorbed from plastics, but the interaction between plastic and mixtures of pesticides and their effects on freshwater biota has not been assessed yet. The aim of the work was to assess the potential role of agricultural plastics as vectors for a mixture of two herbicides and the impact of the herbicide mixture lixiviated from them towards the freshwater microalga Chlamydomonas reinhardtii. Pristine and aged polyethylene plastics collected from agricultural areas were exposed to the herbicides, bifenox, oxyfluorfen and their mixtures. The microalgae were exposed for 72 h to the leachates desorbed from plastics and the effect was quantified in terms of total chlorophyll content and several physiological parameters assessed by flow cytometry. Our results showed that changes in physicochemical properties (hydroxyl and carbonyl index, hydrophobicity, texture) in aged plastics increased their capacity to retain and to desorb the herbicides. Microalgae exposed to leachates containing bifenox, oxyfluorfen, or their mixture showed reactive oxygen species overproduction, lipid peroxidation, membrane potential hyperpolarization, intracellular pH acidification, and a loss of metabolic activity. The toxicological interactions of the leachate mixture were assessed using the Combination Index (CI)-isobologram method showing antagonism at low effect levels turning to synergism when the effect increased. In this work, we proved the hypothesis that ageing increases the capacity of agricultural plastics to behave as vector for toxic chemicals to the biota.
Collapse
Affiliation(s)
- Irene Verdú
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Francisco Leganés
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049, Madrid, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049, Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
25
|
Rigon CAG, Cutti L, Turra GM, Ferreira EZ, Menegaz C, Schaidhauer W, Dayan FE, Gaines TA, Merotto A. Recurrent Selection of Echinochloa crus-galli with a Herbicide Mixture Reduces Progeny Sensitivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6871-6881. [PMID: 37104538 DOI: 10.1021/acs.jafc.3c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Herbicide mixtures are used to increase the spectrum of weed control and to manage weeds with target-site resistance to some herbicides. However, the effect of mixtures on the evolution of herbicide resistance caused by enhanced metabolism is unknown. This study evaluated the effect of a fenoxaprop-p-ethyl and imazethapyr mixture on the evolution of herbicide resistance in Echinochloa crus-galli using recurrent selection at sublethal doses. The progeny from second generations selected with the mixture had lower control than parental plants or the unselected progeny. GR50 increased 1.6- and 2.6-fold after two selection cycles with the mixture in susceptible (POP1-S) and imazethapyr-resistant (POP2-IR) biotypes, respectively. There was evidence that recurrent selection with this sublethal mixture had the potential to evolve cross-resistance to diclofop, cyhalofop, sethoxydim, and quinclorac. Mixture selection did not cause increased relative expression for a set of analyzed genes (CYP71AK2, CYP72A122, CYP72A258, CYP81A12, CYP81A14, CYP81A21, CYP81A22, and GST1). Fenoxaprop, rather than imazethapyr, is the main contributor to the decreased control in the progenies after recurrent selection with the mixture in low doses. This is the first study reporting the effect of a herbicide mixture at low doses on herbicide resistance evolution. The lack of control using the mixture may result in decreased herbicide sensitivity of the weed progenies. Using mixtures may select important detoxifying genes that have the potential to metabolize herbicides in patterns that cannot currently be predicted. The use of fully recommended herbicide rates in herbicide mixtures is recommended to reduce the risk of this type of resistance evolution.
Collapse
Affiliation(s)
- Carlos A G Rigon
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Luan Cutti
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Guilherme M Turra
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Enrico Z Ferreira
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Christian Menegaz
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Walker Schaidhauer
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, 300 W. Pitkin St., Fort Collins, Colorado 80523, United States
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 300 W. Pitkin St., Fort Collins, Colorado 80523, United States
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| |
Collapse
|
26
|
Goldberg-Cavalleri A, Onkokesung N, Franco-Ortega S, Edwards R. ABC transporters linked to multiple herbicide resistance in blackgrass ( Alopecurus myosuroides). FRONTIERS IN PLANT SCIENCE 2023; 14:1082761. [PMID: 37008473 PMCID: PMC10063862 DOI: 10.3389/fpls.2023.1082761] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Enhanced detoxification is a prominent mechanism protecting plants from toxic xenobiotics and endows resistance to diverse herbicide chemistries in grass weeds such as blackgrass (Alopecurus myosuroides). The roles of enzyme families which impart enhanced metabolic resistance (EMR) to herbicides through hydroxylation (phase 1 metabolism) and/or conjugation with glutathione or sugars (phase 2) have been well established. However, the functional importance of herbicide metabolite compartmentalisation into the vacuole as promoted by active transport (phase 3), has received little attention as an EMR mechanism. ATP-binding cassette (ABC) transporters are known to be important in drug detoxification in fungi and mammals. In this study, we identified three distinct C-class ABCCs transporters namely AmABCC1, AmABCC2 and AmABCC3 in populations of blackgrass exhibiting EMR and resistance to multiple herbicides. Uptake studies with monochlorobimane in root cells, showed that the EMR blackgrass had an enhanced capacity to compartmentalize fluorescent glutathione-bimane conjugated metabolites in an energy-dependent manner. Subcellular localisation analysis using transient expression of GFP-tagged AmABCC2 assays in Nicotiana demonstrated that the transporter was a membrane bound protein associated with the tonoplast. At the transcript level, as compared with herbicide sensitive plants, AmABCC1 and AmABCC2 were positively correlated with EMR in herbicide resistant blackgrass being co-expressed with AmGSTU2a, a glutathione transferase (GST) involved in herbicide detoxification linked to resistance. As the glutathione conjugates generated by GSTs are classic ligands for ABC proteins, this co-expression suggested AmGSTU2a and the two ABCC transporters delivered the coupled rapid phase 2/3 detoxification observed in EMR. A role for the transporters in resistance was further confirmed in transgenic yeast by demonstrating that the expression of either AmABCC1 or AmABCC2, promoted enhanced tolerance to the sulfonylurea herbicide, mesosulfuron-methyl. Our results link the expression of ABCC transporters to enhanced metabolic resistance in blackgrass through their ability to transport herbicides, and their metabolites, into the vacuole.
