1
|
Greif M, Calandra I, Lautenschlager S, Kaiser TM, Mezane M, Klug C. Reconstruction of feeding behaviour and diet in Devonian ctenacanth chondrichthyans using dental microwear texture and finite element analyses. ROYAL SOCIETY OPEN SCIENCE 2025; 12:240936. [PMID: 39881788 PMCID: PMC11774596 DOI: 10.1098/rsos.240936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/23/2024] [Accepted: 12/06/2024] [Indexed: 01/31/2025]
Abstract
Devonian ctenacanth chondrichthyans reached body sizes similar to modern great white sharks and therefore might have been apex predators of the Devonian seas. However, very little is known about the diet and feeding behaviours of these large ancestral sharks. To reconstruct their ecological properties, teeth of the large Famennian (Late Devonian) chondrichthyan Ctenacanthus concinnus from the Anti-Atlas, Morocco, were analysed. The teeth show strong tooth wear with deep horizontal as well as vertical scratches. Dental microwear texture analysis, a well-established method for the reconstruction of diet and commonly used in terrestrial vertebrates, was applied for the first time, to our knowledge, to Palaeozoic vertebrates in this study. Furthermore, finite element analysis was performed to test the biomechanical properties of the teeth. By combining both analyses, as well as palaeoenvironmental data and tooth morphology, we demonstrate that the results from only one method can be insufficient and misleading. Ctenacanthus concinnus most likely was an opportunistic feeder like many modern sharks. Direct evidence and the results of our analyses suggest that Ctenacanthus fed on ectocochleate cephalopods, other chondrichthyans and further vertebrates using a combination of head movements including lateral head shaking to cut large prey items.
Collapse
Affiliation(s)
- Merle Greif
- Department of Palaeontology, University of Zurich, Karl-Schmid-Strasse 4, Zurich8006, Switzerland
| | - Ivan Calandra
- Imaging Platform at LEIZA (IMPALA), and Laboratory for Traceology and Controlled Experiments (TraCEr), MONREPOS Archaeological Research Centre, Leibniz-Zentrum für Archäologie, Neuwied56567, Germany
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, Lapworth Museum of Geology, University of Birmingham, Edgbaston, Birmingham, UK
| | - Thomas M. Kaiser
- Centre for Taxonomy and Morphology, Section Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Martin-Luther-King-Platz 3, Hamburg20146, Germany
| | | | - Christian Klug
- Department of Palaeontology, University of Zurich, Karl-Schmid-Strasse 4, Zurich8006, Switzerland
| |
Collapse
|
2
|
Nicklin EF, Cohen KE, Cooper RL, Mitchell G, Fraser GJ. Evolution, development, and regeneration of tooth-like epithelial appendages in sharks. Dev Biol 2024; 516:221-236. [PMID: 39154741 DOI: 10.1016/j.ydbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Sharks and their relatives are typically covered in highly specialized epithelial appendages embedded in the skin called dermal denticles; ancient tooth-like units (odontodes) composed of dentine and enamel-like tissues. These 'skin teeth' are remarkably similar to oral teeth of vertebrates and share comparable morphological and genetic signatures. Here we review the histological and morphological data from embryonic sharks to uncover characters that unite all tooth-like elements (odontodes), including teeth and skin denticles in sharks. In addition, we review the differences between the skin and oral odontodes that reflect their varied capacity for renewal. Our observations have begun to decipher the developmental and genetic shifts that separate these seemingly similar dental units, including elements of the regenerative nature in both oral teeth and the emerging skin denticles from the small-spotted catshark (Scyliorhinus canicula) and other chondrichthyan models. Ultimately, we ask what defines a tooth at both the molecular and morphological level. These insights aim to help us understand how nature makes, replaces and evolves a vast array of odontodes.
