1
|
Li L, Zha H, Miao W, Li C, Wang A, Qin S, Gao S, Sheng L, Wang Y. LncRNA MEG3 promotes pyroptosis via miR-145-5p/TLR4/NLRP3 axis and aggravates cerebral ischemia-reperfusion injury. Metab Brain Dis 2025; 40:201. [PMID: 40358637 PMCID: PMC12075370 DOI: 10.1007/s11011-025-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025]
Abstract
Long noncoding RNA (lncRNA) MEG3 has been considered as a novel target for alleviating the brain tissue damage during cerebral ischemia-reperfusion injury (CIRI). Numerous studies have reported that pyroptosis is involved in the pathogenesis of CIRI. This study focused on whether MEG3 modulates CIRI via pyroptosis and its underlying mechanism. The middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model and the oxygen glucose deprivation/reoxygenation (OGD/R) cell model were established. si-MEG3 and miR-145-5p inhibitor were transfected to inhibit MEG3 and miR-145-5p, respectively. As a TLR4 inhibitor, Resatorvid inhibits the TLR4 signaling pathway. TTC and TUNEL staining were used for infarction volume and cell death detection. The differential expression of MGE3, miR-145-5p, TLR4, NLRP3, Caspase-1, IL-1β, and IL-18 was determined using real-time PCR and western blot. The interaction between MEG3 and miR-145-5p, as well as between miR-145-5p and TLR4 was confirmed by the dual-luciferase reporter assay. This study confirmed that the elevated expression of MEG3 during CIRI, and it contributes to pyroptosis by regulating miR-145-5p/TLR4 axis. The knockdown of MEG3 reduced the expression of TLR4, NLRP3, Caspase-1, IL-1β, and IL-18, thereby preventing pyroptosis. Inhibition of miR-145-5p reversed the effect of MEG3 knockdown and promoted pyroptosis. Resatorvid, the inhibitor of TLR4, counteracted the effect of miR-145-5p inhibitor and suppressed pyroptosis. Our findings reveal that MEG3 promotes pyroptosis via miR-145-5p/TLR4/NLRP3 axis and aggravates CIRI, suggesting a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China
| | - Hao Zha
- Department of Reproductive Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Wei Miao
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China
| | - Chunyan Li
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China
| | - Aimei Wang
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China
| | - Shiyuan Qin
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China
| | - Shuang Gao
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China
| | - Lingli Sheng
- Department of Geriatrics, Baoshan People's Hospital, Baoshan, 678000, China
| | - Ying Wang
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China.
| |
Collapse
|
2
|
Zhou T, Zhu X, Ji X, He J, Zhao K. Histone acetylation activated-IGF2BP3 regulates cyclin D1 mRNA stability to drive cell cycle transition and tumor progression of hepatocellular carcinoma. Int J Biol Macromol 2025; 306:141678. [PMID: 40037458 DOI: 10.1016/j.ijbiomac.2025.141678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) is an oncofetal protein, is strongly associated with tumor initiation and progression due to its upregulation. However, the regulatory mechanisms driving IGF2BP3 upregulation and its contribution to the development and progression in hepatocellular carcinoma (HCC) remain unclear. In this study, we demonstrated that IGF2BP3 is re-expressed in HCC mouse models, with elevated levels correlating with a poor prognosis in patients with HCC. Our data revealed that histone acetylation at the IGF2BP3 promoter region drives transcription activation of IGF2BP3 in primary hepatocytes. Notably, histone acetylation and transcriptional reactivation of IGF2BP3 were observed in human HCC tissues as well. Mechanistically, IGF2BP3 knockdown modulated the cell cycle and cell proliferation by limiting G1/S phase transition, which is dependent on cyclin D1. We further showed that IGF2BP3 maintains CCND1 mRNA stability by directly interacting with its 3'UTR. Importantly, IGF2BP3 recruits the RNA stabilizer PABPC1 to potentiate CCND1 mRNA stability. These two proteins synergistically protect CCND1 mRNA from degradation. Furthermore, IGF2BP3-depleted HCC cells were unable to form tumors in the xenograft model. High IGF2BP3 and CCND1 levels predicted poor outcomes in patients. Collectively, our findings highlight the pivotal role of the IGF2BP3/cyclin D1 axis and reveal a new regulatory mechanism for IGF2BP3 re-expression via transcriptional activation during hepatocarcinogenesis. These results indicate that the IGF2BP3/CCND1 axis is a promising prognostic biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Tao Zhou
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China, 266071
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China, 266071
| | - Xiaoying Ji
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China, 266071
| | - Jinli He
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China, 266071
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China, 266071.
| |
Collapse
|
3
|
Zhang Y, Xu Y, Zhang Y, Wang S, Zhao M. The multiple functions and mechanisms of long non-coding RNAs in regulating breast cancer progression. Front Pharmacol 2025; 16:1559408. [PMID: 40223929 PMCID: PMC11985786 DOI: 10.3389/fphar.2025.1559408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Breast cancer (BC) is a malignant tumor that has the highest morbidity and mortality rates in the female population, and its high tendency to metastasize is the main cause of poor clinical prognosis. Long non-coding RNAs (lncRNAs) have been extensively documented to exhibit aberrant expression in various cancers and influence tumor progression via multiple molecular pathways. These lncRNAs not only modulate numerous aspects of gene expression in cancer cells, such as transcription, translation, and post-translational modifications, but also play a crucial role in the reprogramming of energy metabolism by regulating metabolic regulators, which is particularly significant in advanced BC. This review examines the characteristics and mechanisms of lncRNAs in regulating BC cells, both intracellularly (e.g., cell cycle, autophagy) and extracellularly (e.g., tumor microenvironment). Furthermore, we explore the potential of specific lncRNAs and their regulatory factors as molecular markers and therapeutic targets. Lastly, we summarize the application of lncRNAs in the treatment of advanced BC, aiming to offer novel personalized therapeutic options for patients.
Collapse
Affiliation(s)
- Yongsheng Zhang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yanjiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanping Zhang
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Shoushi Wang
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Mingqiang Zhao
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
4
|
Zhu J, Zheng Z, Yin Z, Ding L, Li C, Wang X, Shu P, Zhou J, Liu W, Liu J. MiR-146b overexpression promotes bladder cancer cell growth via the SMAD4/C-MYC/Cyclin D1 axis. Front Oncol 2025; 15:1565638. [PMID: 40224178 PMCID: PMC11985428 DOI: 10.3389/fonc.2025.1565638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
MiR-146b has been identified as being overexpressed in human bladder cancer (BCa) and implicated in promoting cancer cell invasion. However, its specific involvement in BCa cell growth remains unclear. In this study, we demonstrate that the downregulation of miR-146b significantly suppresses tumorigenic growth of human BCa cells both in vitro and in vivo by inducing G0/G1 cell cycle arrest. Specifically, miR-146b inhibition resulted in a significant reduction in colony formation (p < 0.05) and anchorage-independent growth in both UMUC3 and T24T cells, as measured by soft agar assays, with three independent replicates for each experiment. Notably, Cyclin D1 protein plays a crucial role in miR-146b-induced BCa cell proliferation, as confirmed by Western blotting (p < 0.05), with each experiment performed in triplicate. Mechanistic investigations reveal that miR-146b reduces mothers against decapentaplegic homolog 4 (SMAD4) mRNA stability by directly binding to its 3' untranslated region (3'-UTR), leading to decreased SMAD4 expression. This reduction in SMAD4 levels promotes cellular myelocytomatosis (C-MYC) transcription, which in turn enhances Cyclin D1 transcription, ultimately facilitating BCa cell proliferation. The findings unveil a novel regulatory axis involving SMAD4/C-MYC/Cyclin D1 in mediating the oncogenic role of miR-146b in BCa cells. Statistical significance was determined using Student's t-test, with p-values <0.05 considered significant. Together with its previously established function in BCa invasion, the results highlight the potential for developing miR-146b-based therapeutic strategies for treating human BCa patients.
Collapse
Affiliation(s)
- Junlan Zhu
- Precision Medicine Laboratory, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Zhijian Zheng
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zhangya Yin
- Precision Medicine Laboratory, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Linchao Ding
- Department of Scientific Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Congya Li
- Precision Medicine Laboratory, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Xuyao Wang
- Precision Medicine Laboratory, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Peng Shu
- Precision Medicine Laboratory, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Jun Zhou
- Department of Urology, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Weihua Liu
- Department of Urology, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Jian Liu
- Precision Medicine Laboratory, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Gaggi G, Hausman C, Cho S, Badalamenti BC, Trinh BQ, Di Ruscio A, Ummarino S. LncRNAs Ride the Storm of Epigenetic Marks. Genes (Basel) 2025; 16:313. [PMID: 40149464 PMCID: PMC11942515 DOI: 10.3390/genes16030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Advancements in genome sequencing technologies have uncovered the multifaceted roles of long non-coding RNAs (lncRNAs) in human cells. Recent discoveries have identified lncRNAs as major players in gene regulatory pathways, highlighting their pivotal role in human cell growth and development. Their dysregulation is implicated in the onset of genetic disorders and age-related diseases, including cancer. Specifically, they have been found to orchestrate molecular mechanisms impacting epigenetics, including DNA methylation and hydroxymethylation, histone modifications, and chromatin remodeling, thereby significantly influencing gene expression. This review provides an overview of the current knowledge on lncRNA-mediated epigenetic regulation of gene expression, emphasizing the biomedical implications of lncRNAs in the development of different types of cancers and genetic diseases.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Clinton Hausman
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Soomin Cho
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Brianna C. Badalamenti
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bon Q. Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Annalisa Di Ruscio
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Simone Ummarino
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
6
|
Lei S, Luo M, Wang Y. Pin1 as a central node in oncogenic signaling: Mechanistic insights and clinical prospects (Review). Mol Med Rep 2025; 31:80. [PMID: 39886975 PMCID: PMC11795255 DOI: 10.3892/mmr.2025.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
Peptidyl‑prolyl cis‑trans isomerase NIMA-interacting 1 (Pin1) is a specific phosphorylated serine/threonine-proline cis-trans isomerase, which is involved in the regulation of a variety of physiological and pathological processes, including cell cycle progression, proliferation and apoptosis. Pin1 plays a key role in tumorigenesis and tumor development and it promotes the proliferation and metastasis of cancer cells by regulating the cell cycle, signaling pathways and the function of tumor suppressors. Upregulated expression of Pin1 is closely associated with a poor prognosis in several types of cancers. Thus, Pin1 is may have potential as a novel potential biomarker for tumor diagnosis and prognosis, as well as a promising anticancer target. The aim of the present review was to discuss the mechanism of Pin1 in tumors and recent research progress in this field.
Collapse
Affiliation(s)
- Shuning Lei
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Min Luo
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yuxue Wang
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
7
|
Asberger J, Ge I, Schmidt B, Jäger M, Weiss D, Berner K, Erbes T, Juhasz-Böss I, Mayer S. Long non‑coding RNA signatures in breast cancer: Properties as biomarkers? Exp Ther Med 2025; 29:54. [PMID: 39885910 PMCID: PMC11775725 DOI: 10.3892/etm.2025.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 06/12/2024] [Indexed: 02/01/2025] Open
Abstract
Breast cancer represents the most common type of cancer in females worldwide. The survival rates for breast cancer patients have been increasing since 1990. However, in 2023 breast cancer is still the second most common cause of malignancy-associated death in women. One decisive reason is the increase of treatment resistance and low therapy response. Therefore, new therapy targets and predictive markers for the response to treatment are needed. The present study analyzed the potential effects triggered by different breast cancer treatments on the transcriptional expression of 12 pre-selected long non-coding (lnc) RNAs and the proliferation markers Cyclin D1 and Ki-67 in six different breast cancer cell lines (BT-474, MDA-MB-231, BT-20, T-47D, SKBR-3 and MCF-7). The results revealed that lncRNA cytoskeleton regulator RNA may be an appropriate biomarker for the response to treatment with both epirubicin and gemcitabine (P<0.001). NF-ĸB interacting lnc RNA may be a marker for therapy response (P<0.001), while HOX transcript antisense RNA overexpression suggested resistance to treatment (P<0.001) with epirubicin. The transcriptional expression of lncRNA BC4 increased during treatment with epirubicin and gemcitabine, which indicated therapy response. Overall, the present data suggested that the aforementioned lncRNAs have a promising potential as biomarkers to detect early therapy response or resistance in and therefore should be analyzed in more detail.