Collapse
|
27
|
Cai L, Comont D, MacGregor D, Lowe C, Beffa R, Neve P, Saski C. The blackgrass genome reveals patterns of non-parallel evolution of polygenic herbicide resistance. THE NEW PHYTOLOGIST 2023; 237:1891-1907. [PMID: 36457293 PMCID: PMC10108218 DOI: 10.1111/nph.18655] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 11/23/2022] [Indexed: 05/31/2023]
Abstract
Globally, weedy plants are a major constraint to sustainable crop production. Much of the success of weeds rests with their ability to rapidly adapt in the face of human-mediated management of agroecosystems. Alopecurus myosuroides (blackgrass) is a widespread and impactful weed affecting agriculture in Europe. Here we report a chromosome-scale genome assembly of blackgrass and use this reference genome to explore the genomic/genetic basis of non-target site herbicide resistance (NTSR). Based on our analysis of F2 seed families derived from two distinct blackgrass populations with the same NTSR phenotype, we demonstrate that the trait is polygenic and evolves from standing genetic variation. We present evidence that selection for NTSR has signatures of both parallel and non-parallel evolution. There are parallel and non-parallel changes at the transcriptional level of several stress- and defence-responsive gene families. At the genomic level, however, the genetic loci underpinning NTSR are different (non-parallel) between seed families. We speculate that variation in the number, regulation and function of stress- and defence-related gene families enable weedy species to rapidly evolve NTSR via exaptation of genes within large multi-functional gene families. These results provide novel insights into the potential for, and nature of plant adaptation in rapidly changing environments.
Collapse
Affiliation(s)
- Lichun Cai
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| | - David Comont
- Protecting Crops and the EnvironmentRothamsted ResearchHarpenden, HertfordshireAL5 2JQUK
| | - Dana MacGregor
- Protecting Crops and the EnvironmentRothamsted ResearchHarpenden, HertfordshireAL5 2JQUK
| | - Claudia Lowe
- Protecting Crops and the EnvironmentRothamsted ResearchHarpenden, HertfordshireAL5 2JQUK
| | - Roland Beffa
- Bayer Crop SciencesIndustriepark Höchst65926Frankfurt am MainGermany
- Königsteiner Weg 465835LiederbachGermany
| | - Paul Neve
- Protecting Crops and the EnvironmentRothamsted ResearchHarpenden, HertfordshireAL5 2JQUK
- Department of Plant and Environmental SciencesUniversity of CopenhagenHøjbakkegård Allé 13Tåstrup2630Denmark
| | - Christopher Saski
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| |
Collapse
|
28
|
Mangan R, Bussière LF, Polanczyk RA, Tinsley MC. Increasing ecological heterogeneity can constrain biopesticide resistance evolution. Trends Ecol Evol 2023:S0169-5347(23)00016-2. [PMID: 36906434 DOI: 10.1016/j.tree.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 03/11/2023]
Abstract
Microbial biopesticides containing living parasites are valuable emerging crop protection technologies against insect pests, but they are vulnerable to resistance evolution. Fortunately, the fitness of alleles that provide resistance, including to parasites used in biopesticides, frequently depends on parasite identity and environmental conditions. This context-specificity suggests a sustainable approach to biopesticide resistance management through landscape diversification. To mitigate resistance risks, we advocate increasing the range of biopesticides available to farmers, whilst simultaneously encouraging other aspects of landscape-wide crop heterogeneity that can generate variable selection on resistance alleles. This approach requires agricultural stakeholders to prioritize diversity as well as efficiency, both within agricultural landscapes and the biocontrol marketplace.
Collapse
Affiliation(s)
- Rosie Mangan
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Luc F Bussière
- Biological and Environmental Sciences and Gothenburg Global Biodiversity Centre, The University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ricardo Antônio Polanczyk
- Júlio de Mesquita Filho State University of São Paulo, Faculty of Agrarian and Veterinary Sciences of Jaboticabal, Jaboticabal, SP, Brazil
| | - Matthew C Tinsley
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
29
|
Ballu A, Despréaux P, Duplaix C, Dérédec A, Carpentier F, Walker AS. Antifungal alternation can be beneficial for durability but at the cost of generalist resistance. Commun Biol 2023; 6:180. [PMID: 36797413 PMCID: PMC9935548 DOI: 10.1038/s42003-023-04550-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
The evolution of resistance to pesticides is a major burden in agriculture. Resistance management involves maximizing selection pressure heterogeneity, particularly by combining active ingredients with different modes of action. We tested the hypothesis that alternation may delay the build-up of resistance not only by spreading selection pressure over longer periods, but also by decreasing the rate of evolution of resistance to alternated fungicides, by applying an experimental evolution approach to the economically important crop pathogen Zymoseptoria tritici. Our results show that alternation is either neutral or slows the overall resistance evolution rate, relative to continuous fungicide use, but results in higher levels of generalism in evolved lines. We demonstrate that the nature of the fungicides, and therefore their relative intrinsic risk of resistance may underly this trade-off, more so than the number of fungicides and the rhythm of alternation. This trade-off is also dynamic over the course of resistance evolution. These findings open up new possibilities for tailoring resistance management effectively while optimizing interplay between alternation components.
Collapse
Affiliation(s)
- Agathe Ballu
- grid.507621.7Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Philomène Despréaux
- grid.507621.7Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Clémentine Duplaix
- grid.507621.7Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Anne Dérédec
- grid.507621.7Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Florence Carpentier
- grid.507621.7Université Paris-Saclay, INRAE, UR MaIAGE, 78350 Jouy-en-Josas, France ,grid.417885.70000 0001 2185 8223AgroParisTech, 91120 Palaiseau, France
| | | |
Collapse
|
30
|
Berestetskiy A. Modern Approaches for the Development of New Herbicides Based on Natural Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:234. [PMID: 36678947 PMCID: PMC9864389 DOI: 10.3390/plants12020234] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 05/12/2023]
Abstract
Weeds are a permanent component of anthropogenic ecosystems. They require strict control to avoid the accumulation of their long-lasting seeds in the soil. With high crop infestation, many elements of crop production technologies (fertilization, productive varieties, growth stimulators, etc.) turn out to be practically meaningless due to high yield losses. Intensive use of chemical herbicides (CHs) has led to undesirable consequences: contamination of soil and wastewater, accumulation of their residues in the crop, and the emergence of CH-resistant populations of weeds. In this regard, the development of environmentally friendly CHs with new mechanisms of action is relevant. The natural phytotoxins of plant or microbial origin may be explored directly in herbicidal formulations (biorational CHs) or indirectly as scaffolds for nature-derived CHs. This review considers (1) the main current trends in the development of CHs that may be important for the enhancement of biorational herbicides; (2) the advances in the development and practical application of natural compounds for weed control; (3) the use of phytotoxins as prototypes of synthetic herbicides. Some modern approaches, such as computational methods of virtual screening and design of herbicidal molecules, development of modern formulations, and determination of molecular targets, are stressed as crucial to make the exploration of natural compounds more effective.
