1
|
Avelar RA, Palmer D, Kulaga AY, Fuellen G. Conserved biological processes in partial cellular reprogramming: Relevance to aging and rejuvenation. Ageing Res Rev 2025; 108:102737. [PMID: 40122394 DOI: 10.1016/j.arr.2025.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Partial or transient cellular reprogramming is defined by the limited induction of pluripotency factors without full dedifferentiation of cells to a pluripotent state. Comparing in vitro and in vivo mouse studies, and in vitro studies in humans, supported by visualizations of data interconnections, we show consistent patterns in how such reprogramming modulates key biological processes. Generally, partial reprogramming drives dynamic chromatin remodelling, involving histone modifications that regulate accessibility and facilitate pluripotency gene activation while silencing somatic identity. These changes are accompanied by modifications in stress response programs, such as inflammation, autophagy, and cellular senescence, as well as improved mitochondrial activity and dysregulation of extracellular matrix pathways. We also underscore the challenges in evaluating complex processes like aging and cellular senescence, given the variability in biomarkers used across studies. Overall, we highlight biological processes consistently influenced by reprogramming while noting that some effects are context-dependent, varying according to cell type, species, sex, recovery time, and the reprogramming method employed. These insights inform future research and potential therapeutic applications in aging and regenerative medicine.
Collapse
Affiliation(s)
- Roberto A Avelar
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Germany.
| | - Daniel Palmer
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Germany.
| | - Anton Y Kulaga
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Germany; Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania.
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Germany; School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Sui A, Guo X. Histone demethylase KDM6B promotes glioma cell proliferation by increasing PDGFRA expression via chromatin loop formation. Neurol Res 2025; 47:364-372. [PMID: 40134212 DOI: 10.1080/01616412.2025.2480326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/08/2025] [Indexed: 03/27/2025]
Abstract
OBJECTIVES Changes in gene expression pattern play an essential role in promoting the process of cancer. For example, platelet-derived growth factor receptor alpha (PDGFRA) is overexpressed in many cancers, including gliomas. Abnormal histone methylation is a typical characteristics of glioma, and our previous studies have shown that histone lysine demethylase 6B (KDM6B) is involved in glioma development by regulating the expression of specific oncogenes. In this study, the regulatory effect and underlying mechanism of KDM6B on PDGFRA expression were investigated. METHODS The expression information of KDM6B and PDGFRA in patients with glioma was analyzed in GEPIA database. The expression or activity of KDM6B was regulated with CRISPR interference/activation (CRISPRi/a) assays, gene knockdown and specific inhibitor. Cell proliferation was determined using cell counting kit assay. Chromatin immunoprecipitation assay (ChIP) and ChIP-loop assays were used to determine the H3K27me3 status in the PDGFRA promoter and DNA-DNA interactions mediated by KDM6B. RESULTS The expression of KDM6B and PDGFRA expression is positively correlated in gliomas. CRISPRi/a assays indicated that KDM6B has a positive regulatory role in PDGFRA expression in glioma cells and can promote glioma cell proliferation. KDM6B knockdown and inhibitor assays further proved that KDM6B promotes PDGFRA expression. ChIP assays indicated KDM6B reduces H3K27me3 level in the PDGFRA promoter. The ChIP-loop assays showed KDM6B increases the formation of chromatin loops, which facilitates the proximity of enhancer and promoter. CONCLUSION This study reveals a new epigenetic mechanism of PDGFRA overexpression in glioma cells, that is, KDM6B catalyzes the demethylation of H3K27me3 and induces chromatin loop formation to activate PDGFRA expression. This study is of great significance for the understanding of glioma development and the application of new treatment strategies, such as radiation therapy combined with epigenetic therapy.
Collapse
Affiliation(s)
- Aixia Sui
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaoqiang Guo
- Department of Kinesiology, Hebei Sport University, Shijiazhuang, China
| |
Collapse
|
3
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
4
|
She X, Geng L, Zhao Q, Guo H, Rong G, Luo Y, Li X, Xu L, Ran F, Liu S. Targeting hypoxia-induced HIF-1α/JMJD3/Notch axis in gastric cancer therapy. J Bioenerg Biomembr 2025:10.1007/s10863-025-10057-y. [PMID: 40138042 DOI: 10.1007/s10863-025-10057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/08/2025] [Indexed: 03/29/2025]
Abstract
Hypoxia has been reported to induce high expression of HIF-1α in multiple cancer tissues, and HIF-1α significantly influences cancer progression, including gastric cancer (GC). However, the mechanism of HIF-1α in the GC process is not clearly elucidated. HIF-1α and JMJD3 expressions in GC tissues were first determined by qRT-PCR and western blot. Meanwhile, the prognosis of HIF-1α, and the relationship between HIF-1α and JMJD3 were analyzed through bioinformatics. Then, we silenced HIF-1α, knocked down or overexpressed JMJD3, or treated gamma-secretase inhibitor (DAPT) in GC cells under hypoxic conditions. Cell proliferation, apoptosis, and Notch activation was determined both in vivo and vitro. We initially proved that both HIF-1α and JMJD3 were highly expressed in GC tissues, high expression of HIF-1α was associated with a poor prognosis. Functionally, we observed that HIF-1α knockdown attenuated GC cell proliferation and enhanced apoptosis under hypoxic conditions, while JMJD3 knockdown exerted the opposite effect in hypoxia-induced GC cells. Besides, JMJD3 overexpression promoted proliferation and reduced apoptosis by upregulating Notch in GC cells under hypoxia conditions. Furthermore, HIF-1α knockdown inhibited tumor growth and altered the pathological structure in the tumors of GC model nude mouse. In GC cells, HIF-1α knockdown inhibited cell proliferation and promoted apoptosis by affecting JMJD3/Notch axis. Therefore, we demonstrated that HIF-1α/JMJD3/Notch axis might be a new therapeutic target for GC.
