1
|
Wéber E, Ábrányi-Balogh P, Nagymihály B, Menyhárd DK, Péczka N, Gadanecz M, Schlosser G, Orgován Z, Bogár F, Bajusz D, Kecskeméti G, Szabó Z, Bartus É, Tököli A, Tóth GK, Szalai TV, Takács T, de Araujo E, Buday L, Perczel A, Martinek TA, Keserű GM. Target-Templated Construction of Functional Proteomimetics Using Photo-Foldamer Libraries. Angew Chem Int Ed Engl 2025; 64:e202410435. [PMID: 39329252 DOI: 10.1002/anie.202410435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Current methods for proteomimetic engineering rely on structure-based design. Here we describe a design strategy that allows the construction of proteomimetics against challenging targets without a priori characterization of the target surface. Our approach employs (i) a 100-membered photoreactive foldamer library, the members of which act as local surface mimetics, and (ii) the subsequent affinity maturation of the primary hits using systems chemistry. Two surface-oriented proteinogenic side chains drove the interactions between the short helical foldamer fragments and the proteins. Diazirine-based photo-crosslinking was applied to sensitively detect and localize binding even to shallow and dynamic patches on representatively difficult targets. Photo-foldamers identified functionally relevant protein interfaces, allosteric and previously unexplored targetable regions on the surface of STAT3 and an oncogenic K-Ras variant. Target-templated dynamic linking of foldamer hits resulted in two orders of magnitude affinity improvement in a single step. The dimeric K-Ras ligand mimicked protein-like catalytic functions. The photo-foldamer approach thus enables the highly efficient mapping of protein-protein interaction sites and provides a viable starting point for proteomimetic ligand development without a priori structural hypotheses.
Collapse
Affiliation(s)
- Edit Wéber
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Bence Nagymihály
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Dóra K Menyhárd
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Nikolett Péczka
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Márton Gadanecz
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Eötvös Loránd University, Egyetem tér 1-3, H-1053, Budapest, Hungary
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Zoltán Szabó
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Éva Bartus
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - Attila Tököli
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - Tibor V Szalai
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Tamás Takács
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Egyetem tér 1-3, H-1053, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Elvin de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Ontario, L5 L 1 C6, Mississauga, Canada
| | - László Buday
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budafoki út 8, H-1111, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| |
Collapse
|
2
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Sampson JM, Cannon DA, Duan J, Epstein JCK, Sergeeva AP, Katsamba PS, Mannepalli SM, Bahna FA, Adihou H, Guéret SM, Gopalakrishnan R, Geschwindner S, Rees DG, Sigurdardottir A, Wilkinson T, Dodd RB, De Maria L, Mobarec JC, Shapiro L, Honig B, Buchanan A, Friesner RA, Wang L. Robust Prediction of Relative Binding Energies for Protein-Protein Complex Mutations Using Free Energy Perturbation Calculations. J Mol Biol 2024; 436:168640. [PMID: 38844044 PMCID: PMC11339910 DOI: 10.1016/j.jmb.2024.168640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how Protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.
Collapse
Affiliation(s)
- Jared M Sampson
- Schrödinger, Inc., Life Sciences Software, New York, NY, USA
| | - Daniel A Cannon
- Schrödinger, GmbH, Life Sciences Software, Mannheim, Germany
| | - Jianxin Duan
- Schrödinger, GmbH, Life Sciences Software, Mannheim, Germany
| | | | - Alina P Sergeeva
- Columbia University, Department of Systems Biology, New York, NY, USA
| | | | - Seetha M Mannepalli
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | - Fabiana A Bahna
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | - Hélène Adihou
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden; Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany
| | - Stéphanie M Guéret
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden; Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden; Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany
| | - Stefan Geschwindner
- AstraZeneca, Mechanistic and Structural Biology, Discovery Sciences, R&D, Gothenburg, Sweden
| | - D Gareth Rees
- AstraZeneca, Biologics Engineering, R&D, Cambridge, UK
| | | | | | - Roger B Dodd
- AstraZeneca, Biologics Engineering, R&D, Cambridge, UK
| | - Leonardo De Maria
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Juan Carlos Mobarec
- AstraZeneca, Mechanistic and Structural Biology, Discovery Sciences, R&D, Cambridge, UK
| | - Lawrence Shapiro
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA; Columbia University, Department of Biochemistry and Molecular Biophysics, New York, NY, USA
| | - Barry Honig
- Columbia University, Department of Systems Biology, New York, NY, USA; Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA; Columbia University, Department of Biochemistry and Molecular Biophysics, New York, NY, USA; Columbia University, Department of Medicine, New York, NY, USA
| | | | | | - Lingle Wang
- Schrödinger, Inc., Life Sciences Software, New York, NY, USA.
| |
Collapse
|
4
|
Steffen CL, Manoharan GB, Pavic K, Yeste-Vázquez A, Knuuttila M, Arora N, Zhou Y, Härmä H, Gaigneaux A, Grossmann TN, Abankwa DK. Identification of an H-Ras nanocluster disrupting peptide. Commun Biol 2024; 7:837. [PMID: 38982284 PMCID: PMC11233548 DOI: 10.1038/s42003-024-06523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Hyperactive Ras signalling is found in most cancers. Ras proteins are only active in membrane nanoclusters, which are therefore potential drug targets. We previously showed that the nanocluster scaffold galectin-1 (Gal1) enhances H-Ras nanoclustering via direct interaction with the Ras binding domain (RBD) of Raf. Here, we establish that the B-Raf preference of Gal1 emerges from the divergence of the Raf RBDs at their proposed Gal1-binding interface. We then identify the L5UR peptide, which disrupts this interaction by binding with low micromolar affinity to the B- and C-Raf-RBDs. Its 23-mer core fragment is sufficient to interfere with H-Ras nanoclustering, modulate Ras-signalling and moderately reduce cell viability. These latter two phenotypic effects may also emerge from the ability of L5UR to broadly engage with several RBD- and RA-domain containing Ras interactors. The L5UR-peptide core fragment is a starting point for the development of more specific reagents against Ras-nanoclustering and -interactors.
Collapse
Affiliation(s)
- Candy Laura Steffen
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Ganesh Babu Manoharan
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Karolina Pavic
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Matias Knuuttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health, Houston, TX, 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health, Houston, TX, 77030, USA
| | - Harri Härmä
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500, Turku, Finland
| | - Anthoula Gaigneaux
- Bioinformatics Core, Department of Life Sciences and Medicine, University of Luxembourg, 4367, Esch-sur-Alzette, Luxembourg
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland.
| |
Collapse
|
5
|
Zhang YN, Wan XC, Tang Y, Chen Y, Zheng FH, Cui ZH, Zhang H, Zhou Z, Fang GM. Employing unnatural promiscuity of sortase to construct peptide macrocycle libraries for ligand discovery. Chem Sci 2024; 15:9649-9656. [PMID: 38939140 PMCID: PMC11206207 DOI: 10.1039/d4sc01992j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
With the increasing attention paid to macrocyclic scaffolds in peptide drug development, genetically encoded peptide macrocycle libraries have become invaluable sources for the discovery of high-affinity peptide ligands targeting disease-associated proteins. The traditional phage display technique of constructing disulfide-tethered macrocycles by cysteine oxidation has the inherent drawback of reduction instability of the disulfide bond. Chemical macrocyclization solves the problem of disulfide bond instability, but the involved highly electrophilic reagents are usually toxic to phages and may bring undesirable side reactions. Here, we report a unique Sortase-mediated Peptide Ligation and One-pot Cyclization strategy (SPLOC) to generate peptide macrocycle libraries, avoiding the undesired reactions of electrophiles with phages. The key to this platform is to mine the unnatural promiscuity of sortase on the X residue of the pentapeptide recognition sequence (LPXTG). Low reactive electrophiles are incorporated into the X-residue side chain, enabling intramolecular cyclization with the cysteine residue of the phage-displayed peptide library. Utilizing the genetically encoded peptide macrocycle library constructed by the SPLOC platform, we found a high-affinity bicyclic peptide binding TEAD4 with a nanomolar KD value (63.9 nM). Importantly, the binding affinity of the bicyclic peptide ligand is 102-fold lower than that of the acyclic analogue. To our knowledge, this is the first time to mine the unnatural promiscuity of ligases to generate peptide macrocycles, providing a new avenue for the construction of genetically encoded cyclic peptide libraries.