Collapse
Affiliation(s)
- Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| |
Collapse
|
31
|
Palma-Bautista C, Vázquez-García JG, Osuna MD, Garcia-Garcia B, Torra J, Portugal J, De Prado R. An Asp376Glu substitution in ALS gene and enhanced metabolism confers high tribenuron-methyl resistance in Sinapis alba. FRONTIERS IN PLANT SCIENCE 2022; 13:1011596. [PMID: 36438121 PMCID: PMC9692003 DOI: 10.3389/fpls.2022.1011596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2023]
Abstract
Acetolactate synthase (ALS) inhibiting herbicides (group 2) have been widely applied for the last 20 years to control Sinapis alba in cereal crops from southern Spain. In 2008, a tribenuron-methyl (TM) resistant (R) S. alba population was first reported in a cereal field in Malaga (southern Spain). In 2018, three suspected R S. alba populations (R1, R2 and R3) to TM were collected from three different fields in Granada (southern Spain, 100 km away from Malaga). The present work aims to confirm the putative resistance of these populations to TM and explore their resistance mechanisms. Dose-response assays showed that the R1, R2 and R3 populations ranging between 57.4, 44.4 and 57.1 times more resistance to TM than the susceptible population (S). A mutation in the ALS gene (Asp376Glu) was detected in the Rs S. alba populations. 14C-metabolism studies show that metabolites and TM were changing significantly faster in the R than in the S plants. Alternative chemical control trials showed that 2,4-D and MCPA (auxin mimics), glyphosate (enolpyruvyl shikimate phosphate synthase,EPSPS, inhibitor-group 9), metribuzin (PSII inhibitors/Serine 264 Binders, -group 5) and mesotrione (hydroxyphenyl pyruvate dioxygenase, HPPD, inhibitor-group 27) presented a high control of the four populations of S. alba tested, both S and R. Based on these results, it is the first case described where the Asp376Glu mutation and P450-mediated metabolism participates in resistance to TM in S. alba. Comparing these results with those found in the S. alba population in Malaga in 2008, where the resistance was TSR type (Pro197Ser), we can suggest that despite the geographical proximity (over 100 km), the resistance in these cases was due to different evolutionary events.
Collapse
Affiliation(s)
| | | | - Maria D. Osuna
- Plant Protection Department, Scientific and Technological Research Centre of Extremadura (CICYTEX), Guadajira, Badajoz, Spain
| | - Blanca Garcia-Garcia
- Plant Protection Department, Scientific and Technological Research Centre of Extremadura (CICYTEX), Guadajira, Badajoz, Spain
| | - Joel Torra
- Department of Hortofructiculture, Botany and Gardening, Agrotecnio-CERCA Center, University of Lleida, Lleida, Spain
| | - Joao Portugal
- Biosciences Department, Polytechnic Institute of Beja, Beja, Portugal
| | - Rafael De Prado
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| |
Collapse
|
32
|
Molecular diagnostics for real-time determination of herbicide resistance in wild grasses. J Biotechnol 2022; 358:64-66. [PMID: 36100138 DOI: 10.1016/j.jbiotec.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
The growth of resistance to multiple herbicides in grass weeds is a major threat to global cereal production and in the UK, is epitomized by the loss of control of blackgrass (Alopecurus myosuroides), causing losses in winter wheat production equating to 5% of national consumption. With an urgent need to develop new black-grass management tools, we have developed a lateral flow assay (LFA) that can predict resistance to multiple herbicides within 10 min.
Collapse
|
33
|
Comont D, MacGregor DR, Crook L, Hull R, Nguyen L, Freckleton RP, Childs DZ, Neve P. Dissecting weed adaptation: Fitness and trait correlations in herbicide-resistant Alopecurus myosuroides. PEST MANAGEMENT SCIENCE 2022; 78:3039-3050. [PMID: 35437938 PMCID: PMC9324217 DOI: 10.1002/ps.6930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Unravelling the genetic architecture of non-target-site resistance (NTSR) traits in weed populations can inform questions about the inheritance, trade-offs and fitness costs associated with these traits. Classical quantitative genetics approaches allow study of the genetic architecture of polygenic traits even where the genetic basis of adaptation remains unknown. These approaches have the potential to overcome some of the limitations of previous studies into the genetics and fitness of NTSR. RESULTS Using a quantitative genetic analysis of 400 pedigreed Alopecurus myosuroides seed families from nine field-collected populations, we found strong heritability for resistance to the acetolactate synthase and acetyl CoA carboxylase inhibitors (h2 = 0.731 and 0.938, respectively), and evidence for shared additive genetic variance for resistance to these two different herbicide modes of action, rg = 0.34 (survival), 0.38 (biomass). We find no evidence for genetic correlations between life-history traits and herbicide resistance, indicating that resistance to these two modes of action is not associated with large fitness costs in blackgrass. We do, however, demonstrate that phenotypic variation in plant flowering characteristics is heritable, h2 = 0.213 (flower height), 0.529 (flower head number), 0.449 (time to flowering) and 0.372 (time to seed shed), demonstrating the potential for adaptation to other nonchemical management practices (e.g. mowing of flowering heads) now being adopted for blackgrass control. CONCLUSION These results highlight that quantitative genetics can provide important insight into the inheritance and genetic architecture of NTSR, and can be used alongside emerging molecular techniques to better understand the evolutionary and fitness landscape of herbicide resistance. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- David Comont
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
| | - Dana R MacGregor
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
- Department of BiosciencesUniversity of DurhamDurhamUK
| | - Laura Crook
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
| | - Richard Hull
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
| | - Lieselot Nguyen
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
| | - Robert P Freckleton
- Department of Animal and Plant SciencesUniversity of SheffieldSouth YorkshireUK
| | - Dylan Z Childs
- Department of Animal and Plant SciencesUniversity of SheffieldSouth YorkshireUK
| | - Paul Neve
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
- Department of Plant and Environmental Sciences, Section for Crop SciencesUniversity of CopenhagenTaastrupDenmark
| |
Collapse
|
34
|
Pro-197-Ser Mutation and Cytochrome P450-Mediated Metabolism Conferring Resistance to Flucarbazone-Sodium in Bromus japonicus. PLANTS 2022; 11:plants11131641. [PMID: 35807593 PMCID: PMC9269166 DOI: 10.3390/plants11131641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
In crop fields, resistance to acetolactate synthase (ALS)-inhibiting herbicides found in many troublesome weed species, including Bromus japonicus Thunb, is a worldwide problem. In particular, the development of herbicide resistance in B. japonicus is a severe threat to wheat production in China. The purpose of this research was to investigate the physiological and molecular basis of B. japonicus resistance to flucarbazone-sodium. Dose-response analysis demonstrated that, compared with the susceptible B. japonicus (S) population, the resistant (R) population exhibited a 120-fold increase in flucarbazone-sodium resistance. Nucleotide sequence alignment of the ALS gene indicated that the Pro-197-Ser mutation in ALS was associated with resistance to flucarbazone-sodium in the R population. The results of a malathion pretreatment study showed that B. japonicus might also have remarkable cytochrome P450 monooxygenase (P450)-mediated metabolic resistance. This is the first report of a Pro-197-Ser mutation and P450-mediated metabolism conferring resistance to flucarbazone-sodium in B. japonicus.
