1
|
Tsoi R, Son HI, Hamrick GS, Tang K, Bethke JH, Lu J, Maddamsetti R, You L. A predatory gene drive for targeted control of self-transmissible plasmids. SCIENCE ADVANCES 2025; 11:eads4735. [PMID: 40173243 PMCID: PMC11963995 DOI: 10.1126/sciadv.ads4735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Suppressing plasmid transfer in microbial communities has profound implications due to the role of horizontal gene transfer (HGT) in spreading and maintaining diverse functional traits such as metabolic functions, virulence factors, and antibiotic resistance. However, existing tools for inhibiting HGT are limited in their modes of delivery, efficacy, and scalability. Here, we present a versatile denial-of-spread (DoS) strategy to target and eliminate specific conjugative plasmids. Our strategy exploits retrotransfer, whereby an engineered DoS plasmid is introduced into host cells containing a target plasmid. Acting as a predatory gene drive, DoS propagates itself at the expense of the target plasmid, through competition or active elimination. Once the target plasmid is eradicated, DoS is removed via induced plasmid suicide, resulting in a community containing neither plasmid. The strategy is tunable and scalable for various conjugative plasmids, different mechanisms of plasmid inheritance interruption, and diverse environmental contexts. DoS represents a new tool for precise control of gene persistence in microbial communities.
Collapse
Affiliation(s)
- Ryan Tsoi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Hye-In Son
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Grayson S. Hamrick
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Katherine Tang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jonathan H. Bethke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Jia Lu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Rohan Maddamsetti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Griffin AS, Leeks A. Exploiting social traits for clinical applications in bacteria and viruses. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:20. [PMID: 40155763 PMCID: PMC11953253 DOI: 10.1038/s44259-025-00091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/26/2025] [Indexed: 04/01/2025]
Abstract
Despite generating a great deal of interest in the form of review papers, progress in exploiting social dynamics for treatment strategies against bacterial infection has made limited progress since it was suggested twenty years ago. In contrast, anti-viral strategies based on social interactions are entering clinical trial stage. We explore possible reasons for this difference and highlight areas where the two fields of research may learn from one another.
Collapse
Affiliation(s)
| | - Asher Leeks
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
- Department of Zoology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Lin Z, Yao Q, Lai K, Jiao K, Zeng X, Lei G, Zhang T, Dai H. Cas12f1 gene drives propagate efficiently in herpesviruses and induce minimal resistance. Genome Biol 2024; 25:311. [PMID: 39696608 DOI: 10.1186/s13059-024-03455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Synthetic CRISPR-Cas9 gene drive has been developed to control harmful species. However, resistance to Cas9 gene drive can be acquired easily when DNA repair mechanisms patch up the genetic insults introduced by Cas9 and incorporate mutations to the sgRNA target. Although many strategies to reduce the occurrence of resistance have been developed so far, they are difficult to implement and not always effective. RESULTS Here, Cas12f1, a recently developed CRISPR-Cas system with minimal potential for causing mutations within target sequences, has been explored as a potential platform for yielding low-resistance in gene drives. We construct Cas9 and Cas12f1 gene drives in a fast-replicating DNA virus, HSV1. Cas9 and Cas12f1 gene drives are able to spread among the HSV1 population with specificity towards their target sites, and their transmission among HSV1 viruses is not significantly affected by the reduced fitness incurred by the viral carriers. Cas12f1 gene drives spread similarly as Cas9 gene drives at high introduction frequency but transmit more slowly than Cas9 gene drives at low introduction frequency. However, Cas12f1 gene drives outperform Cas9 gene drives because they reach higher penetration and induce lower resistance than Cas9 gene drives in all cases. CONCLUSIONS Due to lower resistance and higher penetration, Cas12f1 gene drives could potentially supplant Cas9 gene drives for population control.
Collapse
Affiliation(s)
- Zhuangjie Lin
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qiaorui Yao
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Keyuan Lai
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Kehua Jiao
- Department of Geriatric Medicine, Shanghai Health and Medical Center, Wuxi, Jiangshu Province, China
| | - Xianying Zeng
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guanxiong Lei
- Affiliated Hospital of Xiangnan University, Chenzhou, Hunan Province, China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Chenzhou, Hunan Province, China
| | - Tongwen Zhang
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
- Vaccine Biotech (Shenzhen) LTD, Shenzhen, China, & Boji Biopharmaceutical, Guangzhou, China.
