1
|
Greenwood SN, Dispensa AN, Wang M, Bauer JR, Vaden TD, Liu Z, Weiser BP. Ion-DNA Interactions as a Key Determinant of Uracil DNA Glycosylase Activity. Biochemistry 2025; 64:2332-2344. [PMID: 40331587 PMCID: PMC12096439 DOI: 10.1021/acs.biochem.5c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Because of their ubiquitous presence, ions interact with numerous macromolecules in the cell and affect critical biological processes. Here, we discuss how cations including Mg2+ alter the enzymatic activity of a DNA glycosylase by tuning its affinity for DNA. The response of uracil DNA glycosylase (UNG2) to Mg2+ ions in solution is biphasic and paradoxical, where low concentrations of the ion stimulate the enzyme, but high concentrations inhibit the enzyme. We analyzed this phenomenon by modeling experimental data with a statistical framework that we empirically derived to understand molecular systems that display biphasic behaviors. Parameters from our statistical model indicate that DNA substrates are nearly saturated with cations under ideal conditions for UNG2 activity. However, the enzyme slows rather abruptly when the ionic content becomes too low or too high due to changes in the electrostatic environment that alter protein affinity for DNA. We discuss how ion occupancy on DNA is dependent on DNA length; thus, the sensitivity of UNG2 to cations is also dependent on DNA length. Finally, we found that Mg2+-induced changes in DNA base stacking and dynamics have minimal effects on UNG2, as these outcomes occur at ion concentrations that are much lower than is required for efficient enzyme activity. Altogether, our work demonstrates how cation-DNA interactions, which are likely common in the nucleus, are a key determinant of uracil base excision repair mediated by UNG2.
Collapse
Affiliation(s)
- Sharon N. Greenwood
- Department
of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey08084, United States
- Department
of Molecular Biology, Rowan-Virtua School of Translational Biomedical
Engineering & Sciences, Rowan University, Stratford, New Jersey08084, United States
| | - Alexis N. Dispensa
- Department
of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey08084, United States
- Department
of Molecular Biology, Rowan-Virtua School of Translational Biomedical
Engineering & Sciences, Rowan University, Stratford, New Jersey08084, United States
| | - Matthew Wang
- Department
of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey08084, United States
- Department
of Molecular Biology, Rowan-Virtua School of Translational Biomedical
Engineering & Sciences, Rowan University, Stratford, New Jersey08084, United States
| | - Justin R. Bauer
- Department
of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey08084, United States
- Department
of Molecular Biology, Rowan-Virtua School of Translational Biomedical
Engineering & Sciences, Rowan University, Stratford, New Jersey08084, United States
| | - Timothy D. Vaden
- Department
of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, New Jersey08028, United States
| | - Zhiwei Liu
- Department
of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, New Jersey08028, United States
| | - Brian P. Weiser
- Department
of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey08084, United States
- Department
of Molecular Biology, Rowan-Virtua School of Translational Biomedical
Engineering & Sciences, Rowan University, Stratford, New Jersey08084, United States
| |
Collapse
|
2
|
Ouzon-Shubeita H, Barnes R, Schmaltz LF, Lee S. Structure of a DNA Glycosylase Bound to a Nicked T:G Mismatch-Containing DNA. Molecules 2025; 30:2083. [PMID: 40363888 PMCID: PMC12073362 DOI: 10.3390/molecules30092083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Mismatched T:G base pairs can arise during de novo replication as well as base excision repair (BER). In particular, the action of the gap-filling polymerase β (Polβ) can generate a T:G pair as well as a nick in the DNA backbone. The processing of a nicked T:G mispair is poorly understood. We are interested in understanding whether the T:G-specific DNA glycosylase MBD4 can recognize and process nicked T:G mismatches. We have discovered that MBD4 binds a nicked T:G-containing DNA, but does not cleave thymine opposite guanine. To gain insight into this, we have determined a crystal structure of human MBD4 bound to a nicked T:G-containing DNA. This structure displayed the full insertion of thymine into the catalytic site and the recognition of thymine based on the catalytic site's amino acid residues. However, thymine excision did not occur, presumably due to the inactivation of the catalytic D560 carboxylate nucleophile via a polar interaction with the 5'-hydrogen phosphate of the nicked DNA. The nicked complex was greatly stabilized by an ordered water molecule that formed four hydrogen bonds with the nicked DNA and MBD4. Interestingly, the arginine finger R468 did not engage in the phosphate pinching that is commonly observed in T:G mismatch recognition complex structures. Instead, the guanidinium moiety of R468 made bifurcated hydrogen bonding interactions with O6 of guanine, thereby stabilizing the estranged guanine. These observations suggest that R468 may sense and disrupt T:G pairs within the DNA duplex and stabilize the flipped-out thymine. The structure described here would be a close mimic of an intermediate in the base extrusion pathway induced by DNA glycosylase.