Collapse
|
35
|
Lee SH, Choe DH, Scharf ME, Rust MK, Lee CY. Combined metabolic and target-site resistance mechanisms confer fipronil and deltamethrin resistance in field-collected German cockroaches (Blattodea: Ectobiidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105123. [PMID: 35715061 DOI: 10.1016/j.pestbp.2022.105123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Despite insecticide resistance issues, pyrethroids and fipronil have continued to be used extensively to control the German cockroach, Blattella germanica (L.) (Blattodea: Ectobiidae) for more than two decades. We evaluated the physiological insecticide resistance in five German cockroach populations collected from 2018 to 2020 and measured the extent of metabolic detoxification and target-site insensitivity resistance mechanisms. Topically applied doses of the 3 x LD95 of deltamethrin, fipronil, DDT, or dieldrin of a susceptible strain (UCR, Diagnostic Dose) failed to cause >23% mortality, and the 10 x LD95 of deltamethrin or fipronil failed to cause >53% mortality. All field-collected strains possessed a combination of metabolic and target-site insensitivity mechanisms that cause reduced susceptibility. Elevated activities of esterase and glutathione S-transferase were measured, and the synergists piperonyl butoxide or S,S,S-tributyl phosphorotrithioate increased topical mortality up to 100% for deltamethrin and 93% for fipronil 10 x LD95. The target-site mutations L993F of the para-homologous sodium channel and A302S of the GABA-gated chloride channel associated with pyrethroid and fipronil resistance, respectively, were found at ~80-100% frequency in field populations. Pyrethroid and fipronil spray formulations also were ineffective in a choice box assay against field-collected strains suggesting that these treatments would fail to control cockroaches under field conditions.
Collapse
Affiliation(s)
- Shao-Hung Lee
- Department of Entomology, University of California, Riverside, CA 92521, United States of America.
| | - Dong-Hwan Choe
- Department of Entomology, University of California, Riverside, CA 92521, United States of America
| | - Michael E Scharf
- Department of Entomology, University of Florida, Gainesville, FL 32611, United States of America
| | - Michael K Rust
- Department of Entomology, University of California, Riverside, CA 92521, United States of America
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, CA 92521, United States of America.
| |
Collapse
|
36
|
Pan L, Guo Q, Wang J, Shi L, Yang X, Zhou Y, Yu Q, Bai L. CYP81A68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa crus-galli. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128225. [PMID: 35032953 DOI: 10.1016/j.jhazmat.2022.128225] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Long-term and excessive herbicide use has led to some environmental concerns and especially, herbicide resistance evolution in weeds. Here, we confirmed acetolactate synthase (ALS) inhibiting herbicide penoxsulam resistance and cross resistance to acetyl-coenzyme carboxylase (ACCase) inhibiting herbicides (cyhalofop-butyl and metamifop) in a global weed Echinochloa crus-galli population resistant to these herbicides (R). Penoxsulam metabolism study indicated that degradation rate was significantly higher in R than susceptible E. crus-galli population (S). RNA-sequencing revealed that a cytochrome P450 (P450) gene, CYP81A68, expressed higher in R versus S. Rice seedlings overexpressing this CYP81A68 gene are resistant to penoxsulam, cyhalofop-butyl and metamifop, and penoxsulam resistance is due to enhanced metabolism via O-demethylation. Deletion analysis of the CYP81A68 gene promoter identified an efficient region, in which differential methylation of CpG islands occurred between R and S. Collectively, these results demonstrate that upregulation of E. crus-galli CYP81A68 gene endows generalist metabolic resistance to commonly used ALS- and ACCase-inhibiting herbicides in rice fields and epigenetic regulation may play a role in the resistance evolution. This research could contribute to strategies reducing herbicide environmental impacts by judicious selection of alternative herbicide and non-chemical control tactics.
Collapse
Affiliation(s)
- Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Qiushuang Guo
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Junzhi Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Crawley, WA 6009, Australia.
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
37
|
Hulme PE. Hierarchical cluster analysis of herbicide modes of action reveals distinct classes of multiple resistance in weeds. PEST MANAGEMENT SCIENCE 2022; 78:1265-1271. [PMID: 34854224 PMCID: PMC9299916 DOI: 10.1002/ps.6744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The number of weed species resistant to multiple herbicide modes of action (MoAs) has increased over the last 30 years and may in the future render existing herbicide MoAs obsolete for many cropping systems. Yet few predictive tools exist to manage this risk. Using a worldwide dataset of weed species resistant to multiple herbicide MoAs, hierarchical clustering was used to classify MoAs into similar groups in relation to the suite of resistant weed species they have in common. Network analyses then were used to explore the relative importance of species prevalence and similarity in cluster patterns. RESULTS Hierarchical clustering identified three similarly sized clusters of herbicide MoAs that were linked by the co-occurrence of resistant weeds: Herbicide Resistance Action Committee (HRAC) groups 2, 4, 5 and 9; HRAC groups 12, 14 and 15; and HRAC groups 1, 3 and 22. Cluster membership was consistent with similarities in the physiological or biochemical target of the herbicide MoAs. Network analyses revealed that the number of weed species resistant to two different MoAs was related to the number of weeds known to be resistant to each individual herbicide MoA. CONCLUSIONS Hierarchical cluster analysis provided new insights into the risk of weeds becoming resistant to more than one herbicide MoA. By clustering herbicide MoAs into three distinct groups, the potential exists for farmers to manage resistance by rotating herbicides between rather than within clusters, as far as crop, weed and environmental conditions allow.
