1
|
Zhu X, Fang L, Zhou Z, Qin L, Wang L, Chen X. Boosting Reaction Kinetics and Stability of Electrocatalytic Oxygen Evolution with Ir/CoV-LDH/Graphene Heterogeneous Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410640. [PMID: 40341905 DOI: 10.1002/smll.202410640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/01/2025] [Indexed: 05/11/2025]
Abstract
To address the challenge of low catalytic performance in the electrocatalytic oxygen evolution reaction (OER) caused by slow reaction kinetics, a novel approach is developed utilizing the crystalline properties of iridium (Ir) and hydrogen-related layered double hydroxide (LDH) to enhance corrosion resistance. These materials are integrated into a CoV-LDH structure to design an Ir/CoV-LDH/G heterogeneous electrocatalyst. This innovative heterogeneous structure not only enhances the reaction kinetics but also optimizes the electronic structure of the catalyst through interactions at the heterogeneous interface, leading to excellent electrocatalytic OER performance. Notably, the Ir/CoV-LDH/G catalyst requires overpotentials of merely 203 and 289 mV to achieve current densities of 10 and 100 mA cm-2, respectively. Furthermore, when utilized in an Ir/CoV-LDH/G||Pt/C electrolytic cell for overall water splitting, it delivers a current density of 10 mA·cm-2 at a cell voltage of only 1.46 V, surpassing the performance of most commercial IrO₂||Pt/C and previously reported Ir-based and LDH electrocatalysts. The catalyst also exhibits remarkable stability, maintaining a current density of 100 mA·cm-2 for 100 h without significant degradation.
Collapse
Affiliation(s)
- Xianjun Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
- Zhejiang Hengdian Tospo Imp Exp Co Ltd
| | - Le Fang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Zichao Zhou
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Liya Qin
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Xiang Chen
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| |
Collapse
|
2
|
Yang Y, Liu J, Sun C, Fu Y, Li Q, Qian J. Pt-Skin Coated PtNi Alloy in Carbon Nanoshells for Enhanced Hydrogen Evolution Activity and Durability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2503294. [PMID: 40116519 DOI: 10.1002/smll.202503294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Hydrogen, as an environmentally sustainable energy carrier, offers substantial potential for addressing the global energy crisis. The development of highly efficient catalysts to accelerate the hydrogen evolution reaction (HER) is critical for the realization of electrochemical hydrogen production via water splitting. Herein, a novel heterogeneous catalyst consisting of PtNi nanoalloys with Pt-enriched surfaces is obtained, which are uniformly distributed within nitrogen-doped hollow carbon nanoshells derived from a complex of Ni-EDTA (ethylene diamine tetraacetate). Remarkably, the fabricated NE-PtNiNC catalyst demonstrates exceptional HER performance, exhibiting an ultra-low overpotential of 3 mV at 10 mA cm-2 and 6.8-fold higher mass activity compared to the commercial Pt/C catalyst, positioning it as one of the most advanced catalysts to date. Additionally, it shows outstanding stability over 200 h and exhibits promising potential for practical deployment in two-electrode water electrolysis systems. Theoretical analyses further reveal that the Pt-skin@PtNi structure, with its lowest d-band center, fosters a more pronounced overlap of the 5d electron cloud at the surface Pt sites. This interaction results in increased electron density on the Pt skin, facilitating water dissociation and significantly enhancing the intrinsic HER activity and durability.
Collapse
Affiliation(s)
- Yuandong Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jie Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Chen Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yuting Fu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Qipeng Li
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, Yunnan, 657000, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
3
|
Kang J, Fang Y, Yang J, Huang L, Chen Y, Li D, Sun J, Jiang R. Recent Development of Ir- and Ru-Based Electrocatalysts for Acidic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20519-20559. [PMID: 40138357 DOI: 10.1021/acsami.4c22918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Proton exchange membrane (PEM) water electrolyzers are one type of the most promising technologies for efficient, nonpolluting and sustainable production of high-purity hydrogen. The anode catalysts account for a very large fraction of cost in PEM water electrolyzer and also determine the lifetime of the electrolyzer. To date, Ir- and Ru-based materials are types of promising catalysts for the acidic oxygen evolution reaction (OER), but they still face challenges of high cost or low stability. Hence, exploring low Ir and stable Ru-based electrocatalysts for acidic OER attracts extensive research interest in recent years. Owing to these great research efforts, significant developments have been achieved in this field. In this review, the developments in the field of Ir- and Ru-based electrocatalysts for acidic OER are comprehensively described. The possible OER mechanisms are first presented, followed by the introduction of the criteria for evaluation of the OER electrocatalysts. The development of Ir- and Ru-based OER electrocatalysts are then elucidated according to the strategies utilized to tune the catalytic performances. Lastly, possible future research in this burgeoning field is discussed.
Collapse
Affiliation(s)
- Jianghao Kang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yunpeng Fang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Yang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Luo Huang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Chen
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Deng Li
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Sun
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ruibin Jiang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
4
|
Nguyen TTA, Tran KD, Tran DT, Sidra S, Kim DH, Kim NH, Lee JH. Tunable Catalytic Performance on Iridium Clusters-Interspersed Co xS y-CoO Nanosheet-Built Hollows for Enhanced Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412435. [PMID: 40109132 DOI: 10.1002/smll.202412435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/19/2025] [Indexed: 03/22/2025]
Abstract
To reach sustainable and robust green hydrogen energy production, the development of effective and long-lasting electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) during overall electrochemical water splitting is a critical requirement. In this study, a novel hierarchical nanosheet-based hollow heterostructure of CoxSy-CoO integrated with active iridium clusters (IrCs-CoxSy-CoO) is prepared by a straightforward chemical synthesis approach. The heterostructure offers extensive tunnels, and abundant mesopores, and features a high-density active site at the interfaces, thus greatly improving the overall catalytic performance through the promotion of synergistic effects. The IrCs-CoxSy-CoO catalyst demonstrates low overpotentials of 97 mV for HER and 243 mV for OER at 10 mA cm-2, showcasing remarkable stability and efficiency. The two-electrode cell test demonstrates reliable current response of 10 mA cm-2 at voltage of 1.497 and 1.58 V at temperature of 75 and 25 °C, respectively. Furthermore, the IrCs-CoxSy-CoO catalyst exhibits enhanced durability and performance when compared to the Pt/C(-)//RuO2(+). In practical application, significant current of 0.5/1.0 A cm-2 at 1.8/1.97 V has been achieved in an anion exchange membrane electrolyzer stack, while maintaining high efficiency (68%) and exceptional stability (over 500 h), underscoring the promising potential for sustainable H2 energy production.
Collapse
Affiliation(s)
- Tran Thien An Nguyen
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Khoa Dang Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Saleem Sidra
- Division of Science Education, Department of Energy Storage/Conversion Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Do Hwan Kim
- Division of Science Education, Department of Energy Storage/Conversion Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- Carbon Composite Research Center, Department of Polymer and Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
5
|
Quan Q, Zhang Y, Li H, Wang W, Xie P, Chen D, Wang W, Meng Y, Yin D, Li Y, Song D, Chen L, Li S, Yang C, Yanagida T, Wong CY, Yip S, Ho JC. Atomic-scale self-rearrangement of hetero-metastable phases into high-density single-atom catalysts for the oxygen evolution reaction. Nat Commun 2025; 16:2908. [PMID: 40133310 PMCID: PMC11937230 DOI: 10.1038/s41467-025-58163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Maximizing metal-substrate interactions by self-reconstruction of coadjutant metastable phases can be a delicate strategy to obtain robust and efficient high-density single-atom catalysts. Here, we prepare high-density iridium atoms embedded ultrathin CoCeOOH nanosheets (CoCe-O-IrSA) by the electrochemistry-initiated synchronous evolution between metastable iridium intermediates and symmetry-breaking CoCe(OH)2 substrates. The CoCe-O-IrSA delivers an overpotential of 187 mV at 100 mA cm-2 and a steady lifespan of 1000 h at 500 mA cm-2 for oxygen evolution reaction. Furthermore, the CoCe-O-IrSA is applied as a robust anode in an anion-exchange-membrane water electrolysis cell for seawater splitting at 500 mA cm-2 for 150 h. Operando experimental and theoretical calculation results demonstrate that the reconstructed thermodynamically stable iridium single atoms act as highly active sites by regulating charge redistribution with strongly p-d-f orbital couplings, enabling electron transfer facilitated, the adsorption energies of intermediates optimized, and the surface reactivity of Co/Ce sites activated, leading to high oxygen evolution performance. These results open up an approach for engineering metastable phases to realize stable single-atom systems under ambient conditions toward efficient energy-conversion applications.
Collapse
Affiliation(s)
- Quan Quan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Haifan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Wei Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Dong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Weijun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - You Meng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, China
| | - Di Yin
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yezhan Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Dongyuan Song
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Lijie Chen
- China International Marine Containers Offshore Co., Ltd, Shenzhen, China
| | - Shaohai Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
| | - Cheng Yang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Takeshi Yanagida
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - SenPo Yip
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan.
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, China.
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
6
|
Ke J, Zhu W, Ji Y, Chen J, Li C, Wang Y, Wang Q, Huang WH, Hu Z, Li Y, Shao Q, Lu J. Optimizing Acidic Oxygen Evolution Reaction via Modulation Doping in Van der Waals Layered Iridium Oxide. Angew Chem Int Ed Engl 2025; 64:e202422740. [PMID: 39757984 DOI: 10.1002/anie.202422740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/07/2025]
Abstract
Anodic oxygen evolution reaction (OER) exhibits a sluggish four-electron transfer process, necessitating catalysts with exceptional catalytic activity to enhance its kinetic rate. Van der Waals layered oxides are ideal materials for catalyst design, yet its stability for acidic OER remains large obstacle. Doping provides a crucial way to improve the activity and stability simultaneously. However, doping in Van der Waals layered oxides remains a great challenge since it easily leads to lattice distortion or even the crystal structure damage. In this work, we successfully doping acid-resistant niobium (Nb) into Van der Waals layered edge-shared 1T phase iridium oxide (1 T-IrO2) via alkali-assisted thermal method. 1 T-IrO2 with a 5 % Nb doping (Nb0.05Ir0.95O2) only required an overpotential of 191 mV to achieve a current density of 10 mA cm-2 in 0.5 M H2SO4, 56 mV lower than that of 1T-IrO2. When applied in proton exchange membrane water electrolyzer, Nb0.05Ir0.95O2 show stable operation at a high current density of 1.2 A cm-2 for over 50 days. Density functional theory calculation reveals that doping Nb changes the potential-determining step from the *OOH deprotonation process in 1 T-IrO2 to the *O-OH coupling process in Nb0.05Ir0.95O2.
