1
|
Temmam S, Dheilly NM. Viruses of parasites: A roadmap toward diagnostic and therapeutic development. PLoS Negl Trop Dis 2025; 19:e0012982. [PMID: 40208868 PMCID: PMC11984711 DOI: 10.1371/journal.pntd.0012982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025] Open
Abstract
With few preventive and therapeutic solutions available, parasites remain associated with devastating health, social and economic consequences, especially in impoverished communities in tropical areas. The discovery that parasites host viruses, and that these parasite viruses can contribute to diseases, has triggered a paradigm shift in thought and action, whereby parasite viruses are being assessed as targets for diagnostic, therapeutic and preventive interventions. This review lays out critical steps needed to discover and characterize viruses of parasites, highlighting challenges and identifying opportunities through examples of virus discoveries that fill the gap in our incomplete understanding of parasite pathogenicity.
Collapse
Affiliation(s)
- Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur, Université de Paris Cité, The WOAH (OIE) Collaborating Center for the detection and identification in humans of emerging animal pathogens, Paris, France
| | - Nolwenn M. Dheilly
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur, Université de Paris Cité, The WOAH (OIE) Collaborating Center for the detection and identification in humans of emerging animal pathogens, Paris, France
| |
Collapse
|
2
|
Varsani A, Custer JM, Cobb IN, Harding C, Collins CL, Suazo C, Schreck J, Fontenele RS, Stainton D, Dayaram A, Goldstein S, Kazlauskas D, Kraberger S, Krupovic M. Bacilladnaviridae: refined taxonomy and new insights into the biology and evolution of diatom-infecting DNA viruses. J Gen Virol 2025; 106:002084. [PMID: 40072902 PMCID: PMC11903649 DOI: 10.1099/jgv.0.002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Bacilladnaviruses are single-stranded DNA viruses that infect diatoms that, so far, have been primarily identified in marine organisms and environments. Using a viral metagenomics approach, we discovered 13 novel bacilladnaviruses originating from samples of mud-flat snail (Amphibola crenata; n=3 genomes) and benthic sediments (n=10 genomes) collected from the Avon-Heathcote Estuary in New Zealand. Comparative genomics and phylogenetic analysis of the new bacilladnavirus sequences in the context of the previously classified members of the family helped refine and further expand the Bacilladnaviridae taxonomy. Here, based on the replication-associated protein phylogeny and pairwise identities, we established 4 new genera - Aberdnavirus, Keisodnavirus, Puahadnavirus and Seawadnavirus - and 13 new species within the family. Comparison of the bacilladnavirus capsid protein sequences suggests that the positively charged N-terminal region (R-arm) is required for encapsidation of the larger genomes, whereas the smaller bacilladnavirus genomes can be packaged in the absence of the R-arm subdomain. Furthermore, analysis of the bacilladnavirus genomes revealed that members of three genera encode a highly derived variant of a phospholipase A1, which is predicted to be involved in the lysis of the infected diatoms and/or facilitates the entry of the virions into the host cells. Collectively, our results allow refining of the taxonomy of bacilladnaviruses and provide new insights into the biology and evolution of this understudied group of diatom viruses.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, 7925, Cape Town, South Africa
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Ilaria N. Cobb
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Ciara Harding
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Courtney L. Collins
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Crystal Suazo
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joshua Schreck
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Rafaela S. Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Anisha Dayaram
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sharyn Goldstein
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Darius Kazlauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| |
Collapse
|
3
|
Tan Z, Chen W, Wei X, Qiu Z, Zhuang W, Zhang B, Xie J, Lin Y, Ren Y, Preis S, Wei C, Zhu S. Virus-bacterium interaction involved in element cycles in biological treatment of coking wastewater. BIORESOURCE TECHNOLOGY 2025; 416:131839. [PMID: 39557096 DOI: 10.1016/j.biortech.2024.131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Although prokaryotic microbes in coking wastewater (CWW) treatment have been comprehensively studied, the ecological functions of viruses remain unclear. A full-scale CWW biological treatment AOHO combination was studied for the virus-bacterium interactions involved in element cycles by metaviromics, metagenomics and physicochemical characteristics. Results showed the unique viromic profile with Cirlivirales and Petitvirales as the dominant viruses infecting functional bacteria hosts. The auxiliary metabolic genes (AMGs) focused on element cycles, including metabolisms of carbon (fadA), nitrogen (glnA), sulfur (mddA and cysK) and phosphorus (phoH). Other AMGs were involved in toxic tolerance of hosts, improving their cell membrane and wall robustness, antioxidant, DNA repair and cobalamin biosynthesis. Vice versa, the bloomed host provided fitness advantages for viruses. Dissolved oxygen was found to be the key factor shaping the distributions of viral community and AMGs. Summarizing, the study exposed the mutual virus-bacterium interaction in the AOHO combination providing stable treatment efficiency.
Collapse
Affiliation(s)
- Zhijie Tan
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenli Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xinyi Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhaoji Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Weixiong Zhuang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Baoshan Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Junting Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuexia Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Varsani A, Hopkins A, Lund MC, Krupovic M. 2024 taxonomic update for the families Naryaviridae, Nenyaviridae, and Vilyaviridae. Arch Virol 2024; 170:18. [PMID: 39671105 DOI: 10.1007/s00705-024-06186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The families Naryaviridae (order Rivendellvirales), Nenyaviridae (order Rohanvirales), and Vilyaviridae (order Cirlivirales), all within the class Arfiviricetes of the phylum Cressdnaviricota, include single-stranded DNA viruses associated with protozoan parasites of the genera Entamoeba and Giardia as well as viruses found in various environmental samples, also likely infecting protozoans. Here, we provide a taxonomic update for these three families, which were recently expanded with multiple new members. In particular, we established seven new genera and nine new species in the family Naryaviridae, one new genus with one new species in the family Nenyaviridae, and three new genera and nine new species in the family Vilyaviridae. We also summarize the genomic properties and protein characteristics, including conserved motifs of the rolling-circle replication initiation proteins, of the viruses in the three families. Notably, the high GC content of vilyavirids (51-61%) and considerably lower GC content of naryavirids and nenyavirids (33-44%) appear to represent an adaptation to their hosts, Giardia and Entamoeba species, respectively.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| | - Andrew Hopkins
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Michael C Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| |
Collapse
|
5
|
Ji L, Wang Y, Sun Y, Ji L, Wang X, Liu Y, Shen Q, Yang S, Zhang W. Identification and characterization of multiple novel viruses in fecal samples of ruddy shelducks using viral metagenomics methods. Heliyon 2024; 10:e38338. [PMID: 39398034 PMCID: PMC11470519 DOI: 10.1016/j.heliyon.2024.e38338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
The viral metagenomics approach is an effective technique for investigating and analysing both existing and emerging viruses in humans and diverse animal samples. The ruddy shelduck, a nationally protected secondary key species of wild animals, has become the predominant species among overwintering waterbirds in Qinghai Lake. Viruses carried by ruddy shelducks can potentially infect humans or other animals; however, limited research on the faecal virome of ruddy shelducks is currently available. In the present study, faecal samples of ruddy shelducks collected from Saga County, Shigatse City, Tibet, China, were subjected to viral metagenomic analysis. The predominant viral families identified in ruddy shelduck samples were Picornaviridae, Parvoviridae, Microviridae, Vilyaviridae, Astroviridae, and Caliciviridae. Among these, two picornavirus genomes have been identified as new strains of the genus Megrivirus in the family Parvoviridae. In addition, viruses that infect parasites and bacteria have been identified and characterised. The present study enhances our comprehension of the composition of the viral community in ruddy shelducks faeces and highlights the dynamic nature of viral evolution and the significance of continuous monitoring to assess potential risks to wildlife and public health.
Collapse
Affiliation(s)
- Li Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, 212005, China
| | - Yan Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yijie Sun
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuwei Liu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
6
|
Varsani A, Harrach B, Roumagnac P, Benkő M, Breitbart M, Delwart E, Franzo G, Kazlauskas D, Rosario K, Segalés J, Dunay E, Rukundo J, Goldberg TL, Fehér E, Kaszab E, Bányai K, Krupovic M. 2024 taxonomy update for the family Circoviridae. Arch Virol 2024; 169:176. [PMID: 39143430 DOI: 10.1007/s00705-024-06107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Circovirids have a circular single-stranded DNA genome packed into a small icosahedral capsid. They are classified within two genera, Circovirus and Cyclovirus, in the family Circoviridae (phylum Cressdnaviricota, class Arfiviricetes, order Cirlivirales). Over the last five years, a number of new circovirids have been identified, and, as a result, 54 new species have been created for their classification based on the previously established species demarcation criterion, namely, that viruses classified into different species share less than 80% genome-wide pairwise sequence identity. Of note, one of the newly created species includes a circovirus that was identified in human hepatocytes and suspected of causing liver damage. Furthermore, to comply with binomial species nomenclature, all new and previously recognized species have been (re)named in binomial format with a freeform epithet. Here, we provide a summary of the properties of circovirid genomes and their classification as of June 2024 (65 species in the genus Circovirus and 90 species in the genus Cyclovirus). Finally, we provide reference datasets of the nucleotide and amino acid sequences representing each of the officially recognized circovirid species to facilitate further classification of newly discovered members of the Circoviridae.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA.