Collapse
Affiliation(s)
- Philip E Hulme
- Bio‐Protection Research CentreLincoln UniversityChristchurchNew Zealand
| |
Collapse
|
38
|
Brunharo CACG, Streisfeld MA. Multiple evolutionary origins of glyphosate resistance in Lolium multiflorum. Evol Appl 2022; 15:316-329. [PMID: 35233250 PMCID: PMC8867705 DOI: 10.1111/eva.13344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 11/29/2022] Open
Abstract
The multitude of herbicide resistance patterns that have evolved in different weed species is a remarkable example of the rapid adaptation to anthropogenic-driven disturbance. Recently, resistance to glyphosate was identified in multiple populations of Lolium multiflorum in Oregon. We used phenotypic approaches, as well as population genomic and gene expression analyses, to determine whether known mechanisms were responsible for glyphosate resistance and whether resistance phenotypes evolved independently in different populations, and to identify potential loci contributing to resistance. We found no evidence of genetic alterations or expression changes at known target and non-target-site resistance mechanisms of glyphosate. Population genomic analyses indicated that resistant populations tended to have largely distinct ancestry from one another, suggesting that glyphosate resistance did not spread among populations by gene flow. Rather, resistance appears to have evolved independently on different genetic backgrounds. We also detected potential loci associated with the resistance phenotype, some of which encode proteins with potential effects on herbicide metabolism. Our results suggest that Oregon populations of L. multiflorum evolved resistance to glyphosate due to a novel mechanism. Future studies that characterize the gene or genes involved in resistance will be necessary to confirm this conclusion.
Collapse
|
39
|
Mohammad VH, Osborne CP, Freckleton RP. Drought exposure leads to rapid acquisition and inheritance of herbicide resistance in the weed Alopecurus myosuroides. Ecol Evol 2022; 12:e8563. [PMID: 35222951 PMCID: PMC8848470 DOI: 10.1002/ece3.8563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Globally, herbicide resistance in weeds poses a threat to food security. Resistance evolves rapidly through the co-option of a suite of physiological mechanisms that evolved to allow plants to survive environmental stress. Consequently, we hypothesize that stress tolerance and herbicide resistance are functionally linked. We address two questions: (i) does exposure to stress in a parental generation promote the evolution of resistance in the offspring? (ii) Is such evolution mediated through non-genetic mechanisms? We exposed individuals of a grass weed to drought, and tested whether this resulted in herbicide resistance in the first generation. In terms of both survival and dry mass, we find enhanced resistance to herbicide in the offspring of parents that had been exposed to drought. Our results suggest that exposure of weeds to drought can confer herbicide resistance in subsequent generations, and that the mechanism conferring heritability of herbicide resistance is non-genetic.
Collapse
Affiliation(s)
- Vian H. Mohammad
- Department of Animal & Plant SciencesUniversity of SheffieldSheffieldUK
| | - Colin P. Osborne
- Department of Animal & Plant SciencesUniversity of SheffieldSheffieldUK
| | | |
Collapse
|
40
|
Kaundun SS, Downes J, Jackson LV, Hutchings SJ, Mcindoe E. Impact of a Novel W2027L Mutation and Non-Target Site Resistance on Acetyl-CoA Carboxylase-Inhibiting Herbicides in a French Lolium multiflorum Population. Genes (Basel) 2021; 12:genes12111838. [PMID: 34828444 PMCID: PMC8620607 DOI: 10.3390/genes12111838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
Herbicides that inhibit acetyl-CoA carboxylase (ACCase) are among the few remaining options for the post-emergence control of Lolium species in small grain cereal crops. Here, we determined the mechanism of resistance to ACCase herbicides in a Lolium multiflorum population (HGR) from France. A combined biological and molecular approach detected a novel W2027L ACCase mutation that affects aryloxyphenoxypropionate (FOP) but not cyclohexanedione (DIM) or phenylpyraxoline (DEN) subclasses of ACCase herbicides. Both the wild-type tryptophan and mutant leucine 2027-ACCase alleles could be positively detected in a single DNA-based-derived polymorphic amplified cleaved sequence (dPACS) assay that contained the targeted PCR product and a cocktail of two discriminating restriction enzymes. Additionally, we identified three well-characterised I1781L, I2041T, and D2078G ACCase target site resistance mutations as well as non-target site resistance in HGR. The non-target site component endowed high levels of resistance to FOP herbicides whilst partially impacting on the efficacy of pinoxaden and cycloxydim. This study adequately assessed the contribution of the W2027L mutation and non-target site mechanism in conferring resistance to ACCase herbicides in HGR. It also highlights the versatility and robustness of the dPACS method to simultaneously identify different resistance-causing alleles at a single ACCase codon.
Collapse
|
41
|
Are Efficient-Dose Mixtures a Solution to Reduce Fungicide Load and Delay Evolution of Resistance? An Experimental Evolutionary Approach. Microorganisms 2021; 9:microorganisms9112324. [PMID: 34835451 PMCID: PMC8622124 DOI: 10.3390/microorganisms9112324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 11/17/2022] Open
Abstract
Pesticide resistance poses a critical threat to agriculture, human health and biodiversity. Mixtures of fungicides are recommended and widely used in resistance management strategies. However, the components of the efficiency of such mixtures remain unclear. We performed an experimental evolutionary study on the fungal pathogen Z. tritici to determine how mixtures managed resistance. We compared the effect of the continuous use of single active ingredients to that of mixtures, at the minimal dose providing full control of the disease, which we refer to as the "efficient" dose. We found that the performance of efficient-dose mixtures against an initially susceptible population depended strongly on the components of the mixture. Such mixtures were either as durable as the best mixture component used alone, or worse than all components used alone. Moreover, efficient dose mixture regimes probably select for generalist resistance profiles as a result of the combination of selection pressures exerted by the various components and their lower doses. Our results indicate that mixtures should not be considered a universal strategy. Experimental evaluations of specificities for the pathogens targeted, their interactions with fungicides and the interactions between fungicides are crucial for the design of sustainable resistance management strategies.
Collapse
|
42
|
Schwarz M, Eno RFM, Freitag-Pohl S, Coxon CR, Straker HE, Wortley DJ, Hughes DJ, Mitchell G, Moore J, Cummins I, Onkokesung N, Brazier-Hicks M, Edwards R, Pohl E, Steel PG. Flavonoid-based inhibitors of the Phi-class glutathione transferase from black-grass to combat multiple herbicide resistance. Org Biomol Chem 2021; 19:9211-9222. [PMID: 34643629 PMCID: PMC8564858 DOI: 10.1039/d1ob01802g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022]
Abstract
The evolution and growth of multiple-herbicide resistance (MHR) in grass weeds continues to threaten global cereal production. While various processes can contribute to resistance, earlier work has identified the phi class glutathione-S-transferase (AmGSTF1) as a functional biomarker of MHR in black-grass (Alopecurus myosuroides). This study provides further insights into the role of AmGSTF1 in MHR using a combination of chemical and structural biology. Crystal structures of wild-type AmGSTF1, together with two specifically designed variants that allowed the co-crystal structure determination with glutathione and a glutathione adduct of the AmGSTF1 inhibitor 4-chloro-7-nitro-benzofurazan (NBD-Cl) were obtained. These studies demonstrated that the inhibitory activity of NBD-Cl was associated with the occlusion of the active site and the impediment of substrate binding. A search for other selective inhibitors of AmGSTF1, using ligand-fishing experiments, identified a number of flavonoids as potential ligands. Subsequent experiments using black-grass extracts discovered a specific flavonoid as a natural ligand of the recombinant enzyme. A series of related synthetic flavonoids was prepared and their binding to AmGSTF1 was investigated showing a high affinity for derivatives bearing a O-5-decyl-α-carboxylate. Molecular modelling based on high-resolution crystal structures allowed a binding pose to be defined which explained flavonoid binding specificity. Crucially, high binding affinity was linked to a reversal of the herbicide resistance phenotype in MHR black-grass. Collectively, these results present a nature-inspired new lead for the development of herbicide synergists to counteract MHR in weeds.