Collapse
Affiliation(s)
- Xin She
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Lijun Geng
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qianwen Zhao
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Haonan Guo
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Guihong Rong
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yun Luo
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xia Li
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Longkuan Xu
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Fulin Ran
- Department of Gastroenterology Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shanshan Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
5
|
Ji Y, Chen Z, Cai J. Roles and mechanisms of histone methylation in vascular aging and related diseases. Clin Epigenetics 2025; 17:35. [PMID: 39988699 PMCID: PMC11849368 DOI: 10.1186/s13148-025-01842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The global aging trend has posed significant challenges, rendering healthcare for older adults a crucial focus in medical research. Among the numerous health concerns related to aging, vascular aging and dysfunction are important risk factors and underlying causes of age-related diseases. Histone methylation and demethylation, which are involved in gene expression and cellular senescence, are closely associated with the occurrence and development of vascular aging. Consequently, this review aimed to identify the role of histone methylation in the pathogenesis of vascular aging and its potential for treating age-related vascular diseases and provided new insights into therapeutic strategies targeting the vascular system.
Collapse
Affiliation(s)
- Yufei Ji
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenzhen Chen
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Selivanovskiy AV, Molodova MN, Khrameeva EE, Ulianov SV, Razin SV. Liquid condensates: a new barrier to loop extrusion? Cell Mol Life Sci 2025; 82:80. [PMID: 39976773 PMCID: PMC11842697 DOI: 10.1007/s00018-024-05559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 02/23/2025]
Abstract
Liquid-liquid phase separation (LLPS), driven by dynamic, low-affinity multivalent interactions of proteins and RNA, results in the formation of macromolecular condensates on chromatin. These structures are likely to provide high local concentrations of effector factors responsible for various processes including transcriptional regulation and DNA repair. In particular, enhancers, super-enhancers, and promoters serve as platforms for condensate assembly. In the current paradigm, enhancer-promoter (EP) interaction could be interpreted as a result of enhancer- and promoter-based condensate contact/fusion. There is increasing evidence that the spatial juxtaposition of enhancers and promoters could be provided by loop extrusion (LE) by SMC complexes. Here, we propose that condensates may act as barriers to LE, thereby contributing to various nuclear processes including spatial contacts between regulatory genomic elements.
Collapse
Affiliation(s)
- Arseniy V Selivanovskiy
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Maria N Molodova
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | | | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
7
|
Sun L, Fu X, Xiao Z, Ma G, Zhou Y, Hu H, Shi L, Li D, Jauch R, Hutchins AP. BRD8 Guards the Pluripotent State by Sensing and Maintaining Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409160. [PMID: 39656858 PMCID: PMC11792058 DOI: 10.1002/advs.202409160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Epigenetic control of cell fates is a critical determinant to maintain cell type stability and permit differentiation during embryonic development. However, the epigenetic control mechanisms are not well understood. Here, it is shown that the histone acetyltransferase reader protein BRD8 impairs the conversion of primed mouse EpiSCs (epiblast stem cells) to naive mouse ESCs (embryonic stem cells). BRD8 works by maintaining histone acetylation on promoters and transcribed gene bodies. BRD8 is responsible for maintaining open chromatin at somatic genes, and histone acetylation at naive-specific genes. When Brd8 expression is reduced, chromatin accessibility is unchanged at primed-specific genes, but histone acetylation is reduced. Conversely, naive-specific genes has reduced repressive chromatin marks and acquired accessible chromatin more rapidly during the cell type conversion. It is shown that this process requires active histone deacetylation to promote the conversion of primed to naive. This data supports a model for BRD8 reading histone acetylation to accurately localize the genome-wide binding of the histone acetyltransferase KAT5. Overall, this study shows how the reading of the histone acetylation state by BRD8 maintains cell type stability and both enables and impairs stem cell differentiation.
Collapse
Affiliation(s)
- Li Sun
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Xiuling Fu
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Zhen Xiao
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Gang Ma
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Yibin Zhou
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Haoqing Hu
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Centre for Translational Stem Cell BiologyHong KongSARChina
| | - Liyang Shi
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Dongwei Li
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510799China
| | - Ralf Jauch
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Centre for Translational Stem Cell BiologyHong KongSARChina
| | - Andrew Paul Hutchins
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
8
|
Feng W, Chen T. Epigenetic modification mediated by PHF20/METTL14/HOXA13 signaling axis modulates osteogenic differentiation of mesenchymal stem cells. Funct Integr Genomics 2025; 25:7. [PMID: 39757292 DOI: 10.1007/s10142-024-01516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
This study investigates the mechanism of PHF20 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). BMSCs from Balb/c mouse were cultured and identified through osteogenesis, adipogenesis, and flow cytometry. After osteogenic induction, the levels of OPN and OCN in BMSCs were detected by RT-qPCR. Alizarin red staining and alkaline phosphatase (ALP) staining were used to evaluate the osteogenic differentiation ability of BMSCs. PHF20, METTL14, and HOXA13 expressions were detected by RT-qPCR and Western blot. After quantitative analysis of m6A level, RNA immunoprecipitation (RIP) was performed to measure the enrichment of IGF2BP3 or m6A on HOXA13 mRNA. HOXA13 mRNA stability was assessed after actinomycin D treatment. PHF20, METT14, and HOXA13 expressions gradually increased during osteogenic differentiation of BMSCs. Suppression of PHF20 expression repressed the osteogenic differentiation of BMSCs, mainly resulted in a decrease in OPN and OCN levels, reduced mineralization, and weakened ALP activity. Mechanistically, PHF20 elevated METTL14 expression by enhancing the enrichment of H3K4me3 on its promoter, and METTL14 strengthened HOXA13 m6A methylation to maintain HOXA13 mRNA stability through IGF2BP3. In conclusion, PHF20 elevates METTL14 expression by enhancing H3K4me3 enrichment on its promoter and enhances HOXA13 mRNA stability via IGF2BP3-mediated m6A modification, thus facilitating HOXA13 expression and eventually inducing osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Weijia Feng
- Department of Pediatric Orthopaedic, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Ting Chen
- Department of Pediatric Orthopaedic, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
9
|
Bohnacker S, Henkel FDR, Hartung F, Geerlof A, Riemer S, Prodjinotho UF, Salah EB, Mourão ASD, Bohn S, Teder T, Thomas D, Gurke R, Boeckel C, Ud-Dean M, König AC, Quaranta A, Alessandrini F, Lechner A, Spitzlberger B, Kabat AM, Pearce E, Haeggström JZ, Hauck SM, Wheelock CE, Jakobsson PJ, Sattler M, Voehringer D, Feige MJ, da Costa CP, Esser-von Bieren J. A helminth enzyme subverts macrophage-mediated immunity by epigenetic targeting of prostaglandin synthesis. Sci Immunol 2024; 9:eadl1467. [PMID: 39642243 DOI: 10.1126/sciimmunol.adl1467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2024] [Indexed: 12/08/2024]
Abstract
The molecular mechanisms by which worm parasites evade host immunity are incompletely understood. In a mouse model of intestinal helminth infection using Heligmosomoides polygyrus bakeri (Hpb), we show that helminthic glutamate dehydrogenase (heGDH) drives parasite chronicity by suppressing macrophage-mediated host defense. Combining RNA-seq, ChIP-seq, and targeted lipidomics, we identify prostaglandin E2 (PGE2) as a major immune regulatory mechanism of heGDH. The induction of PGE2 and other immunoregulatory factors, including IL-12 family cytokines and indoleamine 2,3-dioxygenase 1, by heGDH required p300-mediated histone acetylation, whereas the enzyme's catalytic activity suppressed the synthesis of type 2-promoting leukotrienes by macrophages via 2-hydroxyglutarate. By contrast, the induction of immunoregulatory factors involved the heGDH N terminus by potentially mediating interactions with cellular targets (CD64 and GPNMB) identified by proteomics. Type 2 cytokines counteracted suppressive effects of heGDH on host defense, indicating that type 2 immunity can limit helminth-driven immune evasion. Thus, helminths harness a ubiquitous metabolic enzyme to epigenetically target type 2 macrophage activation and establish chronicity.
