1
|
Šedajová V, Nandi D, Langer P, Lo R, Hobza P, Plachá D, Bakandritsos A, Zbořil R. Direct upcycling of highly efficient sorbents for emerging organic contaminants into high energy content supercapacitors. J Colloid Interface Sci 2025; 692:137481. [PMID: 40187136 DOI: 10.1016/j.jcis.2025.137481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
The escalation of anthropogenic activities contributes to the accumulation of chemicals in life-supporting ecosystems and water reserves, while nearly 80% of the global population faces a high risk of water insecurity. Therefore, advanced nanomaterials for environmental remediation and ecosystem preservation are essential. However, their adoption has been slow, mainly due to the need for water treatment strategies that comply with sustainability criteria. This work showcases the efficient removal of emerging pharmaceutical pollutants from water using functionalized graphenes and the direct upcycling of the used sorbents into electrodes for energy storage, without the need for any intermediate treatment. Remarkably, the performance of the repurposed sorbents as supercapacitor electrodes exceeds that of the parent functionalized graphenes by up to 100% in a full cell device. This enhanced performance and cycling stability are attributed to improved charge transport and redox activity induced by the strong adsorption of the pollutants, as supported by theoretical calculations. The findings open avenues for reclaiming the value of spent sorbents, mitigating the environmental and economic burden of their disposal or regeneration, while fostering sustainable resource management, and energy storage.
Collapse
Affiliation(s)
- Veronika Šedajová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Šlechtitelů 241/27, 779 00, Olomouc - Holice, Palacký University Olomouc, Czech Republic
| | - Debabrata Nandi
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Šlechtitelů 241/27, 779 00, Olomouc - Holice, Palacký University Olomouc, Czech Republic
| | - Petr Langer
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Námĕstí 542/2, 16000 Prague, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Námĕstí 542/2, 16000 Prague, Czech Republic; IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Daniela Plachá
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Šlechtitelů 241/27, 779 00, Olomouc - Holice, Palacký University Olomouc, Czech Republic; Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Šlechtitelů 241/27, 779 00, Olomouc - Holice, Palacký University Olomouc, Czech Republic; Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
| |
Collapse
|
2
|
Ding C, Du Y, Fischer T, Senker J, Agarwal S. Ultra-Low Density Covalent Organic Framework Sponges with Exceptional Compression and Functional Performance. Angew Chem Int Ed Engl 2025; 64:e202502513. [PMID: 40096703 DOI: 10.1002/anie.202502513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
The emergence of covalent organic frameworks (COFs) macroscopic objects with hierarchical porous structures addresses the limitations of traditional COF powders, which are challenging to process, thus bringing them closer to practical applications. However, the brittleness of the parent COF powder results in poor mechanical stability of these COF macroscopic objects, presenting a significant challenge that must be overcome for their continued development. In this work, we successfully obtained a continuous, hierarchically porous, and interconnected open-cell COF structure made up of hollow sponge walls of thickness 100-250 nm through a template-assisted framework process. This unique structure endows the COF sponge with a high surface area (1655 m2 g-1), ultralow density (2.2 mg cm-3), and exceptional mechanical stability. Even after 300 000 compressions at a 50% compression rate, its stress and height decreased by only 7.9% and 7.1%, respectively. These properties grant the COF sponge excellent solvent absorption capacity, catalytic performance, and reusability. Therefore, this work broadens the development pathway for COF macroscopic objects and is expected to further unlock the potential of COFs in practical applications.
Collapse
Affiliation(s)
- Chenhui Ding
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Yingying Du
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Tamara Fischer
- Department of Chemistry, Inorganic Chemistry III, and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Jürgen Senker
- Department of Chemistry, Inorganic Chemistry III, and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Seema Agarwal
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| |
Collapse
|
3
|
Zhong C, Xue Y, Dong S, Hu C, Lin Z. Construction of hierarchically porous covalent organic frameworks with enhanced enzyme accessibility for sensitive dopamine detection. Talanta 2025; 287:127645. [PMID: 39879796 DOI: 10.1016/j.talanta.2025.127645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Immobilization of fragile enzymes is vital to expanding its application in the extracellular environment. Covalent organic frameworks (COFs), as a class of emerging porous materials, are promising platforms for enzyme immobilization owing to their high porosity and tunable structure. However, the interior pores of COFs often fail to play their roles because of inaccessibility, resulting in decreased performance of immobilized enzymes. Here, we introduce a facile approach to construct hierarchically macro-mesoporous COF (Hm-COF) via a template-assistant strategy. The mesoporous channels of Hm-COF were used to entrap cytochrome c (Cyt c), and the macropores of Hm-COF were adopted as diffusion channels to enhance the mass transfer of guest molecules. The resulting Hm-COF demonstrated an enhanced uptake capacity of Cyt c compared with mesoporous COF (m-COF). Furthermore, the catalytic activity of Cyt c immobilized in Hm-COF (Cyt c@Hm-COF) was remarkably higher than that of Cyt c immobilized in m-COF (Cyt c@m-COF). Taking advantage of the excellent activity, Cyt c@Hm-COF was employed as the sensor for the sensitive detection of dopamine (DA). This study opens a new avenue for the construction of COFs with hierarchical pores and high-performance immobilized enzymes.
Collapse
Affiliation(s)
- Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Yuandi Xue
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shaofeng Dong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Cong Hu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
4
|
Jiang D, Tan VGW, Gong Y, Shao H, Mu X, Luo Z, He S. Semiconducting Covalent Organic Frameworks. Chem Rev 2025. [PMID: 40366230 DOI: 10.1021/acs.chemrev.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Semiconductors form the foundational bedrock of modern electronics and numerous cutting-edge technologies. Particularly, semiconductors crafted from organic building blocks hold immense promise as next-generation pioneers, thanks to their vast array of chemical structures, customizable frontier orbital energy levels and bandgap structures, and easily adjustable π electronic properties. Over the past 50 years, advancements in chemistry and materials science have facilitated extensive investigations into small organic π compounds, oligomers, and polymers, resulting in a rich library of organic semiconductors. However, a longstanding challenge persists: how to organize π building units or chains into well-defined π structures, which are crucial for the performance of organic semiconductors. Consequently, the pursuit of methodologies capable of synthesizing and/or fabricating organic semiconductors with ordered structures has emerged as a frontier in organic and polymeric semiconductor research. In this context, covalent organic frameworks (COFs) stand out as unique platforms allowing for the covalent integration of organic π units into periodically ordered π structures, thus facilitating the development of semiconductors with extended yet precisely defined π architectures. Since their initial report in 2008, significant strides have been made in exploring various chemistries to develop semiconducting COFs, resulting in a rich library of structures, properties, functions, and applications. This review provides a comprehensive yet focused exploration of the general structural features of semiconducting COFs, outlining the basic principles of structural design, illustrating the linkage chemistry and synthetic strategies based on typical one-pot polymerization reactions to demonstrate the growth of bulk materials, nanosheets, films, and membranes. By elucidating the interactions between COFs and various entities such as photons, phonons, electrons, holes, ions, molecules, and spins, this review categorizes semiconducting COFs into nine distinct sections: semiconductors, photoconductors, light emitters, sensors, photocatalysts, photothermal conversion materials, electrocatalysts, energy storage electrodes, and radical spin materials, focusing on disclosing structure-originated properties and functions. Furthermore, this review scrutinizes structure-function correlations and highlights the unique features, breakthroughs, and challenges associated with semiconducting COFs. Furnished with foundational knowledges and state-of-the-art insights, this review predicts the fundamental issues to be addressed and outlines future directions for semiconducting COFs, offering a comprehensive overview of this rapidly evolving and remarkable field.
Collapse
Affiliation(s)
- Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Guan Wu Tan
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yifan Gong
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Haipei Shao
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinyu Mu
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhangliang Luo
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuyue He
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
5
|
Åhlén M, Kong X, Zhao W, Zamora F, Xu C. Overcoming Boundaries: Towards the Ambient Aqueous Synthesis of Covalent Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202425426. [PMID: 39980366 DOI: 10.1002/anie.202425426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 02/22/2025]
Abstract
The synthesis of covalent organic frameworks (COFs) has traditionally been carried out under strict solvothermal and anaerobic conditions. The utilization of organic solvents in such reactions not only carries significant costs but also imposes a great burden on the environment. The fabrication of COFs using alternative synthetic pathways has, therefore, seen rapid development in recent years and much attention has been placed on green and sustainable methods in particular. The synthesis of COFs in purely aqueous media, however, remains challenging due to the delicate nature of the chemical reactions and the crystallization process in water. This mini-review discusses different synthetic strategies for the construction of crystalline COFs in aqueous media and offers a perspective on the future development of facile COF synthesis in ambient conditions.
Collapse
Affiliation(s)
- Michelle Åhlén
- Division for Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden
| | - Xueying Kong
- Division for Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden
| | - Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Félix Zamora
- Departamento de Química Inorgánica, and Condensed Matter Physics Institute (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco-Crta. Colmenar, 28049, Madrid, Spain
| | - Chao Xu
- Division for Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden
| |
Collapse
|
6
|
Li M, Zheng Y, Bai H, Gao W. Advances in Ice-Templated Graphene Aerogels: Fabrication, Properties, and Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19247-19262. [PMID: 40112138 DOI: 10.1021/acsami.5c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Graphene has been one of the most widely explored two-dimensional (2D) assemblies due to its outstanding mechanical, electrical, and thermal properties resulting from its unique characteristics of high anisotropy and strong carbon-carbon bonds. Aerogels, characterized by their ultralow density and ultrahigh specific surface area, stand out as leading porous materials. Therefore, the integration of graphene and aerogels would boost the development of multifunctional porous materials. Among the various methods for the fabrication of aerogels, ice-templating has received significant interest due to its ecofriendly nature as a physical process, its broad applicability across material systems, and its proficiency in constructing abundant structures for multifunctionalities. Consequently, ice-templating has become a prevalent technique for the efficient assembly of graphene nanosheets into aerogels with the inherited properties of graphene, the multifunctionality derived from diverse constituents, and the well-controlled architecture. In this review, we systematically summarize the development and progress of ice-templated graphene-based aerogels. Initially, we introduce the fabrication process of these aerogels, elaborating each step from precursor preparation to freezing, drying, and post-treatment. Subsequently, we demonstrate the multifunctional applications of ice-templated graphene aerogels with various macroarchitectures and microstructures. Finally, this review concludes with a straightforward summary, highlighting the challenges and opportunities associated with the ice-templated fabrication of graphene-based aerogels. This systematic review of graphene aerogels aims to offer new insights into the design and ice-templated fabrication of innovative aerogels with multiscale architecture and multifunctionalities, which are crucial for a variety of engineering applications.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Yi Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Wang Q, Wang P, Wang Y, Xu Y, Xu H, Xi K. A Versatile Method for Preparation of BrCOFs Aerogels and Efficient Functionalization via Suzuki-Miyaura Reaction. SMALL METHODS 2025; 9:e2401373. [PMID: 39523764 DOI: 10.1002/smtd.202401373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Covalent organic frameworks (COFs) aerogels solve the restrictions on processability and application caused by the insolubility and non-fusibility of powders while avoiding the inaccessibility of pore structures by dense stacking. At the current start-up stage where COFs aerogels are scarce and difficult to synthesize, design of generalized synthetic methods play an indispensable role in guiding and developing COFs aerogels. Moreover, evolving the functionality of COF aerogels is equal vital, which achieves higher performance and broader practical applications. In this work, for the first time, processable BrCOFs aerogels have been synthesized without vacuum by seven kind polar solvents, which realizes general preparation of BrCOFs aerogels. It is extremely friendly to the inapplicability for some scenarios. Furthermore, by Suzuki-Miyaura cross-coupling reaction, BrCOFs aerogels are endows with cyano groups (-CN), trifluoromethyl (-CF3) and methyl sulfonyl (-SO2-CH3) efficiently. As a proof-of-concept, BrCOFs-SO2-CH3 aerogels served as a quasi-solid electrolyte for lithium-metal batteries (LMBs), which effectively enhance the performance of batteries.