Collapse
Affiliation(s)
| | | | | | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Renaudin X, Campalans A. Modulation of OGG1 enzymatic activities by small molecules, promising tools and current challenges. DNA Repair (Amst) 2025; 149:103827. [PMID: 40120404 DOI: 10.1016/j.dnarep.2025.103827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
Oxidative DNA damage, resulting from endogenous cellular processes and external sources plays a significant role in mutagenesis, cancer progression, and the pathogenesis of neurological disorders. Base Excision Repair (BER) is involved in the repair of base modifications such as oxidations or alkylations as well as single strand breaks. The DNA glycosylase OGG1, initiates the BER pathway by the recognition and excision of 8oxoG, the most common oxidative DNA lesion, in both nuclear and mitochondrial DNA. Beyond DNA repair, OGG1 modulates transcription, particularly pro-inflammatory genes, linking oxidative DNA damage to broader biological processes like inflammation and aging. In cancer therapy, BER inhibition has emerged as a promising strategy to enhance treatment efficacy. Targeting OGG1 sensitizes cells to chemotherapies, radiotherapies, and PARP inhibitors, presenting opportunities to overcome therapy resistance. Additionally, OGG1 activators hold potential in mitigating oxidative damage associated with aging and neurological disorders. This review presents the development of several inhibitors and activators of OGG1 and how they have contributed to advance our knowledge in the fundamental functions of OGG1. We also discuss the new opportunities they provide for clinical applications in treating cancer, inflammation and neurological disorders. Finally, we also highlight the challenges in targeting OGG1, particularly regarding the off-target effects recently reported for some inhibitors and how we can overcome these limitations.
Collapse
Affiliation(s)
- Xavier Renaudin
- Université Paris-Saclay, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses F-92260, France; Université Paris Cité, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses F-92260, France
| | - Anna Campalans
- Université Paris-Saclay, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses F-92260, France; Université Paris Cité, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses F-92260, France.
| |
Collapse
|
4
|
Kim H, Pak Y. Free Energy Landscape of Lesion Recognition by Human 8-Oxoguanine DNA N-Glycosylase 1: Mechanistic Insights into Detection and Processing of 8-Oxoguanine in DNA. J Phys Chem B 2024; 128:12133-12142. [PMID: 39625397 DOI: 10.1021/acs.jpcb.4c07073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) is an essential enzyme in DNA repair, responsible for recognizing and excising 8-oxoguanine (8OG), the lesion resulting from oxidative damage to guanine (G). By removing 8OG, hOGG1 prevents mutations like G-to-T transversions, maintains genomic stability, and reduces the risk of cancer and other diseases. Structural studies of hOGG1 bound to DNA have shown that lesion recognition occurs through base eversion from the DNA helix and hOGG1 finger residue insertion into the DNA helix. To better understand this complex process, enhanced sampling molecular dynamics simulations were used to map two-dimensional free energy surfaces that describe lesion recognition in terms of base eversion and finger residue insertion. The resulting free energy profiles reveal one major SN2-like and two minor SN1-like pathways for 8OG and normal G and show that hOGG1 has kinetic and thermodynamic advantages in terms of recognizing 8OG over G. Based on these data, simple kinetic models were utilized to provide a quantitative view of lesion recognition kinetics of 8OG versus G. The most favorable kinetic scenario identified was that the scanning rate of hOGG1 falls between the initial interrogation rates of 8OG and G. According to this scenario, hOGG1 rapidly scans normal Gs at its intrinsic diffusion speed, bypassing unnecessary interrogations. However, when hOGG1 encounters 8OG, the enzyme significantly slows down during lesion recognition until the damaged base is excised from its catalytic pocket. This highly selective mechanism ensures that hOGG1 efficiently repairs oxidative DNA damage by carefully regulating how it scans the DNA, thus optimizing the balance between speed and accuracy during the scanning process.
Collapse
Affiliation(s)
- Hyeonjun Kim
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Youngshang Pak
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
5
|
Tiwari A, Verma N, Shukla H, Mishra S, Kennedy K, Chatterjee T, Kuldeep J, Parwez S, Siddiqi MI, Ralph SA, Mishra S, Habib S. DNA N-glycosylases Ogg1 and EndoIII as components of base excision repair in Plasmodium falciparum organelles. Int J Parasitol 2024; 54:675-689. [PMID: 38964640 DOI: 10.1016/j.ijpara.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The integrity of genomes of the two crucial organelles of the malaria parasite - an apicoplast and mitochondrion in each cell - must be maintained by DNA repair mediated by proteins targeted to these compartments. We explored the localisation and function of Plasmodium falciparum base excision repair (BER) DNA N-glycosylase homologs PfEndoIII and PfOgg1. These N-glycosylases would putatively recognise DNA lesions prior to the action of apurinic/apyrimidinic (AP)-endonucleases. Both Ape1 and Apn1 endonucleases have earlier been shown to function solely in the parasite mitochondrion. Immunofluorescence localisation showed that PfEndoIII was exclusively mitochondrial. PfOgg1 was not seen clearly in mitochondria when expressed as a PfOgg1leader-GFP fusion, although chromatin immunoprecipitation assays showed that it could interact with both mitochondrial and apicoplast DNA. Recombinant PfEndoIII functioned as a DNA N-glycosylase as well as an AP-lyase on thymine glycol (Tg) lesions. We further studied the importance of Ogg1 in the malaria life cycle using reverse genetic approaches in Plasmodium berghei. Targeted disruption of PbOgg1 resulted in loss of 8-oxo-G specific DNA glycosylase/lyase activity. PbOgg1 knockout did not affect blood, mosquito or liver stage development but caused reduced blood stage infection after inoculation of sporozoites in mice. A significant reduction in erythrocyte infectivity by PbOgg1 knockout hepatic merozoites was also observed, thus showing that PbOgg1 ensures smooth transition from liver to blood stage infection. Our results strengthen the view that the Plasmodium mitochondrial genome is an important site for DNA repair by the BER pathway.