Collapse
Affiliation(s)
- Sina Bohnacker
- Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Fiona D R Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Franziska Hartung
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Arie Geerlof
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Riemer
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Ulrich F Prodjinotho
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
- Center for Global Health, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Eya Ben Salah
- Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland
| | - André Santos Dias Mourão
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Bohn
- Department of CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Cryo-Electron Microscopy Platform and Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tarvi Teder
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Christiane Boeckel
- Institute of Computational Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Minhaz Ud-Dean
- Institute of Computational Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ann-Christine König
- Metabolomics and Proteomics Core, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Benedikt Spitzlberger
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Agnieszka M Kabat
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Edward Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Department of Medicine, Division of Rheumatology, Karolinska Institutet and Karolinska University Hospital at Solna, Stockholm, Sweden
| | - Michael Sattler
- Cryo-Electron Microscopy Platform and Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Bavarian NMR-Center, Department Chemie, Technische Universität München, Garching, Germany
| | - David Voehringer
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Matthias J Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Clarissa Prazeres da Costa
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
- Center for Global Health, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Julia Esser-von Bieren
- Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
10
|
Meng Z, Yang Y, Li S, Huang L, Yao Z, Chen Y, Wang J, Shen Y, Liang P, Zhang H, Wang W, Wang F. GSE1 promotes the proliferation and migration of lung adenocarcinoma cells by downregulating KLF6 expression. Cell Biol Int 2024; 48:1490-1506. [PMID: 38886911 DOI: 10.1002/cbin.12208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lung cancer is one of the most prevalent human cancers with a high lethality rate worldwide. In this study, we demonstrated that GSE1 (genetic suppressor element 1) expression is aberrantly upregulated in lung adenocarcinoma and that GSE1 depletion inhibits the proliferation and migration of both A549 and H1299 cells. Immunoprecipitation assays demonstrated that GSE1 interacts with histone deacetylase 1 (HDAC1) and other BRAF-HDAC complex (BHC) components in cells. The transcriptome of GSE1-knockdown A549 cells indicated that 207 genes were upregulated and 159 were downregulated based on a p-value < .05 and fold change ≥ 1.5. Bioinformatics analysis suggested that 140 differentially expressed genes harbor binding sites for HDAC1, including the tumor suppressor gene KLF6 (Kruppel-like factor 6). Indeed, quantitative reverse-transcription polymerase chain reaction and western blot analysis revealed that GSE1 could inhibit the transcription of KLF6 in lung cancer cells. In conclusion, GSE1 cooperates with HDAC1 to promote the proliferation and metastasis of non-small cell lung cancer cells through the downregulation of KLF6 expression.
Collapse
Affiliation(s)
- Ziyu Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Yingqian Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Shupei Li
- College of Life Science, Anhui Medical University, Hefei, China
| | - Liguo Huang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Zhoujuan Yao
- College of Life Science, Anhui Medical University, Hefei, China
| | - Yixuan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Junkun Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Yiru Shen
- College of Life Science, Anhui Medical University, Hefei, China
| | - Pingping Liang
- College of Life Science, Anhui Medical University, Hefei, China
| | - Hui Zhang
- College of Life Science, Anhui Medical University, Hefei, China
| | - Wenbin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Fengsong Wang
- College of Life Science, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Frazzi R. KLF4 is an epigenetically modulated, context-dependent tumor suppressor. Front Cell Dev Biol 2024; 12:1392391. [PMID: 39135777 PMCID: PMC11317372 DOI: 10.3389/fcell.2024.1392391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
The epigenetic layer of regulation has become increasingly relevant in the research focused on tumor suppressors. KLF4 is a well-described zinc-finger transcription factor, mainly known for its role in the acquisition of cell pluripotency. Here we report and describe the most relevant epigenetic regulation mechanisms that affect KLF4 expression in tumors. CpG island methylation emerges as the most common mechanism in several tumors including lung adenocarcinoma, hepatocellular carcinoma, non-Hodgkin lymphomas, among others. Further layers of regulation represented by histone methylation and acetylation and by non-coding RNAs are described. Overall, KLF4 emerges as a crucial target in the fight against cancer.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Molecular Pathology Laboratory, Azienda Unità Sanitaria Locale–IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
12
|
Ding H, Tong J, Lin H, Ping F, Yao T, Ye Z, Chu J, Yuan D, Wang K, Liu X, Chen F. KLF4 inhibited the senescence-associated secretory phenotype in ox-LDL-treated endothelial cells via PDGFRA/NAMPT/mitochondrial ROS. Aging (Albany NY) 2024; 16:8070-8085. [PMID: 38728249 PMCID: PMC11132013 DOI: 10.18632/aging.205805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Inflammation is one of the significant consequences of ox-LDL-induced endothelial cell (EC) dysfunction. The senescence-associated secretory phenotype (SASP) is a critical source of inflammation factors. However, the molecular mechanism by which the SASP is regulated in ECs under ox-LDL conditions remains unknown. RESULTS The level of SASP was increased in ox-LDL-treated ECs, which could be augmented by KLF4 knockdown whereas restored by KLF4 knock-in. Furthermore, we found that KLF4 directly promoted PDGFRA transcription and confirmed the central role of the NAPMT/mitochondrial ROS pathway in KLF4/PDGFRA-mediated inhibition of SASP. Animal experiments showed a higher SASP HFD-fed mice, compared with normal feed (ND)-fed mice, and the endothelium of EC-specific KLF4-/- mice exhibited a higher proportion of SA-β-gal-positive cells and lower PDGFRA/NAMPT expression. CONCLUSIONS Our results revealed that KLF4 inhibits the SASP of endothelial cells under ox-LDL conditions through the PDGFRA/NAMPT/mitochondrial ROS. METHODS Ox-LDL-treated ECs and HFD-fed mice were used as endothelial senescence models in vitro and in vivo. SA-β-gal stain, detection of SAHF and the expression of inflammatory factors determined SASP and senescence of ECs. The direct interaction of KLF4 and PDGFRA promotor was analyzed by EMSA and fluorescent dual luciferase reporting analysis.