Collapse
Affiliation(s)
- Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, D-79110 Freiburg, Germany
| | - Isabell Ge
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
- Department of Obstetrics and Gynaecology, University Hospital of Basel, 4056 Basel, Switzerland
| | - Benjamin Schmidt
- Faculty of Medicine, University of Freiburg, D-79110 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, D-79110 Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, D-79110 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, D-79110 Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, D-79110 Freiburg, Germany
- Department of Gyneaecology and Obstetrics, Diako Mannheim, D-68163 Mannheim, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, D-79110 Freiburg, Germany
| | - Sebastian Mayer
- Faculty of Medicine, University of Freiburg, D-79110 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Hospital Krumbach, D-86381 Krumbach, Germany
| |
Collapse
|
8
|
Ao S, Liang L, Peng L, Yang R, Chen Z, Deng T. Identification and validation of an m5C-related lncRNA signature for predicting prognosis and immune response in clear cell renal cell carcinoma. Discov Oncol 2025; 16:227. [PMID: 39987537 PMCID: PMC11847763 DOI: 10.1007/s12672-025-01987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025] Open
Abstract
This study investigated whether m5C-related Long non-coding RNAs (lncRNAs) can predict clear cell renal cell carcinoma (ccRCC) patient prognosis. Co-expression and Cox regression analyses identified 9 prognostic lncRNAs, which were closely associated with tumor immune characteristics and immune escape. The model also predicted the sensitivity of drugs, including Entinostat, SB216763, and Sapitinib. In vitro experiments showed that GNG12-AS1 inhibited ccRCC cell proliferation and migration by reducing the activity of the ERK/GSK-3β/β-catenin pathway. Overall, these findings suggest that the 9 m5C-related lncRNAs can accurately predict ccRCC patient prognosis, providing potential applications for clinical and immunotherapy approaches. GNG12-AS1 emerges as a promising prognostic biomarker for predicting survival outcomes in ccRCC, potentially influencing cell migration through the activation of the ERK/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shan Ao
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Leqi Liang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Peng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Riwei Yang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zugen Chen
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tuo Deng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Song JY, Pan Z. Aberrant expression in lymphoma, a diagnostic pitfall. Hum Pathol 2025; 156:105706. [PMID: 39674282 DOI: 10.1016/j.humpath.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
One of the major difficulties in practical hematopathology is to accurately assign cell lineage and thus ensure proper classification of lymphomas. The lineage-specific markers of lymphoma are detected by immunohistochemistry or flow cytometry immunophenotypic methods. However, aberrant gain or loss of these markers is occasionally encountered during daily practice, which often creates diagnostic challenges. In addition, lymphoma may aberrantly express non-hematopoietic markers, and vice versa. This review article provides an overview of aberrant gain of expression of lineage-associated antigens in mature lymphoid neoplasms, including recommendations to avoid diagnostic pitfalls and ultimately to reach accurate diagnoses.
Collapse
Affiliation(s)
- Joo Y Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zenggang Pan
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Wang B, Liu W, Song B, Li Y, Wang Y, Tan B. Targeting LINC00665/miR-199b-5p/SERPINE1 axis to inhibit trastuzumab resistance and tumorigenesis of gastric cancer via PI3K/AKt pathway. Noncoding RNA Res 2025; 10:153-162. [PMID: 39399377 PMCID: PMC11467570 DOI: 10.1016/j.ncrna.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) serve as critical mediators of tumor progression and drug resistance in cancer. Herein, we identified a lncRNA, LINC00665, associated with trastuzumab resistance and development in gastric cancer (GC). LINC00665 was highly expressed in GC tissues and high expression of LINC00665 was correlated with poor prognosis. LINC00665 knockdown was verified to suppress migration, invasion, and resistance to trastuzumab in GC. Furthermore, we found that LINC00665 participates in the infiltration of naive B cells, mast cells, and T follicular helper (Tfh) cells. Mechanistically, LINC00665 was confirmed to regulate tumorigenesis and trastuzumab resistance by activating PI3K/AKt pathway. LINC00665 sponged miR-199b-5p to interact with SERPINE1 expression, resulting in the increase of phosphorylation of AKt, thus participating in the PI3K/AKt pathway. To summarize, LINC00665 facilitated the tumorigenesis and trastuzumab resistance of GC by sponging miR-199b-5p and promoting SERPINE1 expression, which further activated PI3K/AKt signaling; this finding reveals a new mechanism by which LINC00665 modulates tumor development and drug resistance in GC.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Wenbo Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Buyun Song
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Yingying Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| |
Collapse
|
11
|
Shi Q, Yang W, Ouyang Y, Liu Y, Cai Z. CXCR4 promotes tumor stemness maintenance and CDK4/6 inhibitors resistance in ER-positive breast cancer. Breast Cancer Res 2025; 27:15. [PMID: 39875975 PMCID: PMC11773848 DOI: 10.1186/s13058-025-01965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms. Recent research has identified several dysregulated genes in CDK4/6 inhibitors-resistant breast cancer, but the underlying mechanism is complex due to tumor heterogeneity and warrants further investigation. METHODS RNA sequencing and KEGG pathway analysis was carried out to identify the mainly dysregulated genes in CDK4/6 inhibitors-resistant breast cancer cells. The effects of CXCR4 knockdown and overexpression via siRNAs and plasmids transfection were examined by mammosphere formation, RT-qPCR, flow cytometry, MTT and colony formation assays. The regulation mechanisms were analyzed by RT-qPCR, western blotting and immunofluorescence experiments. Mouse xenografts were used to analyze the role of CXCR4 in regulation palbociclib sensitivity in vivo. Additionally, we collected the clinical samples and performed immunohistochemistry to analyze the clinical significance of CXCR4. RESULTS In our study, we focused on cancer stem cells, a critical contributor to cancer metastasis and therapy resistance, and detected an upregulation of stemness in our established palbociclib-resistant ER-positive breast cancer cells. Additionally, our research pinpointed CXCR4 as a pivotal gene responsible for maintaining cancer stemness and promoting palbociclib resistance. Mechanistically, CXCR4 activates the WNT5A/β-catenin signaling pathway by enhancing the expression of WNT5A and β-catenin, facilitating the nuclear translocation of β-catenin protein. Targeting CXCR4 using siRNAs or small molecular inhibitors effectively reduces cancer stemness and reverses palbociclib resistance both in vitro and in vivo. Clinical sample analysis further underscores the overactivation of the CXCR4/WNT5A/β-catenin axis in palbociclib-resistant breast cancer, suggesting CXCR4 as a potential biomarker for predicting resistance to CDK4/6 inhibitors. CONCLUSIONS Collectively, our study demonstrates that CXCR4 overexpression plays a vital role in maintaining breast cancer stemness and promoting resistance to CDK4/6 inhibitors through the activation of the WNT5A/β-catenin pathway. Targeting CXCR4 may offer a promising therapeutic approach for advanced CDK4/6 inhibitor-resistant ER-positive breast cancer.
Collapse
Affiliation(s)
- Qianfeng Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wang Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yiye Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Zijie Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
12
|
Shi L, Jiang JF, Zhai J. Lycorine affects tamoxifen resistance of breast cancer via m 6A-based HAGLR. Transl Cancer Res 2024; 13:6675-6687. [PMID: 39816543 PMCID: PMC11730692 DOI: 10.21037/tcr-24-1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/16/2024] [Indexed: 01/18/2025]
Abstract
Background N6-methyladenosine (m6A)-mediated epitranscriptomic pathway has been shown to contribute to chemoresistance and radioresistance. Our previous work confirmed the defense of lycorine against tamoxifen resistance of breast cancer (BC) through targeting HOXD antisense growth-associated long non-coding RNA (HAGLR). Whereas, the precise regulation among them remains to be elucidated. The aim of this study was to investigate the role of IGF2BP2-mediated m6A methylation in the regulation of HAGLR and its impact on lycorine's effect on tamoxifen resistance in BC. Methods m6A status was detected via methylated RNA immunoprecipitation-quantitative polymerase chain reaction (MeRIP-qPCR). Relative expression of HAGLR and IGF2BP2 were tested by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. Cell viability, proliferation and apoptosis were estimated via Cell Counting Kit-8 (CCK-8), colony formation and flow cytometer analysis. Interplay among IGF2BP2 and HAGLR was tested by RNA immunoprecipitation (RIP) assay. IC50 value of BC cells to tamoxifen was determined by 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results Total m6A level in tamoxifen-resistant BC cells (TAMR/MCF-7 and TAMR/T47D) was elevated relative to corresponding parental cells and normal mammary epithelial cell line, MCF10A, either with the presence of m6A modifications within HAGLR sequence. Moreover, IGF2BP2-mediated m6A methylation drove the upregulation and stability of HAGLR in TAMR BC cells. IGF2BP2 served as a key downstream target mediating the anti-tumors of lycorine on TAMR BC. Knockdown of IGF2BP2 or HAGLR could reduce the IC50 value of TAMR/MCF-7 and TAMR/T47D cells to tamoxifen. Conclusions Our results demonstrated that lycorine inhibits tamoxifen-resistant BC by repressing IGF2BP2-mediated m6A methylation of HAGLR.
Collapse
Affiliation(s)
- Lei Shi
- Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, China
| | - Jun-Feng Jiang
- Division of Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Jing Zhai
- Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
13
|
Wang D, Wang J, Yao F, Xie Z, Wu J, Chen H, Wu Q. miR-1247-3p regulation of CCND1 affects chemoresistance in colorectal cancer. PLoS One 2024; 19:e0309979. [PMID: 39739897 DOI: 10.1371/journal.pone.0309979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 01/02/2025] Open
Abstract
The effectiveness of chemotherapy involving 5-fluorouracil and cisplatin (DDP) for the treatment of colorectal cancer (CRC) is often limited due to the emergence of drug resistance. An increasing body of research highlights the crucial role of abnormally expressed microRNAs (miR/miRNAs) in fostering drug resistance in various types of cancer. The present study was the first to explore the potential roles and mechanisms of the small non-coding RNA miR-1247-3p in CRC, particularly its association with DDP resistance in CRC. The findings of the current study revealed a significant decrease in miR-1247-3p expression in CRC cells, especially those resistant to drugs. By contrast, there was a marked increase in the expression of cyclin D1 (CCND1), a known target gene of miR-1247-3p that is negatively regulated by this miRNA. By modulating CCND1, miR-1247-3p can effectively reduce drug resistance and promote apoptosis in CRC cells, suggesting that miR-1247-3p could potentially reduce chemotherapy resistance by targeting CCND1. These results highlight the pivotal role of miR-1247-3p in reducing chemotherapy resistance through the inhibition of CCND1, providing insight into a promising therapeutic strategy for overcoming CRC resistance.
Collapse
Affiliation(s)
- Dequan Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jielian Wang
- Department of Internal Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Fei Yao
- College of Health Medicine, China Three Gorges University, Yichang, Hubei, P.R. China
| | - Zhufu Xie
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jianze Wu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Huiguang Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qingming Wu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Gastroenterology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Wu J, Zhang C, Li H, Zhang S, Chen J, Qin L. Competing endogenous RNAs network dysregulation in oral cancer: a multifaceted perspective on crosstalk and competition. Cancer Cell Int 2024; 24:431. [PMID: 39725978 DOI: 10.1186/s12935-024-03580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer. However, the underlying roles and functions of various ncRNA types in the growth of this malignant tumor remain unclear. Competing endogenous RNAs (ceRNAs) refer to transcripts that can mutually regulate each other at the post-transcriptional level by vying for shared miRNAs. Networks of ceRNAs establish connections between the functions of protein-coding mRNAs and non-coding RNAs, including microRNA, long non-coding RNA, pseudogenic RNA, and circular RNA, piwi-RNA, snoRNA. A growing body of research has indicated that imbalances in ceRNAs networks play a crucial role in various facets of oral cancer, including development, metastasis, migration, invasion, and inflammatory responses. Hence, delving into the regulatory pathways of ceRNAs in oral cancer holds the potential to advance our understanding of the pathological mechanisms, facilitate early diagnosis, and foster targeted drug development for this malignancy. The present review summarized the fundamental role of ceRNA network, discussed the limitations of current ceRNA applications, which have been improved through chemical modification and carrier delivery as new biomarkers for diagnosis and prognosis is expected to offer a groundbreaking therapeutic approach for individuals with oral cancer.