Collapse
Affiliation(s)
- Anupama Tiwari
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Neetu Verma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Himadri Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivani Mishra
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kit Kennedy
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Tribeni Chatterjee
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jitendra Kuldeep
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shahid Parwez
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - M I Siddiqi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Stuart A Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Ren M, Gut F, Fan Y, Ma J, Shan X, Yikilmazsoy A, Likhodeeva M, Hopfner KP, Zhou C. Structural basis for human OGG1 processing 8-oxodGuo within nucleosome core particles. Nat Commun 2024; 15:9407. [PMID: 39477986 PMCID: PMC11526172 DOI: 10.1038/s41467-024-53811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Base excision repair (BER) is initialized by DNA glycosylases, which recognize and flip damaged bases out of the DNA duplex into the enzymes active site, followed by cleavage of the glycosidic bond. Recent studies have revealed that all types of DNA glycosylases repair base lesions less efficiently within nucleosomes, and their repair activity is highly depended on the lesion's location within the nucleosome. To reveal the underlying molecular mechanism of this phenomenon, we determine the 3.1 Å cryo-EM structure of human 8-oxoguanine-DNA glycosylase 1 (hOGG1) bound to a nucleosome core particle (NCP) containing a common oxidative base lesion, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). Our structural analysis shows that hOGG1 can recognize and flip 8-oxodGuo even within NCPs; however, the interaction between 8-oxodGuo and hOGG1 in a NCP context is weaker than in free DNA due to competition for nucleosomal DNA by the histones. Binding of OGG1 and the flipping of 8-oxodGuo by hOGG1 leads to a partial detachment of DNA from the histone core and a ratchet-like inward movement of nucleosomal DNA. Our findings provide insights into how the dynamic structure of nucleosomes modulate the activity of repair enzymes within chromatin.
Collapse
Affiliation(s)
- Mengtian Ren
- School of Chemistry, Tiangong University, Tianjin, 300387, China.
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, 81377, Germany.
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Fabian Gut
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Yilan Fan
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Jingke Ma
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiajing Shan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Aysenur Yikilmazsoy
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Mariia Likhodeeva
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, 81377, Germany.
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
7
|
You Q, Feng X, Cai Y, Baylin SB, Li H. Human 8-oxoguanine glycosylase OGG1 binds nucleosome at the dsDNA ends and the super-helical locations. Commun Biol 2024; 7:1202. [PMID: 39341999 PMCID: PMC11438860 DOI: 10.1038/s42003-024-06919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The human glycosylase OGG1 extrudes and excises the oxidized DNA base 8-oxoguanine (8-oxoG) to initiate base excision repair and plays important roles in many pathological conditions such as cancer, inflammation, and neurodegenerative diseases. Previous structural studies have used a truncated protein and short linear DNA, so it has been unclear how full-length OGG1 operates on longer DNA or on nucleosomes. Here we report cryo-EM structures of human OGG1 bound to a 35-bp long DNA containing an 8-oxoG within an unmethylated Cp-8-oxoG dinucleotide as well as to a nucleosome with an 8-oxoG at super-helical location (SHL)-5. The 8-oxoG in the linear DNA is flipped out by OGG1, consistent with previous crystallographic findings with a 15-bp DNA. OGG1 preferentially binds near dsDNA ends at the nucleosomal entry/exit sites. Such preference may underlie the enzyme's function in DNA double-strand break repair. Unexpectedly, we find that OGG1 bends the nucleosomal entry DNA, flips an undamaged guanine, and binds to internal nucleosomal DNA sites such as SHL-5 and SHL+6. We suggest that the DNA base search mechanism by OGG1 may be chromatin context-dependent and that OGG1 may partner with chromatin remodelers to excise 8-oxoG at the nucleosomal internal sites.
Collapse
Affiliation(s)
- Qinglong You
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Yi Cai
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stephen B Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
8
|
Gillet N, Dumont E, Bignon E. DNA damage and repair in the nucleosome: insights from computational methods. Biophys Rev 2024; 16:345-356. [PMID: 39099841 PMCID: PMC11297232 DOI: 10.1007/s12551-024-01183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 08/06/2024] Open
Abstract
Cellular DNA is constantly exposed to endogenous or exogenous factors that can induce lesions. Several types of lesions have been described that can result from UV/ionizing irradiations, oxidative stress, or free radicals, among others. In order to overcome the deleterious effects of such damages, i.e., mutagenicity or cytotoxicity, cells possess a highly complex DNA repair machinery, involving repair enzymes targeting specific types of lesions through dedicated cellular pathways. In addition, DNA is highly compacted in the nucleus, the first level of compaction consisting of ~ 147 DNA base pairs wrapped around a core of histones, the so-called nucleosome core particle. In this complex environment, the DNA structure is highly constrained, and fine-tuned mechanisms involving remodeling processes are required to expose the DNA to repair enzymes and to facilitate the damage removal. However, these nucleosome-specific mechanisms remain poorly understood, and computational methods emerged only recently as powerful tools to investigate DNA damages in such complex systems as the nucleosome. In this mini-review, we summarize the latest advances brought out by computational approaches in the field, opening new exciting perspectives for the study of DNA damage and repair in the nucleosome context.
Collapse
Affiliation(s)
- Natacha Gillet
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, 69342 Lyon, France
| | - Elise Dumont
- Institut de Chimie de Nice, UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Institut Universitaire de France, 5 Rue Descartes, 75005 Paris, France
| | | |
Collapse
|
9
|
Kim H, Pak Y. Three-State Diffusion Model of DNA Glycosylase Translocation along Stretched DNA as Revealed by Free Energy Landscapes at the All-Atom Level. J Chem Theory Comput 2024; 20:2666-2675. [PMID: 38451471 DOI: 10.1021/acs.jctc.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
DNA glycosylases play key roles in the maintenance of genomic integrity. These enzymes effectively find rare damaged sites in DNA and participate in subsequent base excision repair. Single-molecule and ensemble experiments have revealed key aspects of this damage-site searching mechanism and the involvement of facilitated diffusion. In this study, we describe free energy landscapes of enzyme translocation along nonspecific DNA obtained using a fully atomistic molecular dynamics (MD) simulation of a well-known DNA glycosylase, human 8-oxoguanine DNA glycosylase 1 (hOGG1). Based on an analysis of simulated free energy profiles, we propose a three-state model for the damage-site searching mechanism. In the three states, named the L1, L2, and L3 states, the L1 state is a helical sliding mode in close contact with DNA, whereas the L2 state is a major- or minor-groove tracking mode in loose contact with DNA and the L3 state is a two-dimensional freely diffusing mode during which hOGG1 is somewhat removed from the DNA surface (∼24 Å away from the surface). This three-state model well describes key experimental findings obtained from single-molecule and ensemble experiments and provides a unified molecular picture of the DNA lesion-searching mechanism of hOGG1.