Collapse
Affiliation(s)
- Qiaomu Wang
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yandong Wang
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yang Xu
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Haocheng Xu
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Kai Xi
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Liu Y, Guo W, Liu J, Tao H, Yang J, Shuai Q, Yamauchi Y, Yuliarto B, Asakura Y, Huang L. Bipyridine covalent organic framework aerogel for highly selective recovery of palladium in wastewater. Chem Sci 2025; 16:5745-5754. [PMID: 40046080 PMCID: PMC11878236 DOI: 10.1039/d4sc08674k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/08/2025] [Indexed: 03/28/2025] Open
Abstract
Palladium (Pd), a rare and precious metal, is highly valued due to its non-renewable nature and significant cost. Therefore, recovering palladium from industrial wastewater is of great importance but remains a challenge. Herein, a composite aerogel adsorbent has been developed by linking a bipyridine covalent organic framework, termed TpBpy, with chitosan (CS) through robust covalent bonds. The resulting TpBpy/CS aerogel is employed for the selective separation and recovery of palladium at low concentrations in real wastewater. Experimental results reveal that the maximum adsorption capacity of the TpBpy/CS aerogel for Pd(ii) is 274.4 mg g-1 at pH 1. Additionally, even in the presence of other coexisting ions at concentrations 100 times higher than Pd(ii), the adsorption efficiency for Pd(ii) remains above 99%. Mechanistic investigations indicate that the adsorption of Pd(ii) by the TpBpy/CS aerogels primarily occurs through the coordination between pyridine N and Pd(ii), as well as the electrostatic interaction between protonated amino groups and Pd(ii). Moreover, the TpBpy/CS aerogel demonstrates exceptional reusability, maintaining an adsorption efficiency for Pd(ii) above 99% after nine adsorption-desorption cycles. Overall, the TpBpy/CS aerogel is a promising monolithic adsorbent for the efficient recovery of Pd(ii) from acidic industrial wastewater due to its exceptional adsorption capacity and selectivity, demonstrating substantial potential for practical applications.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences No. 388, Lumo Road, Hongshan District Wuhan 430074 PR China
| | - Weikang Guo
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences No. 388, Lumo Road, Hongshan District Wuhan 430074 PR China
| | - Jiale Liu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences No. 388, Lumo Road, Hongshan District Wuhan 430074 PR China
| | - Haijuan Tao
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences No. 388, Lumo Road, Hongshan District Wuhan 430074 PR China
| | - Juan Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology LiuFang Campus, No. 206, Guanggu 1st Road, Donghu New & High Technology Development Zone Wuhan 430205 Hubei Province PR China
| | - Qin Shuai
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences No. 388, Lumo Road, Hongshan District Wuhan 430074 PR China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8603 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
| | - Brian Yuliarto
- Faculty of Industrial Technology, Institut Teknologi Bandung Bandung 40132 Indonesia
| | - Yusuke Asakura
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8603 Japan
| | - Lijin Huang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences No. 388, Lumo Road, Hongshan District Wuhan 430074 PR China
| |
Collapse
|
9
|
Fu S, Li X, Wen G, Guo Y, Addicoat MA, Bonn M, Jin E, Müllen K, Wang HI. Dimensional evolution of charge mobility and porosity in covalent organic frameworks. Nat Commun 2025; 16:2219. [PMID: 40044681 PMCID: PMC11882946 DOI: 10.1038/s41467-025-57436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
Covalent organic frameworks are an emerging class of covalently linked polymers with programmable lattices and well-defined nanopores. Developing covalent organic frameworks with both high porosity and excellent charge transport properties is crucial for widespread applications, including sensing, catalysis, and organic electronics. However, achieving the combination of both features remains challenging due to the lack of overarching structure-property correlations. Here, we report a strategy toward covalent organic frameworks with tunable dimensionality. The concept relies on splicing one-dimensional charge-conducting channels to form extended networks with tailorable substitution patterns. Such dimensional evolution and substitution control enable fine-tuning of electronic band structure, charge mobility, and porosity. According to surface-area characterization, high-frequency terahertz photoconductivity measurements, and theoretical calculations, the transition from one-dimensional to para-linked two-dimensional networks furnishes a substantial increase in surface area and a decrease in local charge mobility. The latter feature is assigned to substitution-induced electronic band flattening. A subtle balance of surface area (947 m2·g-1) and local charge mobility (49 ± 10 cm2·V-1·s-1) is achieved through the rational design of meta-linked analogs with mixed one-dimensional and two-dimensional superior nature. This work provides fundamental insights and new structural knobs for the design of conductive covalent organic frameworks.
Collapse
Affiliation(s)
- Shuai Fu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, Germany
| | - Xiao Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun, P.R. China
| | - Guanzhao Wen
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, Germany
| | - Yunyu Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun, P.R. China
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, UK
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, Germany
| | - Enquan Jin
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, Germany.
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun, P.R. China.
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, Germany.
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, Germany.
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Chen C, Shen L, Wang B, Lu X, Raza S, Xu J, Li B, Lin H, Chen B. Environmental applications of metal-organic framework-based three-dimensional macrostructures: a review. Chem Soc Rev 2025; 54:2208-2245. [PMID: 39791318 DOI: 10.1039/d4cs00435c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Metal-organic frameworks (MOFs) hold considerable promise for environmental remediation owing to their exceptional performance and distinctive structure. Nonetheless, the practical implementation of MOFs encounters persistent technical hurdles, notably susceptibility to loss, challenging recovery, and potential environmental toxicity arising from the fragility, insolubility, and poor processability of MOFs. MOF-based three-dimensional macrostructures (3DMs) inherit the advantageous attributes of the original MOFs, such as ultra-high specific surface area, tunable pore size, and customizable structure, while also incorporating the intriguing characteristics of bulk materials, including hierarchical structure, facile manipulation, and structural flexibility. Consequently, they exhibit rapid mass transfer and exceptional practicality, offering extensive potential applications in environmental remediation. This review presents a comprehensive overview of recent advancements in utilizing MOF-based 3DMs for environmental remediation, encompassing their fascinating characteristics, preparation strategies, and characterization methods, and highlighting their exceptional performance in pollutant adsorption, catalysis, and detection. Furthermore, existing challenges and prospects are presented to advance the utilization of MOF-based materials across various domains, particularly in environmental remediation.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinchun Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Saleem Raza
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Yang J, You H, Han Y, Chen H, Zhang K, Li Y, Bao J, Ge X, Pan G, Xing R. Synthesis of Sulfonyl Two-Dimensional Covalent Organic Frameworks for Supercapacitor Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11027-11035. [PMID: 39903815 DOI: 10.1021/acsami.4c22093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Covalent organic frameworks (COFs) are attracting more attention for energy storage applications. COFs possess unique structural properties, such as highly ordered pore structures, abundant functionalization sites, and tunable chemical properties, making them ideal candidates for the development of novel energy storage materials. In this work, we synthesized sulfonyl two-dimensional (2D) covalent organic frameworks (SLD-COFs) using 4,4'-sulfonyldiphenylamine (SLD). SLD-COFs have a remarkable conjugated structure, which includes imine groups forming large π-bonds, and the conjugated structure can provide consecutive electron conduction paths, which enables SLD-COF to transfer charges more efficiently, thus improving the electrical conductivity. Additionally, the sulfonyl groups introduce redox-active sites, which participate in the redox process during electrochemical reactions and generate a pseudocapacitive effect. For a current of 0.5 A/g, the specific capacitance of the SLD-COF material was 31.5 F/g in an acidic electrolyte and 41.7 F/g in an alkaline electrolyte. The structural flexibility and good electrochemical properties of the COFs make them a potentially essential component of energy storage applications. Meanwhile, the capacitance retention of SLD-COFs reaches 78.3% after 1000 GCD cycles at a current density of 1 A/g, which indicates its good cycling stability.
Collapse
Affiliation(s)
- Jingjing Yang
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Huibiao You
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yongle Han
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Hong Chen
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Kaiqi Zhang
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanan Li
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China
- Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China
| | - Jinxiao Bao
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China
- Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China
| | - Xin Ge
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China
- Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China
| | - Gaofei Pan
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China
- Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China
| | - Ruiguang Xing
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China
- Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China
| |
Collapse
|
12
|
Sun Y, Xu X, Wang X, Tan M, Zhang F. Synthesis of β-cyclodextrin magnetic-graphene-oxide pyrenyl (β-mGOP) gels for high-throughput enrichment and detection of various trace mycotoxins in food using UHPLC-cIMS. Food Chem 2025; 465:142083. [PMID: 39581086 DOI: 10.1016/j.foodchem.2024.142083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
In this research, β-cyclodextrin magnetic-graphene-oxide pyrenyl gel composite (β-mGOP) was employed to remove trace mycotoxins from food products. The β-mGOP gels exhibited a three-dimensional macroporous structure that facilitated the rapid diffusion of target molecules into the nanoporous structure of the covalent organic frameworks embedded within the gel. The adsorption process of mycotoxins onto the β-mGOP gels conformed to the pseudo-second-order kinetics and the Freundlich adsorption model. These findings demonstrated exceptional rapid adsorption kinetics without pore collapse, making the material suitable as fillers for solid-phase extraction adsorbents. Additionally, a novel screening technique utilizing β-mGOP gels in conjunction with cyclic ion mobility mass spectrometry was developed to illustrate the efficacy of β-mGOP gels in capturing various trace substances in food and enhancing detection resolution. The versatile, uncomplicated, and scalable characteristics of β-mGOP gels indicate their promising potential for future applications in high-throughput analysis of trace contaminants in food.
Collapse
Affiliation(s)
- Yan Sun
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, China.
| |
Collapse
|
13
|
Majumder D, Fajal S, Shirolkar MM, Torris A, Banyla Y, Biswas K, Rasaily S, Ghosh SK. Nano-Springe Enriched Hierarchical Porous MOP/COF Hybrid Aerogel: Efficient Recovery of Gold from Electronic Waste. Angew Chem Int Ed Engl 2025; 64:e202419830. [PMID: 39578998 DOI: 10.1002/anie.202419830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Extraction of gold from secondary resources such as electronic waste (e-waste) has become crucial in recent times to compensate for the gradual scarcity of the noble metal in natural mines. However, designing and synthesizing a suitable material for highly efficient gold recovery is still a great challenge. Herein, we have strategically designed rapid fabrication of an ionic crystalline hybrid aerogel by covalent threading of an amino-functionalized metal-organic polyhedra with an imine-linked chemically stable covalent organic framework at ambient condition. The hierarchically porous ultra-light aerogel featuring imine-rich backbone, high surface area, and cationic sites have shown fast removal, high uptake capacity (2349 mg/g), and excellent selectivity towards gold sequestration. Besides, the aerogel can extract ultra-trace gold-ions from different terrestrial water bodies, aiming towards safe drinking water. This study demonstrates the great potential of the composite materials based on a novel approach to designing a hybrid porous material for efficient gold recovery from complex water matrices.