Collapse
Affiliation(s)
- Yan-Ni Zhang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Xiao-Cui Wan
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Yang Tang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Ying Chen
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Feng-Hao Zheng
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhi-Hui Cui
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Hua Zhang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University Shanghai 200438 P. R. China
| | - Ge-Min Fang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| |
Collapse
|
6
|
Durukan C, Arbore F, Klintrot R, Bigiotti C, Ilie IM, Vreede J, Grossmann TN, Hennig S. Binding Dynamics of a Stapled Peptide Targeting the Transcription Factor NF-Y. Chembiochem 2024; 25:e202400020. [PMID: 38470946 DOI: 10.1002/cbic.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Transcription factors (TFs) play a central role in gene regulation, and their malfunction can result in a plethora of severe diseases. TFs are therefore interesting therapeutic targets, but their involvement in protein-protein interaction networks and the frequent lack of well-defined binding pockets render them challenging targets for classical small molecules. As an alternative, peptide-based scaffolds have proven useful, in particular with an α-helical active conformation. Peptide-based strategies often require extensive structural optimization efforts, which could benefit from a more detailed understanding of the dynamics in inhibitor/protein interactions. In this study, we investigate how truncated stapled α-helical peptides interact with the transcription factor Nuclear Factor-Y (NF-Y). We identified a 13-mer minimal binding core region, for which two crystal structures with an altered C-terminal peptide conformation when bound to NF-Y were obtained. Subsequent molecular dynamics simulations confirmed that the C-terminal part of the stapled peptide is indeed relatively flexible while still showing defined interactions with NF-Y. Our findings highlight the importance of flexibility in the bound state of peptides, which can contribute to overall binding affinity.
Collapse
Affiliation(s)
- Canan Durukan
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Federica Arbore
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Rasmus Klintrot
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Carlo Bigiotti
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box, 94157, 1090 GD, Amsterdam, The Netherlands
| | - Ioana M Ilie
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box, 94157, 1090 GD, Amsterdam, The Netherlands
| | - Jocelyne Vreede
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box, 94157, 1090 GD, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Sampson JM, Cannon DA, Duan J, Epstein JCK, Sergeeva AP, Katsamba PS, Mannepalli SM, Bahna FA, Adihou H, Guéret SM, Gopalakrishnan R, Geschwindner S, Rees DG, Sigurdardottir A, Wilkinson T, Dodd RB, De Maria L, Mobarec JC, Shapiro L, Honig B, Buchanan A, Friesner RA, Wang L. Robust prediction of relative binding energies for protein-protein complex mutations using free energy perturbation calculations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590325. [PMID: 38712280 PMCID: PMC11071377 DOI: 10.1101/2024.04.22.590325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.
Collapse
Affiliation(s)
| | | | - Jianxin Duan
- Schrödinger, GmbH, Life Sciences Software, Mannheim, Germany
| | | | - Alina P. Sergeeva
- Columbia University, Department of Systems Biology, New York, NY, USA
| | | | - Seetha M. Mannepalli
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027
| | - Fabiana A. Bahna
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027
| | - Hélène Adihou
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
- Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany
| | - Stéphanie M. Guéret
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
- Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
- Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany
| | - Stefan Geschwindner
- AstraZeneca, Mechanistic and Structural Biology, Discovery Sciences, R&D, Cambridge, UK
| | | | | | | | - Roger B. Dodd
- AstraZeneca, Biologics Engineering, R&D, Cambridge, UK
| | - Leonardo De Maria
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Juan Carlos Mobarec
- AstraZeneca, Mechanistic and Structural Biology, Discovery Sciences, R&D, Cambridge, UK
| | - Lawrence Shapiro
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027
- Columbia University, Department of Biochemistry and Molecular Biophysics, New York, NY, USA
| | - Barry Honig
- Columbia University, Department of Systems Biology, New York, NY, USA
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027
- Columbia University, Department of Biochemistry and Molecular Biophysics, New York, NY, USA
- Columbia University, Department of Medicine, New York, NY, USA
| | | | | | - Lingle Wang
- Schrödinger, Inc., Life Sciences Software, New York, NY, USA
| |
Collapse
|
8
|
Grasso N, Graziano R, Marzano S, D'Aria F, Merlino F, Grieco P, Randazzo A, Pagano B, Amato J. Unveiling the interaction between DNA G-quadruplexes and RG-rich peptides. Int J Biol Macromol 2023; 253:126749. [PMID: 37689293 DOI: 10.1016/j.ijbiomac.2023.126749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
G-quadruplexes are non-canonical DNA secondary structures formed within guanine-rich strands that play important roles in various biological processes, including gene regulation, telomere maintenance and DNA replication. The biological functions and formation of these DNA structures are strictly controlled by several proteins that bind and stabilize or resolve them. Many G-quadruplex-binding proteins feature an arginine and glycine-rich motif known as the RGG or RG-rich motif. Although this motif plays a crucial role in the recognition of such non-canonical structures, their interaction is still poorly understood. Here, we employed a combination of several biophysical techniques to provide valuable insights into the interaction between a peptide containing an RGG motif shared by numerous human G-quadruplex-binding proteins (NIQI) and various biologically relevant G-quadruplex DNA structures with different topologies. We also shed light on the key amino acids involved in the binding process. Our findings contribute to lay the basis for the development of a new class of peptide-based G-quadruplex ligands as an alternative to small molecules. These ligands may serve as valid tools for interfering in DNA-protein interactions, with potential therapeutic applications.