Collapse
Affiliation(s)
- Hyeonjun Kim
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Youngshang Pak
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
10
|
Nam K, Arattu Thodika AR, Grundström C, Sauer UH, Wolf-Watz M. Elucidating Dynamics of Adenylate Kinase from Enzyme Opening to Ligand Release. J Chem Inf Model 2024; 64:150-163. [PMID: 38117131 PMCID: PMC10778088 DOI: 10.1021/acs.jcim.3c01618] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
This study explores ligand-driven conformational changes in adenylate kinase (AK), which is known for its open-to-close conformational transitions upon ligand binding and release. By utilizing string free energy simulations, we determine the free energy profiles for both enzyme opening and ligand release and compare them with profiles from the apoenzyme. Results reveal a three-step ligand release process, which initiates with the opening of the adenosine triphosphate-binding subdomain (ATP lid), followed by ligand release and concomitant opening of the adenosine monophosphate-binding subdomain (AMP lid). The ligands then transition to nonspecific positions before complete dissociation. In these processes, the first step is energetically driven by ATP lid opening, whereas the second step is driven by ATP release. In contrast, the AMP lid opening and its ligand release make minor contributions to the total free energy for enzyme opening. Regarding the ligand binding mechanism, our results suggest that AMP lid closure occurs via an induced-fit mechanism triggered by AMP binding, whereas ATP lid closure follows conformational selection. This difference in the closure mechanisms provides an explanation with implications for the debate on ligand-driven conformational changes of AK. Additionally, we determine an X-ray structure of an AK variant that exhibits significant rearrangements in the stacking of catalytic arginines, explaining its reduced catalytic activity. In the context of apoenzyme opening, the sequence of events is different. Here, the AMP lid opens first while the ATP lid remains closed, and the free energy associated with ATP lid opening varies with orientation, aligning with the reported AK opening and closing rate heterogeneity. Finally, this study, in conjunction with our previous research, provides a comprehensive view of the intricate interplay between various structural elements, ligands, and catalytic residues that collectively contribute to the robust catalytic power of the enzyme.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Abdul Raafik Arattu Thodika
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | | | - Uwe H. Sauer
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| | - Magnus Wolf-Watz
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| |
Collapse
|
11
|
Cintori L, Di Guilmi AM, Canitrot Y, Huet S, Campalans A. Spatio-temporal dynamics of the DNA glycosylase OGG1 in finding and processing 8-oxoguanine. DNA Repair (Amst) 2023; 129:103550. [PMID: 37542751 DOI: 10.1016/j.dnarep.2023.103550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
OGG1 is the DNA glycosylase responsible for the removal of the oxidative lesion 8-oxoguanine (8-oxoG) from DNA. The recognition of this lesion by OGG1 is a complex process that involves scanning the DNA for the presence of 8-oxoG, followed by recognition and lesion removal. Structural data have shown that OGG1 evolves through different stages of conformation onto the DNA, corresponding to elementary steps of the 8-oxoG recognition and extrusion from the double helix. Single-molecule studies of OGG1 on naked DNA have shown that OGG1 slides in persistent contact with the DNA, displaying different binding states probably corresponding to the different conformation stages. However, in cells, the DNA is not naked and OGG1 has to navigate into a complex and highly crowded environment within the nucleus. To ensure rapid detection of 8-oxoG, OGG1 alternates between 3D diffusion and sliding along the DNA. This process is regulated by the local chromatin state but also by protein co-factors that could facilitate the detection of oxidized lesions. We will review here the different methods that have been used over the last years to better understand how OGG1 detects and process 8-oxoG lesions.
Collapse
Affiliation(s)
- Luana Cintori
- Molecular, Cellular and Developmental Biology unit, Centre de Biologie Integrative, University of Toulouse, CNRS, F-31062 Toulouse, France
| | - Anne-Marie Di Guilmi
- Université de Paris-Cite, CEA /IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA /IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
| | - Yvan Canitrot
- Molecular, Cellular and Developmental Biology unit, Centre de Biologie Integrative, University of Toulouse, CNRS, F-31062 Toulouse, France
| | - Sebastien Huet
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, ´ Sante, Innovation Technologique de Rennes) - UMS 3480, US 018, F-35000 Rennes, France; Institut Universitaire de France, Paris, France
| | - Anna Campalans
- Université de Paris-Cite, CEA /IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA /IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France.