Collapse
Affiliation(s)
- Ella F Nicklin
- Department of Biology, University of Florida, Gainesville, USA
| | - Karly E Cohen
- Department of Biology, University of Florida, Gainesville, USA; Department of Biology, California State University Fullerton, Fullerton, USA
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Gianna Mitchell
- Department of Biology, University of Florida, Gainesville, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, USA.
| |
Collapse
|
3
|
Lasota A, Gorzelak M, Turżańska K, Kłapeć W, Jarzębski M, Blicharski T, Pawlicz J, Wieruszewski M, Jabłoński M, Kuczumow A. The Ways of Forming and the Erosion/Decay/Aging of Bioapatites in the Context of the Reversibility of Apatites. Int J Mol Sci 2024; 25:11297. [PMID: 39457079 PMCID: PMC11508326 DOI: 10.3390/ijms252011297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This study primarily focused on the acid erosion of enamel and dentin. A detailed examination of the X-ray diffraction data proves that the products of the acid-caused decay of enamel belong to the family of isomorphic bioapatites, especially calcium-deficient hydroxyapatites. They are on a trajectory towards less and less crystallized substances. The increase in Bragg's parameter d and the decrease in the energy necessary for the changes were coupled with variability in the pH. This was valid for the corrosive action of acid solutions with a pH greater than 3.5. When the processes of natural tooth aging were studied by X-ray diffraction, a clear similarity to the processes of the erosion of teeth was revealed. Scarce data on osteoporotic bones seemed to confirm the conclusions derived for teeth. The data concerning the bioapatite decays were confronted with the cycles of apatite synthesis/decay. The chemical studies, mainly concerning the Ca/P ratio in relation to the pH range of durability of popular compounds engaged in the synthesis/decay of apatites, suggested that the process of the formation of erosion under the influence of acids was much inverted in relation to the process of the formation of apatites, starting from brushite up to apatite, in an alkaline environment. Our simulations showed the shift between the family of bioapatites versus the family of apatites concerning the pH of the reaction environment. The detailed model stoichiometric equations associated with the particular stages of relevant processes were derived. The synthesis processes were alkalization reactions coupled with dehydration. The erosion processes were acid hydrolysis reactions. Formally, the alkalization of the environment during apatite synthesis is presented by introducing Ca(OH)2 to stoichiometric equations.
Collapse
Affiliation(s)
- Agnieszka Lasota
- Department of Maxillary Orthopaedics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Mieczysław Gorzelak
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland; (M.G.); (K.T.); (W.K.); (T.B.); (M.J.)
| | - Karolina Turżańska
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland; (M.G.); (K.T.); (W.K.); (T.B.); (M.J.)
| | - Wojciech Kłapeć
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland; (M.G.); (K.T.); (W.K.); (T.B.); (M.J.)
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Poznan University of Life Sciences, 60-637 Poznań, Poland
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland; (M.G.); (K.T.); (W.K.); (T.B.); (M.J.)
| | - Jarosław Pawlicz
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956 135/147, 61-545 Poznań, Poland;
| | - Marek Wieruszewski
- Department of Mechanical Wood Technology, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, 60-627 Poznań, Poland;
| | - Mirosław Jabłoński
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland; (M.G.); (K.T.); (W.K.); (T.B.); (M.J.)
| | | |
Collapse
|
4
|
Xiao F, Zhang X, Xu X, Zhang T, Tang F, Yin H, Hu T, Lei L, Cheng L, Hu M. Unveiling enamel demineralization mechanisms by sensitive dielectric differentiation based on terahertz nanospectroscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:5229-5237. [PMID: 39296400 PMCID: PMC11407262 DOI: 10.1364/boe.527554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
The early stage of dental caries, i.e. demineralization, has always been a topic of concern to dentists. Understanding the essential mechanism of its occurrence is of great significance for the prevention and treatment of dental caries. However, owing to limitations in resolution and the detection capabilities of diagnostic tools, the study of enamel demineralization has always been a challenge. Terahertz (THz) technology, especially the combination of scanning near-field optical microscopy (s-SNOM) and THz time-domain spectroscopy (TDS), due to its nanoscale resolution, has shown great advantages in the field of biological imaging. Here, a THz s-SNOM system is used to perform near-field imaging of enamel before and after demineralization at the nanoscale. It can be found that near-field signals decrease significantly after demineralization. This is due to the changes of the crystal lattice and the transfer of mineral ions during demineralization, which leads to a decrease in the permittivity of the enamel. The novel approach in this study reveals the essence of demineralization and lays the groundwork for additional research and potential interventions.