Collapse
Affiliation(s)
- Dipanjan Majumder
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Sahel Fajal
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Mandar M Shirolkar
- Advanced Bio-Agro Tech Pvt. Ltd, Norel Nutrient Bio-Agro Tech Pvt. Ltd, Baner, 411045, Pune, India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, India
| | - Yashasvi Banyla
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Kishalay Biswas
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Sagarmani Rasaily
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Sujit K Ghosh
- Department of Chemistry, and Centre for Water Research, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| |
Collapse
|
14
|
Li B, Duan Q, Yang L, Feng T, Ru C, Zhang X, Zhao H, Li CP. Hydrophobic covalent organic frameworks: a green synthesis approach for efficient oil/water separation. RSC Adv 2025; 15:4768-4773. [PMID: 39949330 PMCID: PMC11822353 DOI: 10.1039/d4ra08201j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Rapid economic development has led to oil pollution and energy shortage. Thus, it is highly desirable to develop an efficient and environment-friendly approach for oil/water (O/W) separation. Herein, we report a simple and green method for preparing macroscopic COF AG and AG. COF AG was rapidly synthesized at room temperature, washed and freeze-dried to prepare COF AG without any adhesives or additives. Due to its strong hydrophobicity, COF AG is used as an absorbent for removing organic pollutants in O/W separation, and has a certain demulsification performance, which has a certain application prospect in the field of O/W separation. The hydrophobic COF AG material was combined with MA, which was synthesized in one step at room temperature, avoiding the long reaction conditions of traditional high temperature and high-pressure reaction, as well as the post-modification process and complex washing steps. The superhydrophobic sponge material was rapidly prepared. The introduction of MA reduced the amount of COF monomer, improved the adsorption capacity of the material for organic solvents and oil samples, increased from 37 times of the previous maximum adsorption weight to more than 120 times, and the demulsification capacity of O/W emulsion increased to more than 99%, with the ability of direct separation and continuous separation of O/W. Therefore, the prepared superhydrophobic sponge has high adsorption capacity and good reusability, and can be used for O/W separation. This work not only provides a strategy for the construction of functional COF, but also opens up a way for the growth of COF on different carriers for O/W separation.
Collapse
Affiliation(s)
- Bilian Li
- School of Chemical Science and Technology, Yunnan University 2 North Cuihu Road Kunming 650091 People's Republic of China
| | - Quanmei Duan
- School of Chemical Science and Technology, Yunnan University 2 North Cuihu Road Kunming 650091 People's Republic of China
| | - Lishen Yang
- School of Chemical Science and Technology, Yunnan University 2 North Cuihu Road Kunming 650091 People's Republic of China
| | - Tan Feng
- School of Chemical Science and Technology, Yunnan University 2 North Cuihu Road Kunming 650091 People's Republic of China
| | - Chang Ru
- Research Center for Safety and Environment (Double Carbon Research Center), Pipe China Institute of Science and Technology Tianjin 300457 China
| | - Xin Zhang
- Research Center for Safety and Environment (Double Carbon Research Center), Pipe China Institute of Science and Technology Tianjin 300457 China
| | - Hui Zhao
- Laboratory for Conservation and Utilization of Bioresource, Yunnan University 2 North Cuihu Road Kunming 650091 People's Republic of China
| | - Can-Peng Li
- School of Chemical Science and Technology, Yunnan University 2 North Cuihu Road Kunming 650091 People's Republic of China
| |
Collapse
|
15
|
Divya D, Mishra H, Jangir R. Covalent organic frameworks and their composites as enhanced energy storage materials. Chem Commun (Camb) 2025; 61:2403-2423. [PMID: 39807040 DOI: 10.1039/d4cc04688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The advancement in materials chemistry promoted the growth of energy storage systems such as capacitors, supercapacitors and batteries. Covalent organic frameworks and nanomaterials have significantly improved the performance of various energy storage systems. Because of the unique properties of these materials, like high surface area, tunable architectures, and enhanced conductivity, researchers have developed effective and durable energy storage solutions for multiple applications. These findings are significant for meeting the demand for reliable and sustainable energy storage materials in order to save energy for a better future of mankind. As the demand for reliable and sustainable energy storage materials is increasing, the scientific community is more focussed towards the development of covalent organic frameworks (COFs). The high surface area, thermal and chemical stability, structural tunability, porosity, and low density of COFs make them appropriate for energy storage applications. Their potential to produce advanced energy storage devices with better performance and durability is further reinforced by their ability to be customized for specific applications and amplified for conductive materials. This review covers the designs and synthetic techniques of COFs and their composites specifically suitable for energy storage uses. It further highlights their use as cathode and anode materials in supercapacitors, COF based electrolytes and batteries. The review further includes the flexibility and efficiency of COFs in energy storage applications. Furthermore, it addresses the challenges and their potential solutions regarding the use of COFs in energy storage devices. By providing a comprehensive understanding of the advantages and limitations of COFs, this review aims to inform and inspire future advancements in energy storage technologies.
Collapse
Affiliation(s)
- Divya Divya
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Harshit Mishra
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
16
|
Valentini C, Montes‐García V, Pakulski D, Samorì P, Ciesielski A. Covalent Organic Frameworks and 2D Materials Hybrids: Synthesis Strategies, Properties Enhancements, and Future Directions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410544. [PMID: 39998902 PMCID: PMC11855252 DOI: 10.1002/smll.202410544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Indexed: 02/27/2025]
Abstract
Covalent organic frameworks (COFs) are highly porous, thermally and chemically stable organic polymers. Their high porosity, crystallinity, and adjustable properties make them suitable for numerous applications. However, COFs encounter critical challenges, such as their difficult processability, self-stacking propensity, low electrical conductivity, pore blockage which limits their ionic conductivity, and high recombination rates of photoinduced electrons and holes. To overcome these issues, the hybridization of COFs with 2D materials (2DMs) has proven to be an effective strategy. 2DMs including graphene-like materials, transition metal dichalcogenides, and MXenes are particularly advantageous because of their unique physicochemical properties, such as exceptional electrical and optical characteristics, and mechanical resilience. Over the past decade, significant research efforts have been focused on hybrid 2DMs-COFs materials. These hybrids leverage the strengths of both materials, making them suitable for advanced applications. This Review highlights the latest advancements in 2DM-COF hybrids, examining the physicochemical strengths and weaknesses of the pristine materials, together with the synergistic benefits of their hybridization. Moreover, it emphasizes their most remarkable applications in chemical sensing, catalysis, energy storage, adsorption and filtration, and as anticorrosion agents. Finally, it discusses future challenges and opportunities in the development of 2DM-COFs for new disruptive technologies.
Collapse
Affiliation(s)
- Cataldo Valentini
- Center for Advanced TechnologiesAdam Mickiewicz UniversityUniwersytetu Poznańskiego 10Poznań61‐614Poland
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | | - Dawid Pakulski
- Center for Advanced TechnologiesAdam Mickiewicz UniversityUniwersytetu Poznańskiego 10Poznań61‐614Poland
| | - Paolo Samorì
- Université de StrasbourgCNRSISIS UMR 70068 allée Gaspard MongeStrasbourg67000France
| | - Artur Ciesielski
- Center for Advanced TechnologiesAdam Mickiewicz UniversityUniwersytetu Poznańskiego 10Poznań61‐614Poland
- Université de StrasbourgCNRSISIS UMR 70068 allée Gaspard MongeStrasbourg67000France
| |
Collapse
|
17
|
Feng L, Leng T, Qiu Y, Wang C, Ren LF, Sun H, Tang L, Shao J, Wu M. Weak interaction strategy enables enhanced selectivity and reusability of arginine-functionalized imprinted aerogel for phosphate adsorption. BIORESOURCE TECHNOLOGY 2025; 418:131960. [PMID: 39667628 DOI: 10.1016/j.biortech.2024.131960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Efficient phosphate adsorption from eutrophic waters remains challenging, fundamentally due to inherent trade-off in common adsorbents: high-binding energy between adsorbent and phosphate compromises reusability while low-binding energy suppresses selectivity. Herein, an innovative arginine-functionalized imprinted aerogel (AFIA-1:4) was fabricated by click chemistry and imprinting modification for overcoming this trade-off through synergistic weak interactions. Results shown that AFIA-1:4 exhibited high adsorption capacity (Qmax of 40.65 mg/g, 30.44 % higher than phoslock), rapid kinetics (15 min), and broad pH applicability (3-11) at 2 mg P/L solution. Moreover, its selectivity coefficient ranged from 10 to 90 even with 15- to 125-fold excess interfering anions, surpassing common adsorbents. After 10 cycles, AFIA-1:4 still maintained 98.15 % regeneration rate with 99.14 % phosphate desorption. Characterizations and calculations confirmed core roles of multiple hydrogen bonds and shape screening in maintaining selectivity and reusability. These findings advanced development of next-generation of phosphate adsorbents, which contributed to sustainable prevention and management of eutrophication.
Collapse
Affiliation(s)
- Lidong Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| | - Tianxiao Leng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China.
| | - Haoyu Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, Shanghai, PR China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, Shanghai, PR China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali 671006, Yunnan, PR China.
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, Shanghai, PR China; School of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China
| |
Collapse
|
18
|
Ruan H, Li Z, Jia Q, Wang J, Chen L. Nanomaterials for Zinc Batteries-Aerogels. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:194. [PMID: 39940169 PMCID: PMC11820843 DOI: 10.3390/nano15030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Aqueous zinc batteries, mainly including Zn-ion batteries (ZIBs) and Zn-air batteries (ZABs), are promising energy storage systems, but challenges exist at their current stage. For instance, the zinc anode in aqueous electrolyte is impacted by anodic dendrites, hydrogen and oxygen precipitation, and some other harmful side reactions, which severely affect the battery's lifespan. As for traditional cathode materials in ZIBs, low electrical conductivity, slow Zn2+ ion migration, and easy collapse of the crystal structure during ion embedding and migration bring challenges. Also, the slower critical oxygen reduction reaction (ORR), for example, in ZABs shows unsatisfactory results. All these issues greatly hindered the development of zinc batteries. Aerogel materials, characterized by their high specific surface area, unique open-pore structure formed by nanoporous structures, and excellent physicochemical properties, have a positive role in cathode modification, electrode protection, and catalytic reactions in zinc batteries. This manuscript provides a systematic review of aerogel materials, highlighting advancements in their preparation and application for zinc batteries, aiming to promote the future progress and development of aerogel nanomaterials and zinc batteries.