| |
Collapse
|
12
|
Tessmer I. The roles of non-productive complexes of DNA repair proteins with DNA lesions. DNA Repair (Amst) 2023; 129:103542. [PMID: 37453245 DOI: 10.1016/j.dnarep.2023.103542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
A multitude of different types of lesions is continuously introduced into the DNA inside our cells, and their rapid and efficient repair is fundamentally important for the maintenance of genomic stability and cellular viability. This is achieved by a number of DNA repair systems that each involve different protein factors and employ versatile strategies to target different types of DNA lesions. Intriguingly, specialized DNA repair proteins have also evolved to form non-functional complexes with their target lesions. These proteins allow the marking of innocuous lesions to render them visible for DNA repair systems and can serve to directly recruit DNA repair cascades. Moreover, they also provide links between different DNA repair mechanisms or even between DNA lesions and transcription regulation. I will focus here in particular on recent findings from single molecule analyses on the alkyltransferase-like protein ATL, which is believed to initiate nucleotide excision repair (NER) of non-native NER target lesions, and the base excision repair (BER) enzyme hOGG1, which recruits the oncogene transcription factor Myc to gene promoters under oxidative stress.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
13
|
Nam K, Tao Y, Ovchinnikov V. Molecular Simulations of Conformational Transitions within the Insulin Receptor Kinase Reveal Consensus Features in a Multistep Activation Pathway. J Phys Chem B 2023; 127:5789-5798. [PMID: 37363953 PMCID: PMC10332359 DOI: 10.1021/acs.jpcb.3c01804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Modulating the transitions between active and inactive conformations of protein kinases is the primary means of regulating their catalytic activity, achieved by phosphorylation of the activation loop (A-loop). To elucidate the mechanism of this conformational activation, we applied the string method to determine the conformational transition path of insulin receptor kinase between the active and inactive conformations and the corresponding free-energy profiles with and without A-loop phosphorylation. The conformational change was found to proceed in three sequential steps: first, the flipping of the DFG motif of the active site; second, rotation of the A-loop; finally, the inward movement of the αC helix. The main energetic bottleneck corresponds to the conformational change in the A-loop, while changes in the DFG motif and αC helix occur before and after A-loop conformational change, respectively. In accordance with this, two intermediate states are identified, the first state just after the DFG flipping and the second state after the A-loop rotation. These intermediates exhibit structural features characteristic of the corresponding inactive and active conformations of other protein kinases. To understand the impact of A-loop phosphorylation on kinase conformation, the free energies of A-loop phosphorylation were determined at several states along the conformational transition path using the free-energy perturbation simulations. The calculated free energies reveal that while the unphosphorylated kinase interconverts between the inactive and active conformations, A-loop phosphorylation restricts access to the inactive conformation, thereby increasing the active conformation population. Overall, this study suggests a consensus mechanism of conformational activation between different protein kinases.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yunwen Tao
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Victor Ovchinnikov
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
14
|
D’Augustin O, Gaudon V, Siberchicot C, Smith R, Chapuis C, Depagne J, Veaute X, Busso D, Di Guilmi AM, Castaing B, Radicella JP, Campalans A, Huet S. Identification of key residues of the DNA glycosylase OGG1 controlling efficient DNA sampling and recruitment to oxidized bases in living cells. Nucleic Acids Res 2023; 51:4942-4958. [PMID: 37021552 PMCID: PMC10250219 DOI: 10.1093/nar/gkad243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
The DNA-glycosylase OGG1 oversees the detection and clearance of the 7,8-dihydro-8-oxoguanine (8-oxoG), which is the most frequent form of oxidized base in the genome. This lesion is deeply buried within the double-helix and its detection requires careful inspection of the bases by OGG1 via a mechanism that remains only partially understood. By analyzing OGG1 dynamics in the nucleus of living human cells, we demonstrate that the glycosylase constantly samples the DNA by rapidly alternating between diffusion within the nucleoplasm and short transits on the DNA. This sampling process, that we find to be tightly regulated by the conserved residue G245, is crucial for the rapid recruitment of OGG1 at oxidative lesions induced by laser micro-irradiation. Furthermore, we show that residues Y203, N149 and N150, while being all involved in early stages of 8-oxoG probing by OGG1 based on previous structural data, differentially regulate the sampling of the DNA and recruitment to oxidative lesions.
Collapse
Affiliation(s)
- Ostiane D’Augustin
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, F-35000 Rennes, France
- Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
| | | | - Capucine Siberchicot
- Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, F-35000 Rennes, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, F-35000 Rennes, France
| | - Jordane Depagne
- Université de Paris-Cité, Inserm, CEA/IBFJ/IRCM/CIGEx, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/CIGEx, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
| | - Xavier Veaute
- Université de Paris-Cité, Inserm, CEA/IBFJ/IRCM/CIGEx, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/CIGEx, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
| | - Didier Busso
- Université de Paris-Cité, Inserm, CEA/IBFJ/IRCM/CIGEx, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/CIGEx, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
| | - Anne-Marie Di Guilmi
- Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
| | | | - J Pablo Radicella
- Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
| | - Anna Campalans
- Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, F-35000 Rennes, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
15
|
Ovcherenko SS, Shernyukov AV, Nasonov DM, Endutkin AV, Zharkov DO, Bagryanskaya EG. Dynamics of 8-Oxoguanine in DNA: Decisive Effects of Base Pairing and Nucleotide Context. J Am Chem Soc 2023; 145:5613-5617. [PMID: 36867834 DOI: 10.1021/jacs.2c11230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
8-Oxo-7,8-dihydroguanine (oxoG), an abundant DNA lesion, can mispair with adenine and induce mutations. To prevent this, cells possess DNA repair glycosylases that excise either oxoG from oxoG:C pairs (bacterial Fpg, human OGG1) or A from oxoG:A mispairs (bacterial MutY, human MUTYH). Early lesion recognition steps remain murky and may include enforced base pair opening or capture of a spontaneously opened pair. We adapted the CLEANEX-PM NMR protocol to detect DNA imino proton exchange and analyzed the dynamics of oxoG:C, oxoG:A, and their undamaged counterparts in nucleotide contexts with different stacking energy. Even in a poorly stacking context, the oxoG:C pair did not open easier than G:C, arguing against extrahelical base capture by Fpg/OGG1. On the contrary, oxoG opposite A significantly populated the extrahelical state, which may assist recognition by MutY/MUTYH.