Collapse
Affiliation(s)
- Jia Ke
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Jinxin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Chenchen Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Qun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Street 40, Dresden, 01187, Germany
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| |
Collapse
|
7
|
Li G, Priyadarsini A, Xie Z, Kang S, Liu Y, Chen X, Kattel S, Chen JG. Achieving Higher Activity of Acidic Oxygen Evolution Reaction Using an Atomically Thin Layer of IrO x over Co 3O 4. J Am Chem Soc 2025; 147:7008-7016. [PMID: 39945409 DOI: 10.1021/jacs.4c17915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The development of electrocatalysts with reduced iridium (Ir) loading for the oxygen evolution reaction (OER) is essential to produce low-cost green hydrogen from water electrolysis under acidic conditions. Herein, an atomically thin layer of iridium oxide (IrOx) has been uniformly dispersed onto cobalt oxide (Co3O4) nanocrystals to improve the efficient use of Ir for acidic OER. In situ characterization and theoretical calculations reveal that compared to the conventional IrOx cluster, the atomically thin layer of IrOx shows stronger interaction with the Co3O4 and consequently higher OER activity due to the Ir-O-Co bond formation at the interface. Equally important, the facile synthetic method and the promising activity in the proton exchange membrane water electrolyzer, reaching 1 A cm-2 at 1.7 V with remarkable durability, enable potential scale-up applications. These findings provide a mechanistic understanding for designing active, stable and lower-cost electrocatalysts with well-defined structures for acidic OER.
Collapse
Affiliation(s)
- Gengnan Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Adyasa Priyadarsini
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Zhenhua Xie
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sinwoo Kang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaobo Chen
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shyam Kattel
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
8
|
Zhang W, Zhu C, Wen Y, Wang M, Lu Z, Wang Y. Strontium Doped IrO x Triggers Direct O-O Coupling to Boost Acid Water Oxidation Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202418456. [PMID: 39387682 DOI: 10.1002/anie.202418456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
The discovery of efficient and stable electrocatalysts for the oxygen evolution reaction (OER) in acidic conditions is crucial for the commercialization of proton-exchange membrane water electrolyzers. In this work, we propose a Sr(OH)2-assisted method to fabricate a (200) facet highly exposed strontium-doped IrOx catalyst to provide available adjacent iridium sites with lower Ir-O covalency. This design facilitates direct O-O coupling during the acidic water oxidation process, thereby circumventing the high energy barrier associated with the generation of *OOH intermediates. Benefiting from this advantage, the resulting Sr-IrOx catalyst exhibits an impressive overpotential of 207 mV at a current density of 10 mA cm-2 in 0.5 M H2SO4. Furthermore, a PEMWE device utilizing Sr-IrOx as the anodic catalyst demonstrates a cell voltage of 1.72 V at 1 A cm-2 and maintains excellent stability for over 500 hours. Our work not only provides guidance for the design of improved acidic OER catalysts but also encourages the development of iridium-based electrocatalysts with novel mechanisms for other electrocatalytic reactions.
Collapse
Affiliation(s)
- Wuyong Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, 315201, P. R. China
| | - Caihan Zhu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, 315201, P. R. China
| | - Yingjie Wen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, 315201, P. R. China
| | - Minli Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunan Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Moon CJ, Maheskumar V, Min A, Kumar A, Lee S, Senthil RA, Ubaidullah M, Choi MY. Laser-Regulated Iridium-Diffused Nitrogen-Carbon Sites for Enhanced Hydrazine-Assisted Alkaline Seawater Splitting and Zinc-Hydrazine Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408569. [PMID: 39478677 DOI: 10.1002/smll.202408569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Indexed: 02/26/2025]
Abstract
The current study presents a quick and simple method for synthesizing Ir nanoclusters decorated on an N-doped carbon (NC) matrix via pulsed laser ablation in liquid, followed by pyrolysis. The resulting Ir-NC material acts as a dual-functional electrocatalyst, efficiently facilitating hydrogen generation through the hydrazine oxidation reaction (HzOR) and the hydrogen evolution reaction (HER) in alkaline seawater. The optimized Ir-NC-2 catalyst exhibits a low operating potential of 23 mV versus the reversible hydrogen electrode for HzOR and a remarkably low overpotential of 24 mV for HER, achieving a current density of 10 mA cm-2 in alkaline seawater, surpassing the performance of the Pt/C catalyst. Notably, the Ir-NC-2 catalyst also demonstrates superior dual-functionality in overall hydrazine-assisted seawater splitting, requiring only 0.1 V at 10 mA cm-2 while maintaining stability. Moreover, density functional theory calculations reveal that the strong electronic interaction between the Ir nanoclusters and the NC matrix enhances mass transfer and electron conductivity, significantly boosting HER activity and accelerating the kinetics of hydrazine dehydrogenation. Consequently, the Ir-NC-2 catalyst performs efficiently in a Zn-hydrazine battery, achieving high energy efficiency of 95.5% and demonstrating excellent stability for 120 h (360 cycles), indicating its potential for practical applications.
Collapse
Affiliation(s)
- Cheol Joo Moon
- Core-Facility Center for Photochemistry and Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Velusamy Maheskumar
- Department of Chemistry (BK21 FOUR), Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry and Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Chemistry (BK21 FOUR), Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Seongbo Lee
- Department of Chemistry (BK21 FOUR), Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Raja Arumugam Senthil
- Department of Chemistry (BK21 FOUR), Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry and Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Chemistry (BK21 FOUR), Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
10
|
Liu P, Ye J, Deng K, Liu X, Dong H, Zhang H, Tian W, Ji J. Universal synthesis of single-atom electrocatalysts via in situ fluoride ion etching for hydrogen evolution. Chem Sci 2025:d4sc08603a. [PMID: 39916883 PMCID: PMC11795457 DOI: 10.1039/d4sc08603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Single-atom catalysts (SACs) have attracted considerable interest in the field of electrocatalysis due to their high efficiency of metal utilization and catalytic activity. However, traditional methods of SACs fabrication are often complex and time-consuming. Herein, F-Ru@TiO x N y was synthesized using a straightforward and universal approach via in situ surface etching and heteroatoms immobilization on a vacancies-rich hierarchical TiO x N y nanorods array. The fluorine ion-etched TiO x N y nanorods could produce abundant oxygen vacancies and F-Ti/F-C bonds, which could capture and stabilize Ru heteroatoms by strong host-guest electronic interactions. Due to the synergistic effect of oxygen vacancies anchoring and F-C bonds-assisted stabilization of single atoms, F-Ru@TiO x N y revealed excellent electrocatalytic hydrogen evolution performance, a low overpotential of 20.8 mV at 10 mA cm-2, a Tafel slope of 59.9 mV dec-1 and robust stability at 100 mA cm-2 over 48 h. Furthermore, this universal strategy could be applicable to various heterometals (Pd, Ir, Pt), which also exhibited high heteroatoms dispersity and high electrocatalytic HER activity/stability. This fabrication method is simple, easy-scalable and versatile, showcasing significant potential for electrocatalysts design and promising application prospects in electrocatalytic energy conversion.
Collapse
Affiliation(s)
- Peng Liu
- School of Chemical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Jiahui Ye
- School of Chemical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Kuan Deng
- School of Chemical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Xuesong Liu
- School of Chemical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Haohui Dong
- School of Chemical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - He Zhang
- School of Chemical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Wen Tian
- School of Chemical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
11
|
Yao B, Chen Y, Yan Y, Yang Y, Xing H, Xu Y, Jiao D, Xing Z, Wang D, Yang X. Iron-Induced Localized Oxide Path Mechanism Enables Efficient and Stable Water Oxidation. Angew Chem Int Ed Engl 2025; 64:e202416141. [PMID: 39500742 DOI: 10.1002/anie.202416141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Indexed: 11/21/2024]
Abstract
The sluggish reaction kinetics of the anodic oxygen evolution reaction (OER) and the inadequate catalytic performance of non-noble metal-based electrocatalysts represent substantial barriers to the development of anion exchange membrane water electrolyzer (AEMWE). This study performed the synthesis of a three-dimensional (3D) nanoflower-like electrocatalyst (CFMO) via a simple one-step method. The substitution of Co with Fe in the structure induces a localized oxide path mechanism (LOPM), facilitating direct O-O radical coupling for enhanced O2 evolution. The optimized CFMO-2 electrocatalyst demonstrates superior OER performance, achieving an overpotential of 217 mV at 10 mA cm-2, alongside exceptional long-term stability with minimal degradation after 1000 h of operation in 1.0 M KOH. These properties surpass most of conventional noble metal-based electrocatalysts. Furthermore, the assembled AEMWE system, utilizing CFMO-2, operates with a cell voltage of 1.65 V to deliver 1.0 A cm-2. In situ characterizations reveal that, in addition to the traditional adsorbate evolution mechanism (AEM) at isolated Co sites, a new LOPM occurred around the Fe and Co bimetallic sites. First-principles calculations confirm the LOPM greatly reduced the energy barriers. This work highlights the potential of LOPM for improving the design of non-noble metal-based electrocatalysts and the development of AEMWE.
Collapse
Affiliation(s)
- Bohan Yao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P R China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P R China
| | - Yuting Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P R China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P R China
| | - Yueying Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P R China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P R China
| | - Yang Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P R China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P R China
| | - Huanhuan Xing
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P R China
| | - Yanchao Xu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Dongxu Jiao
- School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Zhicai Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P R China
| | - Dewen Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P R China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P R China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P R China
| |
Collapse
|
12
|
Kong Z, Zhao X, Li WC, Wang JY, Li S, Liu Z, Dong XY, Wang R, Huang RW, Zang SQ. Cluster Engineering in Water Catalytic Reactions: Synthesis, Structure-Activity Relationship and Mechanism. ACS APPLIED MATERIALS & INTERFACES 2025; 17:67-90. [PMID: 39718441 DOI: 10.1021/acsami.4c16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Four fundamental reactions are essential to harnessing energy from water sustainably: oxidation reduction reaction (ORR), oxygen reduction reaction (OER), hydrogen oxidation reaction (HOR), and hydrogen evolution reaction (HER). This review summarizes the research advancements in the electrocatalytic reaction of metal nanoclusters for water splitting. It covers various types of nanoclusters, particularly those at the size level, that enhance these catalytic reactions. The synthesis of cluster-based catalysts and the elucidation of the structure-activity relationships and reaction mechanisms are discussed. Emphasis is placed on utilizing atomically precise cluster materials and the interplay between the carrier and cluster in water catalysis, especially for applying catalytic engineering principles (such as synergy, coordination, heterointerface, and lattice strain engineering) to understand structure-activity relationships and catalytic mechanisms for cluster-based catalysts. Finally, the field of cluster water catalysis is summarized and prospected. We believe that developing cluster-based catalysts with high activity, excellent stability, and high selectivity will significantly promote the development of renewable energy conversion reactions.