Collapse
Affiliation(s)
- Feng Xiao
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Xiaoqiuyan Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Xingxing Xu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Tianyu Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Fu Tang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Haowei Yin
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Hu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
| |
Collapse
|
5
|
Lu Y, Yi L, Fu Z, Xie J, Cheng Q, Fu Z, Zou Z. Nonclassical crystallization of goethite nanorods in limpet teeth by self-assembly of silica-rich nanoparticles reveals structure-mechanical property relations. J Colloid Interface Sci 2024; 669:64-74. [PMID: 38705113 DOI: 10.1016/j.jcis.2024.04.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
The intricate organization of goethite nanorods within a silica-rich matrix makes limpet teeth the strongest known natural material. However, the mineralization pathway of goethite in organisms under ambient conditions remains elusive. Here, by investigating the multi-level structure of limpet teeth at different growth stages, it is revealed that the growth of goethite crystals proceeds by the attachment of amorphous nanoparticles, a nonclassical crystallization pathway widely observed during the formation of calcium-based biominerals. Importantly, these nanoparticles contain a high amount of silica, which is gradually expelled during the growth of goethite. Moreover, in mature teeth of limpet, the content of silica correlates with the size of goethite crystals, where smaller goethite crystals are densely packed in the leading part with higher content of silica. Correspondingly, the leading part exhibits higher hardness and elastic modulus. Thus, this study not only reveals the nonclassical crystallization pathway of goethite nanorods in limpet teeth, but also highlights the critical roles of silica in controlling the hierarchical structure and the mechanical properties of limpet teeth, thus providing inspirations for fabricating biomimetic materials with excellent properties.
Collapse
Affiliation(s)
- Yan Lu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Luyao Yi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zeyao Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhengyi Fu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaoyong Zou
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
6
|
Tuo Z, Yang K, Ma S, Cui J, Shi Y, Zhao H, Liang Y, Liu C, Lin Z, Han Z, Ren L. Multi-Level Structural Enhancement Mechanism of the Excellent Mechanical Properties of Dung Beetle Leg Joint. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311588. [PMID: 38497502 DOI: 10.1002/smll.202311588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/17/2024] [Indexed: 03/19/2024]
Abstract
The multi-level structure is a strategy to enhance the mechanical properties of dung beetle leg joints. Under external loads, the microstructure facilitates energy dissipation and prevents crack extension. The macrostructure aids in transferring the load to more reliable parts. The connection established by the two hemispheres is present in the dung beetle leg joint. The micron-layered and nanoscale crystal structures further constitute the leg joint with excellent mechanical properties. The maximum compression fracture force is ≈101000 times the weight of the leg. Here, the structural design within the dung beetle leg joints and reveal the resulting mechanical response and enhancement mechanisms is determined. A series of beetle leg joints where the macrostructure and microstructure of the dung beetle leg provide mechanical strength at critical strains while avoiding catastrophic failure by transferring the load from the joint to the exoskeleton of the femur is highlighted. Nanocrystalline structures and fiber layers contribute to crack propagation of the exoskeleton. Based on this, the bionic joint with multi-level structures using resin and conducted a series of tests to verify their effectiveness is prepared. This study provides a new idea for designing and optimizing high-load joints in engineering.