Collapse
Affiliation(s)
- Haoran Ding
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Tong
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao Lin
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fan Ping
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tongqing Yao
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zi Ye
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiapeng Chu
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Deqiang Yuan
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kangwei Wang
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xuebo Liu
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fei Chen
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
14
|
Zeng J, Gao W, Tang Y, Wang Y, Liu X, Yin J, Su X, Zhang M, Kang E, Tian Y, Ni B, He W. Hypoxia-sensitive cells trigger NK cell activation via the KLF4-ASH1L-ICAM-1 axis, contributing to impairment in the rat epididymis. Cell Rep 2023; 42:113442. [PMID: 37952156 DOI: 10.1016/j.celrep.2023.113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/31/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Male infertility is a global health problem especially prevalent in high-altitude regions. The epididymis is essential for sperm maturation, but the influence of environmental cues on its reshaping remains poorly understood. Here, we use single-cell transcriptomics to track the cellular profiles of epidydimal cells in rats raised under normoxia or extended hypoxia. The results show that hypoxia impairs epididymal function, evident in reduced epithelial cells, compromised blood-epididymis barrier integrity, and increased natural killer cells. Through combined analysis of gene-regulatory networks and cell-cell interaction maps, we identify epididymal hypoxia-sensitive cells that communicate with natural killer (NK) cells via increased intercellular adhesion molecule 1 (ICAM-1) driven by KLF4 recruitment of the histone methyltransferase ASL1L to the Icam1 promoter. Taken together, our study offers a detailed blueprint of epididymal changes during hypoxia and defines a KLF4-ALSH1L-ICAM-1 axis contributing to NK cell activation, yielding a potential treatment targeting hypoxia-induced infertility.
Collapse
Affiliation(s)
- Jitao Zeng
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weiwu Gao
- Institute of Immunology, People's Liberation Army (PLA), and Department of Immunology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Ying Tang
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ying Wang
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaona Liu
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jun Yin
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Xingxing Su
- Hepatological Surgery Department, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Enchuan Kang
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Tian
- Institute of Immunology, People's Liberation Army (PLA), and Department of Immunology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Wei He
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
15
|
Chen X, Jiang Q, Ren L, Ren H, Xu H, Wang J, Wang P, Chen S, Hua Y, Ren S, Huang N, Zhang L, Xiao L. BET proteins inhibitor JQ1 impairs GM-CSF-promoted peritoneal macrophage self-renewal and IL-4-induced alternative polarization. Int Immunopharmacol 2023; 124:110942. [PMID: 37716160 DOI: 10.1016/j.intimp.2023.110942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Peritoneal macrophages (PMs), which resided in peritoneal cavity, are crucial to maintain tissue homeostasis and immunity. Macrophage self-renewal and polarization states are critical for PM population homeostasis and function. However, the underlying molecular mechanism that regulates self-renewal and polarization of PMs is still unclear and needs to be explored. Here, we demonstrated that PMs self-renewal was stimulated by granulocyte macrophage colony-stimulating factor (GM-CSF), but not by macrophage colony-stimulating factor (M-CSF). Pharmacological inhibition of Bromodomain & Extraterminal (BET) Proteins by either JQ1 or ARV-825 significantly reduced GM-CSF-dependent peritoneal macrophage self-renewal by abrogating cell proliferation and decreasing self-renewal-related gene expression, such as MYC and Klf4, at transcriptional and protein levels. In addition, transcriptomic analysis showed that JQ1 blocked alternative PMs polarization by downregulating key transcriptional factor IRF4 expression, but not the activation of AKT or STAT6 in PMs. These findings illustrated that the significance of BET family proteins in GM-CSF-induced PMs self-renewal and IL-4-induced alternative polarization.
Collapse
Affiliation(s)
- Xue Chen
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Qiong Jiang
- Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518107, Guangdong, China
| | - Laibin Ren
- Department of Pathophysiology, West China College of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongyu Ren
- Department of Pathophysiology, West China College of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Haizhao Xu
- Department of Respiratory, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518055, Guangdong, China
| | - Jinyong Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518107, Guangdong, China
| | - Pengbo Wang
- School of Professional Studies, Columbia University, NY 10027, NY, USA
| | - Shanze Chen
- Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518107, Guangdong, China; Department of Pathophysiology, West China College of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuanqi Hua
- Department of Pathophysiology, West China College of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sichong Ren
- Department of Nephrology, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Ning Huang
- Department of Pathophysiology, West China College of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lanlan Zhang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lijia Xiao
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong, China.