| | - Hongsheng Dai
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Walter M, Haick AK, Riley R, Massa PA, Strongin DE, Klouser LM, Loprieno MA, Stensland L, Santo TK, Roychoudhury P, Aubert M, Taylor MP, Jerome KR, Verdin E. Viral gene drive spread during herpes simplex virus 1 infection in mice. Nat Commun 2024; 15:8161. [PMID: 39289368 PMCID: PMC11408514 DOI: 10.1038/s41467-024-52395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
Gene drives are genetic modifications designed to propagate efficiently through a population. Most applications rely on homologous recombination during sexual reproduction in diploid organisms such as insects, but we recently developed a gene drive in herpesviruses that relies on co-infection of cells by wild-type and engineered viruses. Here, we report on a viral gene drive against human herpes simplex virus 1 (HSV-1) and show that it propagates efficiently in cell culture and during HSV-1 infection in mice. We describe high levels of co-infection and gene drive-mediated recombination in neuronal tissues during herpes encephalitis as the infection progresses from the site of inoculation to the peripheral and central nervous systems. In addition, we show evidence that a superinfecting gene drive virus could recombine with wild-type viruses during latent infection. These findings indicate that HSV-1 achieves high rates of co-infection and recombination during viral infection, a phenomenon that is currently underappreciated. Overall, this study shows that a viral gene drive could spread in vivo during HSV-1 infection, paving the way toward therapeutic applications.
Collapse
Affiliation(s)
- Marius Walter
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US.
- Buck Institute for Research on Aging, Novato, CA, US.
| | - Anoria K Haick
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US
| | | | - Paola A Massa
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US
| | - Daniel E Strongin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US
| | - Lindsay M Klouser
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US
| | - Michelle A Loprieno
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US
| | - Laurence Stensland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US
| | - Tracy K Santo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US
| | - Matthew P Taylor
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, US
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, US.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, US.
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, US.
| |
Collapse
|
5
|
Sanz Juste S, Okamoto EM, Nguyen C, Feng X, López Del Amo V. Next-generation CRISPR gene-drive systems using Cas12a nuclease. Nat Commun 2023; 14:6388. [PMID: 37821497 PMCID: PMC10567717 DOI: 10.1038/s41467-023-42183-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
One method for reducing the impact of vector-borne diseases is through the use of CRISPR-based gene drives, which manipulate insect populations due to their ability to rapidly propagate desired genetic traits into a target population. However, all current gene drives employ a Cas9 nuclease that is constitutively active, impeding our control over their propagation abilities and limiting the generation of alternative gene drive arrangements. Yet, other nucleases such as the temperature sensitive Cas12a have not been explored for gene drive designs in insects. To address this, we herein present a proof-of-concept gene-drive system driven by Cas12a that can be regulated via temperature modulation. Furthermore, we combined Cas9 and Cas12a to build double gene drives capable of simultaneously spreading two independent engineered alleles. The development of Cas12a-mediated gene drives provides an innovative option for designing next-generation vector control strategies to combat disease vectors and agricultural pests.
Collapse
Affiliation(s)
- Sara Sanz Juste
- Department of Epigenetics & Molecular Carcinogenesis at MD Anderson, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
- Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Emily M Okamoto
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christina Nguyen
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, 77030, USA
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518106, China.
| | - Víctor López Del Amo
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Walter M, Chen IP, Vallejo-Gracia A, Kim IJ, Bielska O, Lam VL, Hayashi JM, Cruz A, Shah S, Soveg FW, Gross JD, Krogan NJ, Jerome KR, Schilling B, Ott M, Verdin E. SIRT5 is a proviral factor that interacts with SARS-CoV-2 Nsp14 protein. PLoS Pathog 2022; 18:e1010811. [PMID: 36095012 PMCID: PMC9499238 DOI: 10.1371/journal.ppat.1010811] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 09/22/2022] [Accepted: 08/18/2022] [Indexed: 12/27/2022] Open
Abstract
SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response, independently of the Mitochondrial Antiviral Signaling Protein MAVS. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Marius Walter
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Irene P. Chen
- Gladstone Institutes, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
- QBI COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Albert Vallejo-Gracia
- Gladstone Institutes, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
- QBI COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Ik-Jung Kim
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Olga Bielska
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Victor L. Lam
- University of California San Francisco, San Francisco, California, United States of America
| | - Jennifer M. Hayashi
- Gladstone Institutes, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
- QBI COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Andrew Cruz
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Samah Shah
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Frank W. Soveg
- Gladstone Institutes, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
- QBI COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - John D. Gross
- University of California San Francisco, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
- QBI COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, United States of America
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
- QBI COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California, United States of America
| |
Collapse
|
7
|
Melesse Vergara M, Labbé J, Tannous J. Reflection on the Challenges, Accomplishments, and New Frontiers of Gene Drives. BIODESIGN RESEARCH 2022; 2022:9853416. [PMID: 37850135 PMCID: PMC10521683 DOI: 10.34133/2022/9853416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/19/2022] [Indexed: 10/19/2023] Open
Abstract
Ongoing pest and disease outbreaks pose a serious threat to human, crop, and animal lives, emphasizing the need for constant genetic discoveries that could serve as mitigation strategies. Gene drives are genetic engineering approaches discovered decades ago that may allow quick, super-Mendelian dissemination of genetic modifications in wild populations, offering hopes for medicine, agriculture, and ecology in combating diseases. Following its first discovery, several naturally occurring selfish genetic elements were identified and several gene drive mechanisms that could attain relatively high threshold population replacement have been proposed. This review provides a comprehensive overview of the recent advances in gene drive research with a particular emphasis on CRISPR-Cas gene drives, the technology that has revolutionized the process of genome engineering. Herein, we discuss the benefits and caveats of this technology and place it within the context of natural gene drives discovered to date and various synthetic drives engineered. Later, we elaborate on the strategies for designing synthetic drive systems to address resistance issues and prevent them from altering the entire wild populations. Lastly, we highlight the major applications of synthetic CRISPR-based gene drives in different living organisms, including plants, animals, and microorganisms.