Collapse
Affiliation(s)
- Zhiwei Tuo
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Kaisheng Yang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Suqian Ma
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Jiandong Cui
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Yu Shi
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Changchun, 130025, China
| | - Changyi Liu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Zhaohua Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Zhiwu Han
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
7
|
Liu Z, Niu Y, Fu Z, Dean M, Fu Z, Hu Y, Zou Z. 3D relationship between hierarchical canal network and gradient mineralization of shark tooth osteodentin. Acta Biomater 2023; 168:185-197. [PMID: 37451657 DOI: 10.1016/j.actbio.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Osteodentin is a dominant mineralized collagenous tissue in the teeth of many fishes, with structural and histological characteristics resembling those of bone. Osteodentin, like bone, comprises osteons as basic structural building blocks, however, it lacks the osteocytes and the lacuno-canalicular network (LCN), which are known to play critical roles in controlling the mineralization of the collagenous matrix in bone. Although numerous vascular canals exist in osteodentin, their role in tooth maturation and the matrix mineralization process remain poorly understood. Here, high resolution micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM) were used to obtain 3D structural information of osteodentin in shark teeth at multiple scales. We observed a complex 3D network of primary canals with a diameter ranging from ∼10 µm to ∼120 µm, where the canals are surrounded by osteon-like concentric layers of lamellae, with 'interosteonal' tissue intervening between neighboring osteons. In addition, numerous hierarchically branched secondary canals extended radially from the primary canals into the interosteonal tissue, decreasing in diameter from ∼10 µm to hundreds of nanometers. Interestingly, the mineralization degree increases from the periphery of primary canals into the interosteonal tissue, suggesting that mineralization begins in the interosteonal tissue. Correspondingly, the hardness and elastic modulus of the interosteonal tissue are higher than those of the osteonal tissue. These results demonstrate that the 3D hierarchical canal network is positioned to play a critical role in controlling the gradient mineralization of osteodentin, also providing valuable insight into the formation of mineralized collagenous tissue without osteocytes and LCN. STATEMENT OF SIGNIFICANCE: Bone is a composite material with versatile mechanical properties. Osteocytes and their lacuno-canalicular network (LCN) are known to play critical roles during formation of human bone. However, the bone and osteodentin of many fishes, although lacking osteocytes and LCN, exhibit similar osteon-like structure and mechanical functions. Here, using various high resolution 3D characterization techniques, we reveal that the 3D network of primary canals and numerous hierarchically branched secondary canals correlate with the mineralization gradient and micromechanical properties of osteonal and interosteonal tissues of shark tooth osteodentin. This work significantly improves our understanding of the construction of bone-like mineralized tissue without osteocytes and LCN, and provides inspirations for the fabrication of functional materials with hierarchical structure.
Collapse
Affiliation(s)
- Zhuanfei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yunya Niu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zeyao Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Mason Dean
- Department of Infectious Diseases & Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yongming Hu
- School of Microelectronics, Hubei University, Wuhan 430062, Hubei, China..
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.; Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China.
| |
Collapse
|
8
|
Wang D, Han S, Yang M. Tooth Diversity Underpins Future Biomimetic Replications. Biomimetics (Basel) 2023; 8:biomimetics8010042. [PMID: 36810373 PMCID: PMC9944091 DOI: 10.3390/biomimetics8010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Although the evolution of tooth structure seems highly conserved, remarkable diversity exists among species due to different living environments and survival requirements. Along with the conservation, this diversity of evolution allows for the optimized structures and functions of teeth under various service conditions, providing valuable resources for the rational design of biomimetic materials. In this review, we survey the current knowledge about teeth from representative mammals and aquatic animals, including human teeth, herbivore and carnivore teeth, shark teeth, calcite teeth in sea urchins, magnetite teeth in chitons, and transparent teeth in dragonfish, to name a few. The highlight of tooth diversity in terms of compositions, structures, properties, and functions may stimulate further efforts in the synthesis of tooth-inspired materials with enhanced mechanical performance and broader property sets. The state-of-the-art syntheses of enamel mimetics and their properties are briefly covered. We envision that future development in this field will need to take the advantage of both conservation and diversity of teeth. Our own view on the opportunities and key challenges in this pathway is presented with a focus on the hierarchical and gradient structures, multifunctional design, and precise and scalable synthesis.
Collapse
|
9
|
Ando Y, Tsukasaki M. [RANKL and periodontitis]. Nihon Yakurigaku Zasshi 2023; 158:263-268. [PMID: 37121710 DOI: 10.1254/fpj.22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Periodontal disease is characterized by inflammation of the periodontal tissue and subsequent destruction of the alveolar bone. It is one of the most common infectious diseases in humans, being the leading cause of tooth loss in adults. Recently, it has been shown that the receptor activator of NF-κB ligand (RANKL) produced by osteoblasts and periodontal ligament fibroblasts critically contributes to the bone destruction caused by periodontal disease. Activation of the immune system plays an important role in the induction of RANKL during periodontal inflammation. Here we discuss the molecular mechanisms of periodontal bone destruction by focusing on the osteoimmune molecule RANKL.