| |
Collapse
|
16
|
Dong L, Gao L. JMJD3 and SNAI2 synergistically protect against Parkinson's disease by mediating the YAP/HIF1α signaling pathway in a mouse model. Hum Mol Genet 2023; 32:3040-3052. [PMID: 37453035 DOI: 10.1093/hmg/ddad115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
This study aimed to characterize the functional relevance and mechanistic basis of the histone demethylase Jumonji domain-containing protein-3 (JMJD3) in preserving dopaminergic neuron survival in Parkinson's disease (PD). Mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced lesions and MN9D dopaminergic neuronal cell lines exposed to 6-OHDA, respectively, were used to simulate in vivo and in vitro PD-like environments. PD-related genes with differential expressions were identified using RNA sequencing of hippocampal tissues collected from MPTP-lesioned mice. A specific lentiviral shRNA vector was used to investigate the effects of JMJD3 on neuron activities in vitro and PD-like phenotypes in vivo. JMJD3 was found to up-regulate the expression of Snail family transcriptional repressor 2 (SNAI2) through the inhibition of H3 on lysine 27 (H3K27me3) enrichment in the SNAI2 promoter region. As a result, the viability of 6-OHDA-exposed MN9D cells was stimulated, and cell apoptosis was diminished. Knockdown of SNAI2 decreased the expression of yes-associated protein (YAP) and HIF1α while also reducing the viability of 6-OHDA-exposed MN9D cells and increasing cell apoptosis. The in vivo experiments demonstrated that JMJD3 activated the SNAI2/YAP/HIF1α signaling pathway, inhibiting PD-like phenotypes in MPTP-lesioned mice. Thus, the findings provide evidence that JMJD3 inhibits the enrichment of H3K27me3 at the SNAI2 promoter, leading to the upregulation of SNAI2 expression and activation of the YAP/HIF1α signaling pathway, ultimately exerting a protective effect on PD mice. This finding suggests that targeting the JMJD3-SNAI2 pathway could be a promising therapeutic strategy for PD. Further in-depth studies are needed to elucidate the underlying mechanisms and identify potential downstream targets of this pathway.
Collapse
Affiliation(s)
- Li Dong
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
17
|
Xu H, Lin X, Li Z, He X, Li Y, Qiu L, Lu L, Liu B, Zhan M, He K. VIRMA facilitates intrahepatic cholangiocarcinoma progression through epigenetic augmentation of TMED2 and PARD3B mRNA stabilization. J Gastroenterol 2023; 58:925-944. [PMID: 37391589 DOI: 10.1007/s00535-023-02015-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND N6-methyladenine modification of RNA, a critical component of the regulatory role at the post-transcriptional level, has a crucial effect on tumor development and progression. vir-Like m6A methyltransferase associated (VIRMA) has been recently discovered as an N6-methyladenine methyltransferase; however, its specific role in intrahepatic cholangiocarcinoma (ICC) remains to be investigated in-depth. METHODS VIRMA expression and its association with clinicopathological characteristics were evaluated using The Cancer Genome Atlas (TCGA) dataset and tissue microarrays. In vivo and in vitro assays were performed to determine the role of VIRMA in ICC proliferation and metastasis. The underlying mechanism by which VIRMA influences ICC was clarified by RNA sequencing (RNA-seq), methylated RNA immunoprecipitation sequencing (MeRIP-seq), SLAM sequencing (SLAM-seq), RNA immunoprecipitation, a luciferase reporter assay, and chromatin immunoprecipitation assay. RESULTS VIRMA showed high expression in ICC tissues, and this finding predicted a dismal prognostic outcome. The high expression of VIRMA in ICC was due to the demethylation of H3K27me3 modification in the promoter region. Functionally, VIRMA is required for the endothelial-mesenchymal transition (EMT) process in ICC cells, as shown by multiple ICC models in in vitro and in vivo experiments. Mechanistically, multi-omics analysis using ICC cells demonstrated that TMED2 and PARD3B were the direct downstream target of VIRMA. The methylated TMED2 and PARD3B transcripts were directly recognized by HuR, which exerted stabilizing effects on its bound RNA. VIRMA-induced expression of TMED2 and PARD3B activated the Akt/GSK/β-catenin and MEK/ERK/Slug signaling pathways, thereby promoting ICC proliferation and metastasis. CONCLUSIONS The present study showed that VIRMA plays a critical role in ICC development by stabilizing TMED2 and PARD3B expression through the m6A-HuR-mediated mechanism. Thus, demonstrating VIRMA and its pathway as candidate therapeutic targets for ICC treatment.
Collapse
Affiliation(s)
- Hongfa Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Xiaowen Lin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
| | - Zhongliang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
| | - Xu He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
| | - Yong Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
| | - Lige Qiu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, 510310, Guangdong, China.
| |
Collapse
|
18
|
Fu X, Zhuang Q, Babarinde IA, Shi L, Ma G, Hu H, Li Y, Chen J, Xiao Z, Deng B, Sun L, Jauch R, Hutchins AP. Restricting epigenetic activity promotes the reprogramming of transformed cells to pluripotency in a line-specific manner. Cell Death Discov 2023; 9:245. [PMID: 37452056 PMCID: PMC10349098 DOI: 10.1038/s41420-023-01533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Somatic cell reprogramming and oncogenic transformation share surprisingly similar features, yet transformed cells are resistant to reprogramming. Epigenetic barriers must block transformed cells from reprogramming, but the nature of those barriers is unclear. In this study, we generated a systematic panel of transformed mouse embryonic fibroblasts (MEFs) using oncogenic transgenes and discovered transformed cell lines compatible with reprogramming when transfected with Oct4/Sox2/Klf4/Myc. By comparing the reprogramming-capable and incapable transformed lines we identified multiple stages of failure in the reprogramming process. Some transformed lines failed at an early stage, whilst other lines seemed to progress through a conventional reprogramming process. Finally, we show that MEK inhibition overcomes one critical reprogramming barrier by indirectly suppressing a hyperacetylated active epigenetic state. This study reveals that diverse epigenetic barriers underly resistance to reprogramming of transformed cells.