Collapse
Affiliation(s)
- Sergey S Ovcherenko
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Andrey V Shernyukov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Dmitry M Nasonov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anton V Endutkin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
16
|
Bangalore DM, Tessmer I. Direct hOGG1-Myc interactions inhibit hOGG1 catalytic activity and recruit Myc to its promoters under oxidative stress. Nucleic Acids Res 2022; 50:10385-10398. [PMID: 36156093 PMCID: PMC9561264 DOI: 10.1093/nar/gkac796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The base excision repair (BER) glycosylase hOGG1 (human oxoguanine glycosylase 1) is responsible for repairing oxidative lesions in the genome, in particular oxidised guanine bases (oxoG). In addition, a role of hOGG1 in transcription regulation by recruitment of various transcription factors has been reported. Here, we demonstrate direct interactions between hOGG1 and the medically important oncogene transcription factor Myc that is involved in transcription initiation of a large number of genes including inflammatory genes. Using single molecule atomic force microscopy (AFM), we reveal recruitment of Myc to its E-box promoter recognition sequence by hOGG1 specifically under oxidative stress conditions, and conformational changes in hOGG1-Myc complexes at oxoG lesions that suggest loading of Myc at oxoG lesions by hOGG1. Importantly, our data show suppression of hOGG1 catalytic activity in oxoG repair by Myc. Furthermore, mutational analyses implicate the C28 residue in hOGG1 in oxidation induced protein dimerisation and suggest a role of hOGG1 dimerisation under oxidising conditions in hOGG1-Myc interactions. From our data we develop a mechanistic model for Myc recruitment by hOGG1 under oxidising, inflammatory conditions, which may be responsible for the observed enhanced gene expression of Myc target genes.
Collapse
Affiliation(s)
- Disha M Bangalore
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
17
|
Wang L, Xi K, Zhu L, Da LT. DNA Deformation Exerted by Regulatory DNA-Binding Motifs in Human Alkyladenine DNA Glycosylase Promotes Base Flipping. J Chem Inf Model 2022; 62:3213-3226. [PMID: 35708296 DOI: 10.1021/acs.jcim.2c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human alkyladenine DNA glycosylase (AAG) is a key enzyme that corrects a broad range of alkylated and deaminated nucleobases to maintain genomic integrity. When encountering the lesions, AAG adopts a base-flipping strategy to extrude the target base from the DNA duplex to its active site, thereby cleaving the glycosidic bond. Despite its functional importance, the detailed mechanism of such base extrusion and how AAG distinguishes the lesions from an excess of normal bases both remain elusive. Here, through the Markov state model constructed on extensive all-atom molecular dynamics simulations, we find that the alkylated nucleobase (N3-methyladenine, 3MeA) everts through the DNA major groove. Two key AAG motifs, the intercalation and E131-N146 motifs, play active roles in bending/pressing the DNA backbone and widening the DNA minor groove during 3MeA eversion. In particular, the intercalated residue Y162 is involved in buckling the target site at the early stage of 3MeA eversion. Our traveling-salesman based automated path searching algorithm further revealed that a non-target normal adenine tends to be trapped in an exo site near the active site, which however barely exists for a target base 3MeA. Collectively, these results suggest that the Markov state model combined with traveling-salesman based automated path searching acts as a promising approach for studying complex conformational changes of biomolecules and dissecting the elaborate mechanism of target recognition by this unique enzyme.
Collapse
Affiliation(s)
- Lingyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Xi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
18
|
Sun J, Antczak NM, Gahlon HL, Sturla SJ. Molecular beacons with oxidized bases report on substrate specificity of DNA oxoguanine glycosylases. Chem Sci 2022; 13:4295-4302. [PMID: 35509469 PMCID: PMC9007065 DOI: 10.1039/d1sc05648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
DNA glycosylase enzymes recognize and remove structurally distinct modified forms of DNA bases, thereby repairing genomic DNA from chemically induced damage or erasing epigenetic marks. However, these enzymes are often promiscuous, and advanced tools are needed to evaluate and engineer their substrate specificity. Thus, in the present study, we developed a new strategy to rapidly profile the substrate specificity of 8-oxoguanine glycosylases, which cleave biologically relevant oxidized forms of guanine. We monitored the enzymatic excision of fluorophore-labeled oligonucleotides containing synthetic modifications 8-oxoG and FapyG, or G. Using this molecular beacon approach, we identified several hOGG1 mutants with higher specificity for FapyG than 8-oxoG. This approach and the newly synthesized probes will be useful for the characterization of glycosylase substrate specificity and damage excision mechanisms, as well as for evaluating engineered enzymes with altered reactivities.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Health Sciences and Technology, ETH Zürich Zürich 8092 Switzerland
- Department of Biological Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Nicole M Antczak
- Department of Health Sciences and Technology, ETH Zürich Zürich 8092 Switzerland
- Department of Chemistry, Skidmore College 815 North Broadway Saratoga Springs NY 12866 USA
| | - Hailey L Gahlon
- Department of Health Sciences and Technology, ETH Zürich Zürich 8092 Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich Zürich 8092 Switzerland
| |
Collapse
|
19
|
Guerra C, Kumar S, Aguilar-Galindo F, Díaz-Tendero S, Lozano AI, Mendes M, Oller JC, Limão-Vieira P, García G. Total Electron Detachment and Induced Cationic Fragmentation Cross Sections for Superoxide Anion (O 2-) Collisions with Benzene (C 6H 6) Molecules. Int J Mol Sci 2022; 23:1266. [PMID: 35163189 PMCID: PMC8835784 DOI: 10.3390/ijms23031266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
In this study, novel experimental total electron detachment cross sections for O2- collisions with benzene molecules are reported for the impact energy range (10-1000 eV), as measured with a transmission beam apparatus. By analysing the positively charged species produced during the collision events, relative total ionisation cross sections were derived in the incident energy range of 160-900 eV. Relative partial ionisation cross sections for fragments with m/z ≤ 78 u were also given in this energy range. We also confirmed that heavier compounds (m/z > 78 u) formed for impact energies between 550 and 800 eV. In order to further our knowledge about the collision dynamics governing the fragmentation of such heavier molecular compounds, we performed molecular dynamics calculations within the framework of the Density Functional Theory (DFT). These results demonstrated that the fragmentation of these heavier compounds strongly supports the experimental evidence of m/z = 39-42, 50, 60 (u) cations formation, which contributed to the broad local maximum in the total ionisation observed from 550 to 800 eV. This work reveals the reactivity induced by molecular anions colliding with hydrocarbons at high energies, processes that can take place in the interstellar medium under various local conditions.