Collapse
Affiliation(s)
- Yutaro Ando
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
- Department of Microbiology, Tokyo Dental College
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
| |
Collapse
|
10
|
Clark B, Chaumel J, Johanson Z, Underwood C, Smith MM, Dean MN. Bricks, trusses and superstructures: Strategies for skeletal reinforcement in batoid fishes (rays and skates). Front Cell Dev Biol 2022; 10:932341. [PMID: 36313571 PMCID: PMC9604235 DOI: 10.3389/fcell.2022.932341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
Crushing and eating hard prey (durophagy) is mechanically demanding. The cartilage jaws of durophagous stingrays are known to be reinforced relative to non-durophagous relatives, with a thickened external cortex of mineralized blocks (tesserae), reinforcing struts inside the jaw (trabeculae), and pavement-like dentition. These strategies for skeletal strengthening against durophagy, however, are largely understood only from myliobatiform stingrays, although a hard prey diet has evolved multiple times in batoid fishes (rays, skates, guitarfishes). We perform a quantitative analysis of micro-CT data, describing jaw strengthening mechanisms in Rhina ancylostoma (Bowmouth Guitarfish) and Rhynchobatus australiae (White-spotted Wedgefish), durophagous members of the Rhinopristiformes, the sister taxon to Myliobatiformes. Both species possess trabeculae, more numerous and densely packed in Rhina, albeit simpler structurally than those in stingrays like Aetobatus and Rhinoptera. Rhina and Rhynchobatus exhibit impressively thickened jaw cortices, often involving >10 tesseral layers, most pronounced in regions where dentition is thickest, particularly in Rhynchobatus. Age series of both species illustrate that tesserae increase in size during growth, with enlarged and irregular tesserae associated with the jaws’ oral surface in larger (older) individuals of both species, perhaps a feature of ageing. Unlike the flattened teeth of durophagous myliobatiform stingrays, both rhinopristiform species have oddly undulating dentitions, comprised of pebble-like teeth interlocked to form compound “meta-teeth” (large spheroidal structures involving multiple teeth). This is particularly striking in Rhina, where the upper/lower occlusal surfaces are mirrored undulations, fitting together like rounded woodworking finger-joints. Trabeculae were previously thought to have arisen twice independently in Batoidea; our results show they are more widespread among batoid groups than previously appreciated, albeit apparently absent in the phylogenetically basal Rajiformes. Comparisons with several other durophagous and non-durophagous species illustrate that batoid skeletal reinforcement architectures are modular: trabeculae can be variously oriented and are dominant in some species (e.g. Rhina, Aetobatus), whereas cortical thickening is more significant in others (e.g. Rhynchobatus), or both reinforcing features can be lacking (e.g. Raja, Urobatis). We discuss interactions and implications of character states, framing a classification scheme for exploring cartilage structure evolution in the cartilaginous fishes.
Collapse
Affiliation(s)
- Brett Clark
- Image and Analysis Centre, Core Research Labs, London, United Kingdom
| | - Júlia Chaumel
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Charlie Underwood
- Natural History Museum, London, United Kingdom
- Department of Earth and Planetary Sciences, Birkbeck, University of London, London, United Kingdom
| | - Moya M. Smith
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King’s College, London, United Kingdom
| | - Mason N. Dean
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Mason N. Dean, ,
| |
Collapse
|
11
|
Herbert AM, Dean MN, Summers AP, Wilga CD. Biomechanics of the jaws of spotted ratfish. J Exp Biol 2022; 225:276400. [PMID: 35994028 DOI: 10.1242/jeb.243748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
Abstract
Elasmobranch fishes (sharks, skates and rays) consume prey of a variety of sizes and properties, and the feeding mechanism typically reflects diet. Spotted ratfish, Hydrolagus colliei (Holocephali, sister group of elasmobranchs), consume both hard and soft prey; however, the morphology of the jaws does not reflect the characteristics typical of durophagous elasmobranchs. This study investigated the mechanical properties and morphological characteristics of the jaws of spotted ratfish over ontogeny, including strain, stiffness and second moment of area, to evaluate the biomechanical function of the feeding structures. Compressive stiffness of the jaws (E=13.51-21.48 MPa) is similar to that of silicone rubber, a very flexible material. In Holocephali, the upper jaw is fused to the cranium; we show that this fusion reduces deformation experienced by the upper jaw during feeding. The lower jaw resists bending primarily in the posterior half of the jaw, which occludes with the region of the upper jaw that is wider and flatter, thus potentially providing an ideal location for the lower jaw to crush or crack prey. The mechanical properties and morphology of the feeding apparatus of spotted ratfish suggest that while the low compressive stiffness is a material limit of the jaw cartilage, spotted ratfish, and perhaps all holocephalans, evolved structural solutions (i.e. fused upper jaw, shape variation along lower jaw) to meet the demands of a durophagous diet.