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Balázs Harrach
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Philippe Roumagnac
- CIRAD-UMR PHIM, Campus International de Baillarguet, 34398, Montpellier, France
| | - Mária Benkő
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, 33701, USA
| | - Eric Delwart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118, USA
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), Università di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257, Vilnius, Lithuania
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, 20894, USA
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, 33701, USA
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Emily Dunay
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Enikő Fehér
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Eszter Kaszab
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Krisztián Bányai
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078, Budapest, Hungary
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
7
|
Ibañez-Escribano A, Gomez-Muñoz MT, Mateo M, Fonseca-Berzal C, Gomez-Lucia E, Perez RG, Alunda JM, Carrion J. Microbial Matryoshka: Addressing the Relationship between Pathogenic Flagellated Protozoans and Their RNA Viral Endosymbionts (Family Totiviridae). Vet Sci 2024; 11:321. [PMID: 39058005 PMCID: PMC11281412 DOI: 10.3390/vetsci11070321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Three genera of viruses of the family Totiviridae establish endosymbiotic associations with flagellated protozoa responsible for parasitic diseases of great impact in the context of One Health. Giardiavirus, Trichomonasvirus, and Leishmaniavirus infect the protozoa Giardia sp., Trichomonas vaginalis, and Leishmania sp., respectively. In the present work, we review the characteristics of the endosymbiotic relationships established, the advantages, and the consequences caused in mammalian hosts. Among the common characteristics of these double-stranded RNA viruses are that they do not integrate into the host genome, do not follow a lytic cycle, and do not cause cytopathic effects. However, in cases of endosymbiosis between Leishmaniavirus and Leishmania species from the Americas, and between Trichomonasvirus and Trichomonas vaginalis, it seems that it can alter their virulence (degree of pathogenicity). In a mammalian host, due to TLR3 activation of immune cells upon the recognition of viral RNA, uncontrolled inflammatory signaling responses are triggered, increasing pathological damage and the risk of failure of conventional standard treatment. Endosymbiosis with Giardiavirus can cause the loss of intestinal adherence of the protozoan, resulting in a benign disease. The current knowledge about viruses infecting flagellated protozoans is still fragmentary, and more research is required to unravel the intricacies of this three-way relationship. We need to develop early and effective diagnostic methods for further development in the field of translational medicine. Taking advantage of promising biotechnological advances, the aim is to develop ad hoc therapeutic strategies that focus not only on the disease-causing protozoan but also on the virus.
Collapse
Affiliation(s)
- Alexandra Ibañez-Escribano
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.I.-E.); (M.M.); (C.F.-B.)
| | - Maria Teresa Gomez-Muñoz
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Marta Mateo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.I.-E.); (M.M.); (C.F.-B.)
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Cristina Fonseca-Berzal
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.I.-E.); (M.M.); (C.F.-B.)
| | - Esperanza Gomez-Lucia
- Animal Viruses Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Raquel Garcia Perez
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
| | - Jose M. Alunda
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Javier Carrion
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| |
Collapse
|
8
|
Paietta EN, Kraberger S, Lund MC, Vargas KL, Custer JM, Ehmke E, Yoder AD, Varsani A. Diverse Circular DNA Viral Communities in Blood, Oral, and Fecal Samples of Captive Lemurs. Viruses 2024; 16:1099. [PMID: 39066262 PMCID: PMC11281440 DOI: 10.3390/v16071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Few studies have addressed viral diversity in lemurs despite their unique evolutionary history on the island of Madagascar and high risk of extinction. Further, while a large number of studies on animal viromes focus on fecal samples, understanding viral diversity across multiple sample types and seasons can reveal complex viral community structures within and across species. Groups of captive lemurs at the Duke Lemur Center (Durham, NC, USA), a conservation and research center, provide an opportunity to build foundational knowledge on lemur-associated viromes. We sampled individuals from seven lemur species, i.e., collared lemur (Eulemur collaris), crowned lemur (Eulemur coronatus), blue-eyed black lemur (Eulemur flavifrons), ring-tailed lemur (Lemur catta), Coquerel's sifaka (Propithecus coquereli), black-and-white ruffed lemur (Varecia variegata variegata), and red ruffed lemur (Varecia rubra), across two lemur families (Lemuridae, Indriidae). Fecal, blood, and saliva samples were collected from Coquerel's sifaka and black-and-white ruffed lemur individuals across two sampling seasons to diversify virome biogeography and temporal sampling. Using viral metagenomic workflows, the complete genomes of anelloviruses (n = 4), cressdnaviruses (n = 47), caudoviruses (n = 15), inoviruses (n = 34), and microviruses (n = 537) were determined from lemur blood, feces, and saliva. Many virus genomes, especially bacteriophages, identified in this study were present across multiple lemur species. Overall, the work presented here uses a viral metagenomics approach to investigate viral communities inhabiting the blood, oral cavity, and feces of healthy captive lemurs.
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27708, USA
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
9
|
Mohebbi A, Kiani SJ, Khanaliha K, Donyavi T, Emtiazi N, Sharifian K, Mohebbi M, Gholami A, Behnezhad F, Abbasi-Kolli M, Dehghani-Dehej F, Bokharaei-Salim F. Dental complications as a potential indicator of Redondovirus infection: a cross-sectional study. BMC Infect Dis 2024; 24:673. [PMID: 38969993 PMCID: PMC11225247 DOI: 10.1186/s12879-024-09523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Redondoviridae is a newly discovered virus family linked to oral and respiratory conditions in people, while there is still debate about whether it is also coinfected with other respiratory viruses. This study aimed to determine the frequency of Redondovirus (ReDoV) in nasopharyngeal samples and to investigate any possible links to SARS-CoV-2 infections. METHODS A polymerase chain reaction (PCR) test was conducted on 731 nasopharyngeal samples from individuals referred to medical centers in Tehran, Iran, for SARS-CoV-2 testing to investigate the prevalence of ReDoV. An oral interview was performed to complete information on dental issues and the individuals' demographics, symptoms, and vaccination history. RESULTS The prevalence of ReDoV was 25.99%, and 15.26% had a coinfection with SARS-CoV-2. No notable correlation was found regarding ReDoVs and SARS-CoV-2 infections (p > 0.05). Women had a higher ReDoV positivity rate of 18.47% compared to men at 7.52% (p = 0.12), and there was no significant correlation between age groups and ReDoV presence. Nonetheless, a significant association was noted between ReDoVs and dental/gum issues (p < 0.0001, OR: 13.0326). A phylogenetic analysis showed that ReDoVs originated from various human-related clusters. CONCLUSIONS These results highlight the potential for detecting ReDoVs in nasopharyngeal samples of people with gum or dental issues. Additionally, conducting more ReDoV epidemiological research and proposing oral health as a possible marker for ReDoV infections is important.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vista Aria Rena Gene, Inc, Gorgan, Golestan Province, Iran
| | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Donyavi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nikoo Emtiazi
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Sharifian
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohebbi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amytis Gholami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzane Behnezhad
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi-Kolli
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Dehghani-Dehej
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Couto RDS, Abreu WU, Rodrigues LRR, Marinho LF, Morais VDS, Villanova F, Pandey RP, Deng X, Delwart E, da Costa AC, Leal E. Genomoviruses in Liver Samples of Molossus molossus Bats. Microorganisms 2024; 12:688. [PMID: 38674632 PMCID: PMC11052389 DOI: 10.3390/microorganisms12040688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
CRESS-DNA encompasses a broad spectrum of viruses documented across diverse organisms such as animals, plants, diatoms, fungi, and marine invertebrates. Despite this prevalence, the full extent of these viruses' impact on the environment and their respective hosts remains incompletely understood. Furthermore, an increasing number of viruses within this category lack detailed characterization. This investigation focuses on unveiling and characterizing viruses affiliated with the Genomoviridae family identified in liver samples from the bat Molossus molossus. Leveraging viral metagenomics, we identified seven sequences (MmGmV-PA) featuring a circular DNA genome housing two ORFs encoding replication-associated protein (Rep) and capsid protein (Cap). Predictions based on conserved domains typical of the Genomoviridae family were established. Phylogenetic analysis revealed the segregation of these sequences into two clades aligning with the genera Gemycirculavirus (MmGmV-06-PA and MmGmV-07-PA) and Gemykibivirus (MmGmV-01-PA, MmGmV-02-PA, MmGmV-03-PA, MmGmV-05-PA, and MmGmV-09-PA). At the species level, pairwise comparisons based on complete nucleotide sequences indicated the potential existence of three novel species. In summary, our study significantly contributes to an enhanced understanding of the diversity of Genomoviridae within bat samples, shedding light on previously undiscovered viral entities and their potential ecological implications.