Collapse
Affiliation(s)
- Hulong Ruan
- College of Physics and Materials Science, Changji University, Changji 831100, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Xinjiang Key Laboratory of High Value Green Utilization of Low-Rank Coal, Changji 831100, China
| | - Zeyuan Li
- College of Physics and Materials Science, Changji University, Changji 831100, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Xinjiang Key Laboratory of High Value Green Utilization of Low-Rank Coal, Changji 831100, China
| | - Qixing Jia
- College of Physics and Materials Science, Changji University, Changji 831100, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Xinjiang Key Laboratory of High Value Green Utilization of Low-Rank Coal, Changji 831100, China
| | - Junjun Wang
- College of Physics and Materials Science, Changji University, Changji 831100, China
- Xinjiang Key Laboratory of High Value Green Utilization of Low-Rank Coal, Changji 831100, China
| | - Lina Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
19
|
Ma Y, Yu S, Li W, Chen D, Zheng Z, Mao L, Yang X, Wang WJ, Liu P. Rapid yet Controlled Synthesis of 2D Covalent Organic Framework Nanocapsules as High-Performance Photocatalytic Carriers. Angew Chem Int Ed Engl 2025; 64:e202416980. [PMID: 39375948 DOI: 10.1002/anie.202416980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Synthesis and assembly of two-dimensional (2D) polymeric materials present a tricky trade-off between the high reaction rate and precise morphology control. Here we report a nanoconfined synthesis of imine-based 2D covalent organic frameworks (COFs) at the interface of oil-in-water (O/W) emulsion droplets stabilized by cationic surfactants. Highly uniform nanocapsules (NCs) could be prepared without adding extra catalysts at room temperature in just 4.5 h at a yield of 86 %. The NCs have tunable average diameters of 114-565 nm and shell thicknesses of 12-63 nm, depending on the monomer and surfactant types/concentrations. Their BET-specific surface areas are up to 139.0 m2/g, mainly contributed by narrowly-distributed mesopores at ~5.0 nm and micropores at 1.4 nm at a volume ratio (V1.4/V5.0) of 1.68. The surfactant plays the role of a catalyst during the reaction and interestingly, it also regulates the formation of mesopores and their sizes. Both theoretical and experimental studies confirm that the reaction has been accelerated by two orders of magnitude at the microdroplet interface, compared to that without emulsification. The resulting NCs could be well dispersed in water for at least six weeks with little size-distribution change, and they have been demonstrated to be highly efficient nanocatalysts in application of water-based hydrogen evolution, reaching a stable hydrogen production rate at 10.2 mmol ⋅ g-1 ⋅ h-1 for 6 hours. Such microdroplet interface-confined synthesis may facilitate the future development of 2D polymeric materials for more advanced applications.
Collapse
Affiliation(s)
- Yuting Ma
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China, 310027
| | - Shenhui Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China, 310027
| | - Wei Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China, 310027
| | - Di Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China, 310027
| | - Zhenqian Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China, 310027
| | - Linjie Mao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China, 310027
| | - Xuan Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China, 310027
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, P.R. China, 324000
| | - Wen-Jun Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China, 310027
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, P.R. China, 324000
| | - Pingwei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China, 310027
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, P.R. China, 324000
| |
Collapse
|
20
|
Wang Y, Zhao J, Xing Y, Dong Y, Wang Z, Hasebe Y, Baughman RH. Covalent Organic Framework Derived Oxygen/Sulfur-Doped Porous Carbon for Robust High-Capacitance Symmetric Supercapacitors. Chem Asian J 2025; 20:e202400930. [PMID: 39400508 DOI: 10.1002/asia.202400930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/15/2024]
Abstract
Heteroatom-doped porous carbons (HPCs) have been considered promising electrode materials for supercapacitors due to their improvement of energy density by providing extra pseudocapacity. Covalent organic frameworks (COFs) are obtaining great importance in energy storage because of their designable structure and versatile functionality. Herein, we designed and fabricated oxygen and sulfur dual-doped covalent organic framework (COF) derived HPCs with very high heteroatoms content (up to 25.76 atom%) via a facile coupling reaction. The optimized HPCs exhibit a porous structure with high specific surface area (up to 2835 m2 g-1) along with a high specific capacitance (430 F g-1 at 0.5 A g-1), excellent capacitance retention (96.9 %), and high coulombic efficiency (98.5 %) after 10000 cycles at 5 A g-1. As electrodes for aqueous symmetric supercapacitors, the HPCs exhibits a high energy density of 60 Wh kg-1 at a 250 W kg-1 power density, excellent cycling stability of capacity retention (82.2 %) and a high coulombic efficiency (92.3 %) after 10000 cycles at 10 A g-1, indicating attractive application potential in chemical energy storage. This work establishes a promising strategy for preparation of high heteroatom content HPCs using COFs and demonstrates great potential for energy storage/conversion devices.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning, 114051, China
| | - Jifan Zhao
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning, 114051, China
| | - Yuzhu Xing
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning, 114051, China
| | - Yan Dong
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning, 114051, China
| | - Zhong Wang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama, 369-0293, Japan
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
21
|
Zhang J, Zhang X, Shen Y, Fu B, Wu Y, Kang J, Chen S, Wang G, Zhang H, Yin H, Zhao H. Joule-Heated Interfacial Catalysis for Advanced Electrified Esterification with High Conversion and Energy Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413949. [PMID: 39588892 DOI: 10.1002/adma.202413949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/02/2024] [Indexed: 11/27/2024]
Abstract
Esterification reactions are crucial in industries such as chemicals, fragrances, and pharmaceuticals but often face limitations due to high reversibility and low reactivity, leading to restricted yields. In this work, an electrified esterification pathway utilizing a Joule-heated interfacial catalysis (JIC) system is proposed, where a hydrophilic, sulfonic acid-functionalized covalent organic framework grown on carbon felt (COF─SO3H@CF) acts as the interfacial catalyst, and the carbon felt serves as the electric heat source. This approach achieves an acetic acid conversion of 80.5% at a heating power density of 0.49 W cm-3, without additional reagents by vaporizing reaction products, surpassing the theoretical equilibrium limit of 62.5% by 1.29 times. Comprehensive analysis indicates that the intimate contact between the electric heat source and the COF─SO3H catalyst enables efficient, localized Joule heating directly at catalytic sites, minimizing thermal losses and allowing precise control over reaction interfaces. This finding demonstrates that this JIC system not only enhances esterification efficiency but may also offer a sustainable, energy-efficient pathway for high-yield chemical processes.
Collapse
Affiliation(s)
- Jifang Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinyuan Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Yue Shen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bo Fu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University Gold Coast Campus, Queensland, 4222, Australia
| | - Yijin Wu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- College of Chemistry and Material Science, Hengyang Normal University Hengyang, Hunan, 421001, China
| | - Jian Kang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University Gold Coast Campus, Queensland, 4222, Australia
| | - Shan Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huajie Yin
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University Gold Coast Campus, Queensland, 4222, Australia
| |
Collapse
|
22
|
Li C, Florek J, Guggenberger P, Kleitz F. Gram-scale green synthesis of a highly stable cationic covalent organic framework for efficient and selective removal of ReO 4 -/ 99TcO 4. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 13:214-219. [PMID: 39554595 PMCID: PMC11566665 DOI: 10.1039/d4ta06442a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Covalent organic frameworks (COFs) have developed as efficient and selective adsorbents to mitigate 99TcO4 - contamination. However, the eco-friendly and scalable production of COF-based adsorbents for the removal of 99TcO4 - has not yet been reported. This study explores the potential of a cationic COF (TpDB-COF) synthesized via a green hydrothermal method, achieving gram-scale yields per batch, thereby addressing a significant limitation of existing COF production methods. The TpDB-COF demonstrates an exceptional stability in strongly acidic conditions (2 weeks in 3 M HNO3), as well as in various organic solvents, making it suitable for harsh nuclear waste environments. Adsorption experiments using ReO4 - as a surrogate for 99TcO4 - show rapid adsorption kinetics, reaching nearly 100% removal efficiency within 1 min (with initial concentration of 28 ppm at a solid-to-liquid ratio of 1 g L-1), a maximum adsorption capacity of 570 mg g-1 and excellent stability. Moreover, the COF maintains high selectivity for ReO4 - even in the presence of competing anions such as SO4 2- and NO3 -. These findings highlight that the hydrothermal synthesis is an effective method to synthesize COF adsorbents for efficient removal of 99TcO4 - and offers a sustainable approach for practical applications.
Collapse
Affiliation(s)
- Changxia Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University 211816 Nanjing China
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna 1090 Vienna Austria
| | - Justyna Florek
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna 1090 Vienna Austria
| | - Patrick Guggenberger
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna 1090 Vienna Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna 1090 Vienna Austria
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna 1090 Vienna Austria
| |
Collapse
|
23
|
Shao G, Huang X, Shen X, Li C, Thomas A. Metal-Organic Framework and Covalent-Organic Framework-Based Aerogels: Synthesis, Functionality, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409290. [PMID: 39467257 DOI: 10.1002/advs.202409290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs)-based aerogels are garnering significant attention owing to their unique chemical and structural properties. These materials harmoniously combine the advantages of MOFs and COFs-such as high surface area, customizable porosity, and varied chemical functionality-with the lightweight and structured porosity characteristic of aerogels. This combination opens up new avenues for advanced applications in fields where material efficiency and enhanced functionality are critical. This review provides a comparative overview of the synthetic strategies utilized to produce pristine MOF/COF aerogels as well as MOF/COF-based hybrid aerogels, which are functionalized with molecular precursors and nanoscale materials. The versatility of these aerogels positions them as promising candidates for addressing complex challenges in environmental remediation, energy storage and conversion, sustainable water-energy technologies, and chemical separations. Furthermore, this study discusses the current challenges and future prospects related to the synthesis techniques and applications of MOF/COF aerogels.
Collapse
Affiliation(s)
- Gaofeng Shao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices and Interface Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaogu Huang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices and Interface Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Changxia Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
| | - Arne Thomas
- Institute for Chemistry, Division of Functional Materials, Technische Universität Berlin, 10623, Berlin, Germany
| |
Collapse
|
24
|
Zhang R, Zhang B, Liu H, Jewell L, Liu X, Qiao S. Homo-Nuclear Hetero-Atomic Conjugated Reticular Oligomers for Heterojunction: A Novel "Electron Medium" for Panel Photoelectrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407834. [PMID: 39429204 PMCID: PMC11633481 DOI: 10.1002/advs.202407834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/29/2024] [Indexed: 10/22/2024]
Abstract
A substantial challenge in employing covalent organic frameworks (COFs) for photoelectrochemical (PEC) water splitting lies in improving their solution-processability while concurrently facilitating the transfer of charges and mass to the catalytic sites. Herein, we synthesize a solution-processable conjugated reticular oligomers (CROs), and further embed ruthenium (Ru) into the CRO, forming a CRO-Ru with homo-nuclear hetero-atomic. Thereafter, CRO and CRO-Ru construct an organic-organic heterojunction membrane at the nanoscale. This design achieves perfect lattice matching, significantly reducing the energy barrier of mass transfer, and effectively lowering the recombination rate of charge carriers. The optimized photocathode, CuI/CRO-Bpy:CRO-Bpy-Ru-1:1+P3HT/SnO2/Pt, exhibits an efficiency of 111.0 µA cm-2 at 0.4 V versus a reversible hydrogen electrode (RHE). Compared with the original bulk COFs and CROs, the efficiency is significantly improved. The apparent improvements in charge carrier separation and transfer are responsible for the high PEC activity. In the heterojunction, the incorporation of CRO-Bpy-Ru with a longer excited-state lifetime and a substantial built-in electric field has effectively accelerated the photo-induced electron transfer from the conduction band (CB) of CRO-Bpy to the valence band (VB) of CRO-Bpy-Ru, effectively suppressing the recombination of charges. These findings offer significant guidance for the design and optimization of high-performance photoelectrochemical catalysts.