Collapse
Affiliation(s)
- Maria Schwarz
- Department of Chemistry, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK.
| | - Rebecca F M Eno
- Department of Chemistry, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK.
| | - Stefanie Freitag-Pohl
- Department of Chemistry, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK.
| | - Christopher R Coxon
- Department of Chemistry, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK.
| | - Hannah E Straker
- Department of Chemistry, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK.
| | - David J Wortley
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - David J Hughes
- Syngenta, Jealott's Hill International Research Station, Bracknell, Berks RG42 6EY, UK
| | - Glynn Mitchell
- Syngenta, Jealott's Hill International Research Station, Bracknell, Berks RG42 6EY, UK
| | - Jenny Moore
- Syngenta, Jealott's Hill International Research Station, Bracknell, Berks RG42 6EY, UK
| | - Ian Cummins
- Department of Biosciences, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK
| | - Nawaporn Onkokesung
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Melissa Brazier-Hicks
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Robert Edwards
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Ehmke Pohl
- Department of Chemistry, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK.
- Department of Biosciences, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
43
|
Gherekhloo J, Hassanpour-bourkheili S, Hejazirad P, Golmohammadzadeh S, Vazquez-Garcia JG, De Prado R. Herbicide Resistance in Phalaris Species: A Review. PLANTS 2021; 10:plants10112248. [PMID: 34834611 PMCID: PMC8621942 DOI: 10.3390/plants10112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Weeds, such as Phalaris spp., can drastically reduce the yield of crops, and the evolution of resistance to herbicides has further exacerbated this issue. Thus far, 23 cases of herbicide resistance in 11 countries have been reported in Phalaris spp., including Phalaris minor Retz., Phalaris paradoxa L., and Phalaris brachystachys L., for photosystem II (PS-II), acetyl-CoA carboxylase (ACCase), and acetolactate synthase (ALS)-inhibiting herbicides. This paper will first review the cases of herbicide resistance reported in P. minor, P. paradoxa, and P. brachystachys. Then, the mechanisms of resistance in Phalaris spp. are discussed in detail. Finally, the fitness cost of herbicide resistance and the literature on the management of herbicide-resistant weeds from these species are reviewed.
Collapse
Affiliation(s)
- Javid Gherekhloo
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran; (S.H.-b.); (P.H.); (S.G.)
- Correspondence: (J.G.); (R.D.P.)
| | - Saeid Hassanpour-bourkheili
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran; (S.H.-b.); (P.H.); (S.G.)
| | - Parvin Hejazirad
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran; (S.H.-b.); (P.H.); (S.G.)
| | - Sajedeh Golmohammadzadeh
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran; (S.H.-b.); (P.H.); (S.G.)
| | - Jose G. Vazquez-Garcia
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14071 Cordoba, Spain;
| | - Rafael De Prado
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14071 Cordoba, Spain;
- Correspondence: (J.G.); (R.D.P.)
| |
Collapse
|
44
|
Luong HNB, Damijonaitis A, Nauen R, Vontas J, Horstmann S. Assessing the anti-resistance potential of public health vaporizer formulations and insecticide mixtures with pyrethroids using transgenic Drosophila lines. Parasit Vectors 2021; 14:495. [PMID: 34565459 PMCID: PMC8474913 DOI: 10.1186/s13071-021-04997-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insecticide resistance-and especially pyrethroid resistance-is a major challenge for vector control in public health. The use of insecticide mixtures utilizing alternative modes of action, as well as new formulations facilitating their uptake, is likely to break resistance and slow the development of resistance. METHODS We used genetically defined highly resistant lines of Drosophila melanogaster with distinct target-site mutations and detoxification enzymes to test the efficacy and anti-resistance potential of novel mixture formulations (i.e. Fludora® Fusion consisting of deltamethrin and clothianidin), as well as emulsifiable concentrate transfluthrin, compared to alternative, currently used pyrethroid insecticide formulations for vector control. RESULTS The commercial mixture Fludora® Fusion, consisting of both a pyrethroid (deltamethrin) and a neonicotinoid (clothianidin), performed better than either of the single active ingredients against resistant transgenic flies. Transfluthrin, a highly volatile active ingredient with a different molecular structure and primary exposure route (respiration), was also efficient and less affected by the combination of metabolic and target-site resistance. Both formulations substantially reduced insecticide resistance across different pyrethroid-resistant Drosophila transgenic strains. CONCLUSIONS The use of mixtures containing two unrelated modes of action as well as a formulation based on transfluthrin showed increased efficacy and resistance-breaking potential against genetically defined highly resistant Drosophila flies. The experimental model remains to be validated with mosquito populations in the field. The possible introduction of new transfluthrin-based products and mixtures for indoor residual spraying, in line with other combination and mixture vector control products recently evaluated for use in public health, will provide solutions for better insecticide resistance management.
Collapse
Affiliation(s)
- Hang Ngoc Bao Luong
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | | | - Ralf Nauen
- Crop Science Division, R&D, Bayer AG, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.
| | | |
Collapse
|
45
|
Liao H, Li X, Yang Q, Bai Y, Cui P, Wen C, Liu C, Chen Z, Tang J, Che J, Yu Z, Geisen S, Zhou S, Friman VP, Zhu YG. Herbicide Selection Promotes Antibiotic Resistance in Soil Microbiomes. Mol Biol Evol 2021; 38:2337-2350. [PMID: 33592098 PMCID: PMC8136491 DOI: 10.1093/molbev/msab029] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Herbicides are one of the most widely used chemicals in agriculture. While they are known to be harmful to nontarget organisms, the effects of herbicides on the composition and functioning of soil microbial communities remain unclear. Here we show that application of three widely used herbicides—glyphosate, glufosinate, and dicamba—increase the prevalence of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in soil microbiomes without clear changes in the abundance, diversity and composition of bacterial communities. Mechanistically, these results could be explained by a positive selection for more tolerant genotypes that acquired several mutations in previously well-characterized herbicide and ARGs. Moreover, herbicide exposure increased cell membrane permeability and conjugation frequency of multidrug resistance plasmids, promoting ARG movement between bacteria. A similar pattern was found in agricultural soils across 11 provinces in China, where herbicide application, and the levels of glyphosate residues in soils, were associated with increased ARG and MGE abundances relative to herbicide-free control sites. Together, our results show that herbicide application can enrich ARGs and MGEs by changing the genetic composition of soil microbiomes, potentially contributing to the global antimicrobial resistance problem in agricultural environments.