Collapse
Affiliation(s)
- Roseane da Silva Couto
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (F.V.)
| | - Wandercleyson Uchôa Abreu
- Programa de Pos-Graduação REDE Bionorte, Polo Pará, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
| | - Luís Reginaldo Ribeiro Rodrigues
- Laboratory of Genetics & Biodiversity, Institute of Educational Sciences, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
| | | | - Vanessa dos Santos Morais
- Laboratory of Virology (LIM 52), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (V.d.S.M.); (A.C.d.C.)
| | - Fabiola Villanova
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (F.V.)
| | - Ramendra Pati Pandey
- School of Health Sciences & Technology, UPES University, Dehradun 248007, Uttarakhand, India;
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA 94143, USA;
| | - Eric Delwart
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Antonio Charlys da Costa
- Laboratory of Virology (LIM 52), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (V.d.S.M.); (A.C.d.C.)
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (F.V.)
| |
Collapse
|
11
|
Qian L, Zhuang Z, Lu J, Wang H, Wang X, Yang S, Ji L, Shen Q, Zhang W, Shan T. Metagenomic survey of viral diversity obtained from feces of piglets with diarrhea. Heliyon 2024; 10:e25616. [PMID: 38375275 PMCID: PMC10875384 DOI: 10.1016/j.heliyon.2024.e25616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/02/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Pigs are natural host to various zoonotic pathogens including viruses. In this study, we analyzed the viral communities in the feces of 89 piglets with diarrhea under one month old which were collected from six farms in Jiangsu Province of the Eastern China, using the unbiased virus metagenomic method. A total of 89 libraries were constructed, and 46937894 unique sequence reads were generated by Illumina sequencing. Overall, the family Picornaviridae accounted for the majority of the total reads of putative mammalian viruses. Ten novel virus genomes from different family members were discovered, including Parvoviridae (n = 2), Picobirnaviridae (n = 4) and CRESS DNA viruses (n = 4). A large number of phages were identified, which mainly belonged to the order Caudovirales and the family Microviridae. Moreover, some identified viruses were closely related to viruses found in non-porcine hosts, highlighting the potential for cross-species virus dissemination. This study increased our understanding of the fecal virus communities of diarrhea piglets and provided valuable information for virus monitoring and preventing.
Collapse
Affiliation(s)
- Lingling Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zi Zhuang
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Huiying Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 200062, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| |
Collapse
|
12
|
Baker JL, Mark Welch JL, Kauffman KM, McLean JS, He X. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol 2024; 22:89-104. [PMID: 37700024 PMCID: PMC11084736 DOI: 10.1038/s41579-023-00963-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/14/2023]
Abstract
The human oral microbiota is highly diverse and has a complex ecology, comprising bacteria, microeukaryotes, archaea and viruses. These communities have elaborate and highly structured biogeography that shapes metabolic exchange on a local scale and results from the diverse microenvironments present in the oral cavity. The oral microbiota also interfaces with the immune system of the human host and has an important role in not only the health of the oral cavity but also systemic health. In this Review, we highlight recent advances including novel insights into the biogeography of several oral niches at the species level, as well as the ecological role of candidate phyla radiation bacteria and non-bacterial members of the oral microbiome. In addition, we summarize the relationship between the oral microbiota and the pathology of oral diseases and systemic diseases. Together, these advances move the field towards a more holistic understanding of the oral microbiota and its role in health, which in turn opens the door to the study of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jonathon L Baker
- Oregon Health & Science University, Portland, OR, USA
- J. Craig Venter Institute, La Jolla, CA, USA
- UC San Diego School of Medicine, La Jolla, CA, USA
| | - Jessica L Mark Welch
- The Forsyth Institute, Cambridge, MA, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Xuesong He
- The Forsyth Institute, Cambridge, MA, USA.
- Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
13
|
Olivo D, Khalifeh A, Custer JM, Kraberger S, Varsani A. Diverse Small Circular DNA Viruses Identified in an American Wigeon Fecal Sample. Microorganisms 2024; 12:196. [PMID: 38258021 PMCID: PMC10821283 DOI: 10.3390/microorganisms12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
American wigeons (Mareca americana) are waterfowls that are widely distributed throughout North America. Research of viruses associated with American wigeons has been limited to orthomyxoviruses, coronaviruses, and circoviruses. To address this poor knowledge of viruses associated with American wigeons, we undertook a pilot study to identify small circular DNA viruses in a fecal sample collected in January 2021 in the city of Tempe, Arizona (USA). We identified 64 diverse circular DNA viral genomes using a viral metagenomic workflow biased towards circular DNA viruses. Of these, 45 belong to the phylum Cressdnaviricota based on their replication-associated protein sequence, with 3 from the Genomoviridae family and the remaining 42 which currently cannot be assigned to any established virus group. It is most likely that these 45 viruses infect various organisms that are associated with their diet or environment. The remaining 19 virus genomes are part of the Microviridae family and likely associated with the gut enterobacteria of American wigeons.
Collapse
Affiliation(s)
- Diego Olivo
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85042, USA; (D.O.)
| | - Anthony Khalifeh
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85042, USA; (D.O.)
| | - Joy M. Custer
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85042, USA; (D.O.)
| | - Simona Kraberger
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85042, USA; (D.O.)
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85042, USA; (D.O.)
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
14
|
Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023; 9:e22351. [PMID: 38125540 PMCID: PMC10730444 DOI: 10.1016/j.heliyon.2023.e22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
The potential biotechnological uses of bat-associated bacteria are discussed briefly, indicating avenues for biotechnological applications of bat-associated microbes. The uniqueness of bats in terms of their lifestyle, genomes and molecular immunology may predispose bats to act as disease reservoirs. Molecular phylogenetic analysis has shown several instances of bats harbouring the ancestral lineages of bacterial (Bartonella), protozoal (Plasmodium, Trypanosoma cruzi) and viral (SARS-CoV2) pathogens infecting humans. Along with the transmission of viruses from bats, we also discuss the potential roles of bat-associated bacteria, fungi, and protozoan parasites in emerging diseases. Current evidence suggests that environmental changes and interactions between wildlife, livestock, and humans contribute to the spill-over of infectious agents from bats to other hosts. Domestic animals including livestock may act as intermediate amplifying hosts for bat-origin pathogens to transmit to humans. An increasing number of studies investigating bat pathogen diversity and infection dynamics have been published. However, whether or how these infectious agents are transmitted both within bat populations and to other hosts, including humans, often remains unknown. Metagenomic approaches are uncovering the dynamics and distribution of potential pathogens in bat microbiomes, which might improve the understanding of disease emergence and transmission. Here, we summarize the current knowledge on bat zoonoses of public health concern and flag the gaps in the knowledge to enable further research and allocation of resources for tackling future outbreaks.
Collapse
Affiliation(s)
- J. Dhivahar
- Research Department of Zoology, St. Johns College, Palayamkottai, 627002, India
- Department of Plant Biology and Biotechnology, Laboratory of Microbial Ecology, Loyola College, Chennai, 600034, India
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Anutthaman Parthasarathy
- Department of Chemistry and Biosciences, Richmond Building, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Kathiravan Krishnan
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Basavaraj S. Kovi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| |
Collapse
|
15
|
Vidovszky MZ, Kapitány S, Gellért Á, Harrach B, Görföl T, Boldogh SA, Kohl C, Wibbelt G, Mühldorfer K, Kemenesi G, Gembu GC, Hassanin A, Tu VT, Estók P, Horváth A, Kaján GL. Detection and genetic characterization of circoviruses in more than 80 bat species from eight countries on four continents. Vet Res Commun 2023; 47:1561-1573. [PMID: 37002455 PMCID: PMC10066014 DOI: 10.1007/s11259-023-10111-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Several bat-associated circoviruses and circular rep-encoding single-stranded DNA (CRESS DNA) viruses have been described, but the exact diversity and host species of these viruses are often unknown. Our goal was to describe the diversity of bat-associated circoviruses and cirliviruses, thus, 424 bat samples from more than 80 species were collected on four continents. The samples were screened for circoviruses using PCR and the resulting amino acid sequences were subjected to phylogenetic analysis. The majority of bat strains were classified in the genus Circovirus and some strains in the genus Cyclovirus and the clades CRESS1 and CRESS3. Some strains, however, could only be classified at the taxonomic level of the order and were not classified in any of the accepted or proposed clades. In the family Circoviridae, 71 new species have been predicted. This screening of bat samples revealed a great diversity of circoviruses and cirliviruses. These studies underline the importance of the discovery and description of new cirliviruses and the need to establish new species and families in the order Cirlivirales.