Collapse
Affiliation(s)
- Ruijuan Zhang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
- Institute for Catalysis and Energy SolutionsUniversity of South AfricaPrivate Bag X6Florida1710South Africa
| | - Boying Zhang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
- Department of Chemical EngineeringFaculty of Engineering and the Built EnvironmentUniversity of JohannesburgDoornfontein2028South Africa
| | - Haining Liu
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
- Hebei Engineering Research Center of Organic Solid Photoelectric Materials for electronic informationShijiazhuang050018China
| | - Linda Jewell
- Institute for Catalysis and Energy SolutionsUniversity of South AfricaPrivate Bag X6Florida1710South Africa
| | - Xinying Liu
- Institute for Catalysis and Energy SolutionsUniversity of South AfricaPrivate Bag X6Florida1710South Africa
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
- Hebei Engineering Research Center of Organic Solid Photoelectric Materials for electronic informationShijiazhuang050018China
| |
Collapse
|
25
|
Jesudass SC, Surendran S, Lim Y, Jo M, Janani G, Choi H, Kwon G, Jin K, Park H, Kim TH, Sim U. Realizing the Electrode Engineering Significance Through Porous Organic Framework Materials for High-Capacity Aqueous Zn-Alkaline Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406539. [PMID: 39506391 DOI: 10.1002/smll.202406539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Energy storage technologies are eminently developed to address renewable energy utilization efficiently. Porous framework materials possess high surface area and pore volume, allowing for efficient ion transportation and storage. Their unique structure facilitates fast electron transfer, leading to improved battery kinetics. Porous organic framework materials like metal-organic (MOF) and covalent organic (COF) frameworks have immense potential in enhancing the charge/discharge performances of aqueous Zn-alkaline batteries. Organic frameworks and their derivatives can be modified feasibly to exhibit significant chemical stability, enabling them to tolerate the harsh battery environment. Zn-alkaline batteries can achieve enhanced energy density, longer lifespan, and improved rechargeability by incorporating MOFs and COFs, such as electrodes, separators, or electrolyte additives, into the battery architecture. The present review highlights the significant electrode design strategies based on porous framework materials for aqueous Zn-alkaline batteries, such as Zn-Ni, Zn-Mn, Zn-air, and Zn-N2/NO3 batteries. Besides, the discussion on the issues faced by the Zn anode and the essential anode design strategies to solve the issues are also included.
Collapse
Affiliation(s)
- Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Yoongu Lim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Minjun Jo
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Heechae Choi
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas, Lawrence, 66045, USA
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunjung Park
- Department of Materials Science and Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
- Research Institute, NEEL Sciences, INC., Naju, Jeollanamdo, 58326, Republic of Korea
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| |
Collapse
|
26
|
Xiao L, Yuan Y, Ding W, Wang Y, Lv LP. Activation of Carbonyl Groups in Polyimide-Based Covalent Organic Framework with Multiwalled Carbon Nanotubes toward Boosted Pseudocapacitance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25220-25228. [PMID: 39555854 DOI: 10.1021/acs.langmuir.4c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covalent organic frameworks (COFs) possessing a well-defined structure and abundant functional groups are prospective pseudocapacitive electrode materials. However, their intrinsic poor electrical conductivity and stacking problems usually impede the utilization of their active sites. Herein, we conduct an in situ growth of polyimide COFs (donated as NTDA COFs) enriched with carbonyl groups on multiwalled carbon nanotubes (MWCNTs). An impressive capacitance of 467 F g-1 at 1 A g-1 is achieved for the as-prepared NTDA/MWCNTs composite, significantly surpassing both the pure MWCNTs (60.3 F g-1) and NTDA COFs (284.4 F g-1). No decay of capacitance is observed after 10,000 cycles at 10 A g-1. The assembled device NTDA/MWCNTs//activated carbon reaches a high energy density of 17 Wh kg-1 at 750 W kg-1 while keeping superior charging/discharging stability of 89.5% after cycling for 19,000 times at 10 A g-1. In situ Fourier transform infrared (in situ FT-IR) tests together with the exploration of electrode kinetics show that the boosted capacitance of NTDA/MWCNTs is mainly donated by the redox reactions of carbonyl groups on NTDA COFs, which is largely activated by MWCNTs.
Collapse
Affiliation(s)
- Luyi Xiao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Yu Yuan
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Wei Ding
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Li-Ping Lv
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
27
|
Fissaha HT, Kim D. Enhanced Ammonia Capture for Adsorption Heat Pumps Using a Salt-Embedded COF Aerogel Composite. Gels 2024; 10:764. [PMID: 39727522 DOI: 10.3390/gels10120764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Adsorption heat pumps (AHPs) have garnered significant attention due to their efficient use of low-grade thermal energy, eco-friendly nature, and cost-effectiveness. However, a significant challenge lies in developing adsorbent materials that can achieve a high uptake capacity, rapid adsorption rates, and efficient reversible release of refrigerants, such as ammonia (NH3). Herein, we developed and synthesized a novel salt-embedded covalent organic framework (COF) composite material designed for enhanced NH3 capture. This material was prepared by encapsulating sodium bromide (NaBr) within a porous and densely functionalized sulfonic acid-based COF. The COF was synthesized through a Schiff base (imine) condensation reaction, providing a robust platform for effective NaBr impregnation. The COF-based aerogel composite powder was investigated for its potential in ammonia-based AHPs, benefiting from both the porous, highly functionalized COF structure and the strong NH3 affinity of the impregnated NaBr. The composite adsorbent demonstrates an impressive NH3 adsorption capacity, adsorption rate, and stability. The exceptional NH3 adsorption performance of the COF-based aerogel composite powder is primarily attributed to the uniformly dispersed NaBr within the COF, the coordination of NH3 molecules with Na+ ions, and the hydrogen bonding interaction between NH3 and Br- ions. These findings highlight the potential of the salt-embedded COF composite for use in NH3-based AHPs, gas separation, and other related applications.
Collapse
Affiliation(s)
- Hiluf T Fissaha
- School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Duckjong Kim
- School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
28
|
Khalil I, Das P, Thomas A. Two-Dimensional Covalent Organic Frameworks: Structural Insights across Different Length Scales and Their Impact on Photocatalytic Efficiency. Acc Chem Res 2024; 57:3138-3150. [PMID: 39435871 PMCID: PMC11542146 DOI: 10.1021/acs.accounts.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
ConspectusCovalent organic frameworks (COFs) are a rapidly emerging class of crystalline porous polymers, characterized by their highly defined, predictable, and tunable structure, porosity, and properties. COFs can form both two-dimensional (2D) and three-dimensional (3D) architectures, each with unique characteristics and potential applications. 2D COFs have attracted particular interest due to their favorable structural and optoelectronic properties. They can be equipped with a range of different functional moieties in their backbone, ranging from acidic to basic, from hydrophilic to hydrophobic, and from metal-coordinating to redox-active functions. In addition, their crystallinity, high specific surface area, and remarkable thermal and chemical stability make them attractive for a variety of applications, including gas separation, catalysis, energy storage, and optoelectronics.This Account provides a detailed overview of our recent efforts to synthesize and apply 2D COFs. First, various synthesis routes are discussed, focusing on methods that involve reversible and irreversible linkage reactions. Reversible reactions, such as imine or boronate ester formation, are advantageous for producing highly crystalline COFs because they allow for error correction during synthesis. In contrast, irreversible reactions, such as carbon-carbon or carbon-nitrogen bond formation, yield COFs with greater chemical stability, although controlling crystallinity can be more challenging. Our group has contributed significantly to refining these methods to balance crystallinity and stability, enhancing the performance of the resulting 2D COFs.In addition to different binding patterns, we have also developed strategies to control the micro- and macromorphologies of COFs, which is crucial for optimizing their properties for specific applications. For example, we have explored the synthesis of hierarchical porous COFs by using templating techniques or by forming composites with other functional materials. These strategies enable us to fine-tune the porosity and surface properties of COFs, thereby improving their performance in applications like catalysis. Hierarchical structures in particular enhance photocatalytic efficiency by providing a larger surface area for light absorption and facilitating the transport of photogenerated charge carriers.We further examine the practical applications of 2D COFs, with a primary focus on photocatalysis. Photocatalysis uses light to enable or accelerate chemical reactions, and 2D COFs are ideal for this purpose due to their tunable band gaps and large surface areas. Our research has shown that 2D COFs are highly versatile photocatalysts that can effectively catalyze reactions such as water splitting, carbon dioxide reduction, hydrogen peroxide formation, and cross-coupling reactions. By exploiting the unique properties of 2D COFs, we have achieved significant improvement in many photocatalytic reactions.With this comprehensive overview, we aim to contribute to the further development and understanding of 2D COFs and encourage further research and innovation in this promising field.
Collapse
Affiliation(s)
- Islam
E. Khalil
- Department
of Chemistry, Functional Materials Technische
Universität Berlin, 10623 Berlin, Germany
| | - Prasenjit Das
- Department
of Chemistry, Functional Materials Technische
Universität Berlin, 10623 Berlin, Germany
| | - Arne Thomas
- Department
of Chemistry, Functional Materials Technische
Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
29
|
Shahbazi M, Jäger H, Ettelaie R, Chen J, Kashi PA, Mohammadi A. Dispersion strategies of nanomaterials in polymeric inks for efficient 3D printing of soft and smart 3D structures: A systematic review. Adv Colloid Interface Sci 2024; 333:103285. [PMID: 39216400 DOI: 10.1016/j.cis.2024.103285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Nanoscience-often summarized as "the future is tiny"-highlights the work of researchers advancing nanotechnology through incremental innovations. The design and innovation of new nanomaterials are vital for the development of next-generation three-dimensional (3D) printed structures characterized by low cost, high speed, and versatile capabilities, delivering exceptional performance in advanced applications. The integration of nanofillers into polymeric-based inks for 3D printing heralds a new era in additive manufacturing, allowing for the creation of custom-designed 3D objects with enhanced multifunctionality. To optimize the use of nanomaterials in 3D printing, effective disaggregation techniques and strong interfacial adhesion between nanofillers and polymer matrices are essential. This review provides an overview of the application of various types of nanomaterials used in 3D printing, focusing on their functionalization principles, dispersion strategies, and colloidal stability, as well as the methodologies for aligning nanofillers within the 3D printing framework. It discusses dispersive methods, synergistic dispersion, and in-situ growth, which have yielded smart 3D-printed structures with unique functionality for specific applications. This review also focuses on nanomaterial alignment in 3D printing, detailing methods that enhance selective deposition and orientation of nanofillers within established and customized printing techniques. By emphasizing alignment strategies, we explore their impact on the performance of 3D-printed composites and highlight potential applications that benefit from ordered nanoparticles. Through these continuing efforts, this review shows that the design and development of the new class of nanomaterials are crucial to developing the next generation of smart 3D printed architectures with versatile abilities for advanced structures with exceptional performance.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Henry Jäger
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jianshe Chen
- Food Oral Processing Laboratory, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peyman Asghartabar Kashi
- Faculty of Biosystem, College of Agricultural and Natural Resources Tehran University, Tehran, Iran
| | - Adeleh Mohammadi
- Department of Chemistry, University Hamburg, Institute of Food Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
30
|
Vijayakumar S, Mohanachandran AP, Rakhi RB, Shankar S, Pillai RS, Ajayaghosh A. Self-Exfoliating Benzotristriazine Macrocyclic Network: A New 2D Material for High-Performance Electrochemical Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405701. [PMID: 39155431 DOI: 10.1002/smll.202405701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Aza-fused aromatic π-conjugated networks are an important class of 2D graphitic analogs, which are generally constructed using aromatic precursors. Herein, the study describes a new synthetic approach and electrochemical properties of a self-exfoliating benzotristriazine 2D network (BTTN) constructed using aliphatic precursors, under relatively mild conditions. The obtained BTTN exhibits a nanodisc-like morphology, the self-exfoliation tendency of which is ascribed to the presence of structurally different macrocycles with high electronic repulsion between the layers. The benzotristriazine repeat units of BTTN is electroactive and holds higher carbon/nitrogen ratio when compared with the conventional graphitic aza-fused π-conjugated networks. The self-exfoliated BTTN nanodiscs show excellent electrochemical energy storage of 485 and 333 F g-1 at 1 A g-1 in three-electrode and two-electrode measurements, respectively. BTTN in a symmetric coin-cell architecture exhibits a high specific energy value of 46 Wh kg-1 at a power density of 1 kW kg-1 and shows excellent cyclic stability of 96% for 10 000 and 90% for 30 000 charge-discharge cycles at a higher current density of 5 A g-1, surpassing the device performance of most of the reported all-organic pseudocapacitive 2D networks.