Collapse
Affiliation(s)
- Jiajun Wu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jingxin Chen
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China.
- School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan, 410208, China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
15
|
Ye L, Pan Y, Bao J, Guo Y, Lu L, Zheng J. Overexpression of ZNF468 promotes esophageal squamous cell carcinoma progression via the AKT/mTOR pathway. Int Immunopharmacol 2024; 143:113509. [PMID: 39486174 DOI: 10.1016/j.intimp.2024.113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/10/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND ZNF468 is a zinc finger protein that plays a key role in the occurrence and development of tumors. However, no studies have demonstrated whether ZNF468 is involved in the progression of esophageal squamous cell carcinoma (ESCC). METHODS The expression of ZNF468 in ESCC tumor and normal samples was analyzed by the TCGA database and confirmed by tissue immunohistochemistry. Subsequently, we established the lentivirus ZNF468 knockdown and ZNF468 overexpression models using ESCC cell lines. The effect of ZNF468 on ESCC was assessed by in vivo and in vitro experiments. The latter included CCK8, colony formation, wound healing, and transwell assays. Additionally, we also explored the underlying mechanism. RESULTS The mRNA and protein expression of ZNF468 were significantly increased in the tumor tissue of ESCC patients compared to normal para-cancerous tissue. Patients with high ZNF468 level were significantly related to shorter overall survival and disease-specific survival. Overexpression of ZNF468 increased the ability of proliferation, migration, and invasion of ESCC cells. In vivo experiments indicated that ZNF468 inhibition could also decrease the ESCC tumor growth. At last, we found that ZNF468 might affect ESCC progression through the AKT/mTOR signaling pathway. CONCLUSIONS These findings showed that increased ZNF468 expression might promote ESCC progression via the AKT/mTOR pathway, which might be a potential biomarker and drug target for ESCC.
Collapse
Affiliation(s)
- Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yixiao Pan
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jiaqian Bao
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Lingxiao Lu
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jingmin Zheng
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.
| |
Collapse
|
16
|
Wang C, Zhou Z, Ye Y, Zhou L, Wang J, Zhang Z. MAFG-DT promotes prostate cancer bone metastasis through activation of the Wnt/β-catenin pathway. Front Oncol 2024; 14:1461546. [PMID: 39735608 PMCID: PMC11671513 DOI: 10.3389/fonc.2024.1461546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
Background Prostate cancer (PCa) ranks as the second leading cause of cancer-related mortality among men. Long non-coding RNAs (lncRNAs) are known to play a regulatory role in the development of various human cancers. LncRNA MAFG-divergent transcript (MAFG-DT) was reported to play a crucial role in tumor progression of multiple human cancers, such as pancreatic cancer, colorectal cancer, bladder cancer, and gastric cancer. Nevertheless, the specific function of MAFG-DT in the context of bone metastasis in PCa remains inadequately understood. Methods The expression level of MAFG-DT was analyzed in published datasets and further confirmed in clinical samples and cell lines by RT-qPCR and in situ hybridization assays. Additionally, we further examined the effect of MAFG-DT on cell proliferation, migration, invasion and bone metastasis through CCK8, EdU, colony formation, transwell assays and bone metastasis model with intracardiac injection. Subsequently, the specific mechanism of MAFG-DT in PCa was investigated by RIP, ChIP, bioinformatic analysis and luciferase reporter assays. Results We found that MAFG-DT expression was significantly upregulated in PCa tissues exhibiting bone metastasis. Elevated levels of MAFG-DT expression were found to be positively associated with poor prognostic outcomes in PCa patients. Functionally, the knockdown of MAFG-DT resulted in a pronounced inhibition of cellular proliferation, migration, invasion, and bone metastasis. Moreover, it was demonstrated that MAFG-DT enhanced the expression of FZD4 and FZD5 mRNAs by sequestering miR-24-3p, thereby activating the Wnt/β-catenin signaling pathway. Additionally, the transcription factor MAFG was found to transcriptionally activate MAFG-DT in PCa. Conclusion This study confirms the oncogenic role of MAFG/MAFG-DT/miR-24-3p/Wnt/β-catenin in PCa, which suggests that MAFG-DT could serve as a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Chongwen Wang
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, China
| | | | | | | | | | - Zhi Zhang
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, China
| |
Collapse
|
17
|
Batista Brochado AC, de Moraes JA, Rodrigues de Oliveira B, De Souza Lima VH, Mariano ED, Karande S, Romasco T, Leite PEC, Mourão CF, Gomes Alves G. Metabolic and Regulatory Pathways Involved in the Anticancer Activity of Perillyl Alcohol: A Scoping Review of In Vitro Studies. Cancers (Basel) 2024; 16:4003. [PMID: 39682189 PMCID: PMC11640718 DOI: 10.3390/cancers16234003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Perillyl alcohol (POH), a plant-derived compound, has demonstrated anti-tumor activity across various human cancers. Understanding the regulatory pathways through which POH exerts its effects is crucial for identifying new therapeutic opportunities and exploring potential drug repositioning strategies. Therefore, this scoping review aims to provide a comprehensive overview of the metabolic and regulatory pathways involved in the anticancer effects of POH, based on in vitro evidence. METHODS Following the PRISMA-ScR 2018 guidelines, a systematic search was conducted in the PUBMED, Web of Science, and Scopus databases. RESULTS A total of 39 studies were included, revealing that POH exerts its biological effects by modulating several pathways, including the regulation of cyclins, CDKs, and p21, thereby affecting cell cycle progression. It inhibits growth and promotes cell death by attenuating AKT phosphorylation, reducing PARP-1 activity, increasing caspase activity and the FAS receptor and its ligand FASL. Additionally, POH reduces ERK phosphorylation, inhibits RAS protein isoprenylation, and decreases Na/K-ATPase activity. CONCLUSIONS In conclusion, this review delineates the key regulatory pathways responsible for mediating the biological effects of POH in cancer.
Collapse
Affiliation(s)
- Ana Carolina Batista Brochado
- Post-Graduation Program in Science & Biotechnology, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
| | - Júlia Alves de Moraes
- Clinical Research Unit, Antonio Pedro University Hospital, Fluminense Federal University, Niteroi 24020-140, Brazil
| | - Bruna Rodrigues de Oliveira
- Clinical Research Unit, Antonio Pedro University Hospital, Fluminense Federal University, Niteroi 24020-140, Brazil
| | - Victor Hugo De Souza Lima
- Post-Graduation Program in Science & Biotechnology, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
| | | | - Sachin Karande
- Dental Research Division, Department of Periodontology and Oral Implantology, Fluminense Federal University, Niteroi 21941-617, Brazil
| | - Tea Romasco
- Division of Dental Research Administration, Tufts University School of Dental Medicine, Boston, MA 02111, USA
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paulo Emilio Correa Leite
- Post-Graduation Program in Science & Biotechnology, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
| | - Carlos Fernando Mourão
- Department of Basic and Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Gutemberg Gomes Alves
- Post-Graduation Program in Science & Biotechnology, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
- Clinical Research Unit, Antonio Pedro University Hospital, Fluminense Federal University, Niteroi 24020-140, Brazil
| |
Collapse
|
18
|
Huang Z, Lou K, Qi M, Wang J, Li L, Sun B, Wang C, Zhou X, Chen D, Liu H. RERE-AS1 enhances the effect of CDK4/6 inhibitor Ribociclib and suppresses malignant phenotype in breast cancer via MEK/ERK pathway. J Transl Med 2024; 22:1052. [PMID: 39574120 PMCID: PMC11583401 DOI: 10.1186/s12967-024-05828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Currently, there is a lack of biomarkers to identify breast cancer (BC) patients who would benefit from CDK4/6 inhibitors. This study combined machine learning (ML) algorithms based on transcriptomic data with both in vivo and in vitro experiments to identify therapeutic efficacy-related biomarkers of the CDK4/6 inhibitor ribociclib from the perspective of long non-coding RNA (lncRNA). METHODS We used the Genomics of Drug Sensitivity in Cancer database along with the "oncoPredict" algorithm to calculate the half maximal inhibitory concentration (IC50) values for ribociclib based on transcriptome data. ML algorithms were utilized to select key lncRNAs related to ribociclib and to establish a model which could be used for selection of potential beneficiaries of ribociclib. Cellular experiments were conducted to validate the ML analysis and explore the potential biological mechanisms by which RERE-AS1 influences ribociclib efficacy and malignant phenotype of BC cells. Correlation analysis with clinical pathological factors, RT-qPCR experiments on tissue specimens, and pan-cancer analysis were carried out to explore the expression pattern, and the prognostic and diagnostic potential of RERE-AS1 in cancers. RESULTS We have identified 11 key ribociclib-related lncRNAs and constructed an artificial neural network model (ANNM) based on lncRNA. Cellular experiments demonstrated that overexpression of RERE-AS1 promoted the anti-tumor activity of ribociclib in BC cells. Furthermore, RERE-AS1 is crucial in suppressing the malignant traits of BC cells through the reduction of MEK and ERK phosphorylation levels. Patients with smaller primary tumors and lower pathological stage exhibited higher levels of RERE-AS1 expression. Lastly, a pan-cancer analysis revealed that RERE-AS1 exhibits distinctly abnormal expression patterns, prognostic significance, and clinical diagnostic value in BC, compared to other cancers. CONCLUSIONS The ANNM established through ML algorithms can serve as predictive indicators for the efficacy of ribociclib in BC patients. LncRNA RERE-AS1, a newly discovered biomarker, holds significant promise for diagnosis, treatment, and enhancing the therapeutic response to ribociclib in BC.
Collapse
Affiliation(s)
- Zhidong Huang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Kaixin Lou
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Mengyang Qi
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinhui Wang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Linwei Li
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bo Sun
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chen Wang
- The School of Basic Medicine, Tianjin Medical University, Tianjin, China
| | - Xirui Zhou
- The School of Basic Medicine, Tianjin Medical University, Tianjin, China
| | - Debo Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
- Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China.
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
19
|
Wang Z, Lu H, Zhong Y, Feng L, Jin H, Wang X. Impaired cyclin D3 protein degradation contributes to trastuzumab resistance in HER2 positive breast cancer. Med Oncol 2024; 41:305. [PMID: 39487929 PMCID: PMC11531418 DOI: 10.1007/s12032-024-02535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
As the first anti-HER2 targeted agent approved by FDA in 1998, Trastuzumab has significantly improved the outcome of patients with HER2 positive metastatic breast cancer. Unfortunately, resistance to trastuzumab is a severe obstacle to its therapeutic efficacy in clinical application, and its mechanism has not yet been fully elucidated. In our study, we found that stabilization of cyclin D3 could be one reason for trastuzumab resistance. Trastuzumab could induce G1/G0 phase arrest by downregulating cyclin D3 protein expression. However, the protein expression of cyclin D3 was not affected in trastuzumab-resistant cells, which might be related to aberrant activation of ERK signaling pathway. Furthermore, degradation of cyclin D3 protein by trastuzumab was mainly resulted from ubiquitin-dependent proteasome mechanism instead of transcriptional regulation. In trastuzumab-resistant breast cancer cells, trastuzumab-induced degradation of cyclin D3 protein was abrogated. When the ubiquitin pathway was inhibited, cells would show a predisposition to resistance to trastuzumab. Further, CDK4/6 inhibitor can inhibit the proliferation of trastuzumab-resistant HER-2 positive breast cancer cells. Therefore, combination of CDK4/6 inhibitors and anti-HER2 targeted therapy may be an alternative and promising strategy to overcome trastuzumab resistance in the future.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiqi Lu
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiming Zhong
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lifeng Feng
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
20
|
Jiao J, Zhao Y, Li Q, Jin S, Liu Z. LncRNAs in tumor metabolic reprogramming and tumor microenvironment remodeling. Front Immunol 2024; 15:1467151. [PMID: 39539540 PMCID: PMC11557318 DOI: 10.3389/fimmu.2024.1467151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem composed of tumor cells, immune cells, supporting cells, and the extracellular matrix. Typically, the TME is characterized by an immunosuppressive state. To meet the demands of rapid proliferation, cancer cells undergo metabolic reprogramming, which enhances their biosynthesis and bioenergy supply. Immune cells require similar nutrients for activation and proliferation, leading to competition and immunosuppression within the TME. Additionally, tumor metabolites inhibit immune cell activation and function. Consequently, an immunosuppressed and immune-tolerant TME promotes cancer cell proliferation and metastasis. Long non-coding RNAs (lncRNAs), a category of non-coding RNA longer than 200 nucleotides, regulate tumor metabolic reprogramming by interacting with key enzymes, transporters, and related signaling pathways involved in tumor metabolism. Furthermore, lncRNAs can interact with both cellular and non-cellular components in the TME, thereby facilitating tumor growth, metastasis, drug resistance, and inducing immunosuppression. Recent studies have demonstrated that lncRNAs play a crucial role in reshaping the TME by regulating tumor metabolic reprogramming. In this discussion, we explore the potential mechanisms through which lncRNAs regulate tumor metabolic reprogramming to remodel the TME. Additionally, we examine the prospects of lncRNAs as targets for anti-tumor therapy and as biomarkers for tumor prognosis.