Collapse
Affiliation(s)
| | | | - Ákos Gellért
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Balázs Harrach
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Tamás Görföl
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
| | | | - Claudia Kohl
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Gudrun Wibbelt
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Kristin Mühldorfer
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Gábor Kemenesi
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
| | - Guy-Crispin Gembu
- Faculté des Sciences, Université de Kisangani, Kisangani, République Démocratique du Congo
| | - Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Péter Estók
- Department of Zoology, Eszterházy Károly Catholic University, Eger, Hungary
| | - Anna Horváth
- QUIRÓN, Center for Equine Assisted Interventions and Training for Well-Being and Sustainability, Comitán de Domínguez, Mexico
| | - Győző L. Kaján
- Veterinary Medical Research Institute, Budapest, Hungary
| |
Collapse
|
16
|
Yan M, Pratama AA, Somasundaram S, Li Z, Jiang Y, Sullivan MB, Yu Z. Interrogating the viral dark matter of the rumen ecosystem with a global virome database. Nat Commun 2023; 14:5254. [PMID: 37644066 PMCID: PMC10465536 DOI: 10.1038/s41467-023-41075-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
The diverse rumen virome can modulate the rumen microbiome, but it remains largely unexplored. Here, we mine 975 published rumen metagenomes for viral sequences, create a global rumen virome database (RVD), and analyze the rumen virome for diversity, virus-host linkages, and potential roles in affecting rumen functions. Containing 397,180 species-level viral operational taxonomic units (vOTUs), RVD substantially increases the detection rate of rumen viruses from metagenomes compared with IMG/VR V3. Most of the classified vOTUs belong to Caudovirales, differing from those found in the human gut. The rumen virome is predicted to infect the core rumen microbiome, including fiber degraders and methanogens, carries diverse auxiliary metabolic genes, and thus likely impacts the rumen ecosystem in both a top-down and a bottom-up manner. RVD and the findings provide useful resources and a baseline framework for future research to investigate how viruses may impact the rumen ecosystem and digestive physiology.
Collapse
Affiliation(s)
- Ming Yan
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Akbar Adjie Pratama
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Sripoorna Somasundaram
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Matthew B Sullivan
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Zhang P, Zhang Y, Cao L, Li J, Wu C, Tian M, Zhang Z, Zhang C, Zhang W, Li Y. A Diverse Virome Is Identified in Parasitic Flatworms of Domestic Animals in Xinjiang, China. Microbiol Spectr 2023; 11:e0070223. [PMID: 37042768 PMCID: PMC10269781 DOI: 10.1128/spectrum.00702-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Parasitic flatworms infect diverse vertebrates and are major threats to animal and even human health; however, little is known about the virome of these lower life forms. Using viral metagenomic sequencing, we characterized the virome of the parasitic flatworms collected from major domestic animals, including Dicrocoelium lanceatum and Taenia hydatigena, Echinococcus granulosus sensu stricto and Echinococcus multilocularis. Seven and three different viruses were discovered from D. lanceatum and T. hydatigena, respectively, and no viral sequences were found in adult tapeworms and protoscoleces of E. granulosus sensu stricto and E. multilocularis. Two out of the five parasitic flatworm species carry viruses, showing a host specificity of these viruses. These viruses belong to the Parvoviridae, Circoviridae, unclassified circular, Rep-encoding single-stranded (CRESS) DNA virus, Rhabdoviridae, Endornaviridae, and unclassified RNA viruses. The presence of multiple highly divergent RNA viruses, especially those that cluster with viruses found in marine animals, implies a deep evolutionary history of parasite-associated viruses. In addition, we found viruses with high identity to common pathogens in dogs, including canine circovirus and canine parvovirus 2. The presence of these viruses in the parasites implies that they may infect parasitic flatworms but does not completely exclude the possibility of contamination from host intestinal contents. Furthermore, we demonstrated that certain viruses, such as CRESS DNA virus may integrate into the genome of their host. Our results expand the knowledge of viral diversity in parasites of important domestic animals, highlighting the need for further investigations of their prevalence among other parasites of key animals. IMPORTANCE Characterizing the virome of parasites is important for unveiling the viral diversity, evolution, and ecology and will help to understand the "Russian doll" pattern among viruses, parasites, and host animals. Our data indicate that diverse viruses are present in specific parasitic flatworms, including viruses that may have an ancient evolutionary history and viruses currently circulating in parasite-infected host animals. These data also raise the question of whether parasitic flatworms acquire and/or carry some viruses that may have transmission potential to animals. In addition, through the study of virus-parasite-host interactions, including the influence of viral infection on the life cycle of the parasite, as well as its fitness and pathogenicity to the host, we could find new strategies to prevent and control parasitic diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chuanchuan Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mengxiao Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhuangzhi Zhang
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Lund MC, Larsen BB, Rowsey DM, Otto HW, Gryseels S, Kraberger S, Custer JM, Steger L, Yule KM, Harris RE, Worobey M, Van Doorslaer K, Upham NS, Varsani A. Using archived and biocollection samples towards deciphering the DNA virus diversity associated with rodent species in the families cricetidae and heteromyidae. Virology 2023; 585:42-60. [PMID: 37276766 DOI: 10.1016/j.virol.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
Rodentia is the most speciose order of mammals, and they are known to harbor a wide range of viruses. Although there has been significant research on zoonotic viruses in rodents, research on the diversity of other viruses has been limited, especially for rodents in the families Cricetidae and Heteromyidae. In fecal and liver samples of nine species of rodents, we identify 346 distinct circular DNA viral genomes. Of these, a large portion are circular, single-stranded DNA viruses in the families Anelloviridae (n = 3), Circoviridae (n = 5), Genomoviridae (n = 7), Microviridae (n = 297), Naryaviridae (n = 4), Vilyaviridae (n = 15) and in the phylum Cressdnaviricota (n = 13) that cannot be assigned established families. We also identified two large bacteriophages of 36 and 50 kb that are part of the class Caudoviricetes. Some of these viruses are clearly those that infect rodents, however, most of these likely infect various organisms associated with rodents, their environment or their diet.
Collapse
Affiliation(s)
- Michael C Lund
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98102, USA
| | - Dakota M Rowsey
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Hans W Otto
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Sophie Gryseels
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000, Leuven, Belgium; Department of Biology, University of Antwerp, 2000, Antwerp, Belgium; OD Taxonomy and Phylogeny, Royal Belgian Museum of Natural Sciences, 1000, Brussels, Belgium
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Steger
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Kelsey M Yule
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Robin E Harris
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, The BIO5 Institute, Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, AZ, 85724, USA
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7701, South Africa.
| |
Collapse
|
19
|
Krupovic M, Dolja VV, Koonin EV. The virome of the last eukaryotic common ancestor and eukaryogenesis. Nat Microbiol 2023; 8:1008-1017. [PMID: 37127702 PMCID: PMC11130978 DOI: 10.1038/s41564-023-01378-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
All extant eukaryotes descend from the last eukaryotic common ancestor (LECA), which is thought to have featured complex cellular organization. To gain insight into LECA biology and eukaryogenesis-the origin of the eukaryotic cell, which remains poorly understood-we reconstructed the LECA virus repertoire. We compiled an inventory of eukaryotic hosts of all major virus taxa and reconstructed the LECA virome by inferring the origins of these groups of viruses. The origin of the LECA virome can be traced back to a small set of bacterial-not archaeal-viruses. This provenance of the LECA virome is probably due to the bacterial origin of eukaryotic membranes, which is most compatible with two endosymbiosis events in a syntrophic model of eukaryogenesis. In the first endosymbiosis, a bacterial host engulfed an Asgard archaeon, preventing archaeal viruses from entry owing to a lack of archaeal virus receptors on the external membranes.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.
| |
Collapse
|
20
|
Makoa-Meng M, Semmar R, Antezack A, Penant G, La Scola B, Monnet-Corti V, Colson P. Correlation of Redondovirus and Entamoeba gingivalis Detections in the Human Oral Cavity Suggests That This Amoeba Is Possibly the Redondovirus Host. Int J Mol Sci 2023; 24:ijms24076303. [PMID: 37047275 PMCID: PMC10094137 DOI: 10.3390/ijms24076303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The virome of the human oral cavity and the relationships between viruses and diseases such as periodontitis are scarcely deciphered. Redondoviruses were reported in the human oral cavity in 2019, including in periodontitis patients. Here, we aimed at detecting redondoviruses and at searching for a potential viral host in human saliva. Non-stimulated saliva was collected between December 2020 and June 2021. These samples were tested using real-time PCR regarding the presence of redondovirus and Entamoeba gingivalis DNA. Similarity searches were performed using BLAST against eukaryotic and prokaryotic sequences from GenBank. The redondovirus DNA was detected in 46% of the 28 human saliva samples. In addition, short fragments of redondovirus genomes were detected in silico within Entamoeba sequences. Finally, Entamoeba gingivalis DNA was detected in 46% of the 28 saliva samples, with a strong correlation between redondovirus DNA and E. gingivalis DNA detections, in 93% of the cases. Regarded together, these findings and previous ones strongly support the presence of redondoviruses in the human oral cavity and their association to E. gingivalis as their likely host.