Collapse
Affiliation(s)
- Amanda M Herbert
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Mason N Dean
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Adam P Summers
- Department of Biology and SAFS, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Cheryl D Wilga
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| |
Collapse
|
12
|
Moynihan MA, Amini S, Oalmann J, Chua JQI, Tanzil JTI, Fan TY, Miserez A, Goodkin NF. Crystal orientation mapping and microindentation reveal anisotropy in Porites skeletons. Acta Biomater 2022; 151:446-456. [PMID: 35963519 DOI: 10.1016/j.actbio.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Structures made by scleractinian corals support diverse ocean ecosystems. Despite the importance of coral skeletons and their predicted vulnerability to climate change, few studies have examined the mechanical and crystallographic properties of coral skeletons at the micro- and nano-scales. Here, we investigated the interplay of crystallographic and microarchitectural organization with mechanical anisotropy within Porites skeletons by measuring Young's modulus and hardness along surfaces transverse and longitudinal to the primary coral growth direction. We observed micro-scale anisotropy, where the transverse surface had greater Young's modulus and hardness by ∼ 6 GPa and 0.2 GPa, respectively. Electron backscatter diffraction (EBSD) revealed that this surface also had a higher percentage of crystals oriented with the a-axis between ± 30-60∘, relative to the longitudinal surface, and a broader grain size distribution. Within a region containing a sharp microscale gradient in Young's modulus, nanoscale indentation mapping, energy dispersive spectroscopy (EDS), EBSD, and Raman crystallography were performed. A correlative trend showed higher Young's modulus and hardness in regions with individual crystal bases (c-axis) facing upward, and in crystal fibers relative to centers of calcification. These relationships highlight the difference in mechanical properties between scales (i.e. crystals, crystal bundles, grains). Observations of crystal orientation and mechanical properties suggest that anisotropy is driven by microscale organization and crystal packing, rather than intrinsic crystal anisotropy. In comparison with previous observations of nanoscale isotropy in corals, our results illustrate the role of hierarchical architecture in coral skeletons and the influence of biotic and abiotic factors on mechanical properties at different scales. STATEMENT OF SIGNIFICANCE: Coral biomineralization and the ability of corals' skeletal structure to withstand biotic and abiotic forces underpins the success of reef ecosystems. At the microscale, we show increased skeletal stiffness and hardness perpendicular to the coral growth direction. By comparing nano- and micro-scale indentation results, we also reveal an effect of hierarchical architecture on the mechanical properties of coral skeletons and hypothesize that crystal packing and orientation result in microscale anisotropy. In contrast to previous findings, we demonstrate that mechanical and crystallographic properties of coral skeletons can vary between surface planes, within surface planes, and at different analytical scales. These results improve our understanding of biomineralization and the effects of scale and direction on how biomineral structures respond to environmental stimuli.