Collapse
Affiliation(s)
- Jianhang Jiao
- Department of Orthopedics, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Yangzhi Zhao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Qimei Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, China
| | - Zhongshan Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Kalaimani K, Balachandran S, Boopathy LK, Roy A, Jayachandran B, Sankaranarayanan S, Arumugam MK. Recent advancements in small interfering RNA based therapeutic approach on breast cancer. Eur J Pharmacol 2024; 981:176877. [PMID: 39128807 DOI: 10.1016/j.ejphar.2024.176877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Breast cancer (BC) is the most common and malignant tumor diagnosed in women, with 2.9 million cases in 2023 and the fifth highest cancer-causing mortality worldwide. Recent developments in targeted therapy options for BC have demonstrated the promising potential of small interfering RNA (siRNA)-based cancer therapeutic approaches. As BC continues to be a global burden, siRNA therapy emerges as a potential treatment strategy to regulate disease-related genes in other types of cancers, including BC. siRNAs are tiny RNA molecules that, by preventing their expression, can specifically silence genes linked to the development of cancer. In order to increase the stability and effectiveness of siRNA delivery to BC cells, minimize off-target effects, and improve treatment efficacy, advanced delivery technologies such as lipid nanoparticles and nanocarriers have been created. Additionally, combination therapies, such as siRNAs that target multiple pathways are used in conjunction with conventional chemotherapy agents, have shown synergistic effects in various preclinical studies, opening up new treatment options for breast cancer that are personalized and precision medicine-oriented. Targeting important genes linked to BC growth, metastasis, and chemo-resistance has been reported in BC research using siRNA-based therapies. This study reviews recent reports on therapeutic approaches to siRNA for advanced treatment of BC. Furthermore, this review evaluates the role and mechanisms of siRNA in BC and demonstrates the potential of exploiting siRNA as a novel target for BC therapy.
Collapse
Affiliation(s)
- Kathirvel Kalaimani
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Shana Balachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Bhuvaneshwari Jayachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sangamithra Sankaranarayanan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
22
|
Yan Y, Zhang J. Mechanisms of tamoxifen resistance: insight from long non-coding RNAs. Front Oncol 2024; 14:1458588. [PMID: 39439957 PMCID: PMC11493607 DOI: 10.3389/fonc.2024.1458588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Breast cancer(BC) is the second most prevalent tumor in the world and one of the most lethal tumors in women. Patients with estrogen receptor-positive breast cancer can obtain significant advantages from endocrine therapies including tamoxifen, aromatase inhibitors, and others. However, the development of primary or acquired drug resistance ultimately leads to discontinuation of treatment with adverse consequences for breast cancer patients, and the underlying mechanisms have not been fully elucidated. Long non-coding RNAs (lncRNAs) play pivotal roles in orchestrating fundamental biochemical and cellular processes. They exert regulatory control over various processes including epigenetics, gene transcription, post-transcriptional modifications, and translation. Additionally, they influence key biological events like cell cycle progression, cell differentiation, and development. For the past few years, the relationship between lncRNAs and endocrine resistance has gained increasing attention, leading to a surge in related studies. LncRNAs mediate tamoxifen resistance in cancer by utilizing a variety of molecular mechanisms, including enhanced estrogen receptor (ER) signaling, inhibition of apoptosis, autophagy, exosome-mediated transfer, epigenetic alterations, epithelial-to-mesenchymal transition, and acting as competitive endogenous RNAs(ceRNAs). In this comprehensive review, we systematically summarize the critical role and intricate molecular mechanisms by which lncRNAs influence the development of tamoxifen resistance in breast cancer. Furthermore, we propose the potential clinical significance of lncRNAs as innovative therapeutic targets and prognostic biomarkers for breast cancer.
Collapse
Affiliation(s)
- Yuxin Yan
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
23
|
Luo H, Chong H, Wang Y, Gao Y, Xie W, Wang D. Screening lncRNAs essential for cardiomyocyte proliferation by integrative profiling of lncRNAs and mRNAs associated with heart development. Exp Cell Res 2024; 442:114277. [PMID: 39383929 DOI: 10.1016/j.yexcr.2024.114277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND The proliferation potential of mammalian cardiomyocytes declines markedly shortly after birth. Both long non-coding RNAs (lncRNAs) and mRNAs demonstrate altered expression patterns during cardiac development. However, the role of lncRNAs in the cell cycle arrest of cardiomyocytes remains inadequately understood. METHOD The expression pattern of lncRNAs and mRNAs was analyzed in mouse hearts exhibiting varying regenerative potentials on postnatal days (P) 1, 7, and 28. Weighted correlation network analysis (WGCNA) was employed to elucidate the co-expression relationship between lncRNAs and mRNAs. Protein-protein interaction (PPI) network was built using the STRING database, and hub lncRNAs were identified by CytoHubba. Molecular Complex Detection (MCODE) was used to screen core modules of the PPI network in Cytoscape. Upstream lncRNAs and miRNAs which may regulate mRNAs were predicted using miRTarBase and AnnoLnc2, respectively. Myocardial infarction (MI) was induced by ligation of the left anterior descending coronary artery. RESULTS Compared with the P1 heart, 618 mRNAs and 414 lncRNAs displayed. transcriptional changes in the P7 heart, while 2358 mRNAs and 1290 lncRNAs showed from P7 to P28. Gene Ontology (GO) analysis revealed that module 1 in the both comparisons was enriched in the mitotic cell cycle process. 2810408I11Rik and 2010110K18Rik were identified as hub lncRNAs and their effects on the proliferation of cardiomyocytes were verified in vitro. Additionally, four lncRNA-miRNA-mRNA regulatory axes were predicted to explain the mechanism by which 2810408I11Rik and 2010110K18Rik regulate cardiomyocyte proliferation. Notably, the overexpression of 2810408I11Rik enhances cardiomyocyte proliferation and heart regeneration in the adult heart following MI. CONCLUSION This study systematically analyzed the landscape of lncRNAs and mRNAs at P1, P7, and P28. These findings may enhance our understanding of the framework for heart development and could have significant implications for heart regeneration.
Collapse
Affiliation(s)
- Hanqing Luo
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hoshun Chong
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yapeng Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, China
| | - Yaxuan Gao
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Xie
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongjin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
24
|
Huang YK, Wang TM, Chen CY, Li CY, Wang SC, Irshad K, Pan Y, Chang KC. The role of ALDH1A1 in glioblastoma proliferation and invasion. Chem Biol Interact 2024; 402:111202. [PMID: 39128802 DOI: 10.1016/j.cbi.2024.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
High-grade gliomas, including glioblastoma multiforme (GBM), continue to be a leading aggressive brain tumor in adults, marked by its rapid growth and invasive nature. Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), an enzyme, plays a significant role in tumor progression, yet its function in high-grade gliomas is still poorly investigated. In this study, we evaluated ALDH1A1 levels in clinical samples of GBM. We also assessed the prognostic significance of ALDH1A1 expression in GBM and LGG (low grade glioma) patients using TCGA (The Cancer Genome Atlas) database analysis. The MTT and transwell assays were utilized to examine cell growth and the invasive capability of U87 cells, respectively. We quantitatively examined markers for cell proliferation (Ki-67 and cyclin D1) and invasion (MMP2 and 9). A Western blot test was conducted to determine the downstream signaling of ALDH1A1. We found a notable increase in ALDH1A1 expression in high-grade gliomas compared to their low-grade counterparts. U87 cells that overexpressed ALDH1A1 showed increased cell growth and invasion. We found that ALDH1A1 promotes the phosphorylation of AKT, and inhibiting AKT phosphorylation mitigates the ALDH1A1's effects on tumor growth and migration. In summary, our findings suggest ALDH1A1 as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Ming Wang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chi-Yu Chen
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Khushboo Irshad
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
25
|
Wang J, Lv F, Zhu Y, Lu X, Zhang B. Reversal of the tamoxifen‑resistant breast cancer malignant phenotype by proliferation inhibition with bromosulfonamidine amino‑podophyllotoxin. Oncol Lett 2024; 28:373. [PMID: 38910903 PMCID: PMC11190816 DOI: 10.3892/ol.2024.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/16/2024] [Indexed: 06/25/2024] Open
Abstract
One of the lignans isolated from plants within the genus Podophyllum is podophyllotoxin (PPT). PPT and its derivatives are pharmacologically active compounds with potential antiproliferative properties in several kinds of tumors. Although these compounds have been used to treat other malignancies, no PPT derivative-based chemotherapeutic agent has been used to cure tamoxifen (TAM)-resistant breast cancer in clinical trials, to the best of our knowledge. Thus, using TAM-resistant breast cancer as a disease model, the present study assessed the effects of a recently synthesized PPT derivative, bromosulfonamidine amino-PPT (BSAPPT), on TAM-resistant breast cancer. Using the tamoxifen-resistant breast cancer cell model (MCF-7/TAMR) in vitro, Cell Counting Kit-8 and colony formation assays were adopted to evaluate the effect of BSAPPT on cell proliferation. Cell apoptosis and cell cycle assays were used to assess the influence of BSAPPT on cell apoptosis and the cell cycle in MCF-7/TAMR. The targets of the potential mechanism of action were analyzed by RT-qPCR and western blotting. The present study demonstrated that BSAPPT suppressed MCF-7/TAMR cell proliferation in a dose-dependent manner. By modulating the level of expression of genes linked to both apoptosis and the cell cycle, BSAPPT triggered MCF-7/TAMR cells to undergo apoptosis and prevented them from entering the cell cycle. Consequently, BSAPPT blocked these cells from proliferating, thereby halting the malignant advancement of TAM-resistant breast cancer. Therefore, these findings indicate that new therapeutic agents involving BSAPPT may be developed to facilitate the treatment of TAM-resistant breast cancer.