Collapse
|
21
|
Liu Y, Guo L, Wang G, Gao F, Tu Z, Xu D, Sun L, Yi L, Zhu G, Tu C, He B. DNA virome of ticks in the Northeast and Hubei provinces of China reveals diverse single-stranded circular DNA viruses. Parasit Vectors 2023; 16:61. [PMID: 36759895 PMCID: PMC9912487 DOI: 10.1186/s13071-023-05684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Ticks are medically important vectors capable of transmitting a variety of pathogens to and between host species. Although the spectrum of tick-borne RNA viruses has been frequently investigated, the diversity of tick-borne DNA viruses remains largely unknown. METHODS A total of 1571 ticks were collected from forests and infested animals, and the diversity of the viruses they harbored was profiled using a DNA-specific virome method. The viromic data were phylogenetically analyzed and validated by PCR assays. RESULTS Although diverse and abundant prokaryotic viruses were identified in the collected ticks, only eukaryotic DNA viruses with single-stranded circular genomes covering the anelloviruses and circular replication-associated (Rep) protein-encoding single-stranded (CRESS) DNA viruses were recovered from ticks. Anelloviruses were detected only in two tick pools, but CRESS DNA viruses were prevalent across these ticks except in one pool of Dermacentor spp. ticks. Phylogenetic analyses revealed that these tick-borne CRESS DNA viruses were related to viruses recovered from animal feces, tissues and even environmental samples, suggesting that their presence may be largely explained by environmental factors rather than by tick species and host blood meals. CONCLUSIONS Based on the results, tick-borne eukaryotic DNA viruses appear to be much less common than eukaryotic RNA viruses. Investigations involving a wider collection area and more diverse tick species are required to further support this speculation.
Collapse
Affiliation(s)
- Yuhang Liu
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu China ,grid.410727.70000 0001 0526 1937Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Lei Guo
- grid.454880.50000 0004 0596 3180Division of Wildlife and Plant Conservation, State Forestry and Grassland Administration, Changchun, Jilin China
| | - Guoshuai Wang
- grid.410727.70000 0001 0526 1937Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Fei Gao
- Section of Wildlife Conservation, Greater Xing’an Mountains Forestry Group Corporation, Jiagedaqi, Heilongjiang China
| | - Zhongzhong Tu
- grid.410727.70000 0001 0526 1937Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Deming Xu
- Forestry Bureau of Linjiang City, Linjiang, Jilin China
| | - Lanshun Sun
- Provincial Wildlife Disease Monitoring Station of Shuanghe, Xunke, Heilongjiang China
| | - Le Yi
- grid.410727.70000 0001 0526 1937Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Guoqiang Zhu
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu China
| | - Changchun Tu
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu China ,grid.410727.70000 0001 0526 1937Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Biao He
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China. .,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.
| |
Collapse
|
22
|
Higuera A, Salas-Leiva DE, Curtis B, Patiño LH, Zhao D, Jerlström-Hultqvist J, Dlutek M, Muñoz M, Roger AJ, Ramírez JD. Draft genomes of Blastocystis subtypes from human samples of Colombia. Parasit Vectors 2023; 16:52. [PMID: 36732768 PMCID: PMC9896827 DOI: 10.1186/s13071-022-05619-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Blastocystis is one of the most common eukaryotic microorganisms colonizing the intestines of both humans and animals, but the conditions under which it may be a pathogen are unclear. METHODS To study the genomic characteristics of circulating subtypes (ST) in Colombia, we established nine xenic cultures from Blastocystis isolated from human fecal samples, we identified 10 different subtypes, since one sample had a mixed infection. Thus, the genomes of the subtypes ST1 (n = 3), ST2 (n = 1), ST3 (n = 2), ST6 (n = 1), ST7 (n = 1), and ST8 (n = 2) were sequenced using Illumina and Oxford Nanopore Technologies (ONT). RESULTS Analyses of these draft nuclear genomes indicated remarkable diversity in terms of genome size and guanine-cytosine (GC) content among the compared STs. Illumina sequencing-only draft genomes contained 824 to 2077 scaffolds, with total genome size ranging from 12 to 13.2 Mb and N50 values ranging from 10,585 to 29,404 base pairs (bp). The genome of one ST1 isolate was sequenced using ONT. This assembly was more contiguous, with a size of 20 million base pairs (Mb) spread over 116 scaffolds, and an N50 of 248,997 bp. CONCLUSION This work represents one of the few large-scale comparative genomic analyses of Blastocystis isolates, providing an additional glimpse into its genomic diversity.
Collapse
Affiliation(s)
- Adriana Higuera
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Dayana E. Salas-Leiva
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW United Kingdom
| | - Bruce Curtis
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Luz H. Patiño
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Dandan Zhao
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Jon Jerlström-Hultqvist
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, BMC, Uppsala Universitet, Box 596, 751 24 Uppsala, Sweden
| | - Marlena Dlutek
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Marina Muñoz
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Andrew J. Roger
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Juan David Ramírez
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia ,grid.59734.3c0000 0001 0670 2351Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY USA
| |
Collapse
|
23
|
Keeler EL, Merenstein C, Reddy S, Taylor LJ, Cobián-Güemes AG, Zankharia U, Collman RG, Bushman FD. Widespread, human-associated redondoviruses infect the commensal protozoan Entamoeba gingivalis. Cell Host Microbe 2023; 31:58-68.e5. [PMID: 36459997 PMCID: PMC9969835 DOI: 10.1016/j.chom.2022.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
Redondoviruses are circular Rep-encoding single-stranded DNA (CRESS) viruses of high prevalence in healthy humans. Redondovirus abundance is increased in oro-respiratory samples from individuals with periodontitis, acute illness, and severe COVID-19. We investigated potential host cells supporting redondovirus replication in oro-respiratory samples and uncovered the oral amoeba Entamoeba gingivalis as a likely host. Redondoviruses are closely related to viruses of Entamoeba and contain reduced GC nucleotide content, consistent with Entamoeba hosts. Redondovirus and E. gingivalis co-occur in metagenomic data from oral disease and healthy human cohorts. When grown in xenic cultures with feeder bacteria, E. gingivalis was robustly positive for redondovirus RNA and DNA. A DNA proximity-ligation assay (Hi-C) on xenic culture cells showed enriched cross-linking of redondovirus and Entamoeba DNA, supporting E. gingivalis as the redondovirus host. While bacteria are established hosts for bacteriophages within the human virome, this work shows that eukaryotic commensals also contribute an abundant human-associated virus.
Collapse
Affiliation(s)
- Emma L Keeler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis J Taylor
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ana G Cobián-Güemes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Urvi Zankharia
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald G Collman
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Kinsella CM, Edridge AWD, van Zeggeren IE, Deijs M, van de Beek D, Brouwer MC, van der Hoek L. Bacterial ribosomal RNA detection in cerebrospinal fluid using a viromics approach. Fluids Barriers CNS 2022; 19:102. [PMID: 36550487 PMCID: PMC9773461 DOI: 10.1186/s12987-022-00400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In patients with central nervous system (CNS) infections identification of the causative pathogen is important for treatment. Metagenomic next-generation sequencing techniques are increasingly being applied to identify causes of CNS infections, as they can detect any pathogen nucleic acid sequences present. Viromic techniques that enrich samples for virus particles prior to sequencing may simultaneously enrich ribosomes from bacterial pathogens, which are similar in size to small viruses. METHODS We studied the performance of a viromic library preparation technique (VIDISCA) combined with low-depth IonTorrent sequencing (median ~ 25,000 reads per sample) for detection of ribosomal RNA from common pathogens, analyzing 89 cerebrospinal fluid samples from patients with culture proven bacterial meningitis. RESULTS Sensitivity and specificity to Streptococcus pneumoniae (n = 24) before and after optimizing threshold parameters were 79% and 52%, then 88% and 90%. Corresponding values for Neisseria meningitidis (n = 22) were 73% and 93%, then 67% and 100%, Listeria monocytogenes (n = 24) 21% and 100%, then 27% and 100%, and Haemophilus influenzae (n = 18) 56% and 100%, then 71% and 100%. A higher total sequencing depth, no antibiotic treatment prior to lumbar puncture, increased disease severity, and higher c-reactive protein levels were associated with pathogen detection. CONCLUSION We provide proof of principle that a viromic approach can be used to correctly identify bacterial ribosomal RNA in patients with bacterial meningitis. Further work should focus on increasing assay sensitivity, especially for problematic species (e.g. L. monocytogenes), as well as profiling additional pathogens. The technique is most suited to research settings and examination of idiopathic cases, rather than an acute clinical setting.