Collapse
Affiliation(s)
- Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Zhuang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liyang Shi
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuhao Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiao Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Xiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Boping Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Salazar K, Jara N, Ramírez E, de Lima I, Smith-Ghigliotto J, Muñoz V, Ferrada L, Nualart F. Role of vitamin C and SVCT2 in neurogenesis. Front Neurosci 2023; 17:1155758. [PMID: 37424994 PMCID: PMC10324519 DOI: 10.3389/fnins.2023.1155758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Different studies have established the fundamental role of vitamin C in proliferation, differentiation, and neurogenesis in embryonic and adult brains, as well as in in vitro cell models. To fulfill these functions, the cells of the nervous system regulate the expression and sorting of sodium-dependent vitamin C transporter 2 (SVCT2), as well as the recycling of vitamin C between ascorbic acid (AA) and dehydroascorbic acid (DHA) via a bystander effect. SVCT2 is a transporter preferentially expressed in neurons and in neural precursor cells. In developmental stages, it is concentrated in the apical region of the radial glia, and in adult life, it is expressed preferentially in motor neurons of the cerebral cortex, starting on postnatal day 1. In neurogenic niches, SVCT2 is preferentially expressed in precursors with intermediate proliferation, where a scorbutic condition reduces neuronal differentiation. Vitamin C is a potent epigenetic regulator in stem cells; thus, it can induce the demethylation of DNA and histone H3K27m3 in the promoter region of genes involved in neurogenesis and differentiation, an effect mediated by Tet1 and Jmjd3 demethylases, respectively. In parallel, it has been shown that vitamin C induces the expression of stem cell-specific microRNA, including the Dlk1-Dio3 imprinting region and miR-143, which promotes stem cell self-renewal and suppresses de novo expression of the methyltransferase gene Dnmt3a. The epigenetic action of vitamin C has also been evaluated during gene reprogramming of human fibroblasts to induced pluripotent cells, where it has been shown that vitamin C substantially improves the efficiency and quality of reprogrammed cells. Thus, for a proper effect of vitamin C on neurogenesis and differentiation, its function as an enzymatic cofactor, modulator of gene expression and antioxidant is essential, as is proper recycling from DHA to AA by various supporting cells in the CNS.
Collapse
Affiliation(s)
- Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Center for Advanced Microscopy CMA BIO, University of Concepcion, Concepcion, Chile
| | - Nery Jara
- Department of Pharmacology, University of Concepcion, Concepcion, Chile
| | - Eder Ramírez
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Isabelle de Lima
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Javiera Smith-Ghigliotto
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Valentina Muñoz
- Department of Pharmacology, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Center for Advanced Microscopy CMA BIO, University of Concepcion, Concepcion, Chile
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Center for Advanced Microscopy CMA BIO, University of Concepcion, Concepcion, Chile
| |
Collapse
|
20
|
Yao P, Zhang Z, Liu H, Jiang P, Li W, Du W. p53 protects against alcoholic fatty liver disease via ALDH2 inhibition. EMBO J 2023; 42:e112304. [PMID: 36825429 PMCID: PMC10106987 DOI: 10.15252/embj.2022112304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The tumor suppressor p53 is critical for tumor suppression, but the regulatory role of p53 in alcohol-induced fatty liver remains unclear. Here, we show a role for p53 in regulating ethanol metabolism via acetaldehyde dehydrogenase 2 (ALDH2), a key enzyme responsible for the oxidization of alcohol. By repressing ethanol oxidization, p53 suppresses intracellular levels of acetyl-CoA and histone acetylation, leading to the inhibition of the stearoyl-CoA desaturase-1 (SCD1) gene expression. Mechanistically, p53 directly binds to ALDH2 and prevents the formation of its active tetramer and indirectly limits the production of pyruvate that promotes the activity of ALDH2. Notably, p53-deficient mice exhibit increased lipid accumulation, which can be reversed by ALDH2 depletion. Moreover, liver-specific knockdown of SCD1 alleviates ethanol-induced hepatic steatosis caused by p53 loss. By contrast, overexpression of SCD1 in liver promotes ethanol-induced fatty liver development in wild-type mice, while it has a mild effect on p53-/- or ALDH2-/- mice. Overall, our findings reveal a previously unrecognized function of p53 in alcohol-induced fatty liver and uncover pyruvate as a natural regulator of ALDH2.
Collapse
Affiliation(s)
- Pengbo Yao
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, School of Basic Medicine Peking Union Medical CollegeInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesBeijingChina
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Zhenxi Zhang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, School of Basic Medicine Peking Union Medical CollegeInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesBeijingChina
| | - Hongchao Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Peng Jiang
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Wei Li
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, School of Basic Medicine Peking Union Medical CollegeInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesBeijingChina
| | - Wenjing Du
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, School of Basic Medicine Peking Union Medical CollegeInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
21
|
Zhou Q, Wang Y, Lu Z, Wang B, Li L, You M, Wang L, Cao T, Zhao Y, Li Q, Mou A, Shu W, He H, Zhao Z, Liu D, Zhu Z, Gao P, Yan Z. Mitochondrial dysfunction caused by SIRT3 inhibition drives proinflammatory macrophage polarization in obesity. Obesity (Silver Spring) 2023; 31:1050-1063. [PMID: 36894333 DOI: 10.1002/oby.23707] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 03/11/2023]
Abstract
OBJECTIVE Metabolic reprogramming is a main feature of proinflammatory macrophage polarization, a process that leads to inflammation in dysfunctional adipose tissue. Therefore, the study aim was to explore whether sirtuin 3 (SIRT3), a mitochondrial deacetylase, participates in this pathophysiological process. METHODS Macrophage-specific Sirt3 knockout (Sirt3-MKO) mice and wild-type littermates were treated with a high-fat diet. Body weight, glucose tolerance, and inflammation were evaluated. Bone marrow-derived macrophages and RAW264.7 cells were treated with palmitic acid to explore the mechanism of SIRT3 on inflammation. RESULTS The expression of SIRT3 was significantly repressed in both bone marrow-derived macrophages and adipose tissue macrophages in mice fed with a high-fat diet. Sirt3-MKO mice exhibited accelerated body weight and severe inflammation, accompanied with reduced energy expenditure and worsened glucose metabolism. In vitro experiments showed that SIRT3 inhibition or knockdown exacerbated palmitic acid-induced proinflammatory macrophage polarization, whereas SIRT3 restoration displayed opposite effects. Mechanistically, SIRT3 deficiency resulted in hyperacetylation of succinate dehydrogenase that led to succinate accumulation, which suppressed the transcription of Kruppel-like factor 4 via increasing histone methylation on its promoter, thus evoking proinflammatory macrophages. CONCLUSIONS This study emphasizes an important preventive role of SIRT3 in macrophage polarization and implies that SIRT3 is a promising therapeutic target for obesity.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Yuyan Wang
- School of Medicine, Chongqing University, Chongqing, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Bowen Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Aidi Mou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Wentao Shu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Hongbo He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Zhigang Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, and Chongqing Institute of Hypertension, Chongqing, China
| |
Collapse
|
22
|
Wang J, Fang J, Feng M, Li L, Ma L, Zhao X, Dai Y. Inhibition of EED activity enhances cell survival of female germline stem cell and improves the oocytes production during oogenesis in vitro. Open Biol 2023; 13:220211. [PMID: 36695089 PMCID: PMC9874982 DOI: 10.1098/rsob.220211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ovarian organoids, based on female germline stem cells (FGSCs), are nowadays widely applied for reproductive medicine screening and exploring the potential mechanisms during mammalian oogenesis. However, there are still key issues that urgently need to be resolved in ovarian organoid technology, one of which is to establish a culture system that effectively expands FGSCs in vitro, as well as maintaining the unipotentcy of FGSCs to differentiate into oocytes. Here, FGSCs were EED226 treated and processed for examination of proliferation and differentiation in vitro. According to the results, EED226 specifically increased FGSC survival by decreasing the enrichment of H3K27me3 on Oct4 promoter and exon, as well as enhancing OCT4 expression and inhibiting P53 and P63 expression. Notably, we also found that FGSCs with EED226 treatment differentiated into more oocytes during oogenesis in vitro, and the resultant oocytes maintained a low level of P63 versus control at early stage development. These results demonstrated that inhibition of EED activity appeared to promote the survival of FGSCs and markedly inhibited their apoptosis during in vitro differentiation. As a result of our study, we propose an effective culture strategy to culture FGSCs and obtain oocytes in vitro, which provides a new vision for oogenesis in vitro.