Collapse
Affiliation(s)
- Carlos Guerra
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid, Spain;
| | - Sarvesh Kumar
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (S.K.); (A.I.L.); (M.M.); (P.L.-V.)
| | - Fernando Aguilar-Galindo
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain;
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana I. Lozano
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (S.K.); (A.I.L.); (M.M.); (P.L.-V.)
| | - Mónica Mendes
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (S.K.); (A.I.L.); (M.M.); (P.L.-V.)
| | - Juan C. Oller
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 22, 28040 Madrid, Spain;
| | - Paulo Limão-Vieira
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (S.K.); (A.I.L.); (M.M.); (P.L.-V.)
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid, Spain;
- Centre for Medical Radiation Physics, University of Wollongong, Wollomgong, NSW 2522, Australia
| |
Collapse
|
20
|
Guerra C, Kumar S, Aguilar-Galindo F, Díaz-Tendero S, Lozano AI, Mendes M, Limão-Vieira P, García G. Unexpected benzene oxidation in collisions with superoxide anions. Sci Rep 2021; 11:23125. [PMID: 34848760 PMCID: PMC8633363 DOI: 10.1038/s41598-021-02408-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Superoxide anions colliding with benzene molecules at impact energies from 200 to 900 eV are reported for the first time to form massive complexes. With the aid of quantum chemistry calculations, we propose a mechanism in which a sudden double ionization of benzene and the subsequent electrostatic attraction between the dication and the anion form a stable covalently bonded C6H6O2+ molecule, that evolves towards the formation of benzene-diol conformers. These findings lend support to a model presenting a new high energy anion-driven chemistry as an alternative way to form complex molecules.
Collapse
Affiliation(s)
- Carlos Guerra
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006, Madrid, Spain
| | - Sarvesh Kumar
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Fernando Aguilar-Galindo
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018, Donostia-San Sebastián, Spain
| | - Sergio Díaz-Tendero
- Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, 28049, Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Ana I Lozano
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Mónica Mendes
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006, Madrid, Spain.
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
21
|
Burmistrov DE, Yanykin DV, Paskhin MO, Nagaev EV, Efimov AD, Kaziev AV, Ageychenkov DG, Gudkov SV. Additive Production of a Material Based on an Acrylic Polymer with a Nanoscale Layer of Zno Nanorods Deposited Using a Direct Current Magnetron Discharge: Morphology, Photoconversion Properties, and Biosafety. MATERIALS 2021; 14:ma14216586. [PMID: 34772111 PMCID: PMC8585381 DOI: 10.3390/ma14216586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 01/31/2023]
Abstract
On the basis of a direct current magnetron, a technology has been developed for producing nanoscale-oriented nanorods from zinc oxide on an acrylic polymer. The technology makes it possible to achieve different filling of the surface with zinc oxide nanorods. The nanorods is partially fused into the polymer; the cross section of the nanorods is rather close to an elongated ellipse. It is shown that, with intense abrasion, no delamination of the nanorods from the acrylic polymer is observed. The zinc oxide nanorods abrades together with the acrylic polymer. Zinc oxide nanorods luminesces with the wavelength most preferable for the process of photosynthesis in higher plants. It was shown that plants grown under the obtained material grow faster and gain biomass faster than the control group. In addition, it was found that on surfaces containing zinc oxide nanorods, a more intense formation of such reactive oxygen species as hydrogen peroxide and hydroxyl radical is observed. Intensive formation of long-lived, active forms of the protein is observed on the zinc oxide coating. The formation of 8-oxoguanine in DNA in vitro on a zinc oxide coating was shown using ELISA method. It was found that the multiplication of microorganisms on the developed material is significantly hampered. At the same time, eukaryotic cells of animals grow and develop without hindrance. Thus, the material we have obtained can be used in photonics (photoconversion material for greenhouses, housings for LEDs), and it is also an affordable and non-toxic nanomaterial for creating antibacterial coatings.