Collapse
Affiliation(s)
- Nicola Grasso
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Raffaele Graziano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
9
|
Cheng J, Zhou J, Kong L, Wang H, Zhang Y, Wang X, Liu G, Chu Q. Stabilized cyclic peptides as modulators of protein-protein interactions: promising strategies and biological evaluation. RSC Med Chem 2023; 14:2496-2508. [PMID: 38107173 PMCID: PMC10718590 DOI: 10.1039/d3md00487b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023] Open
Abstract
Protein-protein interactions (PPIs) control many essential biological pathways which are often misregulated in disease. As such, selective PPI modulators are desirable to unravel complex functions of PPIs and thus expand the repertoire of therapeutic targets. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets for conventional drug modalities, rendering most PPIs "undruggable". Therefore, there is a growing need to discover innovative molecules that are able to modulate crucial PPIs. Peptides are ideal candidates to deliver such therapeutics attributed to their ability to closely mimic structural features of protein interfaces. However, their inherently poor proteolysis resistance and cell permeability inevitably hamper their biomedical applications. The introduction of a constraint (i.e., peptide cyclization) to stabilize peptides' secondary structure is a promising strategy to address this problem as witnessed by the rapid development of cyclic peptide drugs in the past two decades. Here, we comprehensively review the recent progress on stabilized cyclic peptides in targeting challenging PPIs. Technological advancements and emerging chemical approaches for stabilizing active peptide conformations are categorized in terms of α-helix stapling, β-hairpin mimetics and macrocyclization. To discover potent and selective ligands, cyclic peptide library technologies were updated based on genetic, biochemical or synthetic methodologies. Moreover, several advances to improve the permeability and oral bioavailability of biologically active cyclic peptides enable the de novo development of cyclic peptide ligands with pharmacological properties. In summary, the development of cyclic peptide-based PPI modulators carries tremendous promise for the next generation of therapeutic agents to target historically "intractable" PPI systems.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Junlong Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Lingyan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
10
|
Stillger K, Neundorf I. Cell-permeable peptide-based delivery vehicles useful for subcellular targeting and beyond. Cell Signal 2023:110796. [PMID: 37423344 DOI: 10.1016/j.cellsig.2023.110796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Personal medicine aims to provide tailor-made diagnostics and treatments and has been emerged as a promising but challenging strategy during the last years. This includes the active delivery and localization of a therapeutic compound to a targeted site of action within a cell. An example being targeting the interference of a distinct protein-protein interaction (PPI) within the cell nucleus, mitochondria or other subcellular location. Therefore, not only the cell membrane has to be overcome but also the final intracellular destination has to be reached. One approach which fulfills both requirements is to use short peptide sequences that are able to translocate into cells as targeting and delivery vehicles. In fact, recent progress in this field demonstrates how these tools can modulate the pharmacological parameters of a drug without compromising its biological activity. Beside classical targets that are addressed by various small molecule drugs such as receptors, enzymes, or ion channels, PPIs have received increasing attention as potential therapeutic targets. Within this review, we will provide a recent update on cell-permeable peptides targeting subcellular destinations. We include chimeric peptide probes that combine cell-penetrating peptides (CPPs) and a targeting sequence, as well peptides having intrinsic cell-permeability and which are often used to target PPIs.
Collapse
Affiliation(s)
- Katharina Stillger
- Institute for Biochemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany.
| |
Collapse
|
11
|
Ibrahim MT, Verkhivker GM, Misra J, Tao P. Novel Allosteric Effectors Targeting Human Transcription Factor TEAD. Int J Mol Sci 2023; 24:9009. [PMID: 37240355 PMCID: PMC10219411 DOI: 10.3390/ijms24109009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The Hippo pathway is an evolutionary conserved signaling network involved in several cellular regulatory processes. Dephosphorylation and overexpression of Yes-associated proteins (YAPs) in the Hippo-off state are common in several types of solid tumors. YAP overexpression results in its nuclear translocation and interaction with transcriptional enhanced associate domain 1-4 (TEAD1-4) transcription factors. Covalent and non-covalent inhibitors have been developed to target several interaction sites between TEAD and YAP. The most targeted and effective site for these developed inhibitors is the palmitate-binding pocket in the TEAD1-4 proteins. Screening of a DNA-encoded library against the TEAD central pocket was performed experimentally to identify six new allosteric inhibitors. Inspired by the structure of the TED-347 inhibitor, chemical modification was performed on the original inhibitors by replacing secondary methyl amide with a chloromethyl ketone moiety. Various computational tools, including molecular dynamics, free energy perturbation, and Markov state model analysis, were employed to study the effect of ligand binding on the protein conformational space. Four of the six modified ligands were associated with enhanced allosteric communication between the TEAD4 and YAP1 domains indicated by the relative free energy perturbation to original molecules. Phe229, Thr332, Ile374, and Ile395 residues were revealed to be essential for the effective binding of the inhibitors.
Collapse
Affiliation(s)
- Mayar Tarek Ibrahim
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75205, USA; (M.T.I.); (P.T.)
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Jyoti Misra
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75205, USA; (M.T.I.); (P.T.)
| |
Collapse
|
12
|
Zhao B, Pobbati AV, Rubin BP, Stauffer S. Leveraging Hot Spots of TEAD-Coregulator Interactions in the Design of Direct Small Molecule Protein-Protein Interaction Disruptors Targeting Hippo Pathway Signaling. Pharmaceuticals (Basel) 2023; 16:ph16040583. [PMID: 37111340 PMCID: PMC10146773 DOI: 10.3390/ph16040583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway that plays important roles in the regulation of cell proliferation and apoptosis. Transcription factors TEAD1-4 and transcriptional coregulators YAP/TAZ are the downstream effectors of the Hippo pathway and can modulate Hippo biology. Dysregulation of this pathway is implicated in tumorigenesis and acquired resistance to therapies. The emerging importance of YAP/TAZ-TEAD interaction in cancer development makes it a potential therapeutic target. In the past decade, disrupting YAP/TAZ-TEAD interaction as an effective approach for cancer treatment has achieved great progress. This approach followed a trajectory wherein peptidomimetic YAP-TEAD protein-protein interaction disruptors (PPIDs) were first designed, followed by the discovery of allosteric small molecule PPIDs, and currently, the development of direct small molecule PPIDs. YAP and TEAD form three interaction interfaces. Interfaces 2 and 3 are amenable for direct PPID design. One direct YAP-TEAD PPID (IAG933) that targets interface 3 has entered a clinical trial in 2021. However, in general, strategically designing effective small molecules PPIDs targeting TEAD interfaces 2 and 3 has been challenging compared with allosteric inhibitor development. This review focuses on the development of direct surface disruptors and discusses the challenges and opportunities for developing potent YAP/TAZ-TEAD inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhao
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ajaybabu V Pobbati
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Shaun Stauffer
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
13
|
Mesrouze Y, Gubler H, Villard F, Boesch R, Ottl J, Kallen J, Reid PC, Scheufler C, Marzinzik AL, Chène P. Biochemical and Structural Characterization of a Peptidic Inhibitor of the YAP:TEAD Interaction That Binds to the α-Helix Pocket on TEAD. ACS Chem Biol 2023; 18:643-651. [PMID: 36825662 DOI: 10.1021/acschembio.2c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The TEAD transcription factors are the most distal elements of the Hippo pathway, and their transcriptional activity is regulated by several proteins, including YAP. In some cancers, the Hippo pathway is deregulated and inhibitors of the YAP:TEAD interaction are foreseen as new anticancer drugs. The binding of YAP to TEAD is driven by the interaction of an α-helix and an Ω-loop present in its TEAD-binding domain with two distinct pockets at the TEAD surface. Using the mRNA-based display technique to screen a library of in vitro-translated cyclic peptides, we identified a peptide that binds with a nanomolar affinity to TEAD. The X-ray structure of this peptide in complex with TEAD reveals that it interacts with the α-helix pocket. Under our experimental conditions, this peptide can form a ternary complex with TEAD and YAP. Furthermore, combining it with a peptide binding to the Ω-loop pocket gives an additive inhibitory effect on the YAP:TEAD interaction. Overall, our results show that it is possible to identify nanomolar inhibitors of the YAP:TEAD interaction that bind to the α-helix pocket, suggesting that developing such compounds might be a strategy to treat cancers where the Hippo pathway is deregulated.