Collapse
Affiliation(s)
- Jiapeng Wang
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| | - Junxian Fang
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| | - Mingqian Feng
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| | - Liping Li
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| | - Lixin Ma
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| | - Xiaorong Zhao
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| | - Yanfeng Dai
- College of Life Sciences, Inner Mongolia University, Xilingol South Road No. 49, Hohhot 010020, People's Republic of China
| |
Collapse
|
23
|
The influence of high-order chromatin state in the regulation of stem cell fate. Biochem Soc Trans 2022; 50:1809-1822. [DOI: 10.1042/bst20220763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genomic DNA is hierarchically compacted by histones into chromatin, which is initially assembled by the nucleosome and further folded into orderly and flexible structures that include chromatin fiber, chromatin looping, topologically associated domains (TADs), chromosome compartments, and chromosome territories. These distinct structures and motifs build the three-dimensional (3D) genome architecture, which precisely controls spatial and temporal gene expression in the nucleus. Given that each type of cell is characterized by its own unique gene expression profile, the state of high-order chromatin plays an essential role in the cell fate decision. Accumulating evidence suggests that the plasticity of high-order chromatin is closely associated with stem cell fate. In this review, we summarize the biological roles of the state of high-order chromatin in embryogenesis, stem cell differentiation, the maintenance of stem cell identity, and somatic cell reprogramming. In addition, we highlight the roles of epigenetic factors and pioneer transcription factors (TFs) involved in regulating the state of high-order chromatin during the determination of stem cell fate and discuss how H3K9me3-heterochromatin restricts stem cell fate. In summary, we review the most recent progress in research on the regulatory functions of high-order chromatin dynamics in the determination and maintenance of stem cell fate.
Collapse
|
24
|
The adventitia in arterial development, remodeling, and hypertension. Biochem Pharmacol 2022; 205:115259. [PMID: 36150432 DOI: 10.1016/j.bcp.2022.115259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022]
Abstract
The adventitia receives input signals from the vessel wall, the immune system, perivascular nerves and from surrounding tissues to generate effector responses that regulate structural and mechanical properties of blood vessels. It is a complex and dynamic tissue that orchestrates multiple functions for vascular development, homeostasis, repair, and disease. The purpose of this review is to highlight recent advances in our understanding of the origins, phenotypes, and functions of adventitial and perivascular cells with particular emphasis on hypertensive vascular remodeling.
Collapse
|
25
|
Proteins That Read DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:269-293. [DOI: 10.1007/978-3-031-11454-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Wu L, He S, Ye W, Shen J, Zhao K, Zhang Y, Zhang R, Wei J, Cao S, Chen K, Le R, Xi C, Kou X, Zhao Y, Wang H, Kang L, Gao S. Surf4 facilitates reprogramming by activating the cellular response to endoplasmic reticulum stress. Cell Prolif 2021; 54:e13133. [PMID: 34585448 PMCID: PMC8560622 DOI: 10.1111/cpr.13133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Maternal factors that are enriched in oocytes have attracted great interest as possible key factors in somatic cell reprogramming. We found that surfeit locus protein 4 (Surf4), a maternal factor, can facilitate the generation of induced pluripotent stem cells (iPSCs) previously, but the mechanism remains elusive. MATERIALS AND METHODS In this study, we investigated the function and mechanism of Surf4 in somatic cell reprogramming using a secondary reprogramming system. Alkaline phosphatase (AP) staining, qPCR and immunofluorescence (IF) staining of expression of related markers were used to evaluate efficiency of iPSCs derived from mouse embryonic fibroblasts. Embryoid body and teratoma formation assays were performed to evaluate the differentiation ability of the iPSC lines. RNA-seq, qPCR and western blot analysis were applied to validate the downstream targets of Surf4. RESULTS Surf4 can significantly facilitate the generation of iPSCs in a proliferation-independent manner. When co-expressed with Oct4, Sox2, Klf4 and c-Myc (OSKM), Surf4 can activate the response to endoplasmic reticulum (ER) stress at the early stage of reprogramming. We further demonstrated that Hspa5, a major ER chaperone, and the active spliced form of Xbp1 (sXbp1), a major mediator of ER stress, can mimic the effects of Surf4 on somatic cell reprogramming. Concordantly, blocking the unfolded protein response compromises the effect of Surf4 on reprogramming. CONCLUSIONS Surf4 promotes somatic cell reprogramming by activating the response to ER stress.