Collapse
Affiliation(s)
- Jiayi Wang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Medical Laboratory (Guangdong), Dongguan Eighth People's Hospital, Dongguan, Guangdong 523320, P.R. China
- Department of Genetics, Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong 523320, P.R. China
| | - Fen Lv
- Medical Laboratory (Guangdong), Dongguan Eighth People's Hospital, Dongguan, Guangdong 523320, P.R. China
- Department of Genetics, Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong 523320, P.R. China
| | - Yinghua Zhu
- Medical Laboratory (Guangdong), Dongguan Eighth People's Hospital, Dongguan, Guangdong 523320, P.R. China
- Department of Genetics, Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong 523320, P.R. China
| | - Xiaomei Lu
- Medical Laboratory (Guangdong), Dongguan Eighth People's Hospital, Dongguan, Guangdong 523320, P.R. China
- Department of Genetics, Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong 523320, P.R. China
| | - Bao Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
26
|
Wu X, Fu M, Ge C, Zhou H, Huang H, Zhong M, Zhang M, Xu H, Zhu G, Hua W, Lv K, Yang H. m 6A-Mediated Upregulation of lncRNA CHASERR Promotes the Progression of Glioma by Modulating the miR-6893-3p/TRIM14 Axis. Mol Neurobiol 2024; 61:5418-5440. [PMID: 38193984 DOI: 10.1007/s12035-023-03911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in tumor progression and are dysregulated in glioma. However, the functional roles of lncRNAs in glioma remain largely unknown. In this study, we utilized the TCGA (the Cancer Genome Atlas database) and GEPIA2 (Gene Expression Profiling Interactive Analysis 2) databases and observed the overexpression of lncRNA CHASERR in glioma tissues. We subsequently investigated this phenomenon in glioma cell lines. The effects of lncRNA CHASERR on glioma proliferation, migration, and invasion were analyzed using in vitro and in vivo experiments. Additionally, the regulatory mechanisms among PTEN/p-Akt/mTOR and Wnt/β-catenin, lncRNA CHASERR, Micro-RNA-6893-3p(miR-6893-3p), and tripartite motif containing14 (TRIM14) were investigated via bioinformatics analyses, quantitative real-time PCR (qRT-PCR), western blot (WB), RNA immunoprecipitation (RIP), dual luciferase reporter assay, fluorescence in situ hybridization (FISH), and RNA sequencing assays. RIP and RT-qRCR were used to analyze the regulatory effect of N6-methyladenosine(m6A) on the aberrantly expressed lncRNA CHASERR. High lncRNA CHASERR expression was observed in glioma tissues and was associated with unfavorable prognosis in glioma patients. Further functional assays showed that lncRNA CHASERR regulates glioma growth and metastasis in vitro and in vivo. Mechanistically, lncRNA CHASERR sponged miR-6893-3p to upregulate TRIM14 expression, thereby facilitating glioma progression. Additionally, the activation of PTEN/p-Akt/mTOR and Wnt/β-catenin pathways by lncRNA CHASERR, miR-6893-3p, and TRIM14 was found to regulate glioma progression. Moreover, the upregulation of lncRNA CHASERR was observed in response to N6-methyladenosine modification, which was facilitated by METTL3/YTHDF1-mediated RNA transcripts. This study elucidates the m6A/lncRNACHASERR/miR-6893-3p/TRIM14 pathway that contributes to glioma progression and underscores the potential of lncRNA CHASERR as a novel prognostic indicator and therapeutic target for glioma.
Collapse
Affiliation(s)
- Xingwei Wu
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Chang Ge
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Hanyu Zhou
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Haoyu Huang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Min Zhong
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Mengying Zhang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai, China.
| | - Kun Lv
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| | - Hui Yang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| |
Collapse
|
27
|
Zhou Z, Jiang X, Yi L, Li C, Wang H, Xiong W, Li Z, Shen J. Mitochondria Energy Metabolism Depression as Novel Adjuvant to Sensitize Radiotherapy and Inhibit Radiation Induced-Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401394. [PMID: 38715382 PMCID: PMC11234447 DOI: 10.1002/advs.202401394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 07/11/2024]
Abstract
Currently, the typical combination therapy of programmed death ligand-1 (PD-L1) antibodies with radiotherapy (RT) still exhibits impaired immunogenic antitumor response in clinical due to lessened DNA damage and acquired immune tolerance via the upregulation of some other immune checkpoint inhibitors. Apart from this, such combination therapy may raise the occurrence rate of radiation-induced lung fibrosis (RIPF) due to enhanced systemic inflammation, leading to the ultimate death of cancer patients (average survival time of about 3 years). Therefore, it is newly revealed that mitochondria energy metabolism regulation can be used as a novel effective PD-L1 and transforming growth factor-β (TGF-β) dual-downregulation method. Following this, IR-TAM is prepared by conjugating mitochondria-targeted heptamethine cyanine dye IR-68 with oxidative phosphorylation (OXPHOS) inhibitor Tamoxifen (TAM), which then self-assembled with albumin (Alb) to form IR-TAM@Alb nanoparticles. By doing this, tumor-targeting IR-TAM@Alb nanoparticle effectively reversed tumor hypoxia and depressed PD-L1 and TGF-β expression to sensitize RT. Meanwhile, due to the capacity of heptamethine cyanine dye in targeting RIPF and the function of TAM in depressing TGF-β, IR-TAM@Alb also ameliorated fibrosis development induced by RT.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Zhipeng Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
28
|
Chen X, Wu W, Jeong JH, Rokavec M, Wei R, Feng S, Schroth W, Brauch H, Zhong S, Luo JL. Cytokines-activated nuclear IKKα-FAT10 pathway induces breast cancer tamoxifen-resistance. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1413-1426. [PMID: 38565741 DOI: 10.1007/s11427-023-2460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2023] [Indexed: 04/04/2024]
Abstract
Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive (ER+) breast cancer. However, the efficacy of agents such as tamoxifen (Tam) is often compromised by the development of resistance. Here we report that cytokines-activated nuclear IKKα confers Tam resistance to ER+ breast cancer by inducing the expression of FAT10, and that the expression of FAT10 and nuclear IKKα in primary ER+ human breast cancer was correlated with lymphotoxin β (LTB) expression and significantly associated with relapse and metastasis in patients treated with adjuvant mono-Tam. IKKα activation or enforced FAT10 expression promotes Tam-resistance while loss of IKKα or FAT10 augments Tam sensitivity. The induction of FAT10 by IKKα is mediated by the transcription factor Pax5, and coordinated via an IKKα-p53-miR-23a circuit in which activation of IKKα attenuates p53-directed repression of FAT10. Thus, our findings establish IKKα-to-FAT10 pathway as a new therapeutic target for the treatment of Tam-resistant ER+ breast cancer.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Weilin Wu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Ji-Hak Jeong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Matjaz Rokavec
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Rui Wei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shaolong Feng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, 72074, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, 72074, Germany
| | - Shangwei Zhong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA.
- The Cancer Research Institute and the Second Affiliated Hospital, Henyang Medical School, University of South China, Hengyang, 421001, China.
| | - Jun-Li Luo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA.
- The Cancer Research Institute and the Second Affiliated Hospital, Henyang Medical School, University of South China, Hengyang, 421001, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China.
| |
Collapse
|
29
|
HUANG XIAOBI, CHEN CHUNYUAN, CHEN YONGYANG, ZHOU HONGLIAN, CHEN YONGHUA, HUANG ZHONG, XIE YULIU, LIU BAIYANG, GUO YUDONG, YANG ZHIXIONG, CHEN GUANGHUA, SU WENMEI. Silencing of the long non-coding RNA LINC00265 triggers autophagy and apoptosis in lung cancer by reducing protein stability of SIN3A oncogene. Oncol Res 2024; 32:1185-1195. [PMID: 38948024 PMCID: PMC11211643 DOI: 10.32604/or.2023.030771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/22/2023] [Indexed: 07/02/2024] Open
Abstract
Background Long non-coding RNAs are important regulators in cancer biology and function either as tumor suppressors or as oncogenes. Their dysregulation has been closely associated with tumorigenesis. LINC00265 is upregulated in lung adenocarcinoma and is a prognostic biomarker of this cancer. However, the mechanism underlying its function in cancer progression remains poorly understood. Methods Here, the regulatory role of LINC00265 in lung adenocarcinoma was examined using lung cancer cell lines, clinical samples, and xenografts. Results We found that high levels of LINC00265 expression were associated with shorter overall survival rate of patients, whereas knockdown of LINC00265 inhibited proliferation of cancer cell lines and tumor growth in xenografts. Western blot and flow cytometry analyses indicated that silencing of LINC00265 induced autophagy and apoptosis. Moreover, we showed that LINC00265 interacted with and stabilized the transcriptional co-repressor Switch-independent 3a (SIN3A), which is a scaffold protein functioning either as a tumor repressor or as an oncogene in a context-dependent manner. Silencing of SIN3A also reduced proliferation of lung cancer cells, which was correlated with the induction of autophagy. These observations raise the possibility that LINC00265 functions to promote the oncogenic activity of SIN3A in lung adenocarcinoma. Conclusions Our findings thus identify SIN3A as a LINC00265-associated protein and should help to understand the mechanism underlying LINC00265-mediated oncogenesis.
Collapse
Affiliation(s)
- XIAOBI HUANG
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - CHUNYUAN CHEN
- Department of Thoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - YONGYANG CHEN
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - HONGLIAN ZHOU
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - YONGHUA CHEN
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - ZHONG HUANG
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - YULIU XIE
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - BAIYANG LIU
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - YUDONG GUO
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - ZHIXIONG YANG
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - GUANGHUA CHEN
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - WENMEI SU
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| |
Collapse
|
30
|
Pathania AS, Chava H, Balusu R, Pasupulati AK, Coulter DW, Challagundla KB. The crosstalk between non-coding RNAs and cell-cycle events: A new frontier in cancer therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200785. [PMID: 38595981 PMCID: PMC10973673 DOI: 10.1016/j.omton.2024.200785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The cell cycle comprises sequential events during which a cell duplicates its genome and divides it into two daughter cells. This process is tightly regulated to ensure that the daughter cell receives identical copied chromosomal DNA and that any errors in the DNA during replication are correctly repaired. Cyclins and their enzyme partners, cyclin-dependent kinases (CDKs), are critical regulators of G- to M-phase transitions during the cell cycle. Mitogenic signals induce the formation of the cyclin/CDK complexes, resulting in phosphorylation and activation of the CDKs. Once activated, cyclin/CDK complexes phosphorylate specific substrates that drive the cell cycle forward. The sequential activation and inactivation of cyclin-CDK complexes are tightly controlled by activating and inactivating phosphorylation events induced by cell-cycle proteins. The non-coding RNAs (ncRNAs), which do not code for proteins, regulate cell-cycle proteins at the transcriptional and translational levels, thereby controlling their expression at different cell-cycle phases. Deregulation of ncRNAs can cause abnormal expression patterns of cell-cycle-regulating proteins, resulting in abnormalities in cell-cycle regulation and cancer development. This review explores how ncRNA dysregulation can disrupt cell division balance and discusses potential therapeutic approaches targeting these ncRNAs to control cell-cycle events in cancer treatment.