Collapse
Affiliation(s)
- Molly A Moynihan
- Earth Observatory of Singapore, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore, Singapore; Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Shahrouz Amini
- Center for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore; Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - Jeffrey Oalmann
- Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore
| | - J Q Isaiah Chua
- Center for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jani T I Tanzil
- Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore; St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - T Y Fan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Ali Miserez
- Center for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nathalie F Goodkin
- Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore; American Museum of Natural History, New York, NY, USA
| |
Collapse
|
13
|
Wang X, Lin J, Li Z, Ma Y, Zhang X, He Q, Wu Q, Yan Y, Wei W, Yao X, Li C, Li W, Xie S, Hu Y, Zhang S, Hong Y, Li X, Chen W, Duan W, Ouyang H. Identification of an Ultrathin Osteochondral Interface Tissue with Specific Nanostructure at the Human Knee Joint. NANO LETTERS 2022; 22:2309-2319. [PMID: 35238577 DOI: 10.1021/acs.nanolett.1c04649] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cartilage adheres to subchondral bone via a specific osteochondral interface tissue where forces are transferred from soft cartilage to hard bone without conferring fatigue damage over a lifetime of load cycles. However, the fine structure and mechanical properties of the osteochondral interface tissue remain unclear. Here, we identified an ultrathin ∼20-30 μm graded calcified region with two-layered micronano structures of osteochondral interface tissue in the human knee joint, which exhibited characteristic biomolecular compositions and complex nanocrystals assembly. Results from finite element simulations revealed that within this region, an exponential increase of modulus (3 orders of magnitude) was conducive to force transmission. Nanoscale heterogeneity in the hydroxyapatite, coupled with enrichment of elastic-responsive protein-titin, which is usually present in muscle, endowed the osteochondral tissue with excellent mechanical properties. Collectively, these results provide novel insights into the potential design for high-performance interface materials for osteochondral interface regeneration.
Collapse
Affiliation(s)
- Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Zonghao Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yuanzhu Ma
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Qin Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
| | - Yiyang Yan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Chenglin Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Wenyue Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yejun Hu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Yi Hong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Weiqiu Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Wangping Duan
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| |
Collapse
|
14
|
Amadori M, Kindlimann R, Fornaciari E, Giusberti L, Kriwet J. A new cuspidate ptychodontid shark (Chondrichthyes; Elasmobranchii), from the Upper Cretaceous of Morocco with comments on tooth functionalities and replacement patterns. JOURNAL OF AFRICAN EARTH SCIENCES (OXFORD, ENGLAND : 1994) 2022; 187:104440. [PMID: 35111270 PMCID: PMC7612291 DOI: 10.1016/j.jafrearsci.2021.104440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The first articulated dentition of †Ptychodus from Africa is described herein. The specimen, likely coming from the Turonian of the Asfla area (Goulmima region, southeastern Morocco), exhibits a well-preserved lower dental plate of a second-level predator. A new species, †P. maghrebianus sp. nov., is erected herein based on this durophagous dentition characterised by imbricated cuspidate teeth. We employed for the first time in †Ptychodus multiple quantitative analyses and statistical parametric and non-parametric tests to process biometrical data taken from articulated, associated and isolated teeth. The quantitative approach (morphospace analysis) is exploited herein to support the traditional taxonomic identification (qualitative examination) of †P. maghrebianus sp. nov. and to separate it from the similar cuspidate species, †P. mortoni. Morphospace reconstructions confirm a marked lower dental heterodonty (mesio-distal patterns) for both species. The analysis protocol employed here also allows assigning indeterminate teeth as belonging to †P. mortoni. The reconstruction of the entire lower dental plate of †P. maghrebianus sp. nov. shows a cuspidate dentition probably able to reduce tooth damages when crushing thin-shelled prey. Both dental morphologies and tooth wear patterns suggest a peculiar food processing and a diet mainly consisting of bivalves, decapods and small fish for this durophagous predator. Trophic reconstructions of the Turonian ichthyofauna inhabiting the middle to outer ramp environment of the Asfla area emphasize that †P. maghrebianus sp. nov. and the batoid †Tingitanius most likely represented second-level consumers, whereas the sclerorhynchiforms †Asflapristis and †Ptychotrygon represented third-level predators. Top positions within the food web were occupied by larger predaceous elasmobranchs (e.g., †Squalicorax).