Collapse
Affiliation(s)
- Li Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shengxiang He
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Anhui Toneker Biotechnology Co., Ltd., Jinzhai, China
| | - Wen Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiacheng Shen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kun Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ran Zhang
- Anhui Toneker Biotechnology Co., Ltd., Jinzhai, China
| | - Junhao Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuyuan Cao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rongrong Le
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chenxiang Xi
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanhong Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lan Kang
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
27
|
Liquid condensation of reprogramming factor KLF4 with DNA provides a mechanism for chromatin organization. Nat Commun 2021; 12:5579. [PMID: 34552088 PMCID: PMC8458463 DOI: 10.1038/s41467-021-25761-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Expression of a few master transcription factors can reprogram the epigenetic landscape and three-dimensional chromatin topology of differentiated cells and achieve pluripotency. During reprogramming, thousands of long-range chromatin contacts are altered, and changes in promoter association with enhancers dramatically influence transcription. Molecular participants at these sites have been identified, but how this re-organization might be orchestrated is not known. Biomolecular condensation is implicated in subcellular organization, including the recruitment of RNA polymerase in transcriptional activation. Here, we show that reprogramming factor KLF4 undergoes biomolecular condensation even in the absence of its intrinsically disordered region. Liquid–liquid condensation of the isolated KLF4 DNA binding domain with a DNA fragment from the NANOG proximal promoter is enhanced by CpG methylation of a KLF4 cognate binding site. We propose KLF4-mediated condensation as one mechanism for selectively organizing and re-organizing the genome based on the local sequence and epigenetic state. KLF4, OCT4, SOX2 and MYC cooperate to reorganize chromatin during somatic cell reprogramming. Here the authors show that KLF4 forms a liquid-like biomolecular condensate that recruits OCT4 and SOX2, and that condensation of the isolated KLF4 DNA binding domain with DNA is enhanced by CpG methylation
Collapse
|
28
|
García-Gutiérrez P, García-Domínguez M. BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome. Front Mol Biosci 2021; 8:709232. [PMID: 34386522 PMCID: PMC8353280 DOI: 10.3389/fmolb.2021.709232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a human developmental syndrome with complex multisystem phenotypic features. It has been traditionally considered a cohesinopathy together with other phenotypically related diseases because of their association with mutations in subunits of the cohesin complex. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably and, although their precise molecular mechanisms are not well defined yet, the potential pathomechanisms underlying these diverse developmental defects have been theoretically linked to alterations of the cohesin complex function. The cohesin complex plays a critical role in sister chromatid cohesion, but this function is not affected in CdLS. In the last decades, a non-cohesion-related function of this complex on transcriptional regulation has been well established and CdLS pathoetiology has been recently associated to gene expression deregulation. Up to 70% of CdLS cases are linked to mutations in the cohesin-loading factor NIPBL, which has been shown to play a prominent function on chromatin architecture and transcriptional regulation. Therefore, it has been suggested that CdLS can be considered a transcriptomopathy. Actually, CdLS-like phenotypes have been associated to mutations in chromatin-associated proteins, as KMT2A, AFF4, EP300, TAF6, SETD5, SMARCB1, MAU2, ZMYND11, MED13L, PHIP, ARID1B, NAA10, BRD4 or ANKRD11, most of which have no known direct association with cohesin. In the case of BRD4, a critical highly investigated transcriptional coregulator, an interaction with NIPBL has been recently revealed, providing evidence on their cooperation in transcriptional regulation of developmentally important genes. This new finding reinforces the notion of an altered gene expression program during development as the major etiological basis for CdLS. In this review, we intend to integrate the recent available evidence on the molecular mechanisms underlying the clinical manifestations of CdLS, highlighting data that favors a transcription-centered framework, which support the idea that CdLS could be conceptualized as a transcriptomopathy.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
29
|
Ding Y, Yao Y, Gong X, Zhuo Q, Chen J, Tian M, Farzaneh M. JMJD3: a critical epigenetic regulator in stem cell fate. Cell Commun Signal 2021; 19:72. [PMID: 34217316 PMCID: PMC8254972 DOI: 10.1186/s12964-021-00753-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
The Jumonji domain-containing protein-3 (JMJD3) is a histone demethylase that regulates the trimethylation of histone H3 on lysine 27 (H3K27me3). H3K27me3 is an important epigenetic event associated with transcriptional silencing. JMJD3 has been studied extensively in immune diseases, cancer, and tumor development. There is a comprehensive epigenetic transformation during the transition of embryonic stem cells (ESCs) into specialized cells or the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs). Recent studies have illustrated that JMJD3 plays a major role in cell fate determination of pluripotent and multipotent stem cells (MSCs). JMJD3 has been found to enhance self-renewal ability and reduce the differentiation capacity of ESCs and MSCs. In this review, we will focus on the recent advances of JMJD3 function in stem cell fate. Video Abstract
Collapse
Affiliation(s)
- Yuanjie Ding
- School of Medicine, Jishou University, Jishou, 416000, China.,Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, 427000, China
| | - Yuanchun Yao
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Xingmu Gong
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Qi Zhuo
- School of Medicine, Jishou University, Jishou, 416000, China.
| | - Jinhua Chen
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Miao Tian
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
30
|
Sun L, Fu X, Ma G, Hutchins AP. Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Front Cell Dev Biol 2021; 9:637309. [PMID: 33681220 PMCID: PMC7930395 DOI: 10.3389/fcell.2021.637309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
A major event in embryonic development is the rearrangement of epigenetic information as the somatic genome is reprogrammed for a new round of organismal development. Epigenetic data are held in chemical modifications on DNA and histones, and there are dramatic and dynamic changes in these marks during embryogenesis. However, the mechanisms behind this intricate process and how it is regulating and responding to embryonic development remain unclear. As embryos develop from totipotency to pluripotency, they pass through several distinct stages that can be captured permanently or transiently in vitro. Pluripotent naïve cells resemble the early epiblast, primed cells resemble the late epiblast, and blastomere-like cells have been isolated, although fully totipotent cells remain elusive. Experiments using these in vitro model systems have led to insights into chromatin changes in embryonic development, which has informed exploration of pre-implantation embryos. Intriguingly, human and mouse cells rely on different signaling and epigenetic pathways, and it remains a mystery why this variation exists. In this review, we will summarize the chromatin rearrangements in early embryonic development, drawing from genomic data from in vitro cell lines, and human and mouse embryos.
Collapse
Affiliation(s)
| | | | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|