Collapse
Affiliation(s)
- Cormac M. Kinsella
- grid.7177.60000000084992262Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ,Amsterdam Institute for Infection and Immunity, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Arthur W. D. Edridge
- grid.7177.60000000084992262Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ,Amsterdam Institute for Infection and Immunity, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Ingeborg E. van Zeggeren
- grid.7177.60000000084992262Amsterdam UMC, Department of Neurology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ,grid.484519.5Amsterdam Neuroscience, Neuroinfection and Inflammation, Amsterdam, The Netherlands
| | - Martin Deijs
- grid.7177.60000000084992262Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ,Amsterdam Institute for Infection and Immunity, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Diederik van de Beek
- grid.7177.60000000084992262Amsterdam UMC, Department of Neurology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ,grid.484519.5Amsterdam Neuroscience, Neuroinfection and Inflammation, Amsterdam, The Netherlands
| | - Matthijs C. Brouwer
- grid.7177.60000000084992262Amsterdam UMC, Department of Neurology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ,grid.484519.5Amsterdam Neuroscience, Neuroinfection and Inflammation, Amsterdam, The Netherlands
| | - Lia van der Hoek
- grid.7177.60000000084992262Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ,Amsterdam Institute for Infection and Immunity, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
25
|
Krupovic M, Varsani A. Naryaviridae, Nenyaviridae, and Vilyaviridae: three new families of single-stranded DNA viruses in the phylum Cressdnaviricota. Arch Virol 2022; 167:2907-2921. [PMID: 36098801 DOI: 10.1007/s00705-022-05557-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
Abstract
The phylum Cressdnaviricota includes viruses with circular single-stranded DNA (ssDNA) genomes and icosahedral capsids. These viruses display global environmental distribution and infect diverse eukaryotic hosts, including animals, plants, and fungi. Here, we report on the formal creation of two new orders, Rivendellvirales and Rohanvirales, and three new families, Naryaviridae, Nenyaviridae, and Vilyaviridae, of ssDNA viruses associated with protozoan parasites belonging to the genera Entamoeba and Giardia. We describe a sequence-based taxonomic framework, which was used to classify 60 ssDNA viruses into 12 genera (with 18 species) within the family Vilyaviridae; four genera (with five species) within the family Naryaviridae; and five genera (with six species) within the family Nenyaviridae. We also highlight the challenges associated with the classification of chimeric virus genomes, such as those in the families Naryaviridae and Nenyaviridae, where the replication initiation and capsid protein genes have undergone several independent non-orthologous replacements. The described taxonomic changes have been ratified by the International Committee on Taxonomy of Viruses (ICTV) and expand the phylum Cressdnaviricota to eight orders and 11 families.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, F-75015, Paris, France.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
26
|
Kinsella CM, Deijs M, Gittelbauer HM, van der Hoek L, van Dijk K. Human Clinical Isolates of Pathogenic Fungi Are Host to Diverse Mycoviruses. Microbiol Spectr 2022; 10:e0161022. [PMID: 35993766 PMCID: PMC9603141 DOI: 10.1128/spectrum.01610-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022] Open
Abstract
Fungi host viruses from many families, and next-generation sequencing can be used to discover previously unknown genomes. Some fungus-infecting viruses (mycoviruses) confer hypovirulence on their pathogenic hosts, raising the possibility of therapeutic application in the treatment of fungal diseases. Though all fungi probably host mycoviruses, many human pathogens have none documented, implying the mycoviral catalogue remains at an early stage. Here, we carried out virus discovery on 61 cultures of pathogenic fungi covering 27 genera and at least 56 species. Using next-generation sequencing of total nucleic acids, we found no DNA viruses but did find a surprising RNA virus diversity of 11 genomes from six classified families and two unclassified lineages, including eight genomes likely representing new species. Among these was the first jivivirus detected in a fungal host (Aspergillus lentulus). We separately utilized rolling circle amplification and next-generation sequencing to identify ssDNA viruses specifically. We identified 13 new cressdnaviruses across all libraries, but unlike the RNA viruses, they could not be confirmed by PCR in either the original unamplified samples or freshly amplified nucleic acids. Their distributions among sequencing libraries and inconsistent detection suggest low-level contamination of reagents. This highlights both the importance of validation assays and the risks of viral host prediction on the basis of highly amplified sequencing libraries. Meanwhile, the detected RNA viruses provide a basis for experimentation to characterize possible hypovirulent effects, and hint at a wealth of uncharted viral diversity currently frozen in biobanks. IMPORTANCE Fungal pathogens of humans are a growing global health burden. Viruses of fungi may represent future therapeutic tools, but for many fungal pathogens there are no known viruses. Our study examined the viral content of diverse human-pathogenic fungi in a clinical biobank, identifying numerous viral genomes, including one lineage previously not known to infect fungi.
Collapse
Affiliation(s)
- Cormac M. Kinsella
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Martin Deijs
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - H. M. Gittelbauer
- Amsterdam UMC, Laboratory of Mycology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
| | - Lia van der Hoek
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Karin van Dijk
- Amsterdam UMC, Laboratory of Mycology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Taylo LJ, Keeler EL, Bushman FD, Collman RG. The enigmatic roles of Anelloviridae and Redondoviridae in humans. Curr Opin Virol 2022; 55:101248. [PMID: 35870315 DOI: 10.1016/j.coviro.2022.101248] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/26/2022]
Abstract
Anelloviridae and Redondoviridae are virus families with small, circular, single-stranded DNA genomes that are common components of the human virome. Despite their small genome size of less than 5000 bases, they are remarkably successful - anelloviruses colonize over 90% of adult humans, while the recently discovered redondoviruses have been found at up to 80% prevalence in some populations. Anelloviruses are present in blood and many organs, while redondoviruses are found mainly in the ororespiratory tract. Despite their high prevalence, little is known about their biology or pathogenic potential. In this review, we discuss anelloviruses and redondoviruses and explore their enigmatic roles in human health and disease.
Collapse
Affiliation(s)
- Louis J Taylo
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emma L Keeler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald G Collman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Tochetto C, Cibulski SP, Muterle Varela AP, Cerva C, Alves de Lima D, Fumaco Teixeira T, Quoos Mayer F, Roehe PM. A variety of highly divergent eukaryotic ssDNA viruses in sera of pigs. J Gen Virol 2021; 102. [PMID: 34928204 DOI: 10.1099/jgv.0.001706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Over the last decade, viral metagenomics has been established as a non-targeted approach for identifying viruses in stock animals, including pigs. This has led to the identification of a vast diversity of small circular ssDNA viruses. The present study focuses on the investigation of eukaryotic circular Rep-encoding single-stranded (CRESS) DNA viral genomes present in serum of commercially reared pigs from southern Brazil. Several CRESS DNA viral genomes were detected, including representatives of the families Smacoviridae (n=5), Genomoviridae (n=3), Redondoviridae (n=1), Nenyaviridae (n=1) and other yet unclassified genomes (n=9), plus a circular DNA molecule, which probably belongs to the phylum Cressdnaviricota. A novel genus within the family Smacoviridae, tentatively named 'Suismacovirus', comprising 21 potential new species, is proposed. Although the reported genomes were recovered from pigs with clinical signs of respiratory disease, further studies should examine their potential role as pathogens. Nonetheless, these findings highlight the diversity of circular ssDNA viruses in serum of domestic pigs, expand the knowledge on CRESS DNA viruses' genetic diversity and distribution and contribute to the global picture of the virome of commercially reared pigs.
Collapse
Affiliation(s)
- Caroline Tochetto
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Samuel Paulo Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil
| | - Ana Paula Muterle Varela
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristine Cerva
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor(IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Diane Alves de Lima
- Laboratório de Microbiologia do Centro Clínico Veterinário, Centro Universitário da Serra Gaúcha - FSG, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor(IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor(IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Diverse Single-Stranded DNA Viruses Identified in Chicken Buccal Swabs. Microorganisms 2021; 9:microorganisms9122602. [PMID: 34946202 PMCID: PMC8703526 DOI: 10.3390/microorganisms9122602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
High-throughput sequencing approaches offer the possibility to better understand the complex microbial communities associated with animals. Viral metagenomics has facilitated the discovery and identification of many known and unknown viruses that inhabit mucosal surfaces of the body and has extended our knowledge related to virus diversity. We used metagenomics sequencing of chicken buccal swab samples and identified various small DNA viruses with circular genome organization. Out of 134 putative circular viral-like circular genome sequences, 70 are cressdnaviruses and 26 are microviruses, whilst the remaining 38 most probably represent sub-genomic molecules. The cressdnaviruses found in this study belong to the Circoviridae, Genomoviridae and Smacoviridae families as well as previously described CRESS1 and naryavirus groups. Among these, genomoviruses and smacoviruses were the most prevalent across the samples. Interestingly, we also identified 26 bacteriophages that belong to the Microviridae family, whose members are known to infect enterobacteria.