Collapse
Affiliation(s)
- Anup S. Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Balusu
- Department of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Anil K. Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
31
|
Zhou W, Li X, Zhang B, Peng H, Quan C, Xiao X, Luo M, Huang Y, Xu D, Huang K, Jin Q, Lu S. The long non-coding RNA CCAT1 promotes erlotinib resistance in cholangiocarcinoma by inducing epithelial-mesenchymal transition via the miR-181a-5p/ROCK2 axis. Am J Cancer Res 2024; 14:2852-2867. [PMID: 39005692 PMCID: PMC11236789 DOI: 10.62347/eqdk1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a common malignancy of the digestive system, and its treatment is greatly challenged by rising chemoresistance. Long non-coding RNAs (lncRNAs) have been shown to play critical roles in the development of drug resistance in tumors. However, the role of the lncRNA CCAT1 in erlotinib resistance in CCA remains unclear. In this investigation, we identified CCAT1 as a pivotal factor contributing to erlotinib resistance in CCA. Furthermore, we uncovered that lncRNA CCAT1 modulated epithelial-mesenchymal transition (EMT) through Rho-associated coiled-coil-forming protein kinase 2 (ROCK2), thereby conferring erlotinib resistance upon CCA cells. Mechanistically, we demonstrated that miR-181a-5p interacted with CCAT1 to modulate the expression of ROCK2. Collectively, these findings shed light on the significant role of CCAT1 in the development of erlotinib resistance in CCA. The functional suppression of CCAT1 holds promise in enhancing the sensitivity to erlotinib by reversing EMT through the miR-181a-5p/ROCK2 signaling pathway. These findings provide valuable insights into the mechanisms underlying erlotinib resistance in CCA and the potential strategies for its treatment.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Abdominal Surgery, Jiangxi Cancer HospitalNanchang 330029, Jiangxi, China
- Oncology Teaching and Research Office, The Second Affiliated Hospital of Nanchang Medical CollegeNanchang 330029, Jiangxi, China
- Key Laboratory of Tumor Transformation Medicine, Jiangxi Cancer HospitalNanchang 330029, Jiangxi, China
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Xingquan Li
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Bolin Zhang
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Hong Peng
- Department of Colorectal Surgery, 908th Hospital of Chinese People’s Liberation Army JointNanchang 330029, Jiangxi, China
| | - Chunyang Quan
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Xin Xiao
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Man Luo
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Yanxiao Huang
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Debin Xu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Kai Huang
- Department of Abdominal Surgery, Jiangxi Cancer HospitalNanchang 330029, Jiangxi, China
- Oncology Teaching and Research Office, The Second Affiliated Hospital of Nanchang Medical CollegeNanchang 330029, Jiangxi, China
- Key Laboratory of Tumor Transformation Medicine, Jiangxi Cancer HospitalNanchang 330029, Jiangxi, China
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Qifang Jin
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Shan Lu
- Oncology Teaching and Research Office, The Second Affiliated Hospital of Nanchang Medical CollegeNanchang 330029, Jiangxi, China
- Key Laboratory of Tumor Transformation Medicine, Jiangxi Cancer HospitalNanchang 330029, Jiangxi, China
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
- Department of Gastroenterology and Oncology, Jiangxi Cancer HospitalNanchang 330029, Jiangxi, China
| |
Collapse
|
32
|
Saatci O, Alam R, Huynh-Dam KT, Isik A, Uner M, Belder N, Ersan PG, Tokat UM, Ulukan B, Cetin M, Calisir K, Gedik ME, Bal H, Sener Sahin O, Riazalhosseini Y, Thieffry D, Gautheret D, Ogretmen B, Aksoy S, Uner A, Akyol A, Sahin O. Targeting LINC00152 activates cAMP/Ca 2+/ferroptosis axis and overcomes tamoxifen resistance in ER+ breast cancer. Cell Death Dis 2024; 15:418. [PMID: 38879508 PMCID: PMC11180193 DOI: 10.1038/s41419-024-06814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024]
Abstract
Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER + ) breast cancer, constituting around 75% of all cases. However, the emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance by blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of the cAMP/PKA/CREB axis and increased expression of the TRPC1 Ca2+ channel. This causes cytosolic Ca2+ overload and generation of reactive oxygen species (ROS) that is, on the one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe2+ levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels, in part by cAMP/CREB. These ultimately restore tamoxifen-dependent lipid peroxidation and ferroptotic cell death which are reversed upon chelating Ca2+ or overexpressing GPX4 or xCT. Overexpressing PDE4D reverses LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca2+/ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of tamoxifen sensitization via restoring tamoxifen-dependent ferroptosis upon destabilizing PDE4D, increasing cAMP and Ca2+ levels, thus leading to ROS generation and lipid peroxidation. Our findings reveal LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Rashedul Alam
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kim-Tuyen Huynh-Dam
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Aynur Isik
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Meral Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Nevin Belder
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | - Pelin Gulizar Ersan
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | - Unal Metin Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | - Burge Ulukan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Metin Cetin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Kubra Calisir
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mustafa Emre Gedik
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hilal Bal
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | - Ozlem Sener Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, Canada
| | - Denis Thieffry
- Département de biologie de l'Ecole normale supérieure, PSL Université, 75005, Paris, France
- Bioinformatics and Computational Systems Biology of Cancer, U900 Institut Curie - INSERM - Mines ParisTech, PSL Université, 75005, Paris, France
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91190, Gif-sur-Yvette, France
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Aytekin Akyol
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
33
|
Shirani N, Mahdi‐Esferizi R, Eshraghi Samani R, Tahmasebian S, Yaghoobi H. In silico identification and in vitro evaluation of MRPS30-DT lncRNA and MRPS30 gene expression in breast cancer. Cancer Rep (Hoboken) 2024; 7:e2114. [PMID: 38886335 PMCID: PMC11182701 DOI: 10.1002/cnr2.2114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND It has been reported that long non-coding RNAs (lncRNAs) can play important roles in a variety of biological processes and cancer regulatory networks, including breast cancer. AIMS This study aimed to identify a novel upregulated lncRNA in breast cancer and its associated gene using bioinformatics analysis, and then evaluate their potential roles in breast cancer. METHODS AND RESULTS Extensive in silico studies were performed using various bioinformatics databases and tools to identify a potential upregulated breast cancer-associated lncRNA and its co-expressed gene, and to predict their potential roles, functions, and interactions. The expression level of MRPS30-DT lncRNA and MRPS30 was assessed in both BC tissues and cell lines using qRT-PCR technology. MRPS30-DT lncRNA and MRPS30 were selected as target genes using bioinformatics analysis. We found that MRPS30-DT and MRPS30 were significantly overexpressed in BC tissues compared with normal tissues. Also, MRPS30 showed upregulation in all three BC cell lines compared with HDF. On the other hand, MRPS30-DT significantly increased in MDA-MB-231 compared with HDF. While the expression of MRPS30-DT was significantly dropped in the resistance cell line MCF/MX compared to HDF and MCF7. Moreover, bioinformatics analysis suggested that MRPS30-DT and MRPS30 may play a potential role in BC through their involvement in some cancer signaling pathways and processes, as well as through their interaction with TFs, genes, miRNAs, and proteins related to carcinogenesis. CONCLUSIONS Overall, our findings showed the dysregulation of MRPS30-DT lncRNA and MRPS30 may provide clues for exploring new therapeutic targets or molecular biomarkers in BC.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Roohallah Mahdi‐Esferizi
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
- Department of Medical BiotechnologySchool of Advanced Technologies, Shahrekord University of Medical SciencesShahrekordIran
| | - Reza Eshraghi Samani
- Department of General SurgerySchool of Medicine, Isfahan University of Medical SciencesIsfahanIran
| | - Shahram Tahmasebian
- Department of Medical BiotechnologySchool of Advanced Technologies, Shahrekord University of Medical SciencesShahrekordIran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
34
|
Song H, Adu-Amankwaah J, Zhao Q, Yang D, Liu K, Bushi A, Zhao J, Yuan J, Tan R. Decoding long non‑coding RNAs: Friends and foes in cancer development (Review). Int J Oncol 2024; 64:61. [PMID: 38695241 PMCID: PMC11095623 DOI: 10.3892/ijo.2024.5649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer remains a formidable adversary, challenging medical advancements with its dismal prognosis, low cure rates and high mortality rates. Within this intricate landscape, long non‑coding RNAs (lncRNAs) emerge as pivotal players, orchestrating proliferation and migration of cancer cells. Harnessing the potential of lncRNAs as therapeutic targets and prognostic markers holds immense promise. The present comprehensive review delved into the molecular mechanisms underlying the involvement of lncRNAs in the onset and progression of the top five types of cancer. By meticulously examining lncRNAs across diverse types of cancer, it also uncovered their distinctive roles, highlighting their exclusive oncogenic effects or tumor suppressor properties. Notably, certain lncRNAs demonstrate diverse functions across different cancers, confounding the conventional understanding of their roles. Furthermore, the present study identified lncRNAs exhibiting aberrant expression patterns in numerous types of cancer, presenting them as potential indicators for cancer screening and diagnosis. Conversely, a subset of lncRNAs manifests tissue‑specific expression, hinting at their specialized nature and untapped significance in diagnosing and treating specific types of cancer. The present comprehensive review not only shed light on the intricate network of lncRNAs but also paved the way for further research and clinical applications. The unraveled molecular mechanisms offer a promising avenue for targeted therapeutics and personalized medicine, combating cancer proliferation, invasion and metastasis.
Collapse
Affiliation(s)
- Hequn Song
- First Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Qizhong Zhao
- Department of Emergency, The First Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Dongqi Yang
- School of Life Science and Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Kuntao Liu
- School of Life Science and Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
- Department of Pathology, The First Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jinxiang Yuan
- Lin He Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
35
|
Zhu Z, Li M, Weng J, Li S, Guo T, Guo Y, Xu Y. LncRNA GAS6-AS1 contributes to 5-fluorouracil resistance in colorectal cancer by facilitating the binding of PCBP1 with MCM3. Cancer Lett 2024; 589:216828. [PMID: 38521199 DOI: 10.1016/j.canlet.2024.216828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
5-Fluorouracil (5-FU) resistance has always been a formidable obstacle in the adjuvant treatment of advanced colorectal cancer (CRC). In recent years, long non-coding RNAs have emerged as key regulators in various pathophysiological processes including 5-FU resistance. TRG is a postoperative pathological score of the chemotherapy effectiveness for CRC, of which TRG 0-1 is classified as chemotherapy sensitivity and TRG 3 as chemotherapy resistance. Here, RNA-seq combined with weighted gene correlation network analysis confirmed the close association of GAS6-AS1 with TRG. GAS6-AS1 expression was positively correlated with advanced clinicopathological features and poor prognosis in CRC. GAS6-AS1 increased the 50% inhibiting concentration of 5-FU, enhanced cell proliferation and accelerated G1/S transition, both with and without 5-FU, both in vitro and in vivo. Mechanistically, GAS6-AS1 enhanced the stability of MCM3 mRNA by recruiting PCBP1, consequently increasing MCM3 expression. Furthermore, PCBP1 and MCM3 counteracted the effects of GAS6-AS1 on 5-FU resistance. Notably, the PDX model indicated that combining chemotherapeutic drugs with GAS6-AS1 knockdown yielded superior outcomes in vivo. Together, our findings elucidate that GAS6-AS1 directly binds to PCBP1, enhancing MCM3 expression and thereby promoting 5-FU resistance. GAS6-AS1 may serve as a robust biomarker and potential therapeutic target for combination therapy in CRC.
Collapse
Affiliation(s)
- Zhonglin Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Minghan Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Shanbao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Tianan Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yang Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
36
|
Ke Z, Hu X, Liu Y, Shen D, Khan MI, Xiao J. Updated review on analysis of long non-coding RNAs as emerging diagnostic and therapeutic targets in prostate cancers. Crit Rev Oncol Hematol 2024; 196:104275. [PMID: 38302050 DOI: 10.1016/j.critrevonc.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Despite advancements, prostate cancers (PCa) pose a significant global health challenge due to delayed diagnosis and therapeutic resistance. This review delves into the complex landscape of prostate cancer, with a focus on long-noncoding RNAs (lncRNAs). Also explores the influence of aberrant lncRNAs expression in progressive PCa stages, impacting traits like proliferation, invasion, metastasis and therapeutic resistance. The study elucidates how lncRNAs modulate crucial molecular effectors, including transcription factors and microRNAs, affecting signaling pathways such as androgen receptor signaling. Besides, this manuscript sheds light on novel concepts and mechanisms driving PCa progression through lncRNAs, providing a critical analysis of their impact on the disease's diverse characteristics. Besides, it discusses the potential of lncRNAs as diagnostics and therapeutic targets in PCa. Collectively, this work highlights state of art mechanistic comprehension and rigorous scientific approaches to advance our understanding of PCa and depict innovations in this evolving field of research.
Collapse
Affiliation(s)
- Zongpan Ke
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China; Wannan Medical College, No. 22 Wenchangxi Road, Yijiang District, Wuhu 241000, China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Yixun Liu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Deyun Shen
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| | - Muhammad Imran Khan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 China.
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| |
Collapse
|
37
|
Zhao W, Ma J, Zhang Q, Zhang H, Ma W, Li S, Piao Y, Zhao S, Dai S, Tang D. Ginsenoside Rg3 overcomes tamoxifen resistance through inhibiting glycolysis in breast cancer cells. Cell Biol Int 2024; 48:496-509. [PMID: 38225685 DOI: 10.1002/cbin.12123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Tamoxifen (TAM) resistance poses a significant clinical challenge in human breast cancer and exhibits high heterogeneity among different patients. Rg3, an original ginsenoside known to inhibit tumor growth, has shown potential for enhancing TAM sensitivity in breast cancer cells. However, the specific role and underlying mechanisms of Rg3 in this context remain unclear. Aerobic glycolysis, a metabolic process, has been implicated in chemotherapeutic resistance. In this study, we demonstrate that elevated glycolysis plays a central role in TAM resistance and can be effectively targeted and overcome by Rg3. Mechanistically, we observed upregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key mediator of glycolysis, in TAM-resistant MCF-7/TamR and T-47D/TamR cells. Crucially, PFKFB3 is indispensable for the synergistic effect of TAM and Rg3 combination therapy, which suppresses cell proliferation and glycolysis in MCF-7/TamR and T-47D/TamR cells, both in vitro and in vivo. Moreover, overexpression of PFKFB3 in MCF-7 cells mimicked the TAM resistance phenotype. Importantly, combination treatment significantly reduced TAM-resistant MCF-7 cell proliferation in an in vivo model. In conclusion, this study highlights the contribution of Rg3 in enhancing the therapeutic efficacy of TAM in breast cancer, and suggests that targeting TAM-resistant PFKFB3 overexpression may represent a promising strategy to improve the response to combination therapy in breast cancer.