Collapse
Affiliation(s)
- Manuel Amadori
- Department of Palaeontology, Geozentrum, University of Wien, Althanstra βe 14, 1090, Wien, Austria
| | | | - Eliana Fornaciari
- Dipartimento di Geoscienze, Universita degli Studi di Padova, Via Gradenigo 6, I-35131, Padova, Italy
| | - Luca Giusberti
- Dipartimento di Geoscienze, Universita degli Studi di Padova, Via Gradenigo 6, I-35131, Padova, Italy
| | - Jürgen Kriwet
- Department of Palaeontology, Geozentrum, University of Wien, Althanstra βe 14, 1090, Wien, Austria
| |
Collapse
|
15
|
Ghimire A, Chen PY. Seed protection strategies of the brainy Elaeocarpus ganitrus endocarp: Gradient motif yields fracture tolerance. Acta Biomater 2022; 138:430-442. [PMID: 34728425 DOI: 10.1016/j.actbio.2021.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Be it animals or plants, most of the organism's offspring come into existence after their embryos develop inside a protective shell. In plants, these hard protective shells are called endocarps. They serve the function of nourishing and protecting the seeds from external mechanical damage. Through evolution, endocarps of plants have developed various structural strategies to protect the enclosed seeds from external threats, and these strategies can vary according to the habitat or lifestyle of a particular plant. One such intriguing hard plant shell is the endocarp of the Elaeocarpus ganitrus fruit. It mostly grows in South Asia's mountainous forests, and its endocarps are known in the local communities as unbreakable and everlasting prayer beads. We report an in-depth investigation on microstructure, tomography, and mechanical properties to cast light on its performance and the underlying structure-property relation. The 3D structural quantifications by micro-CT demonstrate that the endocarp has gradient microarchitecture. In addition, the endocarp also exhibits gradient hardness and stiffness. The toughening mechanisms arising from the layered cellular structure enable the endocarps to withstand higher loads up to 5000 N before they fracture. Our findings provide experimental evidence of outstanding fracture tolerance and seed protection strategies developed by Elaeocarpus ganitrus endocarp that encourage the design of synthetic fracture tolerant structures. STATEMENT OF SIGNIFICANCE: Endocarps are low-density plant shells that exhibit remarkable fracture resistance and energy absorption when they encounter impact by falling from high trees and prolonged compression and abrasion by the predators. Such outstanding mechanical performance originates through structural design strategies developed to protect their seeds. Here we demonstrate previously undiscovered structural features and mechanical properties of Elaeocarpus ganitrus endocarp. We scrutinize the microstructure using high-resolution x-ray tomography scans and the 3D structural quantifications reveal a gradient microstructure which is in agreement with the gradient hardness and stiffness. The multiscale hierarchical structures combined with the gradient motif yield impressive fracture tolerance in Elaeocarpus ganitrus endocarp. These findings advance the knowledge of the structure-property relation in hard plant shells, and the procured structural design strategies can be utilized to design fracture-resistant structures.
Collapse
|
16
|
Ehrlich H, Bailey E, Wysokowski M, Jesionowski T. Forced Biomineralization: A Review. Biomimetics (Basel) 2021; 6:46. [PMID: 34287234 PMCID: PMC8293141 DOI: 10.3390/biomimetics6030046] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/29/2021] [Accepted: 07/02/2021] [Indexed: 12/31/2022] Open
Abstract
Biologically induced and controlled mineralization of metals promotes the development of protective structures to shield cells from thermal, chemical, and ultraviolet stresses. Metal biomineralization is widely considered to have been relevant for the survival of life in the environmental conditions of ancient terrestrial oceans. Similar behavior is seen among extremophilic biomineralizers today, which have evolved to inhabit a variety of industrial aqueous environments with elevated metal concentrations. As an example of extreme biomineralization, we introduce the category of "forced biomineralization", which we use to refer to the biologically mediated sequestration of dissolved metals and metalloids into minerals. We discuss forced mineralization as it is known to be carried out by a variety of organisms, including polyextremophiles in a range of psychrophilic, thermophilic, anaerobic, alkaliphilic, acidophilic, and halophilic conditions, as well as in environments with very high or toxic metal ion concentrations. While much additional work lies ahead to characterize the various pathways by which these biominerals form, forced biomineralization has been shown to provide insights for the progression of extreme biomimetics, allowing for promising new forays into creating the next generation of composites using organic-templating approaches under biologically extreme laboratory conditions relevant to a wide range of industrial conditions.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada
- ICUBE-University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Elizabeth Bailey
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA;
| | - Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|