Collapse
Affiliation(s)
- Zhijie Kong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wu-Chu Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Yun Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Si Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhijuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ren-Wu Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Hua N, Zhang C, Zhang W, Yao X, Qian H. Development and application of ordered membrane electrode assemblies for water electrolysis. Chem Commun (Camb) 2024; 61:232-246. [PMID: 39629508 DOI: 10.1039/d4cc05300a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
With the development of hydrogen energy, there has been increasing attention toward fuel cells and water electrolysis. Among them, the zero-gap membrane electrode assembly (MEA) serves as an important triple-phase reaction site that determines the performance and efficiency of the reaction system. The development of efficient and durable MEAs plays a crucial role in the development of hydrogen energy. Consequently, a great deal of effort has been devoted to developing ordered MEAs that can effectively increase catalyst utilization, maximize triple-phase boundaries, enhance mass transfer and improve stability. The research progress of ordered MEAs in recent advances is highlighted, involving hydrogen fuel cells and low temperature water electrolysis technology. Firstly, the fundamental scientific understanding and structural characteristics of MEAs based on one-dimensional nanostructures such as nanowires, nanotubes and nanofibers are summarized. Then, the classification, preparation and development of ordered MEAs based on three-dimensional structures are summarized. Finally, this review presents current challenges and proposes future research on ordered MEAs and offers potential solutions to overcome these obstacles.
Collapse
Affiliation(s)
- Nian Hua
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Chuanyan Zhang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Wenjie Zhang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Xinyun Yao
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Huidong Qian
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
14
|
Ma H, Zhou J, Zhao Y, Wang S, Hu Z, Ma J, Cheng H. Atomically Dispersed Mn-Doped Ru@RuO 2 Core/Shell Nanostructure with High Acidic Water Oxidation Performance Arising from Multiple Synergies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406353. [PMID: 39639155 DOI: 10.1002/smll.202406353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The high overpotential and unsatisfactory stability of RuO2-based catalysts seriously hinder their application in acidic oxygen evolution reaction (OER). Herein, a Ru@RuO2 core/shell catalyst doped with atomically dispersed Mn species, denoted as Ru@Mn-RuO2, is reported, which is prepared by a facile one-pot method. Detailed structural characterizations confirm that Mn is homogeneously and atomically distributed in RuO2 shell, which causes lattice contraction of RuO2. The as-prepared Ru@Mn-RuO2 exhibits a very low overpotential of 190 mV at the current density of 10 mA cm-2 and an excellent stability of 360 h, far surpassing the control samples Ru@RuO2 without atomically dispersed Mn dopants and home-made RuO2 nanoparticles without metallic Ru core. With the further assistance of density functional theory calculations, the enhanced OER activity of Ru@Mn-RuO2 is attributed to multiple synergistic effects, including the MnOx-Ru (oxide shell) synergy, MnOx-Ru (metal core) synergy, and the Ru (core)-RuO2 (shell) synergy. Besides, the atomically dispersed Mn doping can increase the formation energy of soluble Ru cations, thus leading to the excellent stability of the Ru@Mn-RuO2 catalyst. This work shines light on the design of electrocatalysts with multiple synergistic effects towards efficient acid water splitting.
Collapse
Affiliation(s)
- Haibin Ma
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Jun Zhou
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yang Zhao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Shijie Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Jiwei Ma
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Hongfei Cheng
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
15
|
Yuan K, Zhou W, Zhu X, Ou W, Chen M, Zhu C, Chen N, Zuo H, Wang A, Zhao D, An M, Li L. Amorphous CoFePO x hollow nanocubes decorated with g-C 3N 4 quantum dots to achieve efficient electrocatalytic performance in the oxygen evolution reaction. NANOSCALE 2024; 16:21561-21570. [PMID: 39484846 DOI: 10.1039/d4nr02564d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Simultaneously enriching active sites and enhancing intrinsic activity in a simple way is of great importance for the design of highly active electrocatalysts for the oxygen evolution reaction (OER), but it still faces challenges. Herein, g-C3N4 quantum dot decorated amorphous hollow CoFe bimetallic phosphate nanocubes (a-CoFePOx@CNQD) are prepared as an efficient OER electrocatalyst by a simple in situ etching-phosphating process. Research shows that their unique hollow architecture and amorphous structure can help provide generous exposed active sites for OER, and the incorporation of g-C3N4 quantum dots can effectively adjust the electronic structure to improve the intrinsic activity. Therefore, a-CoFePOx@CNQD exhibits excellent OER performance with a low overpotential (239 mV) at 10 mA cm-2 and a small Tafel slope (58.4 mV dec-1), surpassing the commercial RuO2. Furthermore, a-CoFePOx@CNQD as an electrode catalyst for a water electrolyzer and zinc-air battery also shows higher performance and stability than RuO2 + Pt/C catalysts. This study provides a feasible strategy for preparing efficient and stable amorphous hollow heterostructure OER electrocatalysts.
Collapse
Affiliation(s)
- Ke Yuan
- New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Wei Zhou
- New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Xiaoyan Zhu
- New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Weihua Ou
- New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Minzhe Chen
- New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Chuheng Zhu
- New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Ningning Chen
- New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Haofeng Zuo
- New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Aocheng Wang
- New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Dengke Zhao
- School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Maozhong An
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Ligui Li
- New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
16
|
Lv YK, Han Y, Wang K, Sun WY, Du CX, Huang RW, Peng P, Zang SQ. Satellite Pd Single-Atom Embraced AuPd Alloy Nanoclusters for Enhanced Hydrogen Evolution. ACS NANO 2024; 18:32186-32195. [PMID: 39495627 DOI: 10.1021/acsnano.4c11554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The fabrication of hybrid active sites that synergistically contain nanoclusters and single atoms (SAs) is vital for electrocatalysts to achieve excellent activity and durability. Herein, we develop a ligand-assisted pyrolysis strategy using nanoclusters (Au4Pd2(SC2H4Ph)8) with alloy cores and protected ligands to build AuPd cluster sites embraced by satellite Pd SAs. In the thermal drive control process, different thermodynamic properties of the alloy atoms and the confinement effects of organic ligands allow for the mild spillover of the single-component metal Pd, resulting in the formation of AuPd alloy nanoclusters tightly encompassed by isolated Pd atoms. Experiments and theoretical calculations indicated that the satellite Pd atoms can optimize the electronic structure of the AuPd nanoclusters and Au sites in the alloy to facilitate the adsorption and dissociation of H2O, thus enhancing the hydrogen evolution reaction (HER) activity. The optimal AuPdNCs/PdSAs-600 exhibits outstanding electrocatalytic activity toward HER, with overpotentials of 21 and 38 mV at 10 mA cm-2 in acidic and alkaline media, respectively. Moreover, the mass activity and turnover frequency of AuPdNCs/PdSAs-600 are one order of magnitude higher than those of commercial Pd/C and Pt/C catalysts. This facile strategy for constructing hybrid catalytic centers using ligand-protected nanoclusters provides efficient insights for the further design of nanocluster-based electrocatalysts synergized by SAs.
Collapse
Affiliation(s)
- Ya-Kun Lv
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ye Han
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Yan Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chen-Xia Du
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ren-Wu Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Yang F, Huang X, Su C, Song EH, Liu BX, Xiao BB. 2D Transition Metal Chalcogenides (TMDs) for Electrocatalytic Hydrogen Evolution Reaction: A Review. Chemphyschem 2024:e202400640. [PMID: 39467256 DOI: 10.1002/cphc.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Indexed: 10/30/2024]
Abstract
Since the MoS2 synthesis, the family of two-dimensional transition metal chalcogenides (TMDs) have been intensively explored theoretically and experimentally. TMDs endowed with adjustable electronic, physical and chemical properties lead to increasing interest in the application of energy storage, molecule detection and catalysis. In the mini review, we present a forward-looking summary of 2D TMDs in hydrogen evolution electrocatalysis, including synthesis methods, hydrogen evolution performance, and optimization strategies. This review will deepen the fundamental understanding of the physical-chemical properties of TMDs with different phases and contribute unveil the universal principle among electronic configuration, atomic arrangement, physical and chemical property for the material design.
Collapse
Affiliation(s)
- Fei Yang
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Xu Huang
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Chao Su
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Er-Hong Song
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Bing-Xia Liu
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Bei-Bei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| |
Collapse
|
18
|
Liu W, Long G, Xiang Z, Ren T, Piao J, Wan K, Fu Z, Liang Z. Extremely Active and Robust Ir-Mn Dual-Atom Electrocatalyst for Oxygen Evolution Reaction by Oxygen-Oxygen Radical Coupling Mechanism. Angew Chem Int Ed Engl 2024; 63:e202411014. [PMID: 39034426 DOI: 10.1002/anie.202411014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/23/2024]
Abstract
A novel Ir-Mn dual-atom electrocatalyst is synthesized by a facile ion-exchange method by incorporating Ir in SrMnO3, which yields an extremely high activity and stability for the oxygen evolution reaction (OER). The ion exchange process occurs in a self-limitation way, which favors the formation of Ir-Mn dual-atom in the IrMnO9 unit. The incorporation of Ir modulates the electronic structure of both Ir and Mn, thereby resulting in a shorter distance of the Ir-Mn dual-atom (2.41 Å) than the Mn-Mn dual-atom (2.49 Å). The modulated Ir-Mn dual-atom enables the same spin direction O (↑) of the adsorbed *O intermediates, thus facilitating the direct coupling of the two adsorbed *O intermediates to release O2 via the oxygen-oxygen radical coupling mechanism. Electrochemical tests reveal that the Ir-SrMnO3 exhibits a superior OER's activity with a low overpotential of 207 mV at 10 mA cm-2 and achieves a mass specific activity of 1100 A gIr -1 at 1.5 V. The proton-exchange-membrane water electrolyzer with the Ir-SrMnO3 catalyst exhibits a low electrolysis voltage of 1.63 V at 1.0 A cm-2 and a stable 2000-h operation with a decay of only 15 μV h-1 at 0.5 A cm-2.