Collapse
Affiliation(s)
- Samyyappan Vijayakumar
- CSIR - National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anjana P Mohanachandran
- CSIR - National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Raghavan B Rakhi
- CSIR - National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sreejith Shankar
- CSIR - National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Renjith S Pillai
- Analytical and Spectroscopy Division, Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram, 695022, India
| | - Ayyappanpillai Ajayaghosh
- CSIR - National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
31
|
Li M, Qing B, Luo H, Gao W, Shou Q, Wu S, Yao H, Liang X, Liu H. Recyclable covalent organic frameworks/cellulose aerogels for efficient uranium adsorption. Int J Biol Macromol 2024; 282:137156. [PMID: 39488314 DOI: 10.1016/j.ijbiomac.2024.137156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
The advancement of efficient, recyclable adsorbents for the economical capture of uranium from seawater is critical for the sustainable progression of nuclear energy. In this work, a unique aerogel composed of covalent organic frameworks (COF-TpTHA)/cellulose nanofibrils (CNF) was synthesized under mild conditions for uranium adsorption. TpTHA/CNF aerogel resolves challenges related to the formability of COF. CNF utilized as the matrix to encapsulate COF-TpTHA in order to improve the dispersion and reinforce the composite materials. The introduction of COF-TpTHA endows CNF aerogel with sufficient active groups for uranium adsorption. X-ray diffraction (XRD) characterization confirmed the successful incorporation of COF while maintaining the type I structure of cellulose. Fourier-transform infrared (FT-IR) spectroscopy further validated the presence of hydrogen bonding interactions between COF and cellulose. The results demonstrated the excellent adsorption efficiency of TpTHA/CNF aerogel towards U(VI), with a maximum adsorption capacity of 177.90 mg g-1 (experiment) for U(VI). Meanwhile, TpTHA/CNF aerogel exhibited favorable adsorption selectivity and reusability. This cellulose-encapsulated COF approach offers a simple and promising method for uranium extraction from seawater, demonstrating its significant application potential.
Collapse
Affiliation(s)
- Min Li
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Qing
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China
| | - Haiyan Luo
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266071, China
| | - Wei Gao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China
| | - Qinghui Shou
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China.
| | - Shixian Wu
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China
| | - Haoyu Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China
| | - Xiangfeng Liang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China.
| | - Huizhou Liu
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
Guo Y, Di W, Qin C, Liu R, Cao H, Gao X. Covalent Organic Framework-Involved Sensors for Efficient Enrichment and Monitoring of Food Hazards: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23053-23081. [PMID: 39382449 DOI: 10.1021/acs.jafc.4c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The food safety issues caused by environmental pollution have posed great risks to human health that cannot be ignored. Hence, the precise monitoring of hazard factors in food has emerged as a critical concern for the food safety sector. As a novel porous material, covalent organic frameworks (COFs) have garnered significant attention due to their large specific surface area, excellent thermal and chemical stability, modifiability, and abundant recognition sites. This makes it a potential solution for food safety issues. In this research, the synthesis and regulation strategies of COFs were reviewed. The roles of COFs in enriching and detecting food hazards were discussed comprehensively and extensively. Taking representative hazard factors in food as the research object, the expression forms and participation approaches of COFs were explored, along with the effectiveness of corresponding detection methods. Finally, the development directions of COFs in the future as well as the problems existing in practical applications were discussed, which was beneficial to promote the application of COFs in food safety and beyond.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Wenli Di
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Rui Liu
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Hongqian Cao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| |
Collapse
|
33
|
Talekar S, Tak Y, Joshi A, Ahn K, Yeon KM, Kim J. Magnetic hollow fibers of covalent organic frameworks (COF) for pollutant degradation and adsorptive removal. ENVIRONMENTAL RESEARCH 2024; 259:119519. [PMID: 38964582 DOI: 10.1016/j.envres.2024.119519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
The shaping of covalent organic frameworks (COFs) from non-processible powder forms into applicable architectures with additional functionality remains a challenge. Using pre-electrospun polymer fibers as a sacrificial template, herein, we report a green synthesis of an architecture in the form of COF hollow fibers with an inner layer of peroxidase-like iron oxide nanoparticles as a catalytic material. When compared to peroxidase-like pristine iron oxide nanoparticles, these COF hollow fibers demonstrate higher catalytic breakdown of crystal violet due to their peroxidase-like activity via advanced oxidation process. Furthermore, as a potential adsorbent, hollow COF fibers exhibit significantly effective adsorption capacity and removal efficiency of organic solvent and oil from water. Because of their magnetic nature, COF hollow fibers can be easily recovered and have exhibited high recycling stability for both catalytic dye degradation and organic solvent removal from water.
Collapse
Affiliation(s)
- Sachin Talekar
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Yeojin Tak
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Asavari Joshi
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyungmin Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyung-Min Yeon
- Engineering Center, Samsung C&T Corporation, Tower B, 26, Sangil-ro, 6- gil, Gangdong-gu, Seoul, Republic of Korea.
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
34
|
Liu A, Li C, Su Z, Yuan H, He W, Zhang L, Cheng Z. Ultratrace Uranium Removal by Covalent Organic Frameworks on an In-Situ-Decorated Sponge as Integral Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53324-53332. [PMID: 39316711 DOI: 10.1021/acsami.4c11715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Herein, a sulfonated covalent organic framework (COF-SO3H) is prepared in situ on melamine sponge (MS) to produce MS@COF-SO3H as integral materials by a one-pot synthesis in water at room temperature, for facile deep removal of trace uranium-containing wastewater. The -SO3H on the COFs is able to form complexation with UO22+ through strong coordination interactions, and MS@COF-SO3H is therefore highly selective for UO22+ (Kd = 52603 mL g-1). The adsorption efficiency of MS@COF-SO3H-3 can reach 97.9% and 87.5% when the initial UO22+ concentration is 100 and 5 μg L-1, respectively, and the minimum residual UO22+ concentration is as low as 0.478 μg L-1, far lower than that in previous reports. In addition, MS@COF-SO3H exhibits excellent durability as an adsorbent, and its adsorption efficiency for UO22+ is still as high as 92.4% even after 5 cycles of recycling. The mild preparation conditions and excellent performance of MS@COF-SO3H make it quite promising as a highly efficient adsorbent for uranium removal. This work provides an important clue to prepare adsorbents facilely for nuclear wastewater deep treatment.
Collapse
Affiliation(s)
- An Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chunyu Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhou Su
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huzhe Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weiwei He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences, Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
35
|
Liang L, Chen J, Xiao J, Qiu H. Preparation of GO/COFs composites by interlayer-confined strategy for the adsorption of nitro aromatic pollutants. J Chromatogr A 2024; 1730:465066. [PMID: 38897110 DOI: 10.1016/j.chroma.2024.465066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
With the continuous development of industrialization, the excessive emission of nitro aromatic with strong toxicity, high carcinogenicity and non-degradability has attracted great attention. How to efficiently remove nitro aromatic pollutants is an important research topic. In this work, graphene oxide/covalent organic frameworks (GO/COFs) composites were successfully synthesized via interlayer confinement strategy selecting GO, 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMTP) and 1,3,5-tri(4-aminophenyl)benzene (TPB) as raw materials. Due to high specific surface area, hierarchical porous structure and good thermal stability, GO/COFs were utilized to adsorb and remove nitro aromatic hydrocarbons in the water environment. The adsorption behavior of GO/COFs for o-nitrophenol, 1,3-dinitrobenzene and 2,4,6-trinitrophenol were further investigated. The GO/COFs composites showed the strongest adsorption capacity for 2,4,6-trinitrophenol, and the maximum adsorption capacity for 2,4,6-trinitrophenol, o-nitrophenol, and 1,3-dinitrobenzene were 438, 317, and 173 mg g-1, respectively. The experimental results indicated that the GO/COFs composites provided great adsorption capability for nitro aromatic pollutants and can be reused, rendering it an extremely potential adsorbent for organic pollutants.
Collapse
Affiliation(s)
- Li Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jing Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
| |
Collapse
|
36
|
Wang Q, Gao L, Wang P, Wang Y, Xu Y, Xu H, Wang X, Meng Z, Xi K. Preparation of sp 2 carbon-bonded π-conjugated COF aerogels by ultrasound-assisted mild solvothermal reaction for multi-functional applications. NANOSCALE 2024; 16:15298-15307. [PMID: 39082664 DOI: 10.1039/d4nr02017k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Molding COFs into aerogels from monomers can establish interpenetrating spatial network structures on the centimeter scale that increase the accessibility of dominant pore channels and the convenience of real application, which radically gets rid of the difficult reprocessing problems of insoluble and non-fusible powder COFs. However, the construction of bulk COF structures and achieving crystallinity are often incompatible, especially with sp2 carbon-based COFs, whose powder synthesis has been quite demanding. Herein, for the first time, we report an efficient method to prepare sp2 carbon-linked π-conjugated DFB-TMTA-COF (DT-COF) aerogels by an ultrasound-assisted mild solvothermal technique and freeze-drying. Particularly, unlike the typical synthesis methods of vacuum deoxygenation, high temperature and long reaction time, crystalline DT-COF aerogels can be obtained by reacting at 90 °C for 48 h without vacuum sealing. The fluffy, hierarchical porous flower-shaped microsphere clustering of DT-COF aerogels contributes to excellent mechanical properties and better host-guest interactions, which are favorable to utilize the benefits of the highly conjugated structure of channels. As a proof of concept, DT-COF aerogels have been used in absorption, batteries, and sensors, demonstrating enhanced functionality and effectiveness.