Collapse
Affiliation(s)
- Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiue Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yudan Bai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Wen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiangang Che
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen 6700AA, Netherlands
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
46
|
Rovida AFDS, Costa G, Santos MI, Silva CR, Freitas PNN, Oliveira EP, Pileggi SAV, Olchanheski RL, Pileggi M. Herbicides Tolerance in a Pseudomonas Strain Is Associated With Metabolic Plasticity of Antioxidative Enzymes Regardless of Selection. Front Microbiol 2021; 12:673211. [PMID: 34239509 PMCID: PMC8258386 DOI: 10.3389/fmicb.2021.673211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
Agriculture uses many food production chains, and herbicides participate in this process by eliminating weeds through different biochemical strategies. However, herbicides can affect non-target organisms such as bacteria, which can suffer damage if there is no efficient control of reactive oxygen species. It is not clear, according to the literature, whether the efficiency of this control needs to be selected by the presence of xenobiotics. Thus, the Pseudomonas sp. CMA 6.9 strain, collected from biofilms in an herbicide packaging washing tank, was selected for its tolerance to pesticides and analyzed for activities of different antioxidative enzymes against the herbicides Boral®, absent at the isolation site, and Heat®, present at the site; both herbicides have the same mode of action, the inhibition of the enzyme protoporphyrinogen oxidase. The strain showed tolerance to both herbicides in doses up to 45 times than those applied in agriculture. The toxicity of these herbicides, which is greater for Boral®, was assessed by means of oxidative stress indicators, growth kinetics, viability, and amounts of peroxide and malondialdehyde. However, the studied strain showed two characteristic antioxidant response systems for each herbicide: glutathione-s-transferase acting to control malondialdehyde in treatments with Boral®; and catalase, ascorbate peroxidase, and guaiacol peroxidase in the control of peroxide induced by Heat®. It is possible that this modulation of the activity of different enzymes independent of previous selection characterizes a system of metabolic plasticity that may be more general in the adaptation of microorganisms in soil and water environments subjected to chemical contaminants. This is relevant to the impact of pesticides on the diversity and abundance of microbial species as well as a promising line of metabolic studies in microbial consortia for use in bioremediation.
Collapse
Affiliation(s)
| | - Gessica Costa
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Mariana Inglês Santos
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Caroline Rosa Silva
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Paloma Nathane Nunes Freitas
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Elizangela Paz Oliveira
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Ricardo Luiz Olchanheski
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Marcos Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
47
|
Silva G, Tomlinson J, Onkokesung N, Sommer S, Mrisho L, Legg J, Adams IP, Gutierrez-Vazquez Y, Howard TP, Laverick A, Hossain O, Wei Q, Gold KM, Boonham N. Plant pest surveillance: from satellites to molecules. Emerg Top Life Sci 2021; 5:275-287. [PMID: 33720345 PMCID: PMC8166340 DOI: 10.1042/etls20200300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022]
Abstract
Plant pests and diseases impact both food security and natural ecosystems, and the impact has been accelerated in recent years due to several confounding factors. The globalisation of trade has moved pests out of natural ranges, creating damaging epidemics in new regions. Climate change has extended the range of pests and the pathogens they vector. Resistance to agrochemicals has made pathogens, pests, and weeds more difficult to control. Early detection is critical to achieve effective control, both from a biosecurity as well as an endemic pest perspective. Molecular diagnostics has revolutionised our ability to identify pests and diseases over the past two decades, but more recent technological innovations are enabling us to achieve better pest surveillance. In this review, we will explore the different technologies that are enabling this advancing capability and discuss the drivers that will shape its future deployment.
Collapse
Affiliation(s)
- Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, U.K
| | - Jenny Tomlinson
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York YO41 1LZ, U.K
| | - Nawaporn Onkokesung
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Sarah Sommer
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Latifa Mrisho
- International Institute of Tropical Agriculture, Dar el Salaam, Tanzania
| | - James Legg
- International Institute of Tropical Agriculture, Dar el Salaam, Tanzania
| | - Ian P Adams
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York YO41 1LZ, U.K
| | | | - Thomas P Howard
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Alex Laverick
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Oindrila Hossain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Kaitlin M Gold
- Plant Pathology and Plant Microbe Biology Section, Cornell University, 15 Castle Creek Drive, Geneva, NY 14456, U.S.A
| | - Neil Boonham
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
48
|
Franco-Ortega S, Goldberg-Cavalleri A, Walker A, Brazier-Hicks M, Onkokesung N, Edwards R. Non-target Site Herbicide Resistance Is Conferred by Two Distinct Mechanisms in Black-Grass ( Alopecurus myosuroides). FRONTIERS IN PLANT SCIENCE 2021; 12:636652. [PMID: 33747015 PMCID: PMC7966817 DOI: 10.3389/fpls.2021.636652] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 05/31/2023]
Abstract
Non-target site resistance (NTSR) to herbicides in black-grass (Alopecurus myosuroides) results in enhanced tolerance to multiple chemistries and is widespread in Northern Europe. To help define the underpinning mechanisms of resistance, global transcriptome and biochemical analysis have been used to phenotype three NTSR black-grass populations. These comprised NTSR1 black-grass from the classic Peldon field population, which shows broad-ranging resistance to post-emergence herbicides; NTSR2 derived from herbicide-sensitive (HS) plants repeatedly selected for tolerance to pendimethalin; and NTSR3 selected from HS plants for resistance to fenoxaprop-P-ethyl. NTSR in weeds is commonly associated with enhanced herbicide metabolism catalyzed by glutathione transferases (GSTs) and cytochromes P450 (CYPs). As such, the NTSR populations were assessed for their ability to detoxify chlorotoluron, which is detoxified by CYPs and fenoxaprop-P-ethyl, which is acted on by GSTs. As compared with HS plants, enhanced metabolism toward both herbicides was determined in the NTSR1 and NTSR2 populations. In contrast, the NTSR3 plants showed no increased detoxification capacity, demonstrating that resistance in this population was not due to enhanced metabolism. All resistant populations showed increased levels of AmGSTF1, a protein functionally linked to NTSR and enhanced herbicide metabolism. Enhanced AmGSTF1 was associated with increased levels of the associated transcripts in the NTSR1 and NTSR2 plants, but not in NTSR3, suggestive of both pre- and post-transcriptional regulation. The related HS, NTSR2, and NTSR3 plants were subject to global transcriptome sequencing and weighted gene co-expression network analysis to identify modules of genes with coupled regulatory functions. In the NTSR2 plants, modules linked to detoxification were identified, with many similarities to the transcriptome of NTSR1 black-grass. Critical detoxification genes included members of the CYP81A family and tau and phi class GSTs. The NTSR2 transcriptome also showed network similarities to other (a)biotic stresses of plants and multidrug resistance in humans. In contrast, completely different gene networks were activated in the NTSR3 plants, showing similarity to the responses to cold, osmotic shock and fungal infection determined in cereals. Our results demonstrate that NTSR in black-grass can arise from at least two distinct mechanisms, each involving complex changes in gene regulatory networks.