Collapse
Affiliation(s)
- Dmitry E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Denis V. Yanykin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Mark O. Paskhin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Egor V. Nagaev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Alexey D. Efimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Andrey V. Kaziev
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Kashirskoe Sh. 31, 115409 Moscow, Russia; (A.V.K.); (D.G.A.)
| | - Dmitry G. Ageychenkov
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Kashirskoe Sh. 31, 115409 Moscow, Russia; (A.V.K.); (D.G.A.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
- Correspondence:
| |
Collapse
|
22
|
Jiang T, Monari A, Dumont E, Bignon E. Molecular Mechanisms Associated with Clustered Lesion-Induced Impairment of 8-oxoG Recognition by the Human Glycosylase OGG1. Molecules 2021; 26:molecules26216465. [PMID: 34770874 PMCID: PMC8587150 DOI: 10.3390/molecules26216465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
The 8-oxo-7,8-dihydroguanine, referred to as 8-oxoG, is a highly mutagenic DNA lesion that can provoke the appearance of mismatches if it escapes the DNA Damage Response. The specific recognition of its structural signature by the hOGG1 glycosylase is the first step along the Base Excision Repair pathway, which ensures the integrity of the genome by preventing the emergence of mutations. 8-oxoG formation, structural features, and repair have been matters of extensive research; more recently, this active field of research expended to the more complicated case of 8-oxoG within clustered lesions. Indeed, the presence of a second lesion within 1 or 2 helix turns can dramatically impact the repair yields of 8-oxoG by glycosylases. In this work, we use μs-range molecular dynamics simulations and machine-learning-based postanalysis to explore the molecular mechanisms associated with the recognition of 8-oxoG by hOGG1 when embedded in a multiple-lesion site with a mismatch in 5′ or 3′. We delineate the stiffening of the DNA–protein interactions upon the presence of the mismatches, and rationalize the much lower repair yields reported with a 5′ mismatch by describing the perturbation of 8-oxoG structural features upon addition of an adjacent lesion.
Collapse
Affiliation(s)
- Tao Jiang
- Laboratoire de Chimie—UMR CNRS 5182, ENS de Lyon, Université de Lyon, 46 Allée d’Italie, F-69000 Lyon, France; (T.J.); (E.D.)
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques—UMR CNRS 7019, Faculté des Sciences et Technologies, Université de Lorraine, Boulevard des Aiguillettes, F-54506 Vandoeuvre-les-Nancy, France;
- Université de Paris and CNRS, ITODYS, F-75006 Paris, France
| | - Elise Dumont
- Laboratoire de Chimie—UMR CNRS 5182, ENS de Lyon, Université de Lyon, 46 Allée d’Italie, F-69000 Lyon, France; (T.J.); (E.D.)
- Institut Universitaire de France, 5 rue Descartes, F-75005 Paris, France
| | - Emmanuelle Bignon
- Laboratoire de Physique et Chimie Théoriques—UMR CNRS 7019, Faculté des Sciences et Technologies, Université de Lorraine, Boulevard des Aiguillettes, F-54506 Vandoeuvre-les-Nancy, France;
- Correspondence:
| |
Collapse
|
23
|
Mamrot J, Hall NE, Lindley RA. Predicting clinical outcomes using cancer progression associated signatures. Oncotarget 2021; 12:845-858. [PMID: 33889305 PMCID: PMC8057277 DOI: 10.18632/oncotarget.27934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 12/09/2022] Open
Abstract
Somatic mutation signatures are an informative facet of cancer aetiology, however they are rarely useful for predicting patient outcome. The aim of this study is to evaluate the utility of a panel of 142 mutation-signature–associated metrics (P142) for predicting cancer progression in patients from a ‘TCGA PanCancer Atlas’ cohort. The P142 metrics are comprised of AID/APOBEC and ADAR deaminase associated SNVs analyzed for codon context, strand bias, and transitions/transversions. TCGA tumor-normal mutation data was obtained for 10,437 patients, representing 31 of the most prevalent forms of cancer. Stratified random sampling was used to split patients into training, tuning and validation cohorts for each cancer type. Cancer specific machine learning (XGBoost) models were built using the output from the P142 panel to predict patient Progression Free Survival (PFS) status as either “High PFS” or “Low PFS”. Predictive performance of each model was evaluated using the validation cohort. Models accurately predicted PFS status for several cancer types, including adrenocortical carcinoma, glioma, mesothelioma, and sarcoma. In conclusion, the P142 panel of metrics successfully predicted cancer progression status in patients with some, but not all cancer types analyzed. These results pave the way for future studies on cancer progression associated signatures.
Collapse
Affiliation(s)
- Jared Mamrot
- GMDx Group Ltd, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | | | - Robyn A Lindley
- GMDx Group Ltd, Melbourne, Victoria, Australia.,Department of Clinical Pathology, The Victorian Comprehensive Cancer Centre, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, VIC, Australia
| |
Collapse
|
24
|
Hans F, Senarisoy M, Bhaskar Naidu C, Timmins J. Focus on DNA Glycosylases-A Set of Tightly Regulated Enzymes with a High Potential as Anticancer Drug Targets. Int J Mol Sci 2020; 21:ijms21239226. [PMID: 33287345 PMCID: PMC7730500 DOI: 10.3390/ijms21239226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second leading cause of death with tens of millions of people diagnosed with cancer every year around the world. Most radio- and chemotherapies aim to eliminate cancer cells, notably by causing severe damage to the DNA. However, efficient repair of such damage represents a common mechanism of resistance to initially effective cytotoxic agents. Thus, development of new generation anticancer drugs that target DNA repair pathways, and more particularly the base excision repair (BER) pathway that is responsible for removal of damaged bases, is of growing interest. The BER pathway is initiated by a set of enzymes known as DNA glycosylases. Unlike several downstream BER enzymes, DNA glycosylases have so far received little attention and the development of specific inhibitors of these enzymes has been lagging. Yet, dysregulation of DNA glycosylases is also known to play a central role in numerous cancers and at different stages of the disease, and thus inhibiting DNA glycosylases is now considered a valid strategy to eliminate cancer cells. This review provides a detailed overview of the activities of DNA glycosylases in normal and cancer cells, their modes of regulation, and their potential as anticancer drug targets.
Collapse
|