Collapse
Affiliation(s)
- Yannick Mesrouze
- Disease Area Oncology, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Hanspeter Gubler
- NIBR Informatics, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Frédéric Villard
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Ralf Boesch
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Johannes Ottl
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Joerg Kallen
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Patrick C Reid
- PeptiDream, 3-25-23 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Clemens Scheufler
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Andreas L Marzinzik
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| |
Collapse
|
14
|
Frolov AI, Chankeshwara SV, Abdulkarim Z, Ghiandoni GM. pIChemiSt ─ Free Tool for the Calculation of Isoelectric Points of Modified Peptides. J Chem Inf Model 2023; 63:187-196. [PMID: 36573842 PMCID: PMC9832473 DOI: 10.1021/acs.jcim.2c01261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The isoelectric point (pI) is a fundamental physicochemical property of peptides and proteins. It is widely used to steer design away from low solubility and aggregation and guide peptide separation and purification. Experimental measurements of pI can be replaced by calculations knowing the ionizable groups of peptides and their corresponding pKa values. Different pKa sets are published in the literature for natural amino acids, however, they are insufficient to describe synthetically modified peptides, complex peptides of natural origin, and peptides conjugated with structures of other modalities. Noncanonical modifications (nCAAs) are ignored in the conventional sequence-based pI calculations, therefore producing large errors in their pI predictions. In this work, we describe a pI calculation method that uses the chemical structure as an input, automatically identifies ionizable groups of nCAAs and other fragments, and performs pKa predictions for them. The method is validated on a curated set of experimental measures on 29 modified and 119093 natural peptides, providing an improvement of R2 from 0.74 to 0.95 and 0.96 against the conventional sequence-based approach for modified peptides for the two studied pKa prediction tools, ACDlabs and pKaMatcher, correspondingly. The method is available in the form of an open source Python library at https://github.com/AstraZeneca/peptide-tools, which can be integrated into other proprietary and free software packages. We anticipate that the pI calculation tool may facilitate optimization and purification activities across various application domains of peptides, including the development of biopharmaceuticals.
Collapse
Affiliation(s)
- Andrey I. Frolov
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden,
| | - Sunay V. Chankeshwara
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden
| | - Zeyed Abdulkarim
- Early
Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
15
|
Imiołek M, Winssinger N. Two-Helix Supramolecular Proteomimetic Binders Assembled via PNA-Assisted Disulfide Crosslinking. Chembiochem 2023; 24:e202200561. [PMID: 36349499 DOI: 10.1002/cbic.202200561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Peptidic motifs folded in a defined conformation are able to inhibit protein-protein interactions (PPIs) covering large interfaces and as such they are biomedical molecules of interest. Mimicry of such natural structures with synthetically tractable constructs often requires complex scaffolding and extensive optimization to preserve the fidelity of binding to the target. Here, we present a novel proteomimetic strategy based on a 2-helix binding motif that is brought together by hybridization of peptide nucleic acids (PNA) and stabilized by a rationally positioned intermolecular disulfide crosslink. Using a solid phase synthesis approach (SPPS), the building blocks are easily accessible and such supramolecular peptide-PNA helical hybrids could be further coiled using precise templated chemistry. The elaboration of the structural design afforded high affinity SARS CoV-2 RBD (receptor binding domain) binders without interference with the underlying peptide sequence, creating a basis for a new architecture of supramolecular proteomimetics.
Collapse
Affiliation(s)
- Mateusz Imiołek
- Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
16
|
Lou J, Lu Y, Cheng J, Zhou F, Yan Z, Zhang D, Meng X, Zhao Y. A chemical perspective on the modulation of TEAD transcriptional activities: Recent progress, challenges, and opportunities. Eur J Med Chem 2022; 243:114684. [DOI: 10.1016/j.ejmech.2022.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|
17
|
Sileo P, Simonin C, Melnyk P, Chartier-Harlin MC, Cotelle P. Crosstalk between the Hippo Pathway and the Wnt Pathway in Huntington's Disease and Other Neurodegenerative Disorders. Cells 2022; 11:cells11223631. [PMID: 36429058 PMCID: PMC9688160 DOI: 10.3390/cells11223631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hippo pathway consists of a cascade of kinases that controls the phosphorylation of the co-activators YAP/TAZ. When unphosphorylated, YAP and TAZ translocate into the nucleus, where they mainly bind to the TEAD transcription factor family and activate genes related to cell proliferation and survival. In this way, the inhibition of the Hippo pathway promotes cell survival, proliferation, and stemness fate. Another pathway can modulate these processes, namely the Wnt/β-catenin pathway that is indeed involved in cellular functions such as proliferation and cell survival, as well as apoptosis, growth, and cell renewal. Wnt signaling can act in a canonical or noncanonical way, depending on whether β-catenin is involved in the process. In this review, we will focus only on the canonical Wnt pathway. It has emerged that YAP/TAZ are components of the β-catenin destruction complex and that there is a close relationship between the Hippo pathway and the canonical Wnt pathway. Furthermore, recent data have shown that both of these pathways may play a role in neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, or Amyotrophic Lateral Sclerosis. Thus, this review analyzes the Hippo pathway and the Wnt pathway, their crosstalk, and their involvement in Huntington's disease, as well as in other neurodegenerative disorders. Altogether, these data suggest possible therapeutic approaches targeting key players of these pathways.
Collapse
Affiliation(s)
- Pasquale Sileo
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
| | - Clémence Simonin
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- Centre de Référence Maladie de Huntington, CHU Lille, F-59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- Correspondence: (M.-C.C.-H.); (P.C.)
| | - Philippe Cotelle
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- ENSCL-Centrale Lille, CS 90108, F-59652 Villeneuve d’Ascq, France
- Correspondence: (M.-C.C.-H.); (P.C.)
| |
Collapse
|
18
|
Khatri B, Pramanick I, Malladi SK, Rajmani RS, Kumar S, Ghosh P, Sengupta N, Rahisuddin R, Kumar N, Kumaran S, Ringe RP, Varadarajan R, Dutta S, Chatterjee J. A dimeric proteomimetic prevents SARS-CoV-2 infection by dimerizing the spike protein. Nat Chem Biol 2022; 18:1046-1055. [PMID: 35654847 PMCID: PMC9512702 DOI: 10.1038/s41589-022-01060-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Protein tertiary structure mimetics are valuable tools to target large protein-protein interaction interfaces. Here, we demonstrate a strategy for designing dimeric helix-hairpin motifs from a previously reported three-helix-bundle miniprotein that targets the receptor-binding domain (RBD) of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Through truncation of the third helix and optimization of the interhelical loop residues of the miniprotein, we developed a thermostable dimeric helix-hairpin. The dimeric four-helix bundle competes with the human angiotensin-converting enzyme 2 (ACE2) in binding to RBD with 2:2 stoichiometry. Cryogenic-electron microscopy revealed the formation of dimeric spike ectodomain trimer by the four-helix bundle, where all the three RBDs from either spike protein are attached head-to-head in an open conformation, revealing a novel mechanism for virus neutralization. The proteomimetic protects hamsters from high dose viral challenge with replicative SARS-CoV-2 viruses, demonstrating the promise of this class of peptides that inhibit protein-protein interaction through target dimerization.