Collapse
Affiliation(s)
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Invaio Sciences, Cambridge, MA 02138USA
| | - Joanna Tannous
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
8
|
Saakian DB, Koonin EV. Gene-influx-driven evolution. Phys Rev E 2022; 106:014403. [PMID: 35974500 DOI: 10.1103/physreve.106.014403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Here we analyze the evolutionary process in the presence of continuous influx of genotypes with submaximum fitness from the outside to the given habitat with finite resources. We show that strong influx from the outside allows the low-fitness genotype to win the competition with the higher fitness genotype, and in a finite population, drive the latter to extinction. We analyze a mathematical model of this phenomenon and obtain the conditions for the transition from the high-fitness to the low-fitness genotype caused by the influx of the latter. We calculate the time to extinction of the high-fitness genotype in a finite population with two alleles and find the exact analytical dynamics of extinction for the case of many genes with epistasis. We solve a related quasispecies model for a single peak (random) fitness landscape as well as for a symmetric fitness landscape. In the symmetric landscape, a nonperturbative effect is observed such that even an extremely low influx of the low-fitness genotype drastically changes the steady state fitness distribution. A similar nonperturbative phenomenon is observed for the allele fixation time as well. The identified regime of influx-driven evolution appears to be relevant for a broad class of biological systems and could be central to the evolution of prokaryotes and viruses.
Collapse
Affiliation(s)
- David B Saakian
- A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, 2 Alikhanian Brothers St., Yerevan 375036, Armenia
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
9
|
O'Sullivan GM, Philips JG, Mitchell HJ, Dornbusch M, Rasko JEJ. 20 Years of Legislation - How Australia Has Responded to the Challenge of Regulating Genetically Modified Organisms in the Clinic. Front Med (Lausanne) 2022; 9:883434. [PMID: 35620726 PMCID: PMC9127347 DOI: 10.3389/fmed.2022.883434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 01/21/2023] Open
Abstract
In contrast to the prior voluntary system, since 2001, gene technology in Australia has been regulated under a legislated national Gene Technology Regulatory Scheme which is administered by the Gene Technology Regulator. The Scheme provides science-based assessment of the potential risks of gene technology to the health and safety of people and the environment. It complements the role of the Australian Therapeutic Goods Administration which regulates all therapeutic products in Australia to ensure they are safe and effective. Recent reforms to the Scheme contribute to, and anticipate, the continued safe development and delivery of gene-based human therapeutics in Australia as a successful model for other jurisdictions.