Collapse
|
30
|
Liang G, Cobián-Güemes AG, Albenberg L, Bushman F. The gut virome in inflammatory bowel diseases. Curr Opin Virol 2021; 51:190-198. [PMID: 34763180 DOI: 10.1016/j.coviro.2021.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Dysbiosis of the microbiome has been extensively studied in inflammatory bowel diseases (IBD). The roles of bacteria and fungi have been studied in detail, but viral communities, an important component of the microbiome, have been less thoroughly investigated. Metagenomics provided a way to fill this gap by using DNA sequencing to enumerate all viruses in a sample, termed the 'virome'. Such methods have now been employed in several studies to assess associations between viral communities and IBD, yielding several commonly seen properties, including an increase in tailed bacteriophage (Caudovirales) and a decrease in the spherical Microviridae. Numerous studies of single human viruses have been carried out, but no one virus has emerged as tightly associated, focusing attention on whole virome communities and further factors. This review provides an overview of research on the human virome in IBD, with emphasis on (1) dynamics of the gut virome, (2) candidate mechanisms of virome alterations with disease, (3) methods for studying the virome, and (4) potentially actionable implications of virome data.
Collapse
Affiliation(s)
- Guanxiang Liang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA.
| | - Ana Georgina Cobián-Güemes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA
| | - Lindsey Albenberg
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, 19104-4399, USA
| | - Frederic Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA.
| |
Collapse
|
31
|
Lu X, Hua X, Wang Y, Zhang D, Jiang S, Yang S, Wang X, Shen Q, Zhou T, Lin Z, Zhang W, Cui L. Comparison of gut viral communities in diarrhoea and healthy dairy calves. J Gen Virol 2021; 102. [PMID: 34714225 DOI: 10.1099/jgv.0.001663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calf diarrhoea has been a major cause of economic losses in the global dairy industry. Many factors, including multiple pathogen infections, can directly or indirectly cause calf diarrhoea. This study compared the faecal virome between 15 healthy calves and 15 calves with diarrhoea. Significantly lower diversity of viruses was found in samples from animals with diarrhoea than those in the healthy ones, and this feature may also be related to the age of the calves. Viruses belonging to the families Astroviridae and Caliciviridae that may cause diarrhoea in dairy calves have been characterized, which revealed that reads of caliciviruses and astroviruses in diarrhoea calves were much higher than those in healthy calves. Five complete genomic sequences closely related to Smacoviridae have been identified, which may participate in the regulation of the gut virus community ecology of healthy hosts together with bacteriophages. This research provides a theoretical basis for further understanding of known or potential enteric pathogens related to calf diarrhoea.
Collapse
Affiliation(s)
- Xiang Lu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiuguo Hua
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yan Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Dong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengyao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Tianji Zhou
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhibing Lin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Li Cui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
32
|
Diverse single-stranded DNA viruses identified in New Zealand (Aotearoa) South Island robin (Petroica australis) fecal samples. Virology 2021; 565:38-51. [PMID: 34715607 DOI: 10.1016/j.virol.2021.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
The South Island robin (Petroica australis) is a small passerine bird endemic to New Zealand (Aotearoa). Although its population has declined recently and it is considered 'at risk,' little research has been done to identify viruses in this species. This study aimed to survey the diversity of single-stranded DNA viruses associated with South Island robins in a small, isolated population on Nukuwaiata Island. In total, 108 DNA viruses were identified from pooled fecal samples collected from 38 individual robins sampled. These viruses belong to the Circoviridae (n = 10), Genomoviridae (n = 12), and Microviridae (n = 73) families. A number of genomes that belong to the phylum Cressdnaviricota but are otherwise unclassified (n = 13) were also identified. These results greatly expand the known viral diversity associated with South Island robins, and we identify a novel group of viruses most closely related genomoviruses.
Collapse
|
33
|
Zhao L, Lavington E, Duffy S. Truly ubiquitous CRESS DNA viruses scattered across the eukaryotic tree of life. J Evol Biol 2021; 34:1901-1916. [PMID: 34498333 DOI: 10.1111/jeb.13927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Abstract
Until recently, most viruses detected and characterized were of economic significance, associated with agricultural and medical diseases. This was certainly true for the eukaryote-infecting circular Rep (replication-associated protein)-encoding single-stranded DNA (CRESS DNA) viruses, which were thought to be a relatively small group of viruses. With the explosion of metagenomic sequencing over the past decade and increasing use of rolling-circle replication for sequence amplification, scientists have identified and annotated copious numbers of novel CRESS DNA viruses - many without known hosts but which have been found in association with eukaryotes. Similar advances in cellular genomics have revealed that many eukaryotes have endogenous sequences homologous to viral Reps, which not only provide 'fossil records' to reconstruct the evolutionary history of CRESS DNA viruses but also reveal potential host species for viruses known by their sequences alone. The Rep protein is a conserved protein that all CRESS DNA viruses use to assist rolling-circle replication that is known to be endogenized in a few eukaryotic species (notably tobacco and water yam). A systematic search for endogenous Rep-like sequences in GenBank's non-redundant eukaryotic database was performed using tBLASTn. We utilized relaxed search criteria for the capture of integrated Rep sequence within eukaryotic genomes, identifying 93 unique species with an endogenized fragment of Rep in their nuclear, plasmid (one species), mitochondrial (six species) or chloroplast (eight species) genomes. These species come from 19 different phyla, scattered across the eukaryotic tree of life. Exogenous and endogenous CRESS DNA viral Rep tree topology suggested potential hosts for one family of uncharacterized viruses and supports a primarily fungal host range for genomoviruses.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA.,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Erik Lavington
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
34
|
Barreat JGN, Katzourakis A. Paleovirology of the DNA viruses of eukaryotes. Trends Microbiol 2021; 30:281-292. [PMID: 34483047 DOI: 10.1016/j.tim.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
Paleovirology is the study of ancient viruses and how they have coevolved with their hosts. An increasingly detailed understanding of the diversity, origins, and evolution of the DNA viruses of eukaryotes has been obtained through the lens of paleovirology in recent years. Members of multiple viral families have been found integrated in the genomes of eukaryotes, providing a rich fossil record to study. These elements have extended our knowledge of exogenous viral diversity, host ranges, and the timing of viral evolution, and are revealing the existence of entire new families of eukaryotic integrating dsDNA viruses and transposons. Future work in paleovirology will continue to provide insights into antiviral immunity, viral diversity, and potential applications, and reveal other secrets of the viral world.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK.
| |
Collapse
|
35
|
Hao X, Li Y, Hu X, Fu X, Dong J, Zhang H, Zhou P, Li S. Feline Stool-Associated Circular DNA Virus (FeSCV) in Diarrheic Cats in China. Front Vet Sci 2021; 8:694089. [PMID: 34222407 PMCID: PMC8242157 DOI: 10.3389/fvets.2021.694089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Feline stool-associated circular DNA virus (FeSCV) is an unclassified circular replication-associated protein-encoding single-stranded (CRESS) DNA virus that was discovered in cats in Japan in 2018. Few studies on the genomic characteristics and prevalence of FeSCV have been conducted. To investigate whether FeSCV has been circulating in domestic cats in Guangdong, China, fecal samples were collected from cats with diarrhea in an animal hospital in 2018 to promote research on FeSCV. The FeSCV genome was obtained by PCR amplification and sequencing, and the detected virus was named PY4 (GenBank No. MT732515). The genome of PY4 was 2,034 nt in size, which was 12 nt smaller than the reported genome of Japanese FeSCV strains (KU7, KU8, KU9, KU14) (2,046 nt). The PY4 strain shared 95.1 ~ 95.5% homology with Japanese FeSCV strains. Notably, the Cap protein of PY4 was mutated at 15 amino acid sites, and the PY4 genome contained a unique open reading frame 3. In addition, there were two additional base insertions in the stem-loop structure of PY4, and the nucleotide homology of the spacer region was not high. A phylogenetic tree based on Rep proteins showed that PY4, Japanese FeSCVs and rodent stool-associated circular viruses (RodSCVs) clustered together, suggesting that they might share a similar origin in their phylogenetic evolution. In this study, samples collected in Guangzhou, China, in 2018 were subjected to an etiological investigation, and 20% (2/10) of the samples were positive for FeSCV. The ORFs, stem-loop structures, Cap proteins and intergenic region sequences of PY4 were significantly different from those reported in Japan. This is the first report of FeSCV in domestic cats with diarrhea in China, and further epidemiological studies are urgently needed to assess the impact of the virus on cats.