Collapse
Affiliation(s)
- Qiaomu Wang
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Lei Gao
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yandong Wang
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yang Xu
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Haocheng Xu
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.
| | - Zhen Meng
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Kai Xi
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
37
|
Lee W, Li H, Du Z, Feng D. Ion transport mechanisms in covalent organic frameworks: implications for technology. Chem Soc Rev 2024; 53:8182-8201. [PMID: 39021129 DOI: 10.1039/d4cs00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as promising materials for ion conduction due to their highly tunable structures and excellent electrochemical stability. This review paper explores the mechanisms of ion conduction in COFs, focusing on how these materials facilitate ion transport across their ordered structures, which is crucial for applications such as solid electrolytes in batteries and fuel cells. We discuss the design strategies employed to enhance ion conductivity, including pore size optimization, functionalization with ionic groups, and the incorporation of solvent molecules and salts. Additionally, we examine the various applications of ion-conductive COFs, particularly in energy storage and conversion technologies, highlighting recent advancements and future directions in this field. This review paper aims to provide a comprehensive overview of the current state of research on ion-conductive COFs, offering insights into their potential to design highly ion-conductive COFs considering not only fundamental studies but also practical perspectives for advanced electrochemical devices.
Collapse
Affiliation(s)
- Wonmi Lee
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
| | - Haochen Li
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
| | - Zhilin Du
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA
| | - Dawei Feng
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
38
|
Sun H, Li J, Liang W, Gong X, Jing A, Yang W, Liu H, Ren S. Porous Organic Polymers as Active Electrode Materials for Energy Storage Applications. SMALL METHODS 2024; 8:e2301335. [PMID: 38037763 DOI: 10.1002/smtd.202301335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/05/2023] [Indexed: 12/02/2023]
Abstract
Eco-friendly and efficient energy production and storage technologies are highly demanded to address the environmental and energy crises. Porous organic polymers (POPs) are a class of lightweight porous network materials covalently linked by organic building blocks, possessing high surface areas, tunable pores, and designable components and structures. Due to their unique structural and compositional advantages, POPs have recently emerged as promising electrode materials for energy storage devices, particularly in the realm of supercapacitors and ion batteries. In this work, a comprehensive overview of recent progress and applications of POPs as electrode materials in energy storage devices, including the structural features and synthesis strategies of various POPs, as well as their applications in supercapacitors, lithium batteries, sodium batteries, and potassium batteries are provided. Finally, insights are provided into the future research directions of POPs in electrochemical energy storage technologies. It is anticipated that this work can provide readers with a comprehensive background on the design of POPs-based electrode materials and ignite more research in the development of next-generation energy storage devices.
Collapse
Affiliation(s)
- Haotian Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jingli Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wencui Liang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xue Gong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Aoming Jing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wanru Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
39
|
Guo W, Liu J, Tao H, Meng J, Yang J, Shuai Q, Asakura Y, Huang L, Yamauchi Y. Covalent Organic Framework Nanoarchitectonics: Recent Advances for Precious Metal Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405399. [PMID: 38896104 DOI: 10.1002/adma.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Indexed: 06/21/2024]
Abstract
The recovery of precious metals (PMs) from secondary resources has garnered significant attention due to environmental and economic considerations. Covalent organic frameworks (COFs) have emerged as promising adsorbents for this purpose, owing to their tunable pore size, facile functionalization, exceptional chemical stability, and large specific surface area. This review provides an overview of the latest research progress in utilizing COFs to recover PMs. Firstly, the design and synthesis strategies of chemically stable COF-based materials, including pristine COFs, functionalized COFs, and COF-based composites, are delineated. Furthermore, the application of COFs in the recovery of gold, silver, and platinum group elements is delved into, emphasizing their high adsorption capacity and selectivity as well as recycling ability. Additionally, various interaction mechanisms between COFs and PM ions are analyzed. Finally, the current challenges faced by COFs in the field of PM recovery are discussed, and potential directions for future development are proposed, including enhancing the recyclability and reusability of COF materials and realizing the high recovery of PMs from actual acidic wastewater. With the targeted development of COF-based materials, the recovery of PMs can be realized more economically and efficiently in the future.
Collapse
Affiliation(s)
- Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Jiale Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Juan Meng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Juan Yang
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu 1st Road, Donghu New & High Technology Development Zone, Wuhan, Hubei Province, 430205, P. R. China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yusuke Asakura
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| |
Collapse
|
40
|
Xiao C, Yao Y, Guo X, Qi J, Zhu Z, Zhou Y, Yang Y, Li J. Ultralight and Robust Covalent Organic Framework Fiber Aerogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311881. [PMID: 38372502 DOI: 10.1002/smll.202311881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Indexed: 02/20/2024]
Abstract
Shaping covalent organic frameworks (COFs) into macroscopic objects with robust mechanical properties and hierarchically porous structure is of great significance for practical applications but remains formidable and challenging. Herein, a general and scalable protocol is reported to prepare ultralight and robust pure COF fiber aerogels (FAGs), based on the epitaxial growth synergistic assembly (EGSA) strategy. Specifically, intertwined COF nanofibers (100-200 nm) are grown in situ on electrospinning polyacrylonitrile (PAN) microfibers (≈1.7 µm) containing urea-based linkers, followed by PAN removal via solvent extraction to obtain the hollow COF microfibers. The resultant COF FAGs possess ultralow density (14.1-15.5 mg cm-3) and hierarchical porosity that features both micro-, meso-, and macropores. Significantly, the unique interconnected structure composed of nanofibers and hollow microfibers endows the COF FAGs with unprecedented mechanical properties, which can fully recover at 50% strain and be compressed for 20 cycles with less than 5% stress degradation. Moreover, the aerogels exhibit excellent capacity for organic solvent absorption (e.g., chloroform uptake of >90 g g-1). This study opens new avenues for the design and fabrication of macroscopic COFs with excellent properties.
Collapse
Affiliation(s)
- Chengming Xiao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yiyuan Yao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xin Guo
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yujun Zhou
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yue Yang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
41
|
Wang Q, Wang P, Wang Y, Xu Y, Xu H, Xi K. Design of High-Performance Formyl-Functionalized COF Aerogels as Quasi-Solid Lithium Battery Electrolyte by a Solvent Substitution Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37052-37062. [PMID: 38965714 DOI: 10.1021/acsami.4c07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Covalent organic framework (COF) aerogels with functional groups offer exceptional processability and functionality for various applications. These hierarchical porous materials combine the advantages of COFs with the benefits of aerogels, overcoming the limitations of conventional insoluble and nonfusible COF powders. However, achieving both high crystallinity and shape retention remains a challenge for functionalized COF aerogels. In this work, we develop a novel and general solvent substitution method for the one-step synthesis of formyl-functionalized COF aerogels without harsh vacuum conditions. These aerogels exhibit excellent processing capabilities, superior mechanical strength, and enhanced functionality. As a proof-of-concept, they were used in adsorption and lithium metal battery applications, significantly maximizing the structural advantages of COFs, e.g.: (i) the hierarchical porous structure is fully wetted by the electrolyte to form continuous transport channels; (ii) the polar groups, which are easier to be acquired, help in desolvation and transfer of Li+; (iii) the regular pore structures stabilize deposition of Li+ and inhibit the growth of lithium dendrites. These combined benefits contribute to a lighter battery with improved energy density and enhanced safety.
Collapse
Affiliation(s)
- Qiaomu Wang
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Yandong Wang
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yang Xu
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Haocheng Xu
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Kai Xi
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
42
|
Xu L, Liu Y, Xuan X, Xu X, Li Y, Lu T, Pan L. Heterointerface regulation of covalent organic framework-anchored graphene via a solvent-free strategy for high-performance supercapacitor and hybrid capacitive deionization electrodes. MATERIALS HORIZONS 2024; 11:2974-2985. [PMID: 38592376 DOI: 10.1039/d4mh00161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Covalent organic frameworks (COFs) with customizable geometry and redox centers are an ideal candidate for supercapacitors and hybrid capacitive deionization (HCDI). However, their poor intrinsic conductivity and micropore-dominated pore structures severely impair their electrochemical performance, and the synthesis process using organic solvents brings serious environmental and cost issues. Herein, a 2D redox-active pyrazine-based COF (BAHC-COF) was anchored on the surface of graphene in a solvent-free strategy for heterointerface regulation. The as-prepared BAHC-COF/graphene (BAHCGO) nanohybrid materials possess high-speed charge transport offered by the graphene carrier and accelerated electrolyte ion migration within the BAHC-COF, allowing ions to effectively occupy ion storage sites inside BAHC. As a result, the BAHCGO//activated carbon asymmetric supercapacitor achieves a high energy output of 61.2 W h kg-1 and a satisfactory long-term cycling life. More importantly, BAHCGO-based HCDI possesses a high salt adsorption capacity (SAC) of 67.5 mg g-1 and excellent long-term desalination/regeneration stability. This work accelerates the application of COF-based materials in the fields of energy storage and water treatment.
Collapse
Affiliation(s)
- Liming Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Xiaoyang Xuan
- College of Chemistry and Chemical Engineering, Taishan University, Taian, Shandong 271000, China.
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yuquan Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
43
|
Wang B, Shen L, He Y, Chen C, Yang Z, Fei L, Xu J, Li B, Lin H. Covalent Organic Framework/Graphene Hybrids: Synthesis, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310174. [PMID: 38126899 DOI: 10.1002/smll.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Indexed: 12/23/2023]
Abstract
To address current energy crises and environmental concerns, it is imperative to develop and design versatile porous materials ideal for water purification and energy storage. The advent of covalent organic frameworks (COFs), a revolutionary terrain of porous materials, is underscored by their superlative features such as divinable structure, adjustable aperture, and high specific surface area. However, issues like inferior electric conductivity, inaccessible active sites impede mass transfer and poor processability of bulky COFs restrict their wider application. As a herculean stride forward, COF/graphene hybrids amalgamate the strengths of their constituent components and have in consequence, enticed significant scientific intrigue. Herein, the current progress on the structure and properties of graphene-based materials and COFs are systematically outlined. Then, synthetic strategies for preparing COF/graphene hybrids, including one-pot synthesis, ex situ synthesis, and in situ growth, are comprehensively reviewed. Afterward, the pivotal attributes of COF/graphene hybrids are dissected in conjunction with their multifaceted applications spanning adsorption, separation, catalysis, sensing, and energy storage. Finally, this review is concluded by elucidating prevailing challenges and gesturing toward prospective strides within the realm of COF/graphene hybrids research.
Collapse
Affiliation(s)
- Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Yabing He
- College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Zhi Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
44
|
Abdolazizi A, Wijesinghe I, Marriam I, Chathuranga H, Golberg D, Yan C. Development of Light, Strong, and Water-Resistant PVA Composite Aerogels. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:745. [PMID: 38727339 PMCID: PMC11085475 DOI: 10.3390/nano14090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
A significant weakness of many organic and inorganic aerogels is their poor mechanical behaviour, representing a great impediment to their application. For example, polymer aerogels generally have higher ductility than silica aerogels, but their elastic modulus is considered too low. Herein, we developed extremely low loading (<1 wt%) 2D graphene oxide (GO) nanosheets modified poly (vinyl alcohol) (PVA) aerogels via a facile and environmentally friendly method. The aerogel shows a 9-fold increase in compressional modulus compared to a pure polymer aerogel. With a low density of 0.04 mg/mm3 and a thermal conductivity of only 0.035 W/m·K, it outperforms many commercial insulators and foams. As compared to a pure PVA polymer aerogel, a 170% increase in storage modulus is obtained by adding only 0.6 wt% GO nanosheets. The nanocomposite aerogel demonstrates strong fire resistance, with a 50% increase in burning time and little smoke discharge. After surface modification with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane, the aerogel demonstrates water resistance, which is suitable for outdoor applications in which it would be exposed to precipitation. Our research demonstrates a new pathway for considerable improvement in the performance and application of polymer aerogels.