Collapse
Affiliation(s)
- Gabrielle M O'Sullivan
- Research Ethics and Governance Office, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Joshua G Philips
- Office of the Gene Technology Regulator, Australian Government Department of Health, Canberra, ACT, Australia
| | - Heidi J Mitchell
- Office of the Gene Technology Regulator, Australian Government Department of Health, Canberra, ACT, Australia
| | - Michael Dornbusch
- Office of the Gene Technology Regulator, Australian Government Department of Health, Canberra, ACT, Australia
| | - John E J Rasko
- Department of Cell and Molecular Therapies, RPA Hospital, SLHD, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Wang GH, Du J, Chu CY, Madhav M, Hughes GL, Champer J. Symbionts and gene drive: two strategies to combat vector-borne disease. Trends Genet 2022; 38:708-723. [PMID: 35314082 DOI: 10.1016/j.tig.2022.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/26/2023]
Abstract
Mosquitoes bring global health problems by transmitting parasites and viruses such as malaria and dengue. Unfortunately, current insecticide-based control strategies are only moderately effective because of high cost and resistance. Thus, scalable, sustainable, and cost-effective strategies are needed for mosquito-borne disease control. Symbiont-based and genome engineering-based approaches provide new tools that show promise for meeting these criteria, enabling modification or suppression approaches. Symbiotic bacteria like Wolbachia are maternally inherited and manipulate mosquito host reproduction to enhance their vertical transmission. Genome engineering-based gene drive methods, in which mosquitoes are genetically altered to spread drive alleles throughout wild populations, are also proving to be a potentially powerful approach in the laboratory. Here, we review the latest developments in both symbionts and gene drive-based methods. We describe some notable similarities, as well as distinctions and obstacles, relating to these promising technologies.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Du
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chen Yi Chu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Mukund Madhav
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
11
|
Morgens DW, Nandakumar D, Didychuk AL, Yang KJ, Glaunsinger BA. A Two-tiered functional screen identifies herpesviral transcriptional modifiers and their essential domains. PLoS Pathog 2022; 18:e1010236. [PMID: 35041709 PMCID: PMC8797222 DOI: 10.1371/journal.ppat.1010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/28/2022] [Accepted: 12/29/2021] [Indexed: 11/19/2022] Open
Abstract
While traditional methods for studying large DNA viruses allow the creation of individual mutants, CRISPR/Cas9 can be used to rapidly create thousands of mutant dsDNA viruses in parallel, enabling the pooled screening of entire viral genomes. Here, we applied this approach to Kaposi’s sarcoma-associated herpesvirus (KSHV) by designing a sgRNA library containing all possible ~22,000 guides targeting the 154 kilobase viral genome, corresponding to one cut site approximately every 8 base pairs. We used the library to profile viral sequences involved in transcriptional activation of late genes, whose regulation involves several well characterized features including dependence on viral DNA replication and a known set of viral transcriptional activators. Upon phenotyping all possible Cas9-targeted viruses for transcription of KSHV late genes we recovered these established regulators and identified a new required factor (ORF46), highlighting the utility of the screening pipeline. By performing targeted deep sequencing of the viral genome to distinguish between knock-out and in-frame alleles created by Cas9, we identify the DNA binding but not catalytic domain of ORF46 to be required for viral DNA replication and thus late gene expression. Our pooled Cas9 tiling screen followed by targeted deep viral sequencing represents a two-tiered screening paradigm that may be widely applicable to dsDNA viruses.
Collapse
Affiliation(s)
- David W. Morgens
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
- * E-mail: (DM); (BG)
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Allison L. Didychuk
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Kevin J. Yang
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California, United States of America
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, UC Berkeley, Berkeley, California, United States of America
- * E-mail: (DM); (BG)
| |
Collapse
|
12
|
Lewis IC, Yan Y, Finnigan GC. Analysis of a Cas12a-based gene-drive system in budding yeast. Access Microbiol 2022; 3:000301. [PMID: 35024561 PMCID: PMC8749140 DOI: 10.1099/acmi.0.000301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
The discovery and adaptation of CRISPR/Cas systems within molecular biology has provided advances across biological research, agriculture and human health. Genomic manipulation through use of a CRISPR nuclease and programmed guide RNAs has become a common and widely accessible practice. The identification and introduction of new engineered variants and orthologues of Cas9 as well as alternative CRISPR systems such as the type V group have provided additional molecular options for editing. These include distinct PAM requirements, staggered DNA double-strand break formation, and the ability to multiplex guide RNAs from a single expression construct. Use of CRISPR/Cas has allowed for the construction and testing of a powerful genetic architecture known as a gene drive within eukaryotic model systems. Our previous work developed a drive within budding yeast using Streptococcus pyogenes Cas9. Here, we installed the type V Francisella novicida Cas12a (Cpf1) nuclease gene and its corresponding guide RNA to power a highly efficient artificial gene drive in diploid yeast. We examined the consequence of altering guide length or introduction of individual mutational substitutions to the crRNA sequence. Cas12a-dependent gene-drive function required a guide RNA of at least 18 bp and could not tolerate most changes within the 5' end of the crRNA.