Collapse
Affiliation(s)
- Wenbo Liu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Guifa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, 530008, Nanning, P. R. China
| | - Zhipeng Xiang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Tianlu Ren
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Jinhua Piao
- School of Food Science and Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Kai Wan
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Zhiyong Fu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510641, Guangzhou, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Jieyang Center, 522000, Jieyang, Guangdong, China
| |
Collapse
|
19
|
Shao W, Xing Z, Xu X, Ye D, Yan R, Ma T, Wang Y, Zeng Z, Yin B, Cheng C, Li S. Bioinspired Proton Pump on Ferroelectric HfO 2-Coupled Ir Catalysts with Bidirectional Hydrogen Spillover for pH-Universal and Superior Hydrogen Production. J Am Chem Soc 2024; 146:27486-27498. [PMID: 39198263 DOI: 10.1021/jacs.4c08100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
The improvement of hydrogen evolution reaction kinetics can be largely accelerated by introducing a well-designed hydrogen spillover pathway into the catalysts. However, the driving force and mechanism of hydrogen migration on the surface of catalysts are poorly understood and are rarely explored in depth. Here, inspired by the specific ferroelectric property of HfO2, Mn-O-Ca sites in Mn4CaO5, and Fe-Fe sites in hydrogenases, we constructed a bioinspired HfO2 coupled with Ir catalysts (Ir/HfO2@C) with an alkaline hydrogen reverse spillover effect from HfO2 to interface and acid hydrogen spillover effect from Ir to interface. Benefiting from the bidirectional hydrogen spillover pathways controlled by pH, Ir/HfO2@C displays a narrow overpotential difference between acidic and alkaline electrolytes. Remarkably, Ir/HfO2@C shows a remarkable mass current density and turnover frequency value, far exceeding the benchmark Ir/C by 20.6 times. More importantly, this Ir/HfO2@C achieves extraordinarily low overpotentials of 146 and 39 mV at 10 mV cm-2 in seawater and alkaline seawater, respectively. The anion-exchange membrane water electrolyzer equipped with Ir/HfO2@C as a cathode exhibits excellent and stable H2-evolution performance on 2.22 V at 1.0 A cm-2. We expect that the bioinspired strategy will provide a new concept for designing catalytic materials for efficient and pH-universal electrochemical hydrogen production.
Collapse
Affiliation(s)
- Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohui Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Daoping Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Wang
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Yu X, Gong X, Qiao H, Liu X, Ma C, Xiao R, Li R, Zhang T. Amorphous-Crystalline Heterostructured Nanoporous High-Entropy Alloys for High-Efficiency pH-Universal Water Splitting. SMALL METHODS 2024; 8:e2400793. [PMID: 39082065 DOI: 10.1002/smtd.202400793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Indexed: 10/18/2024]
Abstract
Developing high-efficiency durable electrocatalysts in wide pH range for water splitting is significant for environmentally-friendly synthesis of renewable hydrogen energy. Herein, a facile method by dealloying designable multicomponent metallic glass precursors is reported to synthesize amorphous-crystalline heterostructured nanoporous high-entropy alloys (AC-HEAs) of CuAgAuPtPd, CuAgAuIrRu, and CuAgAuPtPdIrRu, heaped up by nanocrystalline particles with an average size of 2-3 nm and the amorphous glued phase. The synthesized AC-HEA-CuAgAuPtPd owns highly catalytic performances for hydrogen evolution reaction (HER), with 9.5 and 20 mV to reach 10 mA·cm-2 in 0.5 m H2SO4 and 1.0 m KOH, and AC-HEA-CuAgAuIrRu delivers 208 and 200 mV for oxygen evolution reaction (OER). Moreover, a two-electrode electrolyzer made of the AC-HEA-CuAgAuIrRu bifunctional electrodes exhibit a low cell voltage of 1.48 and 1.49 V in the acidic and alkaline conditions at 10 mA·cm-2 for overall water splitting. Combining the enhanced catalytic activities from nanoscale amorphous structure and atom-level synergistic catalyst in AC-HEAs provides an effective pathway for pH-universal electrocatalysts of water splitting.
Collapse
Affiliation(s)
- Xueqian Yu
- School of Materials Science and Engineering, Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing, 100191, China
| | - Xuhe Gong
- School of Materials Science and Engineering, Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing, 100191, China
| | - Haiqing Qiao
- School of Materials Science and Engineering, Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing, 100191, China
| | - Xiaobing Liu
- School of Materials Science and Engineering, Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing, 100191, China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Ruijuan Xiao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ran Li
- School of Materials Science and Engineering, Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing, 100191, China
| | - Tao Zhang
- School of Materials Science and Engineering, Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing, 100191, China
| |
Collapse
|
21
|
Wang Q, Cheng Y, Yang HB, Su C, Liu B. Integrative catalytic pairs for efficient multi-intermediate catalysis. NATURE NANOTECHNOLOGY 2024; 19:1442-1451. [PMID: 39103451 DOI: 10.1038/s41565-024-01716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
Single-atom catalysts (SACs) have attracted considerable research interest owing to their combined merits of homogeneous and heterogeneous catalysts. However, the uniform and isolated active sites of SACs fall short in catalysing complex chemical processes that simultaneously involve multiple intermediates. In this Review, we highlight an emerging class of catalysts with adjacent binary active centres, which is called integrative catalytic pairs (ICPs), showing not only atomic-scale site-to-site electronic interactions but also synergistic catalytic effects. Compared with SACs or their derivative dual-atom catalysts (DACs), multi-interactive intermediates on ICPs can overcome kinetic barriers, adjust reaction pathways and break the universal linear scaling relations as the smallest active units. Starting from this active-site design principle, each single active atom can be considered as a brick to further build integrative catalytic clusters (ICCs) with desirable configurations, towards trimer or even larger multi-atom units depending on the requirement of a given reaction.
Collapse
Affiliation(s)
- Qilun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yaqi Cheng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Chenliang Su
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
22
|
Agrawal N, Bahota AS, Khan A, Chaudhary R, Singh KK, Tandon P. Detection of Phenylalanine by Iridium Nanoclusters Using Time-Dependent Density Functional Theory Calculations. ACS OMEGA 2024; 9:38186-38194. [PMID: 39281901 PMCID: PMC11391552 DOI: 10.1021/acsomega.4c05684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Metal nanoclusters have several applications in biological processes, medicine, cancer therapy, catalysis, etc. Iridium (Ir) nanoclusters exhibit excellent detection behavior compared to their bulk material. This work includes a deep insight into the interaction of Ir nanoclusters of four atoms (Ir4) with amino acids and the analysis of Ir-amino acid (Ir-AAc) complexes. UV-visible spectroscopy of the Ir4 nanocluster, amino acids, and their complexes was discussed as a way to detect amino acids with the help of the Ir4 nanocluster. In UV-visible analysis, the UV-visible peak of phenylalanine (Phe) appeared at 204 nm with an excitation energy of 6.02 eV with a 0.0516 oscillator strength. Meanwhile, only in the Ir4 nanocluster-phenylalanine (Ir-Phe) complex, the UV-visible peak was observed at 661 nm with an excitation energy of 1.87 eV and oscillator strength of 0.0051. This peak was observed due to the transition from HOMO-1 to LUMO+3. In the other complexes, no UV-visible peaks are observed. Thus, the results predict that the Ir4 nanocluster can be used in the detection of Phe via UV-visible spectra.
Collapse
Affiliation(s)
- Neelam Agrawal
- Department of Physics, University of Lucknow, Lucknow, 226007 Uttar Pradesh, India
| | - Ashok Singh Bahota
- Department of Physics, University of Lucknow, Lucknow, 226007 Uttar Pradesh, India
| | - Areeba Khan
- Department of Physics, University of Lucknow, Lucknow, 226007 Uttar Pradesh, India
| | - Rajni Chaudhary
- Department of Physics, University of Lucknow, Lucknow, 226007 Uttar Pradesh, India
| | - Keshav Kumar Singh
- Department of Physics, University of Lucknow, Lucknow, 226007 Uttar Pradesh, India
| | - Poonam Tandon
- Department of Physics, University of Lucknow, Lucknow, 226007 Uttar Pradesh, India
- Vice Chancellor in Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009 Uttar Pradesh, India
| |
Collapse
|
23
|
Wang C, Tu H, Hao Z, Li Y, Xu J, Hu X, Yu S, Tian H. Novel amorphous FeOOH-modified Co 9S 8 nanosheets with enhanced catalytic activity in oxygen evolution reaction. J Colloid Interface Sci 2024; 669:965-974. [PMID: 38759595 DOI: 10.1016/j.jcis.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Efficient oxygen evolution reaction (OER) is vital for water electrolysis and advanced hydrogen energy production. However, the sluggish kinetics of this reaction require significant overpotentials, leading to high energy consumption. Therefore, developing OER electrocatalysts with exceptional performance and long-term durability is crucial for enhancing the energy efficiency and cost-effectiveness of the hydrogen production process. In this research, novel FeOOH/Co9S8 catalysts were prepared through a two-step hydrothermal reaction followed by one-step electrodeposition on nickel foam for an alkaline OER. The as-obtained catalysts possessed abundant non-homogeneous interfaces between FeOOH and Co9S8 nanosheets, conducive to optimized coordination environments of Fe and Co sites by redistributing interfacial charges. This synergy strengthened the chemisorption of oxygenated intermediates, leading to accelerated reaction kinetics, abundant active sites, and enhanced OER performance. The optimized electrocatalyst FeOOH/Co9S8-15 achieved a current density of 10 mA cm-2 at an overpotential of 248 mV and good stability for over 140 h. This study presents a novel approach for producing compelling and durable alkaline dielectric OER electrocatalysts, which will be helpful in the future manufacturing of advanced energy devices.