Collapse
Affiliation(s)
- Wenhui Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenjie Ma
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuo Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Piao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shu Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shaochun Dai
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dabei Tang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
38
|
Alzahrani AA, Saleh RO, Latypova A, Bokov DO, Kareem AH, Talib HA, Hameed NM, Pramanik A, Alawadi A, Alsalamy A. Therapeutic significance of long noncoding RNAs in estrogen receptor-positive breast cancer. Cell Biochem Funct 2024; 42:e3993. [PMID: 38532685 DOI: 10.1002/cbf.3993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
About 70% of cases of breast cancer are compromised by Estrogen-positive breast cancer. Through its regulation of several processes, including cell proliferation, cell cycle progression, and apoptosis, Estrogen signaling plays a pivotal role in the genesis and progression of this particular kind of breast cancer. One of the best treatment strategies for treating Estrogen-positive breast cancer is blocking Estrogen signaling. However, patients' treatment failure is mainly caused by the emergence of resistance and metastases, necessitating the development of novel therapeutic targets. Numerous studies have shown long noncoding RNAs (lncRNAs) to play a role in Estrogen-mediated carcinogenesis. These lncRNAs interact with co-regulators and the Estrogen signaling cascade components, primarily due to Estrogen activation. Vimentin and E-cadherin are examples of epithelial-to-mesenchymal transition markers, and they regulate genes involved in cell cycle progression, such as Cyclins, to affect the growth, proliferation, and metastasis of Estrogen-positive breast cancer. Furthermore, a few of these lncRNAs contribute to developing resistance to chemotherapy, making them more desirable targets for enhancing results. Thus, to shed light on the creation of fresh approaches for treating this cancer, this review attempts to compile recently conducted studies on the relationship between lncRNAs and the advancement of Estrogen-positive breast cancer.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Amaliya Latypova
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | | | - Hayder Abdullah Talib
- College of Agriculture, National University of Science and Technology, Dhi Qar, Dhi Qar, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Iraq
| | - Atreyi Pramanik
- Divison of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
39
|
Liu Y, Wang Y, Liu B, Liu W, Ma Y, Cao Y, Yan S, Zhang P, Zhou L, Zhan Q, Wu N. Targeting lncRNA16 by GalNAc-siRNA conjugates facilitates chemotherapeutic sensibilization via the HBB/NDUFAF5/ROS pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:663-679. [PMID: 38155279 DOI: 10.1007/s11427-023-2434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 12/30/2023]
Abstract
Chemoresistance is a significant barrier to effective cancer treatment. Potential mechanisms for chemoresistance include reactive oxygen species (ROS) accumulation and expression of chemoresistance-promoting genes. Here, we report a novel function of lncRNA16 in the inhibition of ROS generation and the progression of chemoresistance. By analyzing the serum levels of lncRNA16 in a cohort of 35 patients with non-small cell lung cancer (NSCLC) and paired serum samples pre- and post-treatment from 10 NSCLC patients receiving neoadjuvant platinum-based chemotherapy, performing immunohistochemistry (IHC) assays on 188 NSCLC tumor samples, using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) assays, as well as RNA immunoprecipitation (RIP) and RNA pull-down analyses, we discovered that patients with increased serum levels of lncRNA16 exhibited a poor response to platinum-based chemotherapy. The expression of hemoglobin subunit beta (HBB) and NDUFAF5 significantly increases with the development of chemoresistance. LncRNA16 binds to HBB and promotes HBB accumulation by inhibiting autophagy. LncRNA16 can also inhibit ROS generation via the HBB/NDUFAF5 axis and function as a scaffold to facilitate the colocalization of HBB and NDUFAF5 in the mitochondria. Importantly, preclinical studies in mouse models of chemo-resistant NSCLC have suggested that lncRNA16 targeting by trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNA restores chemosensitivity and results in tumor growth inhibition with no detectable toxicity in vivo. Overall, lncRNA16 is a promising therapeutic target for overcoming chemoresistance, and the combination of first-line platinum-based chemotherapy with lncRNA16 intervention can substantially enhance anti-tumor efficacy.
Collapse
Affiliation(s)
- Yanfang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wenzhong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yuanyuan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yiren Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Panpan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
40
|
Zhang T, Ji T, Duan Z, Xue Y. Long non-coding RNA MLLT4 antisense RNA 1 induces autophagy to inhibit tumorigenesis of cervical cancer through modulating the myosin-9/ATG14 axis. Sci Rep 2024; 14:6379. [PMID: 38493244 PMCID: PMC10944523 DOI: 10.1038/s41598-024-55644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
The regulatory mechanism of long non-coding RNAs (lncRNAs) in autophagy is as yet not well established. In this research, we show that the long non-coding RNA MLLT4 antisense RNA 1 (lncRNA MLLT4-AS1) is induced by the MTORC inhibitor PP242 and rapamycin in cervical cells. Overexpression of MLLT4-AS1 promotes autophagy and inhibits tumorigenesis and the migration of cervical cancer cells, whereas knockdown of MLLT4-AS1 attenuates PP242-induced autophagy. Mass spectrometry, RNA fluorescence in situ hybridization (RNA-FISH), and immunoprecipitation assays were performed to identify the direct interactions between MLLT4-AS1 and other associated targets, such as myosin-9 and autophagy-related 14(ATG14). MLLT4-AS1 was upregulated by H3K27ac modification with PP242 treatment, and knockdown of MLLT4-AS1 reversed autophagy by modulating ATG14 expression. Mechanically, MLLT4-AS1 was associated with the myosin-9 protein, which further promoted the transcription activity of the ATG14 gene. In conclusion, we demonstrated that MLLT4-AS1 acts as a potential tumor suppressor in cervical cancer by inducing autophagy, and H3K27ac modification-induced upregulation of MLLT4-AS1 could cause autophagy by associating with myosin-9 and promoting ATG14 transcription.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Gynecology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Tiantian Ji
- Department of Gynecology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Zhao Duan
- Department of Gynecology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Xue
- Department of Gynecology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
41
|
Shi Y, Adu-Amankwaah J, Zhao Q, Li X, Yu Q, Bushi A, Yuan J, Tan R. Long non-coding RNAs in drug resistance across the top five cancers: Update on their roles and mechanisms. Heliyon 2024; 10:e27207. [PMID: 38463803 PMCID: PMC10923722 DOI: 10.1016/j.heliyon.2024.e27207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Cancer drug resistance stands as a formidable obstacle in the relentless fight against the top five prevalent cancers: breast, lung, colorectal, prostate, and gastric cancers. These malignancies collectively account for a significant portion of cancer-related deaths worldwide. In recent years, long non-coding RNAs (lncRNAs) have emerged as pivotal players in the intricate landscape of cancer biology, and their roles in driving drug resistance are steadily coming to light. This comprehensive review seeks to underscore the paramount significance of lncRNAs in orchestrating resistance across a spectrum of different cancer drugs, including platinum drugs (DDP), tamoxifen, trastuzumab, 5-fluorouracil (5-FU), paclitaxel (PTX), and Androgen Deprivation Therapy (ADT) across the most prevalent types of cancer. It delves into the multifaceted mechanisms through which lncRNAs exert their influence on drug resistance, shedding light on their regulatory roles in various facets of cancer biology. A comprehensive understanding of these lncRNA-mediated mechanisms may pave the way for more effective and personalized treatment strategies, ultimately improving patient outcomes in these challenging malignancies.
Collapse
Affiliation(s)
- Yue Shi
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Qizhong Zhao
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Xin Li
- Clinical Medical College, Jining Medical University, 272067, Jining, China
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, 272067, Jining, China
| | - Qianxue Yu
- Clinical Medical College, Jining Medical University, 272067, Jining, China
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, 272067, Jining, China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jinxiang Yuan
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, 272067, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, 272067, Jining, China
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
42
|
Wang Y, Bu N, Luan XF, Song QQ, Ma BF, Hao W, Yan JJ, Wang L, Zheng XL, Maimaitiyiming Y. Harnessing the potential of long non-coding RNAs in breast cancer: from etiology to treatment resistance and clinical applications. Front Oncol 2024; 14:1337579. [PMID: 38505593 PMCID: PMC10949897 DOI: 10.3389/fonc.2024.1337579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and a leading cause of cancer-related deaths of females worldwide. It is a complex and molecularly heterogeneous disease, with various subtypes that require different treatment strategies. Despite advances in high-resolution single-cell and multinomial technologies, distant metastasis and therapeutic resistance remain major challenges for BC treatment. Long non-coding RNAs (lncRNAs) are non-coding RNAs with more than 200 nucleotides in length. They act as competing endogenous RNAs (ceRNAs) to regulate post-transcriptional gene stability and modulate protein-protein, protein-DNA, and protein-RNA interactions to regulate various biological processes. Emerging evidence suggests that lncRNAs play essential roles in human cancers, including BC. In this review, we focus on the roles and mechanisms of lncRNAs in BC progression, metastasis, and treatment resistance, and discuss their potential value as therapeutic targets. Specifically, we summarize how lncRNAs are involved in the initiation and progression of BC, as well as their roles in metastasis and the development of therapeutic resistance. We also recapitulate the potential of lncRNAs as diagnostic biomarkers and discuss their potential use in personalized medicine. Finally, we provide lncRNA-based strategies to promote the prognosis of breast cancer patients in clinical settings, including the development of novel lncRNA-targeted therapies.
Collapse
Affiliation(s)
- Yun Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Bu
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-fei Luan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian-qian Song
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ba-Fang Ma
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Wenhui Hao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing-jing Yan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-ling Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yasen Maimaitiyiming
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
43
|
Zhou Y, Xue W, Meng X, Bhandari A, Zeng H, KC R, Hirachan S, Xia E. GNPNAT1 is a Biomarker That Predicts a Poor Prognosis of Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:71-89. [PMID: 38476642 PMCID: PMC10929243 DOI: 10.2147/bctt.s451054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Background Breast cancer (BC) is increasingly becoming the primary reason for death in women, which sounded the alarm. Thus, finding a novel management target for BC is imminent. Materials and Methods The data on gene expression and clinicopathological characteristics were downloaded from The Cancer Genome Atlas (TCGA). The expression of GNPNAT1 in 40 paired breast cancer and adjacent tissues was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Univariate and Multivariate logistic regression methodology was applied to analyze the prognostic factors for lymph node metastasis (LNM). Based on the status of breast cancer-relative receptors, patients were distributed into six groups, and then the Kaplan-Meier survival analysis with a Log rank test was applied to investigate the involvement among the expression of GNPNAT1 and overall survival (OS). Results We found higher expression of GNPNAT1 was connected with poor survival in breast cancer by COX regulation analysis. GO, KEGG, and GSEA analysis prompted that GNPNAT1 was connected with the defense mechanism of cells, cell proliferation, and division. Immunization infiltration analysis showed that high GNPNAT1 was negatively connected with 16 immunization infiltration cell types and positively connected with four immunization infiltration cell types. Conclusion As a whole, our results indicated that GNPNAT1 might be a probable biomarker for diagnosis and prognosis in breast cancer.