Collapse
Affiliation(s)
- Bhavesh Khatri
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | - Ishika Pramanick
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | | | - Raju S Rajmani
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | - Sahil Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Pritha Ghosh
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | - Nayanika Sengupta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | - R Rahisuddin
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Narender Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - S Kumaran
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Rajesh P Ringe
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | | | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India.
| | - Jayanta Chatterjee
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India.
| |
Collapse
|
19
|
Paulussen FM, Schouten GK, Moertl C, Verheul J, Hoekstra I, Koningstein GM, Hutchins GH, Alkir A, Luirink RA, Geerke DP, van Ulsen P, den Blaauwen T, Luirink J, Grossmann TN. Covalent Proteomimetic Inhibitor of the Bacterial FtsQB Divisome Complex. J Am Chem Soc 2022; 144:15303-15313. [PMID: 35945166 PMCID: PMC9413201 DOI: 10.1021/jacs.2c06304] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The use of antibiotics is threatened by the emergence
and spread
of multidrug-resistant strains of bacteria. Thus, there is a need
to develop antibiotics that address new targets. In this respect,
the bacterial divisome, a multi-protein complex central to cell division,
represents a potentially attractive target. Of particular interest
is the FtsQB subcomplex that plays a decisive role in divisome assembly
and peptidoglycan biogenesis in E. coli. Here, we report the structure-based design of
a macrocyclic covalent inhibitor derived from a periplasmic region
of FtsB that mediates its binding to FtsQ. The bioactive conformation
of this motif was stabilized by a customized cross-link resulting
in a tertiary structure mimetic with increased affinity for FtsQ.
To increase activity, a covalent handle was incorporated, providing
an inhibitor that impedes the interaction between FtsQ and FtsB irreversibly. The covalent inhibitor reduced the growth of an outer
membrane-permeable E. coli strain,
concurrent with the expected loss of FtsB localization, and also affected
the infection of zebrafish larvae by a clinical E.
coli strain. This first-in-class inhibitor of a divisome
protein–protein interaction highlights the potential of proteomimetic
molecules as inhibitors of challenging targets. In particular, the
covalent mode-of-action can serve as an inspiration for future antibiotics
that target protein–protein interactions.
Collapse
Affiliation(s)
- Felix M Paulussen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Gina K Schouten
- Medical Microbiology and Infection Control (MMI), Amsterdam UMC Location VUmc, De Boelelaan 1108, Amsterdam 1081 HZ, Netherlands
| | - Carolin Moertl
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Jolanda Verheul
- Department of Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, Netherlands
| | - Irma Hoekstra
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Gregory M Koningstein
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - George H Hutchins
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Aslihan Alkir
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Rosa A Luirink
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Daan P Geerke
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Peter van Ulsen
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Tanneke den Blaauwen
- Department of Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, Netherlands
| | - Joen Luirink
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| |
Collapse
|
20
|
Zagiel B, Melnyk P, Cotelle P. Progress with YAP/TAZ-TEAD inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2022; 32:899-912. [PMID: 35768160 DOI: 10.1080/13543776.2022.2096436] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The Hippo pathway represents a new opportunity for the treatment of cancer. Overexpression of Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ) or TEAD has been demonstrated in cancers and YAP mediates resistance to cancer drugs. Since 2018, the potential of this pathway has been illustrated by numerous articles and patents and the first drugs entering in clinical trial phase 1. AREAS COVERED This review is limited to published patent applications that have disclosed direct small-molecule inhibitors of the YAP/TAZ-TEAD interaction. EXPERT OPINION The YAP/TAZ-TEAD transcriptional complex is a promising target for the treatment of cancer. Approximately 30 international patents (used database: Sci-finder, query: TEAD; documents: patents; period: from 2017-January 2022) that disclose TEAD transcriptional inhibitors have been filled since 2018. The mechanism of action is not always described in the patents, we can divide the drugs into three different categories: (i) external TEAD ligands; (ii) non-covalent TEAD ligands of the palmitate pocket; (iii) covalent TEAD ligands, which bind into the palmitate pocket. The first molecules in clinical trial phase 1 are non-covalent TEAD ligands. The selective TEAD ligand have also been patented, published and selectivity could be of great interest for personalized medicine.
Collapse
Affiliation(s)
- Benjamin Zagiel
- Lille Neuroscience and Cognition Research Center, University of Lille, INSERM, CHU Lille, UMR-S 1172, Lille, France
| | - Patricia Melnyk
- Lille Neuroscience and Cognition Research Center, University of Lille, INSERM, CHU Lille, UMR-S 1172, Lille, France
| | - Philippe Cotelle
- Lille Neuroscience and Cognition Research Center, University of Lille, INSERM, CHU Lille, UMR-S 1172, Lille, France
| |
Collapse
|
21
|
Niu J, Cederstrand AJ, Eddinger GA, Yin B, Checco JW, Bingman CA, Outlaw VK, Gellman SH. Trimer-to-Monomer Disruption Mechanism for a Potent, Protease-Resistant Antagonist of Tumor Necrosis Factor-α Signaling. J Am Chem Soc 2022; 144:9610-9617. [PMID: 35613436 PMCID: PMC9749406 DOI: 10.1021/jacs.1c13717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aberrant tumor necrosis factor-α (TNFα) signaling is associated with many inflammatory diseases. The homotrimeric quaternary structure of TNFα is essential for receptor recognition and signal transduction. Previously, we described an engineered α/β-peptide inhibitor that potently suppresses TNFα activity and resists proteolysis. Here, we present structural evidence that both the α/β-peptide inhibitor and an all-α analogue bind to a monomeric form of TNFα. Calorimetry data support a 1:1 inhibitor/TNFα stoichiometry in solution. In contrast, previous cocrystal structures involving peptide or small-molecule inhibitors have shown the antagonists engaging a TNFα dimer. The structural data reveal why our inhibitors favor monomeric TNFα. Previous efforts to block TNFα-induced cell death with peptide inhibitors revealed that surfactant additives to the assay conditions cause a more rapid manifestation of inhibitory activity than is observed in the absence of additives. We attributed this effect to a loose surfactant TNFα association that lowers the barrier to trimer dissociation. Here, we used the new structural data to design peptide inhibitors bearing a surfactant-inspired appendage intended to facilitate TNFα trimer dissociation. The appendage modified the time course of protection from cell death.
Collapse
Affiliation(s)
- Jiani Niu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Annika J. Cederstrand
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Geoffrey A. Eddinger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Boyu Yin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - James W. Checco
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Craig A. Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Victor K. Outlaw
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
22
|
Che K, Pobbati AV, Seavey CN, Fedorov Y, Komar AA, Burtscher A, Ma S, Rubin BP. Aurintricarboxylic acid is a canonical disruptor of the TAZ-TEAD transcriptional complex. PLoS One 2022; 17:e0266143. [PMID: 35417479 PMCID: PMC9007350 DOI: 10.1371/journal.pone.0266143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Disrupting the formation of the oncogenic YAP/TAZ-TEAD transcriptional complex holds substantial therapeutic potential. However, the three protein interaction interfaces of this complex cannot be easily disrupted using small molecules. Here, we report that the pharmacologically active small molecule aurintricarboxylic acid (ATA) acts as a disruptor of the TAZ-TEAD complex. ATA was identified in a high-throughput screen using a TAZ-TEAD AlphaLISA assay that was tailored to identify disruptors of this transcriptional complex. We further used fluorescence polarization assays both to confirm disruption of the TAZ-TEAD complex and to demonstrate that ATA binds to interface 3. We have previously shown that cell-based models that express the oncogenic TAZ-CAMTA1 (TC) fusion protein display enhanced TEAD transcriptional activity because TC functions as an activated form of TAZ. Utilizing cell-based studies and our TC model system, we performed TC/TEAD reporter, RNA-Seq, and qPCR assays and found that ATA inhibits TC/TEAD transcriptional activity. Further, disruption of TC/TEAD and TAZ/TEAD interaction by ATA abrogated anchorage-independent growth, the phenotype most closely linked to dysregulated TAZ/TEAD activity. Therefore, this study demonstrates that ATA is a novel small molecule that has the ability to disrupt the undruggable TAZ-TEAD interface.