Collapse
Affiliation(s)
- Chong Wang
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
| | - Huanlu Tu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
| | - Zeyu Hao
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
| | - Yaxin Li
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
| | - Jian Xu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
| | - Xiaoying Hu
- College of Science and Laboratory of Materials Design and Quantum Simulation, Changchun University, Changchun 130022, Jilin, China
| | - Shansheng Yu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
| | - Hongwei Tian
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China.
| |
Collapse
|
24
|
Zhang L, Hu H, Sun C, Xiao D, Wang HT, Xiao Y, Zhao S, Chen KH, Lin WX, Shao YC, Wang X, Pao CW, Han L. Bimetallic nanoalloys planted on super-hydrophilic carbon nanocages featuring tip-intensified hydrogen evolution electrocatalysis. Nat Commun 2024; 15:7179. [PMID: 39169004 PMCID: PMC11339425 DOI: 10.1038/s41467-024-51370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
The insufficient availability and activity of interfacial water remain a major challenge for alkaline hydrogen evolution reaction (HER). Here, we propose an "on-site disruption and near-site compensation" strategy to reform the interfacial water hydrogen bonding network via deliberate cation penetration and catalyst support engineering. This concept is validated using tip-like bimetallic RuNi nanoalloys planted on super-hydrophilic and high-curvature carbon nanocages (RuNi/NC). Theoretical simulations suggest that tip-induced localized concentration of hydrated K+ facilitates optimization of interfacial water dynamics and intermediate adsorption. In situ synchrotron X-ray spectroscopy endorses an H* spillover-bridged Volmer‒Tafel mechanism synergistically relayed between Ru and Ni. Consequently, RuNi/NC exhibits low overpotential of 12 mV and high durability of 1600 h at 10 mA cm‒2 for alkaline HER, and demonstrates high performance in both water electrolysis and chlor-alkali electrolysis. This strategy offers a microscopic perspective on catalyst design for manipulation of the local interfacial water structure toward enhanced HER kinetics.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Haihui Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Chen Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hsiao-Tsu Wang
- Bachelors's Program in Advanced Materials Science, Tamkang University, New Taipei City, 251301, Taiwan
| | - Yi Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shuwen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Kuan Hung Chen
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | - Wei-Xuan Lin
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | - Yu-Cheng Shao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Xiuyun Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| |
Collapse
|
25
|
Pei W, Hou L, Wang Z, Tian J, Liu Y, Tu Y, Zhao J, Zhou S. Unraveling the Photocatalytic Mechanism of N 2 Fixation on Single Ruthenium Sites. J Phys Chem Lett 2024; 15:7708-7715. [PMID: 39041828 DOI: 10.1021/acs.jpclett.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Photocatalytic N2 fixation offers promise for ammonia synthesis, yet traditional photocatalysts encounter challenges such as low efficiency and short carrier lifetimes. Atomically precise ligand-metal nanoclusters emerge as a solution to address these issues, but the photophysical mechanism remains elusive. Inspired by the synthesis of Au4Ru2 NCs, we investigate the mechanism behind N2 activation on Au4Ru2, focusing on photoactivity and carrier dynamics. Our results reveal that vibration of the Ru-N bond in the low-frequency domain suppresses the deactivation process leading to a long lifetime of the excited N2. By the strategy of isoelectronic substitution, we identify the single Ru sites as the active sites for N2 activation. Furthermore, these ligand-protected M4Ru2 (M = Au, Ag, Cu) NCs show robust thermal stability in explicit solvation and decent photochemical activity for N2 activation and NH3 production. These findings have significant implications for the optimization of catalysts for sustainable ammonia synthesis.
Collapse
Affiliation(s)
- Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Lei Hou
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Zi Wang
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jiaqi Tian
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yongfeng Liu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jijun Zhao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Si Zhou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
26
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
27
|
Liu Y, Shi H, Dai TY, Zeng SP, Han GF, Wang TH, Wen Z, Lang XY, Jiang Q. In Situ Engineering Multifunctional Active Sites of Ruthenium-Nickel Alloys for pH-Universal Ampere-Level Current-Density Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311509. [PMID: 38587968 DOI: 10.1002/smll.202311509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Developing robust non-platinum electrocatalysts with multifunctional active sites for pH-universal hydrogen evolution reaction (HER) is crucial for scalable hydrogen production through electrochemical water splitting. Here ultra-small ruthenium-nickel alloy nanoparticles steadily anchored on reduced graphene oxide papers (Ru-Ni/rGOPs) as versatile electrocatalytic materials for acidic and alkaline HER are reported. These Ru-Ni alloy nanoparticles serve as pH self-adaptive electroactive species by making use of in situ surface reconstruction, where surface Ni atoms are hydroxylated to produce bifunctional active sites of Ru-Ni(OH)2 for alkaline HER, and selectively etched to form monometallic Ru active sites for acidic HER, respectively. Owing to the presence of Ru-Ni(OH)2 multi-site surface, which not only accelerates water dissociation to generate reactive hydrogen intermediates but also facilitates their recombination into hydrogen molecules, the self-supported Ru90Ni10/rGOP hybrid electrode only takes overpotential of as low as ≈106 mV to deliver current density of 1000 mA cm-2, and maintains exceptional stability for over 1000 h in 1 m KOH. While in 0.5 m H2SO4, the Ru90Ni10/rGOP hybrid electrode exhibits acidic HER catalytic behavior comparable to commercially available Pt/C catalyst due to the formation of monometallic Ru shell. These electrochemical behaviors outperform some of the best Ru-based catalysts and make it attractive alternative to Pt-based catalysts toward highly efficient HER.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Hang Shi
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tian-Yi Dai
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Shu-Pei Zeng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tong-Hui Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Xing-You Lang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
28
|
Pang N, Li Y, Wang C, Tong X, Wang M, Shi H, Wu D, Xiong D, Xu S, Sorokin PB, Wang L, Jiang L, Chu PK. Facilitating the Hydrogen Evolution Reaction on Basal-Plane S Sites on MoS 2@Ni 3S 2 by Dual Ti and N Plasma Treatment. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39066693 DOI: 10.1021/acsami.4c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Atomic engineering of the basal plane active sites in MoS2 holds great promise to boost the electrocatalytic activity for hydrogen evolution reactions (HER), yet the performance optimization and mechanism exploration are still not satisfactory. Herein, we proposed a dual-plasma engineering strategy to implant Ti and N heteroatoms into the basal plane of MoS2 supported by Ni3S2 nanorods on nickel foam (MSNF) for efficient electrocatalysis of HER. Owing to the low formation energy of Ti dopants in MoS2 and the extra charge carriers introduced by N dopants, the optimally codoped samples N1.0@Ti500-MSNF demonstrate significant morphology changes from nanorods to urchin-like nanospheres with the surface active areas increased by seven-fold, as well as enhanced electrical conductivity in comparison with the nondoped counterparts. The HER performance of N1.0@Ti500-MSNF is comparable with the Pt-based catalyst: overpotential of 26 mV at 20 mA cm-2, Tafel slope of 35.6 mV dec-1, and long-term stability over 50 h. First-principles calculation reveals that N doping accelerates the dissociation of water molecules while Ti doping activates the adjacent S sites for hydrogen adsorption by lowering the Gibbs free energy, resulting in excellent HER activity. This work thus provides an effective strategy for basal plane engineering of MoS2 heterostructures toward high-performance HER and sustainable energy supply at reasonable costs.
Collapse
Affiliation(s)
- Ning Pang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Yun Li
- School of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou 521041, P. R. China
| | - Chang Wang
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Shanghai 201800, P. R. China
| | - Xin Tong
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Mengqiu Wang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Huiyun Shi
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Dajun Wu
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China
| | - Dayuan Xiong
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Shaohui Xu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Pavel B Sorokin
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russian Federation
- Technological Institute for Superhard and Novel Carbon Materials, Troitsk, Moscow 142190, Russia
| | - Lianwei Wang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Lin Jiang
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Shanghai 201800, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
29
|
Wang W, Li C, Zhou C, Xiao X, Li F, Huang NY, Li L, Gu M, Xu Q. Enrooted-Type Metal-Support Interaction Boosting Oxygen Evolution Reaction in Acidic Media. Angew Chem Int Ed Engl 2024; 63:e202406947. [PMID: 38650436 DOI: 10.1002/anie.202406947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Supported metal catalysts with appropriate metal-support interactions (MSIs) hold a great promise for heterogeneous catalysis. However, ensuring tight immobilization of metal clusters/nanoparticles on the support while maximizing the exposure of surface active sites remains a huge challenge. Herein, we report an Ir/WO3 catalyst with a new enrooted-type MSI in which Ir clusters are, unprecedentedly, atomically enrooted into the WO3 lattice. The enrooted Ir atoms decrease the electron density of the constructed interface compared to the adhered (root-free) type, thereby achieving appropriate adsorption toward oxygen intermediates, ultimately leading to high activity and stability for oxygen evolution in acidic media. Importantly, this work provides a new enrooted-type supported metal catalyst, which endows suitable MSI and maximizes the exposure of surface active sites in contrast to the conventional adhered, embedded, and encapsulated types.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Cheng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
- School of Physics and Astronomy, University of Birmingham, B15 2TT, Birmingham, UK
| | - Chuan Zhou
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
| | - Fayan Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
| | - Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
| | - Lei Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, 606-8501, Kyoto, Japan
| |
Collapse
|
30
|
Krishnamoorthy K, Pazhamalai P, Swaminathan R, Mohan V, Kim S. Unravelling the Bi-Functional Electrocatalytic Properties of {Mo 72Fe 30} Polyoxometalate Nanostructures for Overall Water Splitting Using Scanning Electrochemical Microscope and Electrochemical Gating Methods. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401073. [PMID: 38610120 PMCID: PMC11220659 DOI: 10.1002/advs.202401073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Indexed: 04/14/2024]
Abstract
This study reports the use of Keplerate-type {Mo72Fe30} polyoxometalate (POMs) nanostructures as a bi-functional-electrocatalyst for HER and OER in an alkaline medium with a lower overpotential (135 mV for HER and 264 mV for OER), and excellent electrochemical stability. The bi-functional catalytic properties of {Mo72Fe30} POM are studied using a scanning electrochemical microscope (SECM) via current mapping using substrate generation and tip collection mode. Furthermore, the bipolar nature of the {Mo72Fe30} POM nano-electrocatalysts is studied using the electrochemical gating via simultaneous monitoring of the electrochemical (cell) and electrical ({Mo72Fe30} POM) signals. Next, a prototype water electrolyzer fabricated using {Mo72Fe30} POM electrocatalysts showed they can drive 10 mA cm-2 with a low cell voltage of 1.62 V in lab-scale test conditions. Notably, the {Mo72Fe30} POM electrolyzers' performance assessment based on recommended conditions for industrial aspects shows that they require a very low overpotential of 1.89 V to drive 500 mA cm-2, highlighting their promising candidature toward clean-hydrogen production.