Collapse
Affiliation(s)
- Isabel C Lewis
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.,Present address: School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yao Yan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
13
|
Walter M, Chen IP, Vallejo-Gracia A, Kim IJ, Bielska O, Lam VL, Hayashi JM, Cruz A, Shah S, Gross JD, Krogan NJ, Schilling B, Ott M, Verdin E. SIRT5 is a proviral factor that interacts with SARS-CoV-2 Nsp14 protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.04.474979. [PMID: 35018374 PMCID: PMC8750649 DOI: 10.1101/2022.01.04.474979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 stably interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Marius Walter
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Irene P Chen
- Gladstone Institutes, San Francisco, CA, United States
- University of California San Francisco, San Francisco, CA, United States
| | - Albert Vallejo-Gracia
- Gladstone Institutes, San Francisco, CA, United States
- University of California San Francisco, San Francisco, CA, United States
| | - Ik-Jung Kim
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Olga Bielska
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Victor L Lam
- University of California San Francisco, San Francisco, CA, United States
| | - Jennifer M Hayashi
- Gladstone Institutes, San Francisco, CA, United States
- University of California San Francisco, San Francisco, CA, United States
| | - Andrew Cruz
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA, United States
| | - John D Gross
- University of California San Francisco, San Francisco, CA, United States
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, United States
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, United States
- University of California San Francisco, San Francisco, CA, United States
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, United States
| | | | - Melanie Ott
- Gladstone Institutes, San Francisco, CA, United States
- University of California San Francisco, San Francisco, CA, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
14
|
García-Ríos E, Gata-de-Benito J, López-Siles M, McConnell MJ, Pérez-Romero P. Optimization of a Lambda-RED Recombination Method for Rapid Gene Deletion in Human Cytomegalovirus. Int J Mol Sci 2021; 22:10558. [PMID: 34638896 PMCID: PMC8508972 DOI: 10.3390/ijms221910558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) continues to be a major cause of morbidity in transplant patients and newborns. However, the functions of many of the more than 282 genes encoded in the HCMV genome remain unknown. The development of bacterial artificial chromosome (BAC) technology contributes to the genetic manipulation of several organisms including HCMV. The maintenance of the HCMV BAC in E. coli cells permits the rapid generation of recombinant viral genomes that can be used to produce viral progeny in cell cultures for the study of gene function. We optimized the Lambda-Red Recombination system to construct HCMV gene deletion mutants rapidly in the complete set of tested genes. This method constitutes a useful tool that allows for the quick generation of a high number of gene deletion mutants, allowing for the analysis of the whole genome to improve our understanding of HCMV gene function. This may also facilitate the development of novel vaccines and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III Majadahonda, 28220 Madrid, Spain; (E.G.-R.); (J.G.-d.-B.); (M.L.-S.); (M.J.M.)
| |
Collapse
|
15
|
Targeting Conserved Sequences Circumvents the Evolution of Resistance in a Viral Gene Drive against Human Cytomegalovirus. J Virol 2021; 95:e0080221. [PMID: 34011551 DOI: 10.1128/jvi.00802-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene drives are genetic systems designed to efficiently spread a modification through a population. They have been designed almost exclusively in eukaryotic species, especially in insects. We recently developed a CRISPR-based gene drive system in herpesviruses that relies on similar mechanisms and could efficiently spread into a population of wild-type viruses. A common consequence of gene drives in insects is the appearance and selection of drive-resistant sequences that are no longer recognized by CRISPR-Cas9. In this study, we analyzed in cell culture experiments the evolution of resistance in a viral gene drive against human cytomegalovirus. We report that after an initial invasion of the wild-type population, a drive-resistant population is positively selected over time and outcompetes gene drive viruses. However, we show that targeting evolutionarily conserved sequences ensures that drive-resistant viruses acquire long-lasting mutations and are durably attenuated. As a consequence, and even though engineered viruses do not stably persist in the viral population, remaining viruses have a replication defect, leading to a long-term reduction of viral levels. This marks an important step toward developing effective gene drives in herpesviruses, especially for therapeutic applications. IMPORTANCE The use of defective viruses that interfere with the replication of their infectious parent after coinfecting the same cells-a therapeutic strategy known as viral interference-has recently generated a lot of interest. The CRISPR-based system that we recently reported for herpesviruses represents a novel interfering strategy that causes the conversion of wild-type viruses into new recombinant viruses and drives the native viral population to extinction. In this study, we analyzed how targeted viruses evolved resistance against the technology. Through numerical simulations and cell culture experiments with human cytomegalovirus, we showed that after the initial propagation, a resistant viral population is positively selected and outcompetes engineered viruses over time. We show, however, that targeting evolutionarily conserved sequences ensures that resistant viruses are mutated and attenuated, which leads to a long-term reduction of viral levels. This marks an important step toward the development of novel therapeutic strategies against herpesviruses.
Collapse
|