Collapse
Affiliation(s)
- Kepeng Che
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ajaybabu V. Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Caleb N. Seavey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yuriy Fedorov
- Small Molecule Drug Development Core, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Anton A. Komar
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, United States of America
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ashley Burtscher
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Brian P. Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
23
|
Liberelle M, Toulotte F, Renault N, Gelin M, Allemand F, Melnyk P, Guichou JF, Cotelle P. Toward the Design of Ligands Selective for the C-Terminal Domain of TEADs. J Med Chem 2022; 65:5926-5940. [PMID: 35389210 DOI: 10.1021/acs.jmedchem.2c00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Hippo signaling pathway plays a fundamental role in the control of organ growth, cell proliferation, and stem cell characters. TEADs are the main transcriptional output regulators of the Hippo signaling pathway and bind to YAP and TAZ co-activators. TEAD1-4 are expressed differently, depending on the tissue and developmental level, and can be overexpressed in certain pathologies. TEAD ligands mainly target the internal pocket of the C-terminal domain of TEAD, and the first ligands selective for TEAD1 and TEAD3 have been recently reported. In this paper, we focus on the topographic homology of the TEAD C-terminal domain both externally and in the internal pocket to highlight the possibility of rationally designing ligands selective for one of the TEAD family members. We identified a novel TEAD2-specific pocket and reported its first ligand. Finally, AlphaFold2 models of full-length TEADs suggest TEAD autoregulation and emphasize the importance of the interface 2.
Collapse
Affiliation(s)
- Maxime Liberelle
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France
| | - Florine Toulotte
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France
| | - Nicolas Renault
- INSERM, CHU Lille, U-1286 - INFINTE - Institute for Translational Research in Inflammation, Université de Lille, F-59000 Lille, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, F-34090 Montpellier, France
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, F-34090 Montpellier, France
| | - Patricia Melnyk
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France
| | - Jean-François Guichou
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, F-34090 Montpellier, France
| | - Philippe Cotelle
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France.,CS 90108, ENSCL-Centrale Lille, F-59652 Villeneuve d'Ascq, France
| |
Collapse
|
24
|
Bertarello A, Berruyer P, Artelsmair M, Elmore CS, Heydarkhan-Hagvall S, Schade M, Chiarparin E, Schantz S, Emsley L. In-Cell Quantification of Drugs by Magic-Angle Spinning Dynamic Nuclear Polarization NMR. J Am Chem Soc 2022; 144:6734-6741. [PMID: 35385274 PMCID: PMC9026252 DOI: 10.1021/jacs.1c12442] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The determination of intracellular drug concentrations can provide a better understanding of the drug function and efficacy. Ideally, this should be performed nondestructively, with no modification of either the drug or the target, and with the capability to detect low amounts of the molecule of interest, in many cases in the μM to nM range (pmol to fmol per million cells). Unfortunately, it is currently challenging to have an experimental technique that provides direct quantitative measurements of intracellular drug concentrations that simultaneously satisfies these requirements. Here, we show that magic-angle spinning dynamic nuclear polarization (MAS DNP) can be used to fulfill these requirements. We apply a quantitative 15N MAS DNP approach in combination with 15N labeling to quantify the intracellular amount of the drug [15N]CHIR-98014, an activator of the Wingless and Int-1 signaling pathway, determining intracellular drug amounts in the range of tens to hundreds of picomoles per million cells. This is, to our knowledge, the first time that MAS DNP has been used to successfully estimate intracellular drug amounts.
Collapse
Affiliation(s)
- Andrea Bertarello
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Markus Artelsmair
- Early Chemical Development, Pharmaceutical Science, R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Science, R&D, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Sepideh Heydarkhan-Hagvall
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceutical R&D AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Markus Schade
- Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, SE-431 83 Mölndal, Sweden
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Buyanova M, Pei D. Targeting intracellular protein-protein interactions with macrocyclic peptides. Trends Pharmacol Sci 2022; 43:234-248. [PMID: 34911657 PMCID: PMC8840965 DOI: 10.1016/j.tips.2021.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023]
Abstract
Intracellular protein-protein interactions (PPIs) are challenging targets for traditional drug modalities. Macrocyclic peptides (MPs) prove highly effective PPI inhibitors in vitro and can be rapidly discovered against PPI targets by rational design or screening combinatorial libraries but are generally impermeable to the cell membrane. Recent advances in MP science and technology are allowing for the development of 'drug-like' MPs that potently and specifically modulate intracellular PPI targets in cell culture and animal models. In this review, we highlight recent progress in generating cell-permeable MPs that enter the mammalian cell by passive diffusion, endocytosis followed by endosomal escape, or as-yet unknown mechanisms.
Collapse
Affiliation(s)
- Marina Buyanova
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
26
|
Li L, Li R, Wang Y. Identification of Small-molecule YAP-TEAD inhibitors by High-throughput docking for the Treatment of colorectal cancer. Bioorg Chem 2022; 122:105707. [PMID: 35247806 DOI: 10.1016/j.bioorg.2022.105707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
Abstract
The YAP-TEAD transcriptional complex is responsible for the expression of genes that regulate cancer cell growth, proliferation, and apoptosis. Dysregulation of the Hippo pathway due to overexpression of YAP has been reported in various cancers. Inhibition of TEAD represses the expression of associated genes, proving the value of this transcription factor for the development of novel anti-cancer therapies. We retrieved a promising hit compound L06 which is a potent TEAD4 inhibitor through docking-based virtual screening. L06 inhibits TEAD autopalmitoylation, interrupts YAP-TEAD interaction, and reduces the YAP-TEAD transcriptional activity. Moreover, L06 reduces the expression of CTGF, inhibits HCT 116 colorectal cancer cell proliferation, migration and invasion. The YAP-TEAD complex is a viable drug target, and L06 is a lead compound for the development of more potent TEAD inhibitors to treat colorectal cancer and other hyperproliferative pathologies.
Collapse
Affiliation(s)
- Lijun Li
- Department of General Surgery, Taizhou People's Hospital, Taizhou 225300, PR China.
| | - Ruizhe Li
- Moray house school of education and sport, The university of Edinburgh, Edinburgh, UK
| | - Yumei Wang
- Department of Emergency Internal Medicine, Taizhou People's Hospital, Taizhou 225300, PR China
| |
Collapse
|
27
|
Stapling of Peptides Potentiates: The Antibiotic Treatment of Acinetobacter baumannii In Vivo. Antibiotics (Basel) 2022; 11:antibiotics11020273. [PMID: 35203875 PMCID: PMC8868297 DOI: 10.3390/antibiotics11020273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
The rising incidence of multidrug resistance in Gram-negative bacteria underlines the urgency for novel treatment options. One promising new approach is the synergistic combination of antibiotics with antimicrobial peptides. However, the use of such peptides is not straightforward; they are often sensitive to proteolytic degradation, which greatly limits their clinical potential. One approach to increase stability is to apply a hydrocarbon staple to the antimicrobial peptide, thereby fixing them in an α-helical conformation, which renders them less exposed to proteolytic activity. In this work we applied several different hydrocarbon staples to two previously described peptides shown to act on the outer membrane, L6 and L8, and tested their activity in a zebrafish embryo infection model using a clinical isolate of Acinetobacter baumannii as a pathogen. We show that the introduction of such a hydrocarbon staple to the peptide L8 improves its in vivo potentiating activity on antibiotic treatment, without increasing its in vivo antimicrobial activity, toxicity or hemolytic activity.