Collapse
Affiliation(s)
- Karthikeyan Krishnamoorthy
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
- Research Institute of New Energy Industry (RINEI)Jeju National UniversityJeju63243South Korea
- CSIR‐Advanced Materials and Processes Research InstituteBhopalMadhya Pradesh462026India
| | - Parthiban Pazhamalai
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
- Research Institute of New Energy Industry (RINEI)Jeju National UniversityJeju63243South Korea
| | - Rajavarman Swaminathan
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
| | - Vigneshwaran Mohan
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
| | - Sang‐Jae Kim
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
- Research Institute of New Energy Industry (RINEI)Jeju National UniversityJeju63243South Korea
- Nanomaterials & System LabMajor of Mechanical System EngineeringCollege of EngineeringJeju National UniversityJeju63243South Korea
| |
Collapse
|
31
|
Wang J, Ni M, Qian J, Ge Y, Cai D, Nie H, Zhou X, Yang Z. Ultrafine Ir nanoparticles anchored on carbon nanotubes as efficient bifunctional oxygen catalysts for Zn-air batteries. Chem Commun (Camb) 2024; 60:6415-6418. [PMID: 38828655 DOI: 10.1039/d4cc01465k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Ultrafine iridium particles anchored on nitrogen-doped CNTs were obtained from Ir(ppy)3 and CNTs using a simple annealing method and acted as highly efficient bifunctional oxygen catalysts for Zn-air batteries. A synergistic effect, efficient *OH adsorption and rapid *OOH deprotonation were demonstrated from in situ FTIR spectroscopy, EIS and activation energy measurements.
Collapse
Affiliation(s)
- Jianglian Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Mengdi Ni
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Yongjie Ge
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Dong Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
32
|
Sun P, Qiao Z, Dong X, Jiang R, Hu ZT, Yun J, Cao D. Designing 3d Transition Metal Cation-Doped MRuO x As Durable Acidic Oxygen Evolution Electrocatalysts for PEM Water Electrolyzers. J Am Chem Soc 2024; 146:15515-15524. [PMID: 38785086 DOI: 10.1021/jacs.4c04096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The continuous dissolution and oxidation of active sites in Ru-based electrocatalysts have greatly hindered their practical application in proton exchange membrane water electrolyzers (PEMWE). In this work, we first used density functional theory (DFT) to calculate the dissolution energy of Ru in the 3d transition metal-doped MRuOx (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) to evaluate their stability for acidic oxygen evolution reaction (OER) and screen out ZnRuOx as the best candidate. To confirm the theoretical predictions, we experimentally synthesized these MRuOx materials and found that ZnRuOx indeed displays robust acidic OER stability with a negligible decay of η10 after 15 000 CV cycles. Of importance, using ZnRuOx as the anode, the PEMWE can run stably for 120 h at 200 mA cm-2. We also further uncover the stability mechanism of ZnRuOx, i.e., Zn atoms doped in the outside of ZnRuOx nanocrystal would form a "Zn-rich" shell, which effectively shortened average Ru-O bond lengths in ZnRuOx to strengthen the Ru-O interaction and therefore boosted intrinsic stability of ZnRuOx in acidic OER. In short, this work not only provides a new study paradigm of using DFT calculations to guide the experimental synthesis but also offers a proof-of-concept with 3d metal dopants as RuO2 stabilizer as a universal principle to develop high-durability Ru-based catalysts for PEMWE.
Collapse
Affiliation(s)
- Panpan Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaobin Dong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Run Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhong-Ting Hu
- Institute of Environmental-Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jimmy Yun
- Qingdao International Academician Park Research Institute, Qingdao 266000, PR China
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
33
|
Maji M, Dutta S, Jena R, Dey A, Maji TK, Pati SK, Bhattacharyya S. Hydrogen Evolution in Neutral Media by Differential Intermediate Binding at Charge-Modulated Sites of a Bimetallic Alloy Electrocatalyst. Angew Chem Int Ed Engl 2024; 63:e202403697. [PMID: 38512122 DOI: 10.1002/anie.202403697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
The energy barrier to dissociate neutral water has been lowered by the differential intermediate binding on the charge-modulated metal centers of Co85Mo15 sheets supported on Ni-foam (NF), where the overpotential for hydrogen evolution reaction (HER) in 1 M phosphate buffer solution (PBS) is only 50±9 mV at -10 mA cm-2. It has a turnover frequency (TOF) of 0.18 s-1, mass activity of 13.2 A g-1 at -200 mV vs. reversible hydrogen electrode (RHE), and produces 16 ml H2 h-1 at -300 mV vs. RHE, more than double that of 20 % Pt/C. The Moδ+ and Coδ- sites adsorb OH*, and H*, respectively, and the electron injection from Co to H-O-H cleaves the O-H bond to form the Mo-OH* intermediate. Operando spectral analyses indicate a weak H-bonded network for facilitating the H2O*/OH* transport, and a potential-induced reversal of the charge density from Co to the more electronegative Mo, because of the electron withdrawing Co-H* and Mo-OH* species. Co85Mo15/NF can also drive the complete electrolysis of neutral water at only 1.73 V (10 mA cm-2). In alkaline, and acidic media, it demonstrates a Pt-like HER activity, accomplishing -1000 mA cm-2 at overpotentials of 161±7, and 175±22 mV, respectively.
Collapse
Affiliation(s)
- Mamoni Maji
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India
| | - Supriti Dutta
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Rohan Jena
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Anupam Dey
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India
| |
Collapse
|
34
|
Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, Aftab U, Sun H, Arandiyan H. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem Commun (Camb) 2024; 60:5104-5135. [PMID: 38625567 DOI: 10.1039/d3cc06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Abdul Hanan
- Sunway Center for Electrochemical Energy and Sustainable Technology, SCEEST, Sunway University, Bandar Sunway, Malaysia
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, P. R. China
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Mukhtiar Ahmed
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, 066004 Qinhuangdao, P. R. China
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
35
|
Wang X, Yang X, Wang Y, Mei B, Jin Z, Li Y, Shi Z, Jiang Z, Liu C, Xing W, Ge J. Single atom sites as CO scavenger to allow for crude hydrogen usage in PEMFC. Sci Bull (Beijing) 2024; 69:1061-1070. [PMID: 38302331 DOI: 10.1016/j.scib.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 12/25/2023] [Indexed: 02/03/2024]
Abstract
Nanosized Pt catalysts are the catalyst-of-choice for proton exchange membrane fuel cell (PEMFC) anode, but are limited by their extreme sensitivity to CO in parts per million (ppm) level, thereby making the use of ultrapure H2 a prerequisite to ensure acceptable performance. Herein, we confront the CO poisoning issue by bringing the Ir/Rh single atom sites to synergistically working with their metallic counterparts. In presence of 1000 ppm CO, the catalyst represents not only undisturbed H2 oxidation reaction (HOR) catalytic behavior in electrochemical cell, but also unparalleled peak power density at 643 mW cm-2 in single cell, 27-fold in mass activity of the best PtRu/C catalysts available. Pre-poisoning experiments and surface-enhanced Raman scattering spectroscopy (SERS) and calculation results in combine suggest the presence of adjacent Ir/Rh single atom sites (SASs) to the nanoparticles (NPs) as the origin for this prominent catalytic behavior. The single sites not only exhibit superb CO oxidation performance by themselves, but can also scavenge the CO adsorbed on approximated NPs via supplying reactive OH* species. We open up a new route here to conquer the formidable CO poisoning issue through single atom and nanoparticle synergistic catalysis, and pave the way towards a more robust PEMFC future.
Collapse
Affiliation(s)
- Xian Wang
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaolong Yang
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bingbao Mei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Jin
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yang Li
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhaoping Shi
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Xing
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junjie Ge
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
36
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
37
|
Zheng Y, Zhang B, Ma T, Yan R, Geng W, Zeng Z, Zhang Y, Li S. Nitrided Rhodium Nanoclusters with Optimized Water Bonding and Splitting Effects for pH-Universal H 2-Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307405. [PMID: 37988711 DOI: 10.1002/smll.202307405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Indexed: 11/23/2023]
Abstract
The nitridation of noble metals-based catalysts to further enhance their hydrogen evolution reaction (HER) kinetics in neutral and alkaline conditions would be an effective strategy for developing high-performance wide pH HER catalysts. Herein, a facile molten urea method is employed to construct the nitrided Rh nanoclusters (RhxN) supported on N-doped carbon (RhxN-NC). The uniformly distributed RhxN clusters exhibited optimized water bonding and splitting effects, therefore resulting in excellent pH-universal HER performance. The optimized RhxN-NC catalyst only requires 8, 12, and 109 mV overpotentials to reach the current density of 10 mA cm-2 in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS electrolytes, respectively. The spectroscopic characterizations and theoretical calculation further confirm the vital role of Rh-N moieties in RhxN clusters in improving the transfer of electrons and facilitating the generation of H2. This work not only provides a suitable nitridation method for noble metal species in mild conditions but also makes a breakthrough in synthesizing noble metal nitrides-based electrocatalysts to achieve an exceptional wide-pH HER performance and other catalysis.
Collapse
Affiliation(s)
- Yijuan Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ben Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
38
|
Niu Z, Lu Z, Qiao Z, Wang S, Cao X, Chen X, Yun J, Zheng L, Cao D. Robust Ru-VO 2 Bifunctional Catalysts for All-pH Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310690. [PMID: 38048484 DOI: 10.1002/adma.202310690] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Designing robust bifunctional catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction in all-pH conditions for overall water splitting (OWS) is an effective way to achieve sustainable development. Herein, a composite Ru-VO2 containing Ru-doped VO2 and Ru nanoparticles (NPs) is synthesized, and it shows a high OWS performance in full-pH range due to their synergist effect. In particular, the OER mass activities of Ru-VO2 at 1.53 V (vs RHE) in acidic, alkaline, and PBS solutions are ≈65, 36, and 235 times of commercial RuO2 in the same conditions. The "Ru-VO2 || Ru-VO2 " two-electrode electrolyzer only needs a voltage of 1.515 V (at 10 mA cm-2 ) in acidic water splitting, which can operate stably for 125 h at 10 mA cm-2 without significant voltage decay. In situ Raman spectra and in situ differential electrochemical mass spectrometry prove that the OER of Ru-VO2 in acid follows the adsorption evolution mechanism. Density functional theory calculations further reveal the synergistic effect between Ru NP and Ru-doped VO2 , which breaks the hydrogen bond network formed by *OH adsorbed on the Ru single-atom site, and thereby significantly enhances the OER activity. This work provides new insights into the design of novel bifunctional pH-universal catalysts for OWS.