Collapse
Affiliation(s)
- Xiangqi Hao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Yanchao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Xinkai Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Xueying Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Jie Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Haoyang Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|
36
|
Marucci G, Zullino I, Bertuccini L, Camerini S, Cecchetti S, Pietrantoni A, Casella M, Vatta P, Greenwood AD, Fiorillo A, Lalle M. Re-Discovery of Giardiavirus: Genomic and Functional Analysis of Viruses from Giardia duodenalis Isolates. Biomedicines 2021; 9:654. [PMID: 34201207 PMCID: PMC8230311 DOI: 10.3390/biomedicines9060654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Giardiasis, caused by the protozoan parasite Giardia duodenalis, is an intestinal diarrheal disease affecting almost one billion people worldwide. A small endosymbiotic dsRNA viruses, G. lamblia virus (GLV), genus Giardiavirus, family Totiviridae, might inhabit human and animal isolates of G. duodenalis. Three GLV genomes have been sequenced so far, and only one was intensively studied; moreover, a positive correlation between GLV and parasite virulence is yet to be proved. To understand the biological significance of GLV infection in Giardia, the characterization of several GLV strains from naturally infected G. duodenalis isolates is necessary. Here we report high-throughput sequencing of four GLVs strains, from Giardia isolates of human and animal origin. We also report on a new, unclassified viral sequence (designed GdRV-2), unrelated to Giardiavirus, encoding and expressing for a single large protein with an RdRp domain homologous to Totiviridae and Botybirnaviridae. The result of our sequencing and proteomic analyses challenge the current knowledge on GLV and strongly suggest that viral capsid protein translation unusually starts with a proline and that translation of the RNA-dependent RNA polymerase (RdRp) occurs via a +1/-2 ribosomal frameshift mechanism. Nucleotide polymorphism, confirmed by mass-spectrometry analysis, was also observed among and between GLV strains. Phylogenetic analysis indicated the occurrence of at least two GLV subtypes which display different phenotypes and transmissibility in experimental infections of a GLV naïve Giardia isolate.
Collapse
Affiliation(s)
- Gianluca Marucci
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| | - Ilaria Zullino
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| | - Lucia Bertuccini
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Serena Camerini
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Serena Cecchetti
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Agostina Pietrantoni
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Marialuisa Casella
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Paolo Vatta
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| | - Alex D. Greenwood
- Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany;
- Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| | - Annarita Fiorillo
- Department of Biochemical Science “A. Rossi-Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| |
Collapse
|
37
|
Virome of Bat Guano from Nine Northern California Roosts. J Virol 2021; 95:JVI.01713-20. [PMID: 33115864 DOI: 10.1128/jvi.01713-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022] Open
Abstract
Bats are hosts to a large variety of viruses, including many capable of cross-species transmissions to other mammals, including humans. We characterized the virome in guano from five common bat species in 9 Northern California roosts and from a pool of 5 individual bats. Genomes belonging to 14 viral families known to infect mammals and 17 viral families infecting insects or of unknown tropism were detected. Nearly complete or complete genomes of a novel parvovirus, astrovirus, nodavirus, circular Rep-encoding single-stranded DNA (CRESS-DNA) viruses, and densoviruses, and more partial genomes of a novel alphacoronavirus and a bunyavirus were characterized. Lower numbers of reads with >90% amino acid identity to previously described calicivirus, circovirus, adenoviruses, hepatovirus, bocaparvoviruses, and polyomavirus in other bat species were also found, likely reflecting their wide distribution among different bats. Unexpectedly, a few sequence reads of canine parvovirus 2 and the recently described mouse kidney parvovirus were also detected and their presence confirmed by PCR; these possibly originated from guano contamination by carnivores and rodents. The majority of eukaryotic viral reads were highly divergent, indicating that numerous viruses still remain to be characterized, even from such a heavily investigated order as Chiroptera.IMPORTANCE Characterizing the bat virome is important for understanding viral diversity and detecting viral spillover between animal species. Using an unbiased metagenomics method, we characterize the virome in guano collected from multiple roosts of common Northern California bat species. We describe several novel viral genomes and report the detection of viruses with close relatives reported in other bat species, likely reflecting cross-species transmissions. Viral sequences from well-known carnivore and rodent parvoviruses were also detected, whose presence are likely the result of contamination from defecation and urination atop guano and which reflect the close interaction of these mammals in the wild.
Collapse
|
38
|
Herrera G, Paredes-Sabja D, Patarroyo MA, Ramírez JD, Muñoz M. Updating changes in human gut microbial communities associated with Clostridioides difficile infection. Gut Microbes 2021; 13:1966277. [PMID: 34486488 PMCID: PMC8425690 DOI: 10.1080/19490976.2021.1966277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is the causative agent of antibiotic-associated diarrhea, a worldwide public health problem. Different factors can promote the progression of C. difficile infection (CDI), mainly altered intestinal microbiota composition. Microbial species belonging to different domains (i.e., bacteria, archaea, eukaryotes, and even viruses) are synergistically and antagonistically associated with CDI. This review was aimed at updating changes regarding CDI-related human microbiota composition using recent data and an integral approach that included the different microorganism domains. The three domains of life contribute to intestinal microbiota homeostasis at different levels in which relationships among microorganisms could explain the wide range of clinical manifestations. A holistic understanding of intestinal ecosystem functioning will facilitate identifying new predictive factors for infection and developing better treatment and new diagnostic tools, thereby reducing this disease's morbidity and mortality.
Collapse
Affiliation(s)
- Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología – UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Paredes-Sabja
- ANID – Millennium Science Initiative Program – Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C. 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá D.C. 110231, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología – UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad Del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología – UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad Del Rosario, Bogotá, Colombia
- ANID – Millennium Science Initiative Program – Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
39
|
Hufsky F, Beerenwinkel N, Meyer IM, Roux S, Cook GM, Kinsella CM, Lamkiewicz K, Marquet M, Nieuwenhuijse DF, Olendraite I, Paraskevopoulou S, Young F, Dijkman R, Ibrahim B, Kelly J, Le Mercier P, Marz M, Ramette A, Thiel V. The International Virus Bioinformatics Meeting 2020. Viruses 2020; 12:E1398. [PMID: 33291220 PMCID: PMC7762161 DOI: 10.3390/v12121398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
The International Virus Bioinformatics Meeting 2020 was originally planned to take place in Bern, Switzerland, in March 2020. However, the COVID-19 pandemic put a spoke in the wheel of almost all conferences to be held in 2020. After moving the conference to 8-9 October 2020, we got hit by the second wave and finally decided at short notice to go fully online. On the other hand, the pandemic has made us even more aware of the importance of accelerating research in viral bioinformatics. Advances in bioinformatics have led to improved approaches to investigate viral infections and outbreaks. The International Virus Bioinformatics Meeting 2020 has attracted approximately 120 experts in virology and bioinformatics from all over the world to join the two-day virtual meeting. Despite concerns being raised that virtual meetings lack possibilities for face-to-face discussion, the participants from this small community created a highly interactive scientific environment, engaging in lively and inspiring discussions and suggesting new research directions and questions. The meeting featured five invited and twelve contributed talks, on the four main topics: (1) proteome and RNAome of RNA viruses, (2) viral metagenomics and ecology, (3) virus evolution and classification and (4) viral infections and immunology. Further, the meeting featured 20 oral poster presentations, all of which focused on specific areas of virus bioinformatics. This report summarizes the main research findings and highlights presented at the meeting.
Collapse
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Niko Beerenwinkel
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Irmtraud M. Meyer
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 10115 Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Simon Roux
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA 94720, USA;
| | - Georgia May Cook
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Cormac M. Kinsella
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Kevin Lamkiewicz
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Mike Marquet
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- CaSe Group, Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, 07743 Jena, Germany
| | - David F. Nieuwenhuijse
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Viroscience Department, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Ingrida Olendraite
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Sofia Paraskevopoulou
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Francesca Young
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| | - Ronald Dijkman
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Institute of Virology and Immunology, University of Bern, 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
| | - Bashar Ibrahim
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Centre for Applied Mathematics and Bioinformatics, Hawally 32093, Kuwait
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Jenna Kelly
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Institute of Virology and Immunology, University of Bern, 3012 Bern, Switzerland
| | - Philippe Le Mercier
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, 1205 Geneva, Switzerland
| | - Manja Marz
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Alban Ramette
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Institute for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
| | - Volker Thiel
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Institute of Virology and Immunology, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|