Collapse
|
28
|
Carrillo García C, Becker C, Forster M, Lohmann S, Freitag P, Laufer S, Sievers S, Fleischmann BK, Hesse M, Schade D. High-Throughput Screening Platform in Postnatal Heart Cells and Chemical Probe Toolbox to Assess Cardiomyocyte Proliferation. J Med Chem 2022; 65:1505-1524. [PMID: 34818008 DOI: 10.1021/acs.jmedchem.1c01173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Restoring lost heart muscle is an attractive goal for cardiovascular regenerative medicine. One appealing strategy is the therapeutic stimulation of cardiomyocyte proliferation, which inter alia remains challenging due to available assay technologies capturing the complex biology. Here, a high-throughput-formatted phenotypic assay platform was established using rodent whole heart-derived cells to preserve the cellular environment of cardiomyocytes. Several readouts allowed the quantification of cycling cardiomyocytes, including a transgenic H2B-mCherry system for unequivocal, automated detection of cardiomyocyte nuclei. A chemical genetics approach revealed pronounced species differences and furnished pan-kinase inhibitors 5 and 36 as potent and robust inducers of endoreplication and acytokinetic mitosis. Combined profiling of the commonly used p38 MAPK inhibitors SB203580 (1), SB239063 (2) and a novel set of skepinone-L (6) derivatives pointed to off-target effects beyond p38 that might be critical for effective cardiomyocyte cytokinesis. Kinome-focused screening eventually furnished TG003 (38) as a novel candidate for stimulating cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Carmen Carrillo García
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Cora Becker
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, House 76, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael Forster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan Lohmann
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Patricia Freitag
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, House 76, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Sonja Sievers
- Compound Management and Screening Center COMAS, Max Planck Institute of Molecular Physiology (MPI), 44227 Dortmund, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, House 76, Venusberg-Campus 1, 53127 Bonn, Germany
- Pharma Center Bonn, 53127 Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, House 76, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dennis Schade
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Partner Site Kiel, DZHK, German Center for Cardiovascular Research, 24105 Kiel, Germany
| |
Collapse
|
29
|
Khatri B, Raghunathan S, Chakraborti S, Rahisuddin R, Kumaran S, Tadala R, Wagh P, Priyakumar UD, Chatterjee J. Desolvation of Peptide Bond by O to S Substitution Impacts Protein Stability. Angew Chem Int Ed Engl 2021; 60:24870-24874. [PMID: 34519402 DOI: 10.1002/anie.202110978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/10/2021] [Indexed: 12/31/2022]
Abstract
Amino acid side chains are key to fine-tuning the microenvironment polarity in proteins composed of polar amide bonds. Here, we report that substituting an oxygen atom of the backbone amide bond with sulfur atom desolvates the thioamide bond, thereby increasing its lipophilicity. The impact of such local desolvation by O to S substitution in proteins was tested by synthesizing thioamidated variants of Pin1 WW domain. We observe that a thioamide acts in synergy with nonpolar amino acid side chains to reduce the microenvironment polarity and increase protein stability by more than 14 °C. Through favorable van der Waals and hydrogen bonding interactions, this single atom substitution significantly stabilizes proteins without altering the amino acid sequence and structure of the native protein.
Collapse
Affiliation(s)
- Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.,Present Address: École Centrale School of Engineering, Mahindra University, Hyderabad, 500043, India
| | - Sohini Chakraborti
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - R Rahisuddin
- CSIR- Institute of Microbial Technology, Chandigarh 1, 60036, India
| | - S Kumaran
- CSIR- Institute of Microbial Technology, Chandigarh 1, 60036, India
| | | | | | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
30
|
Khatri B, Raghunathan S, Chakraborti S, Rahisuddin R, Kumaran S, Tadala R, Wagh P, Priyakumar UD, Chatterjee J. Desolvation of Peptide Bond by O to S Substitution Impacts Protein Stability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bhavesh Khatri
- Molecular Biophysics Unit Indian Institute of Science Bangalore 560012 India
| | - Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics International Institute of Information Technology Hyderabad 500032 India
- Present Address: École Centrale School of Engineering Mahindra University Hyderabad 500043 India
| | - Sohini Chakraborti
- Molecular Biophysics Unit Indian Institute of Science Bangalore 560012 India
| | - R. Rahisuddin
- CSIR- Institute of Microbial Technology Chandigarh 1 60036 India
| | - S. Kumaran
- CSIR- Institute of Microbial Technology Chandigarh 1 60036 India
| | | | | | - U. Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics International Institute of Information Technology Hyderabad 500032 India
| | - Jayanta Chatterjee
- Molecular Biophysics Unit Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
31
|
Recent Therapeutic Approaches to Modulate the Hippo Pathway in Oncology and Regenerative Medicine. Cells 2021; 10:cells10102715. [PMID: 34685695 PMCID: PMC8534579 DOI: 10.3390/cells10102715] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
The Hippo pathway is an evolutionary conserved signaling network that regulates essential processes such as organ size, cell proliferation, migration, stemness and apoptosis. Alterations in this pathway are commonly found in solid tumors and can lead to hyperproliferation, resistance to chemotherapy, compensation for mKRAS and tumor immune evasion. As the terminal effectors of the Hippo pathway, the transcriptional coactivators YAP1/TAZ and the transcription factors TEAD1–4 present exciting opportunities to pharmacologically modulate the Hippo biology in cancer settings, inflammation and regenerative medicine. This review will provide an overview of the progress and current strategies to directly and indirectly target the YAP1/TAZ protein–protein interaction (PPI) with TEAD1–4 across multiple modalities, with focus on recent small molecules able to selectively bind to TEAD, block its autopalmitoylation and inhibit YAP1/TAZ–TEAD-dependent transcription in cancer.
Collapse
|
32
|
Discovery of a cryptic site at the interface 2 of TEAD - Towards a new family of YAP/TAZ-TEAD inhibitors. Eur J Med Chem 2021; 226:113835. [PMID: 34509860 DOI: 10.1016/j.ejmech.2021.113835] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
The Hippo pathway is involved in organ size control and tissue homeostasis by regulating cell growth, proliferation and apoptosis. It controls the phosphorylation of the transcription co-activator YAP (Yes associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif) in order to control their nuclear import and their interaction with TEAD (Transcriptional Enhanced Associated Domain). YAP, TAZ and TEADs are dysregulated in several cancers making YAP/TAZ-TEAD interaction a new emerging anti-cancer target. We report the synthesis of a set of trisubstituted pyrazoles which bind to hTEAD2 at the interface 2 revealing for the first time a cryptic pocket created by the movement of the phenol ring of Y382. Compound 6 disrupts YAP/TAZ-TEAD interaction in HEK293T cells and inhibits TEAD target genes and cell proliferation in MDA-MB-231 cells. Compound 6 is therefore the first inhibitor of YAP/TAZ-TEAD targeting interface 2. This molecule could serve with other pan-TEAD inhibitors such as interface 3 ligands, for the delineation of the relative importance of VGLL vs YAP/TAZ in a given cellular model.