Collapse
Affiliation(s)
- Ziqiang Niu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhankuan Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohua Cao
- School of Chemistry and Chemical Engineering, Jiujiang University, Jiujiang, 332005, China
| | - Xiudong Chen
- School of Chemistry and Chemical Engineering, Jiujiang University, Jiujiang, 332005, China
| | - Jimmy Yun
- Qingdao International Academician Park Research Institute, Qingdao, 266000, China
- School of Chemical Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
39
|
Hou L, Li Z, Jang H, Kim MG, Cho J, Liu S, Liu X. Grain Boundary Tailors the Local Chemical Environment on Iridium Surface for Alkaline Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202315633. [PMID: 38151468 DOI: 10.1002/anie.202315633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Even though grain boundaries (GBs) have been previously employed to increase the number of active catalytic sites or tune the binding energies of reaction intermediates for promoting electrocatalytic reactions, the effect of GBs on the tailoring of the local chemical environment on the catalyst surface has not been clarified thus far. In this study, a GBs-enriched iridium (GB-Ir) was synthesized and examined for the alkaline hydrogen evolution reaction (HER). Operando Raman spectroscopy and density functional theory (DFT) calculations revealed that a local acid-like environment with H3 O+ intermediates was created in the GBs region owing to the electron-enriched surface Ir atoms at the GBs. The H3 O+ intermediates lowered the energy barrier for water dissociation and provided enough hydrogen proton to promote the generation of hydrogen spillover from the sites at the GBs to the sites away from the GBs, thus synergistically enhancing the hydrogen evolution activity. Notably, the GB-Ir catalyst exhibited a high alkaline HER activity (10 mV @ 10 mA cm-2 , 20 mV dec-1 ). We believe that our findings will promote further research on GBs and the surface science of electrochemical reactions.
Collapse
Affiliation(s)
- Liqiang Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Seoul, 156-756, South Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 790-784, Korea
| | - Jaephil Cho
- Department of Energy Engineering, Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
40
|
Li Y, Du QX, Cui J, Yang HW, Qian H. Heterostructure CoS 2/MoS 2 Nanosheets as a Dual-Active Electrocatalyst for the Oxygen Evolution Reaction. Inorg Chem 2024; 63:1954-1961. [PMID: 38214970 DOI: 10.1021/acs.inorgchem.3c03631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Cost-effective and earth-abundant oxygen evolution reaction (OER) electrocatalysts are an incredible research hotspot in numerous energy storage and conversion technology fields. Herein, CoS2/MoS2 nanosheets supported by carbon cloth as a dual-active CC@CoS2/MoS2 heterostructure electrocatalyst is prepared through a simple solvothermal method. The catalyst demonstrates admirable OER performance in 1 M KOH solution with a low overpotential of 243 mV at a current density of 10 mA cm-2 and a minor Tafel slope of 109 mV dec-1, displaying honorable stability after 1000 cyclic voltammetry (CV) cycles and long-term robustness over 60 h. Theoretical calculations further ascertain that the rate-determining step of the electrocatalytic course of the CC@CoS2/MoS2 heterostructure is the conversion *O + OH- → *OOH + e- with a lower energy barrier of 1.49 eV due to the heterojunction established by CoS2 and MoS2, which can promote the OER performance of electrocatalysts. The actual identification of the catalytic mechanism in the heterostructure is conducive to the improvement of electrocatalysis applications in the OER.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qi-Xuan Du
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jian Cui
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hong-Wei Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hua Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- China National Quality Inspection Testing Center for Industrial Explosive Materials, Nanjing 210094, China
| |
Collapse
|
41
|
Guzmán-Olivos F, Hernández-Saravia LP, Nelson R, Perez MDLA, Villalobos F. Nanocatalysis MoS 2/rGO: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Molecules 2024; 29:523. [PMID: 38276600 PMCID: PMC10819749 DOI: 10.3390/molecules29020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
In this study, a systematic investigation of MoS2 nanostructure growth on a SiO2 substrate was conducted using a two-stage process. Initially, a thin layer of Mo was grown through sputtering, followed by a sulfurization process employing the CVD technique. This two-stage process enables the control of diverse nanostructure formations of both MoS2 and MoO3 on SiO2 substrates, as well as the formation of bulk-like grain structures. Subsequently, the addition of reduced graphene oxide (rGO) was examined, resulting in MoS2/rGO(n), where graphene is uniformly deposited on the surface, exposing a higher number of active sites at the edges and consequently enhancing electroactivity in the HER. The influence of the synthesis time on the treated MoS2 and also MoS2/rGO(n) samples is evident in their excellent electrocatalytic performance with a low overpotential.
Collapse
Affiliation(s)
- Fernando Guzmán-Olivos
- Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.d.l.A.P.); (F.V.)
| | | | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile;
| | - Maria de los Angeles Perez
- Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.d.l.A.P.); (F.V.)
| | - Francisco Villalobos
- Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.d.l.A.P.); (F.V.)
| |
Collapse
|
42
|
Wei J, Tang H, Sheng L, Wang R, Fan M, Wan J, Wu Y, Zhang Z, Zhou S, Zeng J. Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction. Nat Commun 2024; 15:559. [PMID: 38228626 PMCID: PMC10792023 DOI: 10.1038/s41467-024-44815-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
The metal-support interactions (MSI) could greatly determine the electronic properties of single-atom catalysts, thus affecting the catalytic performance. However, the typical approach to regulating MSI usually suffers from interference of the variation of supports or sacrificing the stability of catalysts. Here, we effectively regulate the site-specific MSI of Ir single atoms anchored on Ni layered double hydroxide through an electrochemical deposition strategy. Cathodic deposition drives Ir atoms to locate at three-fold facial center cubic hollow sites with strong MSI, while anodic deposition drives Ir atoms to deposit onto oxygen vacancy sites with weak MSI. The mass activity and intrinsic activity of Ir single-atom catalysts with strong MSI towards oxygen evolution reaction are 19.5 and 5.2 times that with weak MSI, respectively. Mechanism study reveals that the strong MSI between Ir atoms and the support stimulates the activity of Ir sites by inducing the switch of active sites from Ni sites to Ir sites and optimizes the adsorption strength of intermediates, thereby enhancing the activity.
Collapse
Grants
- U19A2015, 22221003, 22250007 National Natural Science Foundation of China (National Science Foundation of China)
- 22302184 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2021YFA1500500 and 2019YFA0405600), CAS Project for Young Scientists in Basic Research (YSBR-051), National Science Fund for Distinguished Young Scholars (21925204), Fundamental Research Funds for the Central Universities, K. C. Wong Education (GJTD-2020-15), Collaborative Innovation Program of Hefei Science Center, CAS (2022HSC-CIP004), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2022012), the DNL Cooperation Fund, CAS (DNL202003), International Partnership Program of Chinese Academy of Sciences (123GJHZ2022101GC)
- the Anhui Natural Science Foundation for Young Scholars (2208085QB41), the Fellowship of China Postdoctoral Science Foundation (2021M693058)
Collapse
Affiliation(s)
- Jie Wei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Hua Tang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Li Sheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Ruyang Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Minghui Fan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jiale Wan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Yuheng Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Zhirong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
| | - Shiming Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- School of Chemistry & Chemical Engineering, Anhui University of Technology, 243002, Ma'anshan, Anhui, P. R. China.
- Institute of Advanced Technology, University of Science and Technology of China, 230031, Hefei, Anhui, P. R. China.
| |
Collapse
|
43
|
Wu Z, Li Q, Xu G, Jin W, Xiao W, Li Z, Ma T, Feng S, Wang L. Microwave Phosphine-Plasma-Assisted Ultrafast Synthesis of Halogen-Doped Ru/RuP 2 with Surface Intermediate Adsorption Modulation for Efficient Alkaline Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311018. [PMID: 38101817 DOI: 10.1002/adma.202311018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Anionic modification engineering is a crucial approach to develop highly efficient electrocatalysts for hydrogen evolution reaction. Herein, halogen elements (X = Cl, Br, and I)-modified Ru-based nanosheets (X-Ru/RuP2 ) are designed by rapid and eco-friendly microwave-phosphide plasma approach within 60 s. Experimental and density functional theory calculations verify that the introduced halogen element, especially Br, can optimize the surface intermediates adsorption. Specially, the designed Br-Ru/RuP2 favors the water dissociation and following hydrogen adsorption/desorption process. Then, the as-synthesized Br-Ru/RuP2 exhibits low overpotential of 34 mV to reach 10 mA cm-2 coupled with small Tafel slope of 27 mV dec-1 in alkaline electrolyte with excellent long-term stability. Moreover, the electrocatalytic performances in acid and neutral media are also boosted via Br element modification. This work paves a novel way to regulate the electronic structure of Ru-based compounds, and then can boost the electrocatalytic kinetics.
Collapse
Affiliation(s)
- Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Qichang Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Guangrui Xu
- College of Materials Science and Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Shouhua Feng
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| |
Collapse
|
44
|
Zhao Y, Sun Q, Zhou X, Duan Z, Zhang C, Xu GR, Ju D, Wang L. Scalable Synthesis of Ir Cluster Anchored on Porous Hollow Carbon Nanobowls for Enhancing pH-Universal Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305343. [PMID: 37635101 DOI: 10.1002/smll.202305343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Design high-loading with superior activity and high atomic efficiency has consistently been a new frontier of heterogeneous catalysis while challenging in synthetic technology. In this work, a universal solid-state strategy is proposed for large scalable production of high-loading Ir clusters on porous hollow carbon nanobowls (Ir CSs/PHCNBs). The strong electronic interaction between metallic Ir cluster and C on PHCNBs leads to electron redistribution, which significantly improves the electron transfer rate on the interface. The obtained Ir CSs/PHCNBs only require overpotentials of 35, 34, and 37 mV for the hydrogen evolution reaction (HER) with stable outputting of 10 mA cm-2 under acidic, alkaline, and neutral conditions, respectively, which exceeds the state-of-the-art HER electrocatalysts. Meanwhile, the Tafel slopes of Ir CSs/PHCNBs for the HER process are 23.07, 48.76, and 28.95 mV dec-1 , greatly lower than that of PHCNBs (152.73, 227.96, and 140.29 mV dec-1 ) and commercial Pt/C (20%) (36.33, 66.10, and 36.61 mV dec-1 ). These results provide a new strategy for the universal synthesis of clusters catalysts and insight into understanding the interface effects between clusters and carbon substrate, facilitating the industrial application of hydrogen production.