Collapse
Affiliation(s)
- Yuying Zhou
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, People’s Republic of China
| | - Wu Xue
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xinyu Meng
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Department of Surgery, Breast and Thyroid Unit, Primera Hospital, Kathmandu, Nepal
| | - Hanqian Zeng
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
| | - Rajan KC
- Central Department of Zoology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Suzita Hirachan
- Department of General Surgery, Breast and Thyroid Unit, Tribhuvan University, Teaching Hospital, Kathmandu, Nepal
| | - Erjie Xia
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
44
|
Liu J, Zhu Y, Wang H, Han C, Wang Y, Tang R. LINC00629, a HOXB4-downregulated long noncoding RNA, inhibits glycolysis and ovarian cancer progression by destabilizing c-Myc. Cancer Sci 2024; 115:804-819. [PMID: 38182548 PMCID: PMC10920983 DOI: 10.1111/cas.16049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024] Open
Abstract
Ovarian cancer (OC) cells typically reprogram their metabolism to promote rapid proliferation. However, the role of long noncoding RNAs (lncRNAs) in the metabolic reprogramming of ovarian cancer, especially in glucose metabolic reprogramming, remains largely unknown. LINC00629 has been reported in our previous study to promote osteosarcoma progression. Upregulated LINC00629 was found to enhance the growth-suppressive effect of apigenin on oral squamous cell carcinoma. However, the precise function of LINC00629 in ovarian cancer development remains poorly understood. In this study, we found that LINC00629 was significantly downregulated in OC tissues and that low LINC00629 expression was associated with poor survival. Inhibition of LINC00629 was required for increased glycolysis activity and cell proliferation in ovarian cancer. In vivo, overexpression of LINC00629 dramatically inhibited tumor growth and lung metastasis. Mechanistically, LINC00629 interacted with and destabilized c-Myc, leading to its ubiquitination and proteasome degradation, further resulting in increased expression of downstream glycolysis-related genes and glucose metabolic reprogramming in OC. Interestingly, HOXB4 bound to the LINC00629 promoter and inhibited its transcription, indicating that LINC00629 is a transcriptional target of HOXB4. Collectively, these findings establish a direct role for LINC00629 in suppressing glucose metabolism, and HOXB4/LINC00629/c-Myc might serve as a potential biomarker and an effective therapeutic strategy for OC cancer treatment.
Collapse
Affiliation(s)
- Jia Liu
- Department of GynecologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
| | - Yuan Zhu
- Department of GynecologyWomen's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare HospitalNanjingChina
| | - Huan Wang
- Department of GynecologyWomen's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare HospitalNanjingChina
| | - Chuanchun Han
- The Second Affiliated Hospital and Institute of Cancer Stem CellDalian Medical UniversityDalianLiaoningChina
| | - Yongpeng Wang
- Department of GynecologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
| | - Ranran Tang
- Department of GynecologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
- Department of GynecologyWomen's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare HospitalNanjingChina
| |
Collapse
|
45
|
Liu HT, Gao ZX, Li F, Guo XY, Li CL, Zhang H, Zhao RN, Liu Y, Shi DB, Zhu WJ, Gao P. LncRNA LY6E-DT and its encoded metastatic-related protein play oncogenic roles via different pathways and promote breast cancer progression. Cell Death Differ 2024; 31:188-202. [PMID: 38114778 PMCID: PMC10850524 DOI: 10.1038/s41418-023-01247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Abnormal long noncoding RNA (lncRNA) expression plays an important role in tumor invasion and metastasis. Here, we show that lncRNA LY6E divergent transcript (LY6E-DT) levels are increased in breast cancer (BC) tissues. Transcription factor SP3 binds directly to the LY6E-DT promoter, activating its transcription. Moreover, LY6E-DT N6-methyladenosine modification by methyltransferase-like protein 14 (METTL14) promotes its expression, dependent on the "reader" insulin-like growth factor 2 mRNA binding protein 1(IGF2BP1)-dependent pathway. Notably, we discovered that the lncRNA LY6E-DT encodes a conserved 153-aa protein, "Metastatic-Related Protein" (MRP). Both LY6E-DT and MRP promote BC invasion and metastasis, and MRP expression could distinguish BC patients with lymph node metastasis from those without. Mechanistically, MRP binds heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC), enhancing the interaction between HNRNPC and epidermal growth factor receptor (EGFR) mRNA, increasing EGFR mRNA stability and protein expression and subsequently activating the phosphatidylinositol 3‑kinase/protein kinase B signaling (PI3K) pathway. LncRNA LY6E-DT promotes the interaction between Y box binding protein 1 (YBX1) and importin α1 and increases YBX1 protein entry into the nucleus, where it transcriptionally activates zinc finger E-box-binding homeobox 1(ZEB1). Our findings uncover a novel regulatory mechanism underlying BC invasion orchestrated by LY6E-DT and its encoded MRP.
Collapse
Affiliation(s)
- Hai-Ting Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Zhao-Xin Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Li
- Department of Pancreatic Surgery, General Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiang-Yu Guo
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Chun-Lan Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Han Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Rui-Nan Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yuan Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Duan-Bo Shi
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Wen-Jie Zhu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Peng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
46
|
Shi T, Guo D, Zheng Y, Wang W, Bi J, He A, Fan S, Su G, Zhao X, Zhao Z, Song Y, Sun S, Li P, Zhao Z, Shi J, Lu W, Zhang L. Bivalent activity of super-enhancer RNA LINC02454 controls 3D chromatin structure and regulates glioma sensitivity to temozolomide. Cell Death Dis 2024; 15:6. [PMID: 38177123 PMCID: PMC10766990 DOI: 10.1038/s41419-023-06392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Glioma cell sensitivity to temozolomide (TMZ) is critical for effective treatment and correlates with patient survival, although mechanisms underlying this activity are unclear. Here, we reveal a new mechanism used by glioma cells to modulate TMZ sensitivity via regulation of SORBS2 and DDR1 genes by super-enhancer RNA LINC02454. We report that LINC02454 activity increases glioma cell TMZ sensitivity by maintaining long-range chromatin interactions between SORBS2 and the LINC02454 enhancer. By contrast, LINC02454 activity also decreased glioma cell TMZ sensitivity by promoting DDR1 expression. Our study suggests a bivalent function for super-enhancer RNA LINC02454 in regulating glioma cell sensitivity to TMZ.
Collapse
Affiliation(s)
- Tengfei Shi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Dianhao Guo
- Department of Molecular Biology and Biochemistry, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, shandong, China
| | - Yaoqiang Zheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Wenbin Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jinfang Bi
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 510030, Guangzhou, China
| | - Anshun He
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Sibo Fan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Guangsong Su
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 510030, Guangzhou, China
| | - Xueyuan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Zhenhao Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yingjie Song
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Shupeng Sun
- Department of Neurosurgery, Tianjin Huanhu Hospital, School of Medicine, Nankai University, 6 Jizhao Road, 300350, Tianjin, China
| | - Peng Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
47
|
Danyaei A, Ghanbarnasab-Behbahani R, Teimoori A, Neisi N, Chegeni N. The simultaneous use of CRISPR/Cas9 to knock out the PI3Kca gene with radiation to enhance radiosensitivity and inhibit tumor growth in breast cancer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1566-1573. [PMID: 39539450 PMCID: PMC11556764 DOI: 10.22038/ijbms.2024.79249.17167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/22/2024] [Indexed: 11/16/2024]
Abstract
Objectives Breast neoplasm is a malignancy that can have a poor prognosis. The PI3K/AKT signaling pathway is frequently activated in various tumor types, including breast cancer, leading to alterations in the tumor microenvironment and radioresistance. Selective inhibition of PI3Kca (p110α) has been considered an alternative approach to overcome radioresistance, owing to concerns surrounding the excessive side effects of pan-PI3K inhibitors tested in clinical trials. This investigation aimed to evaluate the efficacy of co-administering PI3Kca knocking out with radiation therapy in mitigating radioresistance and suppressing tumor growth in the MDA-MB-231 cell line. Materials and Methods The present investigation utilized the CRISPR/Cas9 technique to induce a knockout of the PI3Kca gene. Subsequently, after 24 hr of transfection, gene expression, cell proliferation, apoptosis rate, and angiogenesis were assessed. Results We demonstrated that knocking out PI3Kca, in combination with radiation, increased apoptosis, reduced the expression of PI3Kca and AKT1 genes, and decreased cell proliferation. The CAM assay analysis has demonstrated that knocking out the PI3Kca gene and radiotherapy substantially reduced the total vessel network length and the number of junctions. Conclusion The findings of our investigation indicate that the integration of radiation therapy with PI3Kca yielded enhanced radiosensitivity, leading to a marked retardation of tumor progression and an increased survival rate.
Collapse
Affiliation(s)
- Amir Danyaei
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rahil Ghanbarnasab-Behbahani
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Niloofar Neisi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nahid Chegeni
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
48
|
Sharma A, Liu X, Chandra V, Rai R, Benbrook DM, Woo S. Pharmacodynamics of Cyclin D1 Degradation in Ovarian Cancer Xenografts with Repeated Oral SHetA2 Dosing. AAPS J 2023; 26:5. [PMID: 38087107 PMCID: PMC11610768 DOI: 10.1208/s12248-023-00874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
SHetA2 is a promising, orally active small molecule with anticancer properties that target heat shock proteins. In this study, we aimed to investigate the pharmacodynamic (PD) effects of SHetA2 using preclinical in vitro and in vivo models of ovarian cancer and establish a physiologically based pharmacokinetic (PBPK)/PD model to describe their relationships with SHetA2 concentrations in mice. We found that daily oral administration of 60 mg/kg SHetA2 for 7 days resulted in consistent plasma PK and tissue distribution, achieving tumor drug concentrations required for growth inhibition in ovarian cancer cell lines. SHetA2 effectively induced cyclin D1 degradation in cancer cells in a dose-dependent manner, with up to 70% reduction observed and an IC50 of 4~5 µM. We identified cyclin D1 as a potential PD marker for SHetA2, based on a well-correlated time profile with SHetA2 PK. Additionally, we examined circulating levels of ccK18 as a non-invasive PD marker for SHetA2-induced apoptotic activity and found it unsuitable due to high variability. Using a PBPK/PD model, we depicted SHetA2 levels and their promoting effects on cyclin D1 degradation in tumors following multiple oral doses. The model suggested that twice-daily dosing regimens would be effective for sustained reduction in cyclin D1 protein. Our study provides valuable insights into the PK/PD of SHetA2, facilitating future clinical trial designs and dosing schedules.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., Oklahoma City, Oklahoma, 73117-1200, USA
| | - Xin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, 352 Pharmacy Building, Buffalo, New York, 14214, USA
| | - Vishal Chandra
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma, 73104, USA
| | - Rajani Rai
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma, 73104, USA
| | - Doris M Benbrook
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma, 73104, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, 352 Pharmacy Building, Buffalo, New York, 14214, USA.
| |
Collapse
|
49
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
50
|
Zhao X, Xu Z, Meng B, Ren T, Wang X, Hou R, Li S, Ma W, Liu D, Zheng J, Shi M. Long noncoding RNA NONHSAT160169.1 promotes resistance via hsa-let-7c-3p/SOX2 axis in gastric cancer. Sci Rep 2023; 13:20858. [PMID: 38012281 PMCID: PMC10682003 DOI: 10.1038/s41598-023-47961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
In clinical trials involving patients with HER2 (ERBB2 receptor tyrosine kinase 2) positive gastric cancer, the efficacy of the HER2-targeted drug lapatinib has proven to be disappointingly poor. Under the persistent pressure exerted by targeted drug therapy, a subset of tumor cells exhibit acquired drug resistance through the activation of novel survival signaling cascades, alongside the proliferation of tumor cells that previously harbored mutations conferring resistance to the drug. This study was undertaken with the aim of elucidating in comprehensive detail the intricate mechanisms behind adaptive resistance and identifying novel therapeutic targets that hold promise in the development of effective lapatinib-based therapies for the specific subset of patients afflicted with gastric cancer. We have successfully established a gastric cancer cell line with acquired lapatinib resistance, designated as HGC-27-LR cells. Utilizing comprehensive coding and noncoding transcriptome sequencing analysis, we have identified key factors that regulate lapatinib resistance in HGC-27 cells. We have compellingly validated that among all the lncRNAs identified in HGC-27-LR cells, a novel lncRNA (long noncoding RNA) named NONHSAT160169.1 was found to be most notably upregulated following exposure to lapatinib treatment. The upregulation of NONHSAT160169.1 significantly augmented the migratory, invasive, and stemness capabilities of HGC-27-LR cells. Furthermore, we have delved into the mechanism by which NONHSAT160169.1 regulates lapatinib resistance. The findings have revealed that NONHSAT160169.1, which is induced by the p-STAT3 (signal transducer and activator of transcription 3) nuclear transport pathway, functions as a decoy that competitively interacts with hsa-let-7c-3p and thereby abrogates the inhibitory effect of hsa-let-7c-3p on SOX2 (SRY-box transcription factor 2) expression. Hence, our study has unveiled the NONHSAT160169.1/hsa-let-7c-3p/SOX2 signaling pathway as a novel and pivotal axis for comprehending and surmounting lapatinib resistance in the treatment of HER2-positive gastric cancer.
Collapse
Affiliation(s)
- Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Zijian Xu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Bi Meng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tong Ren
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|