Collapse
Affiliation(s)
- Amir Abdolazizi
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.A.); (I.W.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ishara Wijesinghe
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.A.); (I.W.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ifra Marriam
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.A.); (I.W.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Hiran Chathuranga
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Dmitri Golberg
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Cheng Yan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.A.); (I.W.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
45
|
Ding M, Zhao D, Wei R, Duan Z, Zhao Y, Li Z, Lin T, Li C. Multifunctional elastomeric composites based on 3D graphene porous materials. EXPLORATION (BEIJING, CHINA) 2024; 4:20230057. [PMID: 38855621 PMCID: PMC11022621 DOI: 10.1002/exp.20230057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/25/2023] [Indexed: 06/11/2024]
Abstract
3D graphene porous materials (3GPM), which have low density, large porosity, excellent compressibility, high conductivity, hold huge promise for a wide range of applications. Nevertheless, most 3GPM have brittle and weak network structures, which limits their widespread use. Therefore, the preparation of a robust and elastic graphene porous network is critical for the functionalization of 3GPM. Herein, the recent research of 3GPM with excellent mechanical properties are summarized and the focus is on the effect factors that affect the mechanical properties of 3GPM. Moreover, the applications of elastic 3GPM in various fields, such as adsorption, energy storage, solar steam generation, sensors, flexible electronics, and electromagnetic wave shielding are comprehensively reviewed. At last, the new challenges and perspective for fabrication and functionalization of robust and elastic 3GPM are outlined. It is expected that the perspective will inspire more new ideas in preparation and functionalization of 3GPM.
Collapse
Affiliation(s)
- Meichun Ding
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Demin Zhao
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Rui Wei
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Zhenying Duan
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Yuxi Zhao
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Aix Marseille Univ, CNRSInstitut de Chimie Radicalaire (ICR)MarseilleFrance
| | - Zeyang Li
- School of The Queen's University of Belfast Joint CollegeChina Medical UniversityShenyangChina
| | - Tianhao Lin
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Chenwei Li
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
46
|
Li B, Dai Y, Shi C, Guo X, Chen Y, Zeng W. Flexible molecularly imprinted glucose sensor based on graphene sponge and Prussian blue. Bioelectrochemistry 2024; 156:108628. [PMID: 38104457 DOI: 10.1016/j.bioelechem.2023.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
To enhance the sensitivity of flexible glucose sensors made with 3-aminophenylboronic acid and pyrrole as functional molecules and a carbon tri-electrode as substrate, graphene sponge (GS) and Prussian blue (PB) were used to enhance the charge transfer between the molecularly imprinted cavities and the electrodes. Electrochemical impedance spectroscopy and cyclic voltammetry showed that modifying the electrode with GS and PB significantly reduced the charge transfer impedance and increased the redox current of the sensor. The sensor has a sensitivity of up to 25.81 µA⋅loge (µM)-1⋅cm-2 for the detection of glucose using differential pulse voltammetry in the range of 7.78 to 600 µM, with a low detection limit of 1.08 μM (S/N = 3). When the pH varies in the range of 5.5 to 7.5, the sensor maintains a certain level of stability for glucose detection. The presence of lactic acid, urea, and ascorbic acid had minimal impact on glucose detection by the sensor. After 20 days of storage at room temperature, the sensor maintains 80 % efficiency. This study supports the development of wearable glucose sensors with high sensitivity, specificity, and stability through molecular imprinting.
Collapse
Affiliation(s)
- Bin Li
- Flexible Sensing Technology Research Center, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Yongqiang Dai
- Flexible Sensing Technology Research Center, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Chaosheng Shi
- Flexible Sensing Technology Research Center, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Xinying Guo
- Flexible Sensing Technology Research Center, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Yizhong Chen
- Flexible Sensing Technology Research Center, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Wei Zeng
- Flexible Sensing Technology Research Center, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China.
| |
Collapse
|
47
|
Wang X, Mu Z, Shao P, Feng X. Hierarchically Porous Covalent Organic Frameworks: Synthesis Methods and Applications. Chemistry 2024; 30:e202303601. [PMID: 38019117 DOI: 10.1002/chem.202303601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Covalent organic frameworks (COFs) with high porosity have garnered considerable interest for various applications owing to their robust and customizable structure. However, conventional COFs are hindered by their narrow pore size, which poses limitations for applications such as heterogeneous catalysis and guest delivery that typically involve large molecules. The development of hierarchically porous COF (HP-COF), featuring a multi-scale aperture distribution, offers a promising solution by significantly enhancing the diffusion capacity and mass transfer for larger molecules. This review focuses on the recent advances in the synthesis strategies of HP-COF materials, including topological structure design, in-situ templating, monolithic COF synthesis, defect engineering, and crystalline self-transformation. The specific operational principles and affecting factors in the synthesis process are summarized and discussed, along with the applications of HP-COFs in heterogeneous catalysis, toxic component treatment, optoelectronics, and the biomedical field. Overall, this review builds a bridge to understand HP-COFs and provides guidance for further development of them on synthesis strategies and applications.
Collapse
Affiliation(s)
- Xiao Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhenjie Mu
- State Key Laboratory of Organic-Inorganic Composites, The College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100081, P. R. China
| | - Pengpeng Shao
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
48
|
Wu J, Wang Z, Zhang S, Yang Q, Li Z, Zang X, Zhao X, Shang N, Khaorapapong N, Xu X, Yamauchi Y. Inorganic-Organic Nanoarchitectonics: MXene/Covalent Organic Framework Heterostructure for Superior Microextraction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305730. [PMID: 37902412 DOI: 10.1002/smll.202305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/26/2023] [Indexed: 10/31/2023]
Abstract
One of the difficulties limiting covalent organic frameworks (COFs) from becoming excellent adsorbents is their stacking/aggregation architectures owing to poor morphology/structure control during the synthesis process. Herein, an inorganic-organic nanoarchitectonics strategy to synthesize the MXene/COF heterostructure (Ti3 C2 Tx /TAPT-TFP) is developed by the assembly of β-ketoenamine-linked COF on the Ti3 C2 Tx MXene nanosheets. The as-prepared Ti3 C2 Tx /TAPT-TFP retains the 2D architecture and high adsorption capacity of MXenes as well as large specific surface area and hierarchical porous structure of COFs. As a proof of concept, the potential of Ti3 C2 Tx /TAPT-TFP for solid-phase microextraction (SPME) of trace organochlorine pesticides (OCPs) is investigated. The Ti3 C2 Tx /TAPT-TFP based SPME method achieves low limits of detection (0.036-0.126 ng g-1 ), wide linearity ranges (0.12-20.0 ng g-1 ), and acceptable repeatabilities for preconcentrating trace OCPs from fruit and vegetable samples. This study offers insights into the potential of constructing COF or MXene-based heterostructures for the microextraction of environmental pollutants.
Collapse
Affiliation(s)
- Jingyu Wu
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Zhuo Wang
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Shuaihua Zhang
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Qian Yang
- College of Public Health, Hebei University, Baoding, Hebei, 071002, China
| | - Zhi Li
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xiaohuan Zang
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xiaoxian Zhao
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Ningzhao Shang
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Nithima Khaorapapong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen, 40002, Thailand
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
49
|
Xu L, Liu Y, Ding Z, Xu X, Liu X, Gong Z, Li J, Lu T, Pan L. Solvent-Free Synthesis of Covalent Organic Framework/Graphene Nanohybrids: High-Performance Faradaic Cathodes for Supercapacitors and Hybrid Capacitive Deionization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307843. [PMID: 37948442 DOI: 10.1002/smll.202307843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Covalent organic frameworks (COFs) with flexible periodic skeletons and ordered nanoporous structures have attracted much attention as potential candidate electrode materials for green energy storage and efficient seawater desalination. Further improving the intrinsic electronic conductivity and releasing porosity of COF-based materials is a necessary strategy to improve their electrochemical performance. Herein, the employed graphene as the conductive substrate to in situ grow 2D redox-active COF (TFPDQ-COF) with redox activity under solvent-free conditions to prepare TFPDQ-COF/graphene (TFPDQGO) nanohybrids and explores their application in both supercapacitor and hybrid capacitive deionization (HCDI). By optimizing the hybridization ratio, TFPDQGO exhibits a large specific capacitance of 429.0 F g-1 due to the synergistic effect of the charge transport highway provided by the graphene layers and the abundant redox-active centers contained in the COF skeleton, and the assembled TFPDQGO//activated carbon (AC) asymmetric supercapacitor possesses a high energy output of 59.4 Wh kg-1 at a power density of 950 W kg-1 and good cycling life. Furthermore, the maximum salt adsorption capacity (SAC) of 58.4 mg g-1 and stable regeneration performance is attained for TFPDQGO-based HCDI. This study highlights the new opportunities of COF-based hybrid materials acting as high-performance supercapacitor and HCDI electrode materials.
Collapse
Affiliation(s)
- Liming Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Zibiao Ding
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhiwei Gong
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
50
|
Guo N, Ma R, Feng P, Wang D, Zhang B, Wang L, Jia D, Li M. Soluble starch-derived porous carbon microspheres with interconnected and hierarchical structure by a low dosage KOH activation for ultrahigh rate supercapacitors. Int J Biol Macromol 2024; 262:130254. [PMID: 38368992 DOI: 10.1016/j.ijbiomac.2024.130254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/27/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The developed porous structure and high density are essential to enhance the bulk performance of carbon-based supercapacitors. Nevertheless, it remains a significant challenge to optimize the balance between the porous structure and the density of carbon materials to realize superior gravimetric and areal electrochemical performance. The soluble starch-derived interconnected hierarchical porous carbon microspheres were prepared through a simple hydrothermal treatment succeeded by chemical activation with a low dosage of KOH. Due to the formation of interconnected spherical morphology, hierarchical porous structure, reasonable mesopore volume (0.33 cm3 g-1) and specific surface area (1162 m2 g-1), the prepared carbon microsphere has an ultrahigh capacitance of 394 F g-1 @ 1 A g-1 and a high capacitance retention of 62.7 % @ 80 A g-1. The assembled two-electrode device displays good cycle stability after 20,000 cycles and an ultra-high energy density of 11.6 Wh kg-1 @ 250 W kg-1. Moreover, the sample still exhibits a specific capacitance of 165 F g-1 @ 1 A g-1 at a high mass loading of 10 mg cm-2, resulting in a high areal capacitance of 1.65 F cm-2. The strategy proposed in this study, via a low-dose KOH activation process, provides the way for the synthesis of high-performance porous carbon materials.
Collapse
Affiliation(s)
- Nannan Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Rui Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Puya Feng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Danting Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Binyuan Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Luxiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China.
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China.
| | - Maohua Li
- Key Laboratory of Improvised Explosive Chemicals for State Market Regulation, Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi 830011, Xinjiang, PR China
| |
Collapse
|