Collapse
Affiliation(s)
- Yingxiu Zhao
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qiyan Sun
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xinyuan Zhou
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhiyao Duan
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chuanfang Zhang
- Shandong Weima Equipment Science & Technology Co. Ltd, Dongying, 257000, P. R. China
| | - Guang-Rui Xu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dianxing Ju
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
45
|
Xiao D, Bao X, Dai D, Gao Y, Si S, Wang Z, Liu Y, Wang P, Zheng Z, Cheng H, Dai Y, Huang B. Boosting the Electrochemical 5-Hydroxymethylfurfural Oxidation by Balancing the Competitive Adsorption of Organic and OH - over Controllable Reconstructed Ni 3 S 2 /NiO x. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304133. [PMID: 37474109 DOI: 10.1002/adma.202304133] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) is a promising method for the efficient production of biomass-derived high-value-added chemicals. However, its practical application is limited by: 1) the low activity and selectivity caused by the competitive adsorption of HMF and OH- and 2) the low operational stability caused by the uncontrollable reconstruction of the catalyst. To overcome these limitations, a series of Ni3 S2 /NiOx -n catalysts with controllable compositions and well-defined structures are synthesized using a novel in situ controlled surface reconstruction strategy. The adsorption behavior of HMF and OH- can be continuously adjusted by varying the ratio of NiOx to Ni3 S2 on the catalysts surface, as indicated by in situ characterizations, contact angle analysis, and theoretical simulations. Owing to the balanced competitive adsorption of HMF and OH- , the optimized Ni3 S2 /NiOx -15 catalyst exhibited remarkable HMF electrocatalytic oxidation performance, with the current density reaching 366 mA cm-2 at 1.5 VRHE and the Faradaic efficiency of the product, 2,5-furanedicarboxylic acid, reaching 98%. Moreover, Ni3 S2 /NiOx -15 exhibits excellent durability, with its activity and structure remaining stable for over 100 h of operation. This study provides a new route for the design and construction of catalysts for value-added biomass conversion and offers new insights into enhancing catalytic performance by balancing competitive adsorption.
Collapse
Affiliation(s)
- Difei Xiao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiaolei Bao
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Dujuan Dai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yugang Gao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Shenghe Si
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
46
|
Zhang C, Cui Y, Jiang C, Li Y, Meng Z, Wang C, Du Z, Yu S, Tian H, Zheng W. Unveiling Interfacial Effects for Efficient and Stable Hydrogen Evolution Reaction on Ruthenium Nanoparticles-Embedded Pentlandite Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301721. [PMID: 37386796 DOI: 10.1002/smll.202301721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Heterogenous catalysis is important for future clean and sustainable energy systems. However, an urgent need to promote the development of efficient and stable hydrogen evolution catalysts still exists. In this study, ruthenium nanoparticles (Ru NPs) are in situ grown on Fe5 Ni4 S8 support (Ru/FNS) by replacement growth strategy. An efficient Ru/FNS electrocatalyst with enhanced interfacial effect is then developed and successfully applied for pH-universal hydrogen evolution reaction (HER). The Fe vacancies formed by FNS during the electrochemical process are found to be conducive to the introduction and firm anchoring of Ru atoms. Compared to Pt atoms, Ru atoms get easily aggregated and then grow rapidly to form NPs. This induces more bonding between Ru NPs and FNS, preventing the fall-off of Ru NPs and maintaining the structural stability of FNS. Moreover, the interaction between FNS and Ru NPs can adjust the d-band center of Ru NPs, as well as balance the hydrolytic dissociation energy and hydrogen binding energy. Consequently, the as-prepared Ru/FNS electrocatalyst exhibits excellent HER activity and improved cycle stability under pH-universal conditions. The developed pentlandite-based electrocatalysts with low cost, high activity, and good stability are promising candidates for future applications in water electrolysis.
Collapse
Affiliation(s)
- Chenxu Zhang
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yanan Cui
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chao Jiang
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yaxin Li
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Zeshuo Meng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chong Wang
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Zhengyan Du
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Shansheng Yu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hongwei Tian
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
- Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| |
Collapse
|
47
|
Yang S, Wen H, Liu Z, Zhai J, Yu Y, Li K, Huang Z, Sun D. Engineering Double Sulfur-Vacancy in CoS 1.097@MoS 2 Core-Shell Heterojunctions for Hydrogen Evolution in a Wide pH Range. Inorg Chem 2023; 62:17401-17408. [PMID: 37805930 DOI: 10.1021/acs.inorgchem.3c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Heterostructured nanomaterials have arisen as electrocatalysts with great potential for hydrogen evolution reaction (HER), considering their superiority in integrating different active components but are plagued by their insufficient active site density in a wide pH range. In this report, double sulfur-vacancy-decorated CoS1.097@MoS2 core-shell heterojunctions are designed, which contain a primary structure of hollow CoS1.097 nanocubes and a secondary structure of ultrathin MoS2 nanosheets. Taking advantage of the core-shell type heterointerfaces and double sulfur-vacancy, the CoS1.097@MoS2 catalyst exhibits pH-universal HER performance, achieving the overpotentials at 10 mA cm-2 of 190, 139, and 220 mV in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS, respectively. Systematic theoretical results show that the double sulfur-vacancy can endow the CoS1.097@MoS2 core-shell heterojunctions with promoted electron/mass transfer and enhanced reactive kinetics, thus boosting HER performance. This work clearly demonstrates an indispensable role of double sulfur-vacancy in enhancing the electrocatalytic HER performance of core-shell type heterojunctions under a wide pH operating condition.
Collapse
Affiliation(s)
- Shuting Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, P. R. China
| | - Hao Wen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, P. R. China
| | - Zhengyang Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, P. R. China
| | - Junsheng Zhai
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, P. R. China
| | - Yanze Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, P. R. China
| | - Kaiwen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, P. R. China
| | - Zhaodi Huang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, P. R. China
| |
Collapse
|
48
|
Taheri S, Heravi MM, Saljooqi A. Ionothermal synthesis of magnetic N-doped porous carbon to immobilize Pd nanoparticles as an efficient nanocatalyst for the reduction of nitroaromatic compounds. Sci Rep 2023; 13:17566. [PMID: 37845255 PMCID: PMC10579375 DOI: 10.1038/s41598-023-35998-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/27/2023] [Indexed: 10/18/2023] Open
Abstract
Carbon materials play important roles as catalysts or catalyst supports for reduction reactions owing to their high porosity, large specific surface area, great electron conductivity, and excellent chemical stability. In this paper, a mesoporous N-doped carbon substrate (exhibited as N-C) has been synthesized by ionothermal carbonization of glucose in the presence of histidine. The N-C substrate was modified by Fe3O4 nanoparticles (N-C/Fe3O4), and then Pd nanoparticles were stabilized on the magnetic substrate to synthesize an eco-friendly Pd catalyst with high efficiency, magnetic, reusability, recoverability, and great stability. To characterize the Pd/Fe3O4-N-C nanocatalyst, different microscopic and spectroscopic methods such as FT-IR, XRD, SEM/EDX, and TEM were applied. Moreover, Pd/Fe3O4-N-C showed high catalytic activity in reducing nitroaromatic compounds in water at ambient temperatures when NaBH4 was used as a reducing agent. The provided nanocatalyst's great catalytic durability and power can be attributed to the synergetic interaction among well-dispersed Pd nanoparticles and N-doped carbonaceous support.
Collapse
Affiliation(s)
- Sahar Taheri
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran.
| | - Asma Saljooqi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
49
|
Zhang M, Gao Y, Li J, Xia Y, Yang L, Jiang C, Huang X, Wang T, He J. Superhydrophilic and Superaerophobic Ru-Loaded NiCo Bimetallic Hydroxide Achieves Efficient Hydrogen Evolution over All pH Ranges. Chemistry 2023; 29:e202301589. [PMID: 37416968 DOI: 10.1002/chem.202301589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023]
Abstract
Realizing an effective, binder-free, and super-wetting electrocatalyst for the hydrogen evolution reaction (HER) at full pH is essential for the creation of clean hydrogen. In this study, the Ru-loaded NiCo bimetallic hydroxide (Ru@NiCo-BH) catalyst was prepared by spontaneous redox reaction. The chemical interaction between Ru NPs and NiCo-BH by the Ru-O-M (M=Ni, Co) interface bond, the electron-rich Ru active site, and the multi-channel nickel foam carrier make the superhydrophilic and superaerophobic surface advantageous for mass transfer in the HER process. Therefore, Ru@NiCo-BH has remarkable HER activity, with low overpotential of 29, 68 and 80 mV, a 10 mA cm-2 current density can be obtained in alkaline, neutral and acidic electrolytes respectively. This work provides a reference for the rational development of universal electrocatalysts for hydrogen evolution in the all pH ranges through simple design strategies.
Collapse
Affiliation(s)
- Mingyue Zhang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R China
| | - Yong Gao
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R China
| | - Jingjing Li
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R China
| | - Yujiao Xia
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R China
| | - Ling Yang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R China
| | - Cheng Jiang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R China
| | - Xianli Huang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R China
| | - Tao Wang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R China
| | - Jianping He
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R China
| |
Collapse
|
50
|
Guo Y, Zhou G, Tong Y. Electronic interaction of ruthenium species on bimetallic phosphide for superior electrocatalytic hydrogen generation. Dalton Trans 2023; 52:12733-12741. [PMID: 37610334 DOI: 10.1039/d3dt01786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The exploitation of high-performance electrocatalysts to achieve the economic electrocatalytic hydrogen evolution reaction (HER) is significant in generating H2 fuel. Enhancing the activity of the carrier catalyst by modifying trace precious metals is one of the important strategies. Herein, a hybrid material is developed by incorporating trace Ru species into a bimetallic phosphide (NiCoP) matrix on nickel foam (NF), showing a superior catalytic activity for HER. The Ru-NiCoP/NF hybrid material has plenty of heterointerfaces, improved electronic interaction, and small interfacial charge transfer resistance, improving the reaction kinetics of the HER. Remarkable, the Ru-NiCoP/NF provides a low overpotential of 96 mV at the current density of 50 mA cm-2 and high stability in 1.0 M KOH solution presenting a promising potential for hydrogen production. In addition, the Ru-NiCoP/NF sample exhibits the highest TOF value of 0.54 s-1 at an overpotential of 100 mV, which outperforms the commercial Ru/C catalyst. This study offers a promising approach for the synthesis of other precious metal supported hybrid materials.
Collapse
Affiliation(s)
- Yiming Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Guorong Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Yun Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|