Collapse
|
49
|
Torra J, Montull JM, Taberner A, Onkokesung N, Boonham N, Edwards R. Target-Site and Non-target-Site Resistance Mechanisms Confer Multiple and Cross- Resistance to ALS and ACCase Inhibiting Herbicides in Lolium rigidum From Spain. FRONTIERS IN PLANT SCIENCE 2021; 12:625138. [PMID: 33613607 PMCID: PMC7889805 DOI: 10.3389/fpls.2021.625138] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 05/07/2023]
Abstract
Lolium rigidum is one the worst herbicide resistant (HR) weeds worldwide due to its proneness to evolve multiple and cross resistance to several sites of action (SoA). In winter cereals crops in Spain, resistance to acetolactate synthase (ALS)- and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides has become widespread, with farmers having to rely on pre-emergence herbicides over the last two decades to maintain weed control. Recently, lack of control with very long-chain fatty acid synthesis (VLCFAS)-inhibiting herbicides has been reported in HR populations that are difficult to manage by chemical means. In this study, three Spanish populations of L. rigidum from winter cereals were confirmed as being resistant to ALS- and ACCase-inhibiting herbicides, with broad-ranging resistance toward the different chemistries tested. In addition, reduced sensitivity to photosystem II-, VLCFAS-, and phytoene desaturase-inhibiting herbicides were confirmed across the three populations. Resistance to ACCase-inhibiting herbicides was associated with point mutations in positions Trp-2027 and Asp-2078 of the enzyme conferring target site resistance (TSR), while none were detected in the ALS enzyme. Additionally, HR populations contained enhanced amounts of an ortholog of the glutathione transferase phi (F) class 1 (GSTF1) protein, a functional biomarker of non-target-site resistance (NTSR), as confirmed by enzyme-linked immunosorbent assays. Further evidence of NTSR was obtained in dose-response experiments with prosulfocarb applied post-emergence, following pre-treatment with the cytochrome P450 monooxygenase inhibitor malathion, which partially reversed resistance. This study confirms the evolution of multiple and cross resistance to ALS- and ACCase inhibiting herbicides in L. rigidum from Spain by mechanisms consistent with the presence of both TSR and NTSR. Moreover, the results suggest that NTSR, probably by means of enhanced metabolism involving more than one detoxifying enzyme family, confers cross resistance to other SoA. The study further demonstrates the urgent need to monitor and prevent the further evolution of herbicide resistance in L. rigidum in Mediterranean areas.
Collapse
Affiliation(s)
- Joel Torra
- Department d’Hortofructicultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, Lleida, Spain
- *Correspondence: Joel Torra,
| | - José María Montull
- Department d’Hortofructicultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, Lleida, Spain
| | - Andreu Taberner
- Department d’Hortofructicultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, Lleida, Spain
| | - Nawaporn Onkokesung
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Neil Boonham
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert Edwards
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
50
|
Yanniccari M, Gigón R, Larsen A. Cytochrome P450 Herbicide Metabolism as the Main Mechanism of Cross-Resistance to ACCase- and ALS-Inhibitors in Lolium spp. Populations From Argentina: A Molecular Approach in Characterization and Detection. FRONTIERS IN PLANT SCIENCE 2020; 11:600301. [PMID: 33304373 PMCID: PMC7701091 DOI: 10.3389/fpls.2020.600301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/28/2020] [Indexed: 05/22/2023]
Abstract
Knowledge about the mechanisms of herbicide resistance provide valuable insights into evolving weed populations in response to selection pressure and should be used as a basis for designing management strategies for herbicide-resistant weeds. The selection pressure associated with reactive management against glyphosate-resistant Lolium spp. populations would have favored the herbicide resistance to ACCase- and ALS-inhibitors. This work was aimed to determine the sensitivity of 80 Argentinean Lolium spp. populations to ALS- and ACCase-inhibitor herbicides for use in wheat or barley and to study the mechanisms of resistance involved. Sensitivity to pinoxaden and iodosulfuron-mesosulfuron were positively correlated (r = 0.84), even though both affect different target sites. Inhibitors of cytochrome P450 monooxygenases (P450s) increased the sensitivity to pinoxaden and iodosulfuron-mesosulfuron in 94% of herbicide-resistant populations and target-site ACCase resistance mutations were detected only in two cases. Polymorphic variants were obtained with a pair primer designed on P450 sequences, cluster analysis discriminated around 80% of susceptible and P450-metabolic resistant plants sampled from a single population or different populations. Five markers corresponding to herbicide sensitivity were identified to be significantly associated with phenotypic variance in plants. Resistance to ALS- and ACCase-inhibitor herbicides were closely related, challenging the rotation of herbicides of both sites of action as a practice against resistance. In that sense, the use of pinoxaden and iodosulfuron-mesosulfuron would have provoked a selection on P450 genes that conduced a convergence of P450-metabolism based resistant Lolium spp. populations, which was detected by markers in a contribution to elucidate the molecular basis of this type of resistance.
Collapse
Affiliation(s)
- Marcos Yanniccari
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratory of Biotechnology and Plant Genetics, Chacra Experimental Integrada Barrow (MDA-INTA), Tres Arroyos, Argentina
- *Correspondence: Marcos Yanniccari, :
| | - Ramón Gigón
- Private Consultant in Weed Control, Tres Arroyos, Argentina
| | - Adelina Larsen
- Instituto Nacional de Tecnología Agropecuaria, Laboratory of Biotechnology and Plant Genetics, Chacra Experimental Integrada Barrow (MDA-INTA), Tres Arroyos, Argentina
| |
Collapse
|