Collapse
|
33
|
Haim A, Neubacher S, Grossmann TN. Protein Macrocyclization for Tertiary Structure Stabilization. Chembiochem 2021; 22:2672-2679. [PMID: 34060202 PMCID: PMC8453710 DOI: 10.1002/cbic.202100111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Proteins possess unique molecular recognition capabilities and enzymatic activities, features that are usually tied to a particular tertiary structure. To make use of proteins for biotechnological and biomedical purposes, it is often required to enforce their tertiary structure in order to ensure sufficient stability under the conditions inherent to the application of interest. The introduction of intramolecular crosslinks has proven efficient in stabilizing native protein folds. Herein, we give an overview of methods that allow the macrocyclization of expressed proteins, discussing involved reaction mechanisms and structural implications.
Collapse
Affiliation(s)
- Anissa Haim
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Incircular B.V.De Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute of Molecular and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
34
|
Wendt M, Bellavita R, Gerber A, Efrém NL, van Ramshorst T, Pearce NM, Davey PRJ, Everard I, Vazquez-Chantada M, Chiarparin E, Grieco P, Hennig S, Grossmann TN. Bicyclic β-Sheet Mimetics that Target the Transcriptional Coactivator β-Catenin and Inhibit Wnt Signaling. Angew Chem Int Ed Engl 2021; 60:13937-13944. [PMID: 33783110 PMCID: PMC8252567 DOI: 10.1002/anie.202102082] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Protein complexes are defined by the three-dimensional structure of participating binding partners. Knowledge about these structures can facilitate the design of peptidomimetics which have been applied for example, as inhibitors of protein-protein interactions (PPIs). Even though β-sheets participate widely in PPIs, they have only rarely served as the basis for peptidomimetic PPI inhibitors, in particular when addressing intracellular targets. Here, we present the structure-based design of β-sheet mimetics targeting the intracellular protein β-catenin, a central component of the Wnt signaling pathway. Based on a protein binding partner of β-catenin, a macrocyclic peptide was designed and its crystal structure in complex with β-catenin obtained. Using this structure, we designed a library of bicyclic β-sheet mimetics employing a late-stage diversification strategy. Several mimetics were identified that compete with transcription factor binding to β-catenin and inhibit Wnt signaling in cells. The presented design strategy can support the development of inhibitors for other β-sheet-mediated PPIs.
Collapse
Affiliation(s)
- Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rosa Bellavita
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alan Gerber
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nina-Louisa Efrém
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Thirza van Ramshorst
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nicholas M Pearce
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Paul R J Davey
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Isabel Everard
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Wendt M, Bellavita R, Gerber A, Efrém N, Ramshorst T, Pearce NM, Davey PRJ, Everard I, Vazquez‐Chantada M, Chiarparin E, Grieco P, Hennig S, Grossmann TN. Bicyclic β‐Sheet Mimetics that Target the Transcriptional Coactivator β‐Catenin and Inhibit Wnt Signaling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Rosa Bellavita
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Alan Gerber
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Nina‐Louisa Efrém
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Thirza Ramshorst
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Nicholas M. Pearce
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | | | - Isabel Everard
- Mechanistic Biology and Profiling Discovery Sciences, R&D AstraZeneca Cambridge UK
| | | | | | - Paolo Grieco
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| |
Collapse
|
36
|
Abstract
Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the subject of intense and ongoing drug discovery efforts. The cellular activity of Ras is modulated by its association with the guanine nucleotide exchange factor Son of sevenless (Sos), and the high-resolution crystal structure of the Ras-Sos complex provides a basis for the rational design of orthosteric Ras ligands. We constructed a synthetic Sos protein mimic that engages the wild-type and oncogenic forms of nucleotide-bound Ras and modulates downstream kinase signaling. The Sos mimic was designed to capture the conformation of the Sos helix-loop-helix motif that makes critical contacts with Ras in its switch region. Chemoproteomic studies illustrate that the proteomimetic engages Ras and other cellular GTPases. The synthetic proteomimetic resists proteolytic degradation and enters cells through macropinocytosis. As such, it is selectively toxic to cancer cells with up-regulated macropinocytosis, including those that feature oncogenic Ras mutations.
Collapse
|
37
|
Laniado J, Meador K, Yeates TO. A fragment-based protein interface design algorithm for symmetric assemblies. Protein Eng Des Sel 2021; 34:gzab008. [PMID: 33955480 PMCID: PMC8101011 DOI: 10.1093/protein/gzab008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Theoretical and experimental advances in protein engineering have led to the creation of precisely defined, novel protein assemblies of great size and complexity, with diverse applications. One powerful approach involves designing a new attachment or binding interface between two simpler symmetric oligomeric protein components. The required methods of design, which present both similarities and key differences compared to problems in protein docking, remain challenging and are not yet routine. With the aim of more fully enabling this emerging area of protein material engineering, we developed a computer program, nanohedra, to introduce two key advances. First, we encoded in the program the construction rules (i.e. the search space parameters) that underlie all possible symmetric material constructions. Second, we developed algorithms for rapidly identifying favorable docking/interface arrangements based on tabulations of empirical patterns of known protein fragment-pair associations. As a result, the candidate poses that nanohedra generates for subsequent amino acid interface design appear highly native-like (at the protein backbone level), while simultaneously conforming to the exacting requirements for symmetry-based assembly. A retrospective computational analysis of successful vs failed experimental studies supports the expectation that this should improve the success rate for this challenging area of protein engineering.
Collapse
Affiliation(s)
- Joshua Laniado
- UCLA Molecular Biology Institute, Los Angeles, CA 90095, USA
| | - Kyle Meador
- UCLA Department of Chemistry and Biochemistry, Los Angeles, CA 90095, USA
| | - Todd O Yeates
- UCLA Molecular Biology Institute, Los Angeles, CA 90095, USA
- UCLA Department of Chemistry and Biochemistry, Los Angeles, CA 90095, USA
- UCLA DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Pobbati AV, Rubin BP. Protein-Protein Interaction Disruptors of the YAP/TAZ-TEAD Transcriptional Complex. Molecules 2020; 25:molecules25246001. [PMID: 33352993 PMCID: PMC7766469 DOI: 10.3390/molecules25246001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
The identification of protein-protein interaction disruptors (PPIDs) that disrupt the YAP/TAZ-TEAD interaction has gained considerable momentum. Several studies have shown that YAP/TAZ are no longer oncogenic when their interaction with the TEAD family of transcription factors is disrupted. The transcriptional co-regulator YAP (its homolog TAZ) interact with the surface pockets of TEADs. Peptidomimetic modalities like cystine-dense peptides and YAP cyclic and linear peptides exploit surface pockets (interface 2 and interface 3) on TEADs and function as PPIDs. The TEAD surface might pose a challenge for generating an effective small molecule PPID. Interestingly, TEADs also have a central pocket that is distinct from the surface pockets, and which small molecules leverage exclusively to disrupt the YAP/TAZ-TEAD interaction (allosteric PPIDs). Although small molecules that occupy the central pocket belong to diverse classes, they display certain common features. They are flexible, which allows them to adopt a palmitate-like conformation, and they have a predominant hydrophobic portion that contacts several hydrophobic residues and a small hydrophilic portion that faces the central pocket opening. Despite such progress, more selective PPIDs that also display favorable pharmacokinetic properties and show tolerable toxicity profiles are required to evaluate the feasibility of using these PPIDs for cancer therapy.
Collapse
Affiliation(s)
- Ajaybabu V. Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Correspondence: (A.V.P.); (B.P.R.); Tel.: +1-216-445-4472 (A.V.P.)
| | - Brian P. Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Correspondence: (A.V.P.); (B.P.R.); Tel.: +1-216-445-4472 (A.V.P.)
